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Abstract

Compositional generalization, representing the
model’s ability to generate text with new at-
tribute combinations obtained by recombining
single attributes from the training data, is a
crucial property for multi-aspect controllable
text generation (MCTG) methods. Nonetheless,
a comprehensive compositional generalization
evaluation benchmark of MCTG is still lacking.
We propose CompMCTG, a benchmark encom-
passing diverse multi-aspect labeled datasets
and a crafted three-dimensional evaluation pro-
tocol, to holistically evaluate the compositional
generalization of MCTG approaches. We ob-
serve that existing MCTG works generally con-
front a noticeable performance drop in com-
positional testing. To mitigate this issue, we
introduce Meta-MCTG, a training framework
incorporating meta-learning, where we enable
models to learn how to generalize by simulat-
ing compositional generalization scenarios in
the training phase. We demonstrate the effec-
tiveness of Meta-MCTG through achieving ob-
vious improvement (by at most 3.64%) for com-
positional testing performance in 94.4% cases1.

1 Introduction

Multi-aspect Controllable Text Generation aims
to generate fluent text with a combination of at-
tributes from diverse aspects (e.g. sentiment, topic,
tense, person, and stuff). In comparison with
single-aspect controllable text generation (Zhang
and Song, 2022), it is more challenging and calls
for increasing attention in recent years (Gu et al.,
2022; Yang et al., 2023).

Current MCTG methods involve decoding-time-
based (Dathathri et al., 2019; Yang and Klein,
2021) that modulate output distribution by a well-
trained classifier, separate-training-based (Gu et al.,

∗The first two authors contributed equally to this work.
†Corresponding author: Zhendong Mao.

1The code implementation is available at https://
github.com/tqzhong/CG4MCTG.
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Figure 1: Three evaluation protocols in CompMCTG
benchmark, where each set of three colored balls repre-
sents texts with these three attribute labels (e.g., positive,
plural, and present). "I.D." denotes the In-Distribution
set and "Comp." denotes the Compositional set.

2022; Huang et al., 2023; Gu et al., 2023; Yang
et al., 2023) that train multiple single-aspect mod-
ules in turn with single-aspect data and generating
multi-aspect text by fusing them, and joint-training-
based (Keskar et al., 2019; Qian et al., 2022a; Zeng
et al., 2023), which train multiple single-aspect
modules simultaneously or multi-aspect modules
with multi-aspect data. These methods based on
pre-trained language models (Radford et al., 2019)
have achieved promising results on this task.

However, seldom works focus on the investi-
gation of compositional generalization, a crucial
property of MCTG approaches, which refers to the
model’s ability to generate text with new attribute
combinations obtained by recombining single at-
tributes from the training data. For example, we
aim for the model to generate text with the attribute
combination (negative, male) after training on data
with (positive, male) and (negative, female). Due
to the difficulties in collecting data with all possible
attribute combinations in most real-world scenar-
ios, the capability for compositional generalization
is paramount.

To this end, We propose CompMCTG, a compre-
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hensive benchmark to evaluate the compositional
generalization of MCTG approaches (Section 3.1).
We first collect four popular datasets (from a mini-
mum of two-aspect, eight attribute combinations to
a maximum of four-aspect, forty attribute combi-
nations) in the MCTG field to comprise CompM-
CTG. The next crucial issue is how to split the
dataset to better unveil the compositional gener-
alization risk of MCTG methods. Generally, we
split the whole dataset C into two disjoints sets: in-
distribution set Ci.d. and compositional set Ccomp,
where the MCTG model is trained on Ci.d. and
tested on both Ci.d. (in-distribution testing) and
Ccomp (compositional testing). For an all-sided
evaluation, we propose a three-dimensional eval-
uation protocol containing Hold-Out, ACD, and
Few-Shot, which is depicted in Figure 1. Among
them, Hold-Out is an easy protocol, which holds
a few attribute combinations out from C as Ccomp

and uses the remaining combinations as Ci.d.. Few-
Shot is the hardest protocol, in which we guaran-
tee every single attribute appears in the Ci.d. while
minimizing |Ci.d.|2. To better reflect the capacity
of models in cases that |Ccomp| is comparable to
|Ci.d.|, which are closer to real-world scenarios,
we design Attribute Compound Divergence (ACD),
where we make |Ci.d.| = |Ccomp|. The core idea of
ACD is to maximize the distributional divergence
between Ci.d. and Ccomp. Compared with random
sampling that contributes to similar distributions
between Ci.d. and Ccomp easily (Zeng et al., 2023),
ACD can better amplify the compositional general-
ization risk while random-based splits often lead to
gross under-estimation (Section 3.4).

Through the results on CompMCTG (Section
3.3), we observe that all of the evaluated MCTG
baseline approaches are faced with a noticeable
performance drop between in-distribution and com-
positional testing. To further enhance the composi-
tional generalization performance of joint-training-
based methods which generally perform the best
among all baselines, we propose Meta-MCTG (Sec-
tion 4), a training framework incorporating meta-
learning (Finn et al., 2017), in which we enable
models to learn how to generalize by simulating
compositional generalization scenarios in the train-
ing phase. Firstly, we train the original model
on a training batch Btrain, perform one step of
gradient descent, and save the updated parame-

2We define |C| as the number of attribute combinations in
C

ters to a backup model without updating the orig-
inal model’s parameters. Secondly, we sample
a “pseudo compositional” batch Bpcomp from the
training set where the attribute combinations are
the re-combination of those in Btrain and train the
backup model on Bpcomp. Finally, we combine
the losses from both steps and perform one step of
gradient descent to update the original model’s pa-
rameters. Compared with solely training the model
on Btrain, introducing Bpcomp enables the model’s
parameters to update in a direction that not only fo-
cuses on fitting the training data but also takes out-
of-distribution data into account, which helps to
elevate model’s capability of compositional gener-
alization. We implement Meta-MCTG on three top-
performing joint-training-based MCTG baselines
and conduct extensive experiments on CompM-
CTG, demonstrating the effectiveness of Meta-
MCTG through achieving obvious improvement
(by at most 3.64%) for compositional testing in
94.4% cases.

Our main contributions are three-fold: (1) We
propose CompMCTG, the first holistic benchmark
targeting compositional generalization for MCTG,
incorporating four popular datasets and a crafted
three-dimensional evaluation protocol. (2) We con-
duct extensive experiments on CompMCTG with
eight representative MCTG baselines and two ad-
ditional LLMs, unveiling noticeable compositional
generalization risk in them and demonstrating the
necessity of designs in CompMCTG. (3) We pro-
pose Meta-MCTG, incorporating meta-learning
into the MCTG training process, to mitigate MCTG
models’ over-fitting to attribute combinations seen
in the training phase and improve their capacity
for compositional generalization. To the best of
our knowledge, we are the first to comprehensively
evaluate MCTG on compositional generalization
and introduce meta-learning into MCTG to im-
prove composition generalization.

2 Related Work

Multi-aspect Controllable Text Generation Ex-
isting works on MCTG primarily fall into the fol-
lowing three categories: The first is decoding-time-
based (Dathathri et al., 2019; Yang and Klein,
2021; Krause et al., 2021), which uses a well-
trained classifier or conditional language model to
adjust the output probability distribution of a frozen
causal language model. The second is separate-
training-based, which trains single-attribute mod-
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ules (Yang et al., 2023; Huang et al., 2023), Energy-
based Models (Mireshghallah et al., 2022; Qin
et al., 2022) or latent space representations (Gu
et al., 2022, 2023) using single-attribute label data,
and controls the generation by concatenating in-
dividual modules, Energy-based Models or seek-
ing the intersection of different attribute represen-
tations in the latent space. The third is joint-
training-based, which trains multi-attribute mod-
ules (Keskar et al., 2019; Zeng et al., 2023; Qian
et al., 2022b) simultaneously using multi-attribute
label data. Qian et al. (2022b) add a prefix (Li and
Liang, 2021) for each attribute and train these pre-
fixes using a contrastive loss. Zeng et al. (2023)
encode different control codes (word embedding of
attribute tokens) into prompts (Lester et al., 2021)
using a fully connected layer and train this layer us-
ing a contrastive loss similar to Qian et al. (2022b).

Compositional Generalization Existing works
on compositional generalization involve various
NLP topics: Semantic Parsing (Herzig and Berant,
2021; Ontanon et al., 2022; Drozdov et al., 2023;
Li et al., 2023), Machine Translation (Li et al.,
2021; Zheng and Lapata, 2022; Lin et al., 2023),
Text Classification (Kim et al., 2021; Chai et al.,
2023), Complex Reasoning (Zhou et al., 2023a;
Press et al., 2023; Li et al., 2024; Lin et al., 2024)
and stuff. Nonetheless, in the field of open-domain
controllable text generation, compositional gener-
alization, which we target and reveal as the neces-
sity for the robustness of neural language genera-
tors in this paper, remains under-explored. (Zeng
et al., 2023) investigates compositional generaliza-
tion focusing on a neighboring topic, controllable
dialogue generation. We regard their work as a
starting point of our research and further depict
the deficiency of its naive evaluation protocol, for
the underestimation of the compositionality gap in
more realistic scenarios (Keysers et al., 2020).

3 Benchmark: CompMCTG

We propose CompMCTG, a novel benchmark to
comprehensively evaluate the compositional gen-
eralization capacity of MCTG approaches. The
superiority and novelty of CompMCTG are out
of its scale of dataset and its three-dimensional
evaluation protocol (Section 3.1). We select eight
representative baseline approaches (Section 3.2),
evaluate their performance on our CompMCTG
benchmark, and unveil their struggling on compo-
sitional testing (Section 3.3). Moreover, system-

atic analysis towards exploring the behaviors of
baseline approaches under different evaluation pro-
tocols of CompMCTG is provided in Section 3.4,
which highlights: 1) its capacity to dig out the po-
tential generalization risk of evaluated approaches
and 2) the undervalued compositionality gap in the
previous work (Zeng et al., 2023) as well.

3.1 On the Construction of CompMCTG

Data Source We collect commonly used and
open-sourced datasets for our usage. Consequently,
we select a shopping review dataset: Amazon
Review (He and McAuley, 2016), a mixture of
movie(IMDB (Maas et al., 2011)), tablet, auto-
mobile(Sentube (Uryupina et al., 2014)) and ho-
tel(OpenNER (Agerri et al., 2013)) review dataset:
Mixture (Liu et al., 2022), and two restaurant re-
view datasets: YELP (Shen et al., 2017; YELP,
2014) and Fyelp (Lample et al., 2019). Details of
these datasets are concluded in Appendix A.

Three-Dimensional evaluation Protocol We de-
sign a three-dimensional(Hold-Out, ACD and Few-
Shot) evaluation protocol, aiming to sufficiently
explore the compositional generalization capacity
of existing approaches. Supposing that dataset D3

contains m distinct aspect sets: A1, A2, ..., Am

and a specific aspect Ai (1 ≤ i ≤ m) has ai
kinds of different attribute values in its set: Ai =
{A1

i , A
2
i , ..., A

ai
i }, we denote the whole attribute

combination set as the continued Cartesian product
C = A1 × A2 × ... × Am = {(Ati

i )1≤i≤m|1 ≤
ti ≤ ai}. The core of constructing CompM-
CTG is to split the attribute combination set C
into in-distribution set Ci.d. and compositional set
Ccomp. Basically, Ccomp has no intersection with
Ci.d. and any attribute combination in Ccomp can be
derived through recombining single attributes in
Ci.d.. Hence we have the formal definition of an
eligible split s(C) = Ci.d., Ccomp as following:

C = Ci.d. ∪ Ccomp, Ci.d. ∩ Ccomp = ∅
{attribute|∃c ∈ Ccomp, attribute ∈ c} ⊆
{attribute|∃c ∈ Ci.d., attribute ∈ c}

(1)

Hold-Out is an easy evaluation protocol, which
holds a few attribute combinations out from C as

3Each datum in D consists of two components: (c, x),
where c denotes the condition part, a combination of sev-
eral attributes of different aspects (e.g., sentiment:“positive”,
tense:“past”, and topic:“basketball”) and x denotes the text
part, a span of text corresponding to these conditions. For
brevity, we omit the text part and use the condition part to
represent the data in this section.
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Method Original Hold-Out ACD Average
Ai.d.(↑) Pi.d. (↓) Ai.d. (↑) Pi.d.(↓) Acomp(↑) Pcomp(↓) Ai.d. (↑) Pi.d. (↓) Acomp (↑) Pcomp(↓) Aavg (↑) Pavg (↓) Gavg (↓)

LLM+In-context Learning
LLaMA-2 (Touvron et al., 2023) 61.53% 27.30 62.61% 25.55 40.82% 23.80 62.98% 28.31 42.11% 24.63 54.01% 25.92 33.97%
ChatGPT (OpenAI, 2023) 57.51% 18.03 56.62% 18.29 49.21% 18.49 57.13% 18.27 49.75% 18.22 54.04% 18.26 13.00%
Decoding-Time based
PPLM (Dathathri et al., 2019) 40.91% 322.59 41.05% 325.09 40.62% 340.76 42.25% 328.07 39.60% 325.74 40.89% 328.45 3.66%
Fudge (Yang and Klein, 2021) 60.12% 178.51 59.35% 179.47 42.10% 252.08 57.17% 175.66 41.49% 223.08 52.05% 201.76 28.25%
Separate-Training based
Dis-Lens (Gu et al., 2022) 85.46% 123.72 84.84% 95.84 55.58% 104.89 85.54% 90.87 49.52% 112.60 72.19% 105.58 22.30%
Prior (Gu et al., 2023) 73.85% 119.91 73.64% 108.58 49.93% 97.64 78.24% 113.73 50.05% 97.63 65.14% 107.50 34.11%
Joint-Training based
CTRL (Keskar et al., 2019) 79.10% 54.17 78.89% 51.20 75.09% 51.22 77.83% 51.71 69.96% 51.28 76.17% 51.92 7.46%
CatPrompt (Yang et al., 2023) 63.91% 74.53 63.95% 73.24 60.32% 69.13 60.53% 98.08 48.25% 68.45 59.39% 76.69 12.98%
Con.Prefix (Qian et al., 2022a) 83.99% 79.29 83.75% 80.49 80.36% 87.19 81.15% 80.71 69.84% 83.90 79.82% 82.32 8.99%
DCG (Zeng et al., 2023) 79.93% 56.37 79.72% 62.05 76.66% 64.40 78.43% 57.97 67.7% 61.11 76.49% 60.38 8.76%

Table 1: Averaged overall evaluation results for state-of-the-art baseline approaches on our CompMCTG benchmark
(Hold-Out testing and ACD testing). A, P and G are the abbreviations of accuracy, perplexity, and gap (we explain
the meaning of “gap” in Section 3.3.) respectively. Subscript i.d. and comp refer to in-distribution and compositional
generalization performance. Each value in this table is the average (Please find the detailed results for each dataset
in Appendix I.3) of testing performances on four component datasets of CompMCTG: Amazon Review (He and
McAuley, 2016), Fyelp (Lample et al., 2019), YELP (Shen et al., 2017; YELP, 2014) and Mixture (Liu et al., 2022).

Method Few-Shot
Ai.d.(↑) Pi.d. (↓) Acomp (↑) Pcomp(↓)

LLM+In-context Learning
LLaMA-2 (Touvron et al., 2023) 62.78% 26.08 42.99% 23.90
ChatGPT (OpenAI, 2023) 56.64% 18.62 49.50% 17.71

Decoding-Time based
PPLM (Dathathri et al., 2019) 43.07% 361.60 40.21% 330.94
Fudge (Yang and Klein, 2021) 58.00% 167.31 40.90% 224.91

Separate-Training based
Dis-Lens (Gu et al., 2022) 87.81% 95.05 51.47% 116.68
Prior (Gu et al., 2023) 85.19% 118.97 51.71% 104.16

Joint-Training based
CTRL (Keskar et al., 2019) 77.87% 48.48 65.94% 48.28
CatPrompt (Yang et al., 2023) 62.47% 163.66 46.23% 130.50
Con.Prefix (Qian et al., 2022a) 79.89% 88.34 57.56% 93.31
DCG (Zeng et al., 2023) 78.89% 63.22 59.27% 68.14

Table 2: Averaged overall evaluation results for state-of-
the-art baseline approaches on our CompMCTG bench-
mark (Few-Shot testing). Each value in this table is
the average of testing performances on four compo-
nent datasets of CompMCTG: Amazon Review (He
and McAuley, 2016), Fyelp (Lample et al., 2019),
YELP (Shen et al., 2017; YELP, 2014) and Mixture (Liu
et al., 2022).

Ccomp and uses the remaining attribute combina-
tions as Ci.d.. Supposing |Ccomp| equals to k (k is
relatively small so that the split is eligible), there
are

(|C|
k

)
different kinds of splits. In our benchmark,

we set k = 1, and the final result is the average
across

(|C|
k

)
scenarios to eliminate bias.

Few-Shot is the hardest evaluation protocol, in
which we guarantee every single attribute appears
in the Ci.d. while minimizing |Ci.d.|, which simulate
the scenarios of the low-data regime.

While in most real-world scenarios, |Ccomp| is
comparable to |Ci.d.|. A crucial issue to this sit-
uation is how we divide C into Ci.d. and Ccomp

as the exponential complexity of sweeping over
all of the eligible possibilities (We discuss this
point in Appendix C). Thus focusing on a repre-
sentative subset of them is a feasible solution. In-
spired by (Keysers et al., 2020), we propose ACD,
where we keep |Ci.d.| = |Ccomp| and construct
representative splits by maximizing the Attribute
Compound Divergence between Ci.d. and Ccomp.
The term attribute compound refers to a specific
tuple of two attributes: (Ati

i , A
tj
j ), i ≤ j, 1 ≤

ti ≤ ai, 1 ≤ tj ≤ aj , which characterizes the co-
occurrence of two attributes in one attribute com-
bination c ∈ C. Firstly, we calculate the frequency
density of the attribute compound (Ati

i , A
tj
j ) in the

combination sets C ∈ {Ci.d., Ccomp} and obtain two
frequency distributions (fCi.d.((A

ti
i , A

tj
j )))i,j,ti,tj

and (fCcomp((A
ti
i , A

tj
j )))i,j,ti,tj :

fC((A
ti
i , A

tj
j )) =

∑
c∈C I(Ati

i ∈ c ∧A
tj
j ∈ c)∑

c∈C
∑

x∈c,y∈c,x ̸=y 1

=
2
∑

c∈C I(Ati
i ∈ c ∧A

tj
j ∈ c)

m(m− 1)|C|

(2)

Then we introduce the Chernoff Coefficient
S(P,Q) (Chung et al., 1989) to measure the scale
of similarity between two probability distribu-
tions P and Q (i.e., P = (p1, p2, ..., pn) and
Q = (q1, q2, ..., qn), S(P,Q) =

∑n
i=1 p

α
i q

1−α
i ∈

[0, 1])4. Finally, we define the Attribute Com-
pound Divergence as D(Pi.d., Pcomp) = 1 −
S(Pi.d., Pcomp) ∈ [0, 1] to measure the divergence
between Ci.d. and Ccomp, where distribution Pi.d.

4α ∈ [0, 1] is a hyperparameter to control our tolerance on
the difference between P and Q:
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and Pcomp represent (fCi.d.((A
ti
i , A

tj
j )))i,j,ti,tj and

(fCcomp((A
ti
i , A

tj
j )))i,j,ti,tj , respectively. In the real

construction of ACD splits, we adopt a greedy-
based hill climbing algorithm (Russell and Norvig,
2010)5 to sample satisfactory splits which maxi-
mize D(Pi.d., Pcomp).

Note that for Amazon Review and Mixture
datasets, ACD protocol degenerates to Few-Shot
protocol as these datasets only contain two aspects
and we can not optimize the attribute compound
divergence in that situation.

3.2 Baseline and Evaluation Metric

We select eight representative baseline methods
to study: 1) for Joint-Training based meth-
ods, we choose CTRL (Keskar et al., 2019), a
classic and powerful baseline, Contrastive Prefix
(Con.Prefix) (Qian et al., 2022a), CatPrompt (Yang
et al., 2023), and DCG (Zeng et al., 2023), a related
work targeting on reducing the compositionality
gap, as our baseline methods, 2) for Seperate-
Training based, we select two state-of-the-art
baselines: Distribution-Lens (Gu et al., 2022) and
Prior (Gu et al., 2023), 3) for Decoding-Time
based methods, we choose PPLM (Dathathri et al.,
2019) and Fudge (Yang and Klein, 2021). In ad-
dition, we adopt LLaMA-2 (Touvron et al., 2023)
and ChatGPT (OpenAI, 2023) to study the com-
positional generalization of large language models
(LLMs) with In-context Learning paradigm (Brown
et al., 2020). Following (Sun et al., 2023), we at-
tach five demonstrations in the input prompt for
LLMs to follow. One can find more details about
our implementations in Appendix D.

Grounded on the MCTG task, we adopt the
evaluation metrics (note that the subfixes “i.d."
and “comp" refer to the in-distribution and com-
positional testing respectively.) of 1) ACCi.d. and
ACCcomp: the averaged prediction accuracies6 for
all of the control aspects to measure the control-
lability of generated text, 2) PPLi.d. and PPLcomp:
perplexity calculated by GPT-2 Large to measure
the fluency of generated text in all of our experi-
ments, and 3) Dist-3: 3-gram distinctness to eval-
uate the diversity of the text generated by ap-
proaches mentioned above. We also adopt Human-
evaluation to measure the relevance and fluency of

5The algorithm pseudo-code is available in Appendix H.
6For each aspect in each dataset, we train a Roberta clas-

sifier (Liu et al., 2019) to evaluate its accuracy (details in
Appendix D.3).

the generated text for each approach7.

3.3 Evaluation Result
The main evaluation results on CompMCTG bench-
mark are shown in Table 1, where values in “Origi-
nal” column refer the performance where text data
of all attribute combinations are available in the
training set and hence there is no compositional
testing; values in “Hold-Out” and “ACD” columns
refer to in-distribution and compositional testing
performance through the evaluation protocols of
“Hold-Out” and “ACD” mentioned in Section 3.1
respectively; values in “Aavg” and “Pavg” column
refer to overall performance which is the arithmetic
mean of results under different evaluation protocols
mentioned here (Originali.d., Hold-Outi.d., Hold-
Outcomp, ACDi.d. and ACDcomp), which are formu-
lated as:

Aavg =
1

5
(A

original
i.d. + A

holdout
i.d. + A

holdout
comp + A

acd
i.d. + A

acd
comp)

Pavg =
1

5
(P

original
i.d. + P

holdout
i.d. + P

holdout
comp + P

acd
i.d. + P

acd
comp)

(3)

The “gap” (Gavg) is used to assess the average
compositional generalization risk and a lower Gavg

indicates better robustness under compositional
testing, which is formulated as:

Gavg =
1

2
(Gholdout +Gacd)

=
1

2
(
Aholdout

i.d. −Aholdout
comp

Aholdout
i.d.

+
Aacd

i.d. −Aacd
comp

Aacd
i.d.

)

(4)

Among all the evaluated baselines, joint-training-
based approaches generally exhibit higher at-
tribute accuracy, better fluency (lower perplexity,
only inferior to LLM+ICL), and better robustness
to compositional testing (lower Gavg). Though
seperate-training-based methods perform accept-
ably in in-distribution testing, their performance
drops drastically in compositional testing and we
discuss the inherent reason for their failures in
Appendix I.1. Decoding-time-based methods per-
form poorly overall, despite PPLM owning the low-
est Gavg, both its average accuracy and perplex-
ity are unusable. LLMs can generate more fluent
text while the controllability of the generated text
(54.04%) falls behind joint-training-based methods
(79.82%). At the same time, LLMs (+ICL) also suf-
fer from a large performance drop in compositional
testing (Gavg is 23.5% for LLaMA and ChatGPT).

7Due to the page limit, please find the result of Dist-3 and
Human-evaluation in Appendix E and F.
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Additionally, We evaluate all of the baseline ap-
proaches with Few-Shot evaluation protocol in Ta-
ble 2, to reflect their performance when only lim-
ited attribute combinations are available. Again,
joint-training-based approaches hold the best av-
erage performance and compositional generaliza-
tion capacity among them. We provide the details
of our benchmark in Appendix B.

3.4 Insight

In this section, we conduct analysis experiments
to show the effect of our key designs in CompM-
CTG: 1) the three-dimensional evaluation protocol
(Hold-Out, ACD and Few-Shot) and 2) the effec-
tiveness of ACD in amplifying the compositional
generalization gap.

Holdout ACD FewShot
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Figure 2: Compositional generalization gap with differ-
ent evaluation protocols.

Compositional gaps with different evaluation
protocols. In Figure 2, we show compositional
gaps (G =

Ai.d.−Acomp

Ai.d.
) for approaches: CTRL,

CatPrompt and DCG, with three evaluation pro-
tocols on YELP and Fyelp datasets. We observe
that the compositional gaps on the same approach
and dataset vary a lot with different evaluation pro-
tocols: Gholdout < Gacd < Gfewshot generally
holds. Notably, Hold-Out can not properly unveil
the compositional generalization gap for a specific
approach. For instance: On Fyelp dataset, Cat-
Prompt has the compositional gap of 0.91% on
Hold-Out protocol, while it drastically increases
to 10.96% on ACD protocol. Moreover, different
approaches have different preferences for these pro-
tocols. By way of example, The compositional gap
(e.g., on Fyelp) of DCG with ACD (1.97%) is lower
than CTRL (5.95%) while its gap with Few-Shot
(25.91%) is much higher than CTRL (13.95%),

demonstrating that the deficiency of DCG in low-
data regime. Hence jointly leveraging these three
evaluation protocols evaluates MCTG approaches
more comprehensively.
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Figure 3: Comparison of compositional gaps between
ACD (green bars) and two other splitting methods: Ran-
dom Sampling (red bars) and minimizing the divergence
(blue bars) on five baselines.

Does the ACD better unveil the compositional
generalization risk in comparison with Ran-
dom Sampling? To demonstrate the effective-
ness of ACD, where we maximize the divergence
of attribute compound distributions between in-
distribution and compositional sets, we design two
other protocols in which we still keep |Ci.d.| =
|Ccomp|: Random Sampling (random divergence)
and minimizing the divergence (minimum diver-
gence). We compare the compositional gaps among
the three protocols (on Fyelp dataset) in Figure 3.
We observe that gaps of ACD are consistently
higher than two comparison protocols by large
margins. Notably, using baseline approaches of
CTRL and DCG, compositional gaps with Random
Sampling are near zero while they are 5.65% and
1.97% with ACD. Hence we conclude that ACD
generally better unveils the compositional general-
ization risk while Random Sampling often causes
gross under-estimation of such risk.

4 Methodlogy: Meta-MCTG

In Section 3.4, we observe that joint-training-based
(both parameter-efficient fine-tuning based and all-
parameter fine-tuning based) baselines generally
achieve better overall performance. Nonetheless,
there still exist non-negligible compositional gener-
alization gaps for all these baselines, which highly
calls for our attention. To this end, we propose
Meta-MCTG, a novel Meta-learning (Finn et al.,
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Figure 4: Meta-MCTG: θ refers to the learnable parameters for encoding control conditions, which could be inner
(CTRL) or added (DCG and ContraPrefix). ϕ, the parameters of LMs, are usually frozen during training (PEFT).

2017) based MCTG training framework, to further
improve compositional generalization capabilities
of existing joint-training baselines. The framework
is easy to implement and can be directly combined
with any joint-training-based methods. We dis-
cuss the design of Meta-MCTG in Section 4.1 and
demonstrate its effectiveness through experiment
results for Meta-MCTG in combination with three
competitive joint-training baselines (CTRL (Keskar
et al., 2019), ContrastivePrefix (Qian et al., 2022a)
and DCG (Zeng et al., 2023)) in Section 4.2.

4.1 Design

Overall Motivation The overall framework of
Meta-MCTG is depicted in Figure 4. We analyze
that the failure of generating text satisfying con-
trol conditions in compositional testing can be at-
tributed to the over-fitting of language models to
local optima of control conditions in the training
set. Thus when trained language models are fed
with recomposed attribute combinations as the con-
trol conditions in the compositional testing (e.g.,
In Figure 4, “positive-sport-present”), it will po-
tentially encode and distribute those new attribute
combinations in the neighbor area of similar ones
(e.g., “positive-sport-past”) that they have seen in
the training phase. In this way, previous MCTG ap-
proaches fail to generate text that perfectly meets
the requirements of all given conditions. As de-
picted in Figure 4, when given the recomposed
attribute combination of “positive-sport-present”,
models may generate text like “The book sparked
my love for sports.”, neglecting the “present” con-

dition (As models only sees “positive-sport-past”
attribute combination in the training phase).

Meta-MCTG training procedure Inspired by
previous meta-learning works targeting generaliza-
tion (Li et al., 2018; Wang et al., 2021; Conklin
et al., 2021), we aim to leverage Model-Agnostic
Meta Learning (MAML) (Finn et al., 2017) to miti-
gate the overfitting problem.

First of all, given a specific joint-training-based
approach M, we denote its training objective as
LMtrain(θ;ϕ;B) where θ represents the learnable
parameters of encoding control conditions, ϕ rep-
resents the parameters of the language model (e.g.,
GPT-2), which are frozen during training (Note that
in CTRL, ϕ is also updated while it still suits for
the Meta-MCTG.), and B denotes a batch of data.
In general, the training objective can be derived as:

min
θ

LM
train(θ;ϕ;B) =

min
θ

∑

(ci,xi)∈B
[− log p(xi|ci; θ;ϕ)] + LM(θ;ϕ;B) (5)

The first term refers to the basic LM loss (Radford
et al., 2018) which maximizes the likelihood of
generating target text xi and the second term refers
to the auxiliary loss added by baseline M (e.g.,
contrastive loss (Qian et al., 2022a)).

In the Meta-MCTG framework, we first sam-
ple a batch of training data, denoted as Btrain =
(ctraini , xtraini )mi=1 and a batch of pseudo-comp
data, denoted as Bpcomp = (cpcomp

i , xpcomp
i )mi=1

where {ctraini }mi=1 ∩ {cpcomp
i }mi=1 = ∅ and each

attribute combination of {cpcomp
i }mi=1 must be the

6492



recombination of single attributes appearing in the
{ctraini }mi=1. For instance, in Figure 4 the pseudo-
comp conditions “positive-movie-past” and “nega-
tive-sport-present” are the recombinations of con-
ditions “positive-sport-past” and “negative-movie-
present” in the training batch.

We train model on Btrain and perform one step
of gradient descent to update θ with Objective 5 (α
is the learning-rate):

θ1 = θ − α∇θLM
train(θ;ϕ;Btrain) (6)

Then we maintain θ unchanged in the original
model, temporarily store θ1 to a backup model,
and feed Bpcomp to the backup model to obtain the
loss on pseudo-comp data:

LM
pseudo−comp(θ;ϕ;Bpcomp) = LM

train(θ1;ϕ;Bpcomp)

= LM
train(θ − α∇θLM

train(θ;ϕ;Btrain);ϕ;Bpcomp)
(7)

According to the construction of Bpcomp, we use
LMpseudo−comp(θ;ϕ;Bpcomp) to simulate the com-
positional generalization scenario, evaluating the
compositional generalization capacity of model up-
dated by Eq 6. We hope the updated model (with
θ1) performs as well as possible on these pseudo-
comp data rather than merely overfitting Btrain.
Taking both the original training Objective 5 and
the compositional generalization Objective 7 into
consideration, Meta-MCTG is to minimize the fol-
lowing objective:

LM
total(θ;ϕ;Btrain;Bpcomp) =

LM
train(θ;ϕ;Btrain) + λLM

pseudo−comp(θ;ϕ;Bpcomp)
(8)

Where λ is a hyper-parameter to make a trade-off
between the above two terms. Finally, we perform
one step of gradient descent to update θ in the
original model with Objective 8:

θ′ = θ − β∇θLM
total(θ;ϕ;Btrain;Bpcomp) (9)

Where β is the learning rate. We summarize the
pseudo-code of the Meta-MCTG training proce-
dure in Algorithm 2 in Appendix H.

4.2 Experiment Results and Analysis
Experiment Results of Meta-MCTG We train
CTRL, ContrastivePrefix and DCG with the Meta-
MCTG algorithm and aim to demonstrate that
Meta-MCTG can generally improve their composi-
tional generalization capacity. The compositional

testing results for all four datasets are shown in
Table 38. For most cases (94.4% of the total), we
can observe that baseline approaches trained with
Meta-MCTG have an obvious improvement in com-
positional testing performance on controllability of
generated text (i.e., attribute accuracy) over the
original versions (by at most 3.64%). Besides, the
introduction of the Meta-MCTG framework has
almost no impact on text fluency (i.e., perplexity).
We additionally show the in-distribution testing re-
sults in Table 4, demonstrating that Meta-MCTG
nearly has no negative effect on in-distribution test-
ing. Instead, it improves the in-distribution testing
over the original baselines on 72.2% cases. We also
provide a separate analysis of the compositional
generalization gap variations for each dataset and
protocol before and after incorporating the Meta-
MCTG framework in Table 5, where the gap is
calculated by gap =

Ai.d.−Acomp

Ai.d.
. From the results,

it can be observed that in the majority of cases,
the Meta-MCTG framework is able to reduce the
compositional generalization gap.

Visualization and Case Study Previously we
hypothesize that Meta-MCTG mitigates the prob-
lem that overfitted baseline approaches distribute
recomposed novel attribute combinations in the
neighbor of in-distribution ones in the representa-
tion space. We now calculate the difference in the
distance of any two attribute combinations of the
original version of baselines and baselines trained
with Meta-MCTG. An example result for CTRL
is shown in Figure 5. We observe that nearly all

I.D._0 I.D._1 I.D._2 I.D._3 Comp_0 Comp_1 Comp_2 Comp_3

I.D
._0

I.D
._1

I.D
._2

I.D
._3

-0 0.019 0.027 0.017 0.033 0.033 0.048 0.05

0.019 -0 0.028 0.024 0.049 0.03 0.038 0.048

0.027 0.028 -0 0.022 0.039 0.043 0.04 0.049

0.017 0.024 0.022 -0 0.052 0.068 0.061 0.072

CTRL-Cosine_Similarity

0.00
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0.02
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0.04

0.05

0.06

0.07

Figure 5: Difference of the distances (d = 1 − cos <
h1, h2 >) between attribute combinations in the repre-
sentation space (h1, h2) with Meta-CTRL and the origin
version of CTRL.

of the distances between Ci.d. and Ccomp increase
with Meta-MCTG and are notably larger than the

8We do not apply Meta-MCTG to Few-Shot settings, for
we can not construct Bpseudo−comp when each attribute only
appears once in Ci.d..
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Method
Fyelp Amazon YELP Mixture

Hold-Out ACD Hold-Out Hold-Out ACD Hold-Out
Acomp(↑) Pcomp(↓) Acomp (↑) Pcomp(↓) Acomp (↑) Pcomp(↓) Acomp(↑) Pcomp(↓) Acomp (↑) Pcomp(↓) Acomp (↑) Pcomp(↓)

CTRL (Keskar et al., 2019) 68.29% 45.61 65.31% 45.86 77.89% 37.02 82.02% 73.74 74.63% 75.46 71.82% 47.46
Meta-CTRL (Ours) 68.69% 46.42 65.77% 46.01 78.78% 37.30 83.85% 68.94 78.27% 78.11 72.83% 46.20

Con.Prefix (Qian et al., 2022a) 67.50% 52.32 63.93% 49.78 87.58% 44.36 92.79% 132.21 88.84% 128.87 71.91% 138.93
Meta-Con.Prefix (Ours) 67.75% 52.62 64.06% 49.12 87.69% 43.89 94.06% 130.66 90.40% 132.19 73.11% 140.53

DCG (Zeng et al., 2023) 66.39% 53.52 64.71% 53.67 84.51% 47.09 80.61% 69.87 75.72% 82.08 76.32% 71.20
Meta-DCG (Ours) 66.36% 53.04 64.84% 53.58 85.11% 47.77 81.15% 72.32 75.88% 84.58 79.15% 65.68

Table 3: Experiment results of CTRL, ContraPrefix, and DCG with Meta-MCTG training in compositional testing.

Method
Fyelp Amazon YELP Mixture

Hold-Out ACD Hold-Out Hold-Out ACD Hold-Out
Ai.d.(↑) Pi.d.(↓) Acomp (↑) Pi.d.(↓) Ai.d. (↑) Pi.d.(↓) Ai.d.(↑) Pi.d.(↓) Ai.d. (↑) Pi.d.(↓) Ai.d. (↑) Pi.d.(↓)

CTRL (Keskar et al., 2019) 69.43% 45.95 69.22% 45.60 80.52% 37.43 85.16% 72.20 85.52% 76.06 80.56% 48.82
Meta-CTRL (Ours) 69.51% 46.16 69.45% 45.50 80.26% 37.31 85.76% 69.05 86.11% 70.95 80.08% 46.42

Con.Prefix (Qian et al., 2022a) 67.84% 52.48 63.40% 53.11 87.56% 43.97 94.40% 136.04 91.82% 141.15 83.88% 96.46
Meta-Con.Prefix (Ours) 67.90% 52.40 64.19% 52.84 87.43% 43.93 94.42% 136.42 91.86% 136.39 84.24% 97.66

DCG (Zeng et al., 2023) 66.49% 53.50 66.01% 53.29 84.71% 47.20 82.43% 70.28 80.12% 82.96 83.69% 91.80
Meta-DCG (Ours) 66.50% 53.16 66.23% 52.92 84.78% 47.55 82.07% 70.01 80.57% 82.04 83.50% 83.39

Table 4: Experiment results of CTRL, ContraPrefix and DCG with Meta-MCTG training in in-distribution testing.

Method Fyelp Amazon YELP Mixture
Hold-Out ACD Hold-Out Hold-Out ACD Hold-Out

CTRL (Keskar et al., 2019) 1.64% 5.65% 3.27% 3.69% 12.73% 10.85%
Meta-CTRL (Ours) 0.89% 5.3% 1.84% 2.23% 9.1% 9.05%
Con.Prefix (Qian et al., 2022a) 0.5% −0.84% −0.02% 1.71% 3.25% 14.27%
Meta-Con.Prefix (Ours) 0.22% 0.2% −0.3% 0.38% 1.59% 13.21%
DCG (Zeng et al., 2023) 0.15% 1.97% 0.24% 2.21% 5.49% 8.81%
Meta-DCG (Ours) 0.21% 2.1% −0.39% 1.12% 5.82% 5.21%

Table 5: Compositional generalization gap of CTRL,
ContraPrefix and DCG with Meta-MCTG training.

distances within Ci.d.. The results demonstrate that
Meta-MCTG can distribute the hidden representa-
tions of attribute combinations more sparsely and
thus possibly make them more distinguishable. Cal-
culation details and more relevant results are avail-
able in Appendix I.2. Besides, we also present
case study to compare the generation results of the
original version of baselines and baselines trained
with Meta-MCTG in Appendix G, highlighting the
better controllability of the latter ones.

5 Conclusion

We propose CompMCTG, the first holistic
benchmark targeting compositional generalization
for Multi-Aspect Controllable Text Generation
(MCTG), and conduct extensive experiments on
CompMCTG with eight representative MCTG
baselines and two LLM baselines, unveiling notice-
able compositional generalization risk in them and
demonstrating the effectiveness of CompMCTG.
In addition, we propose Meta-MCTG, a framework
incorporating meta-learning into the MCTG train-
ing process to improve its compositional general-
ization ability, which can be combined with any
joint-training-based MCTG methods.

Limitations

Our proposed Meta-MCTG framework improves
the compositional generalization performance of
MCTG methods in most scenarios. However, when
attribute combinations of data in the training set
are extremely scarce (e.g., the Few-Shot protocol in
CompMCTG), we cannot build the pseudo-comp
batch to utilize the Meta-MCTG framework. Be-
sides, though Meta-MCTG is generally effective,
current MCTG methods still have considerable
room for improvement in compositional general-
ization. Both of these limitations will be areas for
our future research.

Frankly speaking, the experimental workload of
Hold-Out protocol in the CompMCTG benchmark
is overly cumbersome, and the average results in
our main table do not include Few-Shot, which
we believe are discrepancies. For researchers with
limited resources who want to follow our work,
we recommend focusing on the performance of
models under the ACD and Few-Shot protocols.
These protocols are relatively more challenging and
facilitate distinguishing models based on different
capabilities.

Ethics Statement

Multi-aspect controllable text generation is widely
used in social media. However, improper use can
cause serious negative effects, such as using this
technology to spread inappropriate remarks (po-
litical attributes) or create rumors. Therefore this
kind of technology should be subject to certain
regulations.
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Appendix

A Datasets

We select a shopping review dataset: Amazon
Review (He and McAuley, 2016), a mixture of
movie(IMDB (Maas et al., 2011)), tablet, auto-
mobile(Sentube (Uryupina et al., 2014)) and ho-
tel(OpenNER (Agerri et al., 2013)) review dataset:
Mixture (Liu et al., 2022), and two restaurant review
datasets: YELP (Shen et al., 2017; YELP, 2014)
and FYelp (Lample et al., 2019). In this section, we
mainly introduce the four datasets that make up our
benchmark as mentioned above.

Fyelp Following previous work (Yang et al.,
2023; Huang et al., 2023; Lample et al., 2019),
we adopt the widely used Fyelp dataset, which con-
tains restaurant reviews with the sentiment (posi-
tive and negative), the cuisine (American, Mexican,
Asian, Bar, and dessert), and the gender (Male and
Female). To evaluate the extensibility of meth-
ods, we add one additional aspect of constraints:
the tense (Past and Present) (Ficler and Goldberg,
2017), where its label is automatically extracted
from the reviews. Thus far, the Fyelp dataset is
the one with the largest scale of attribute com-
binations in our benchmark. In total, there are
2×2×5×2 = 40 possible attribute combinations.

Amazon Review Amazon Review (He and
McAuley, 2016) is a dataset containing reviews for
Amazon products, which is widely used in previous
academic works around text rewriting, controllable
text generation, and stuff (Li and Tuzhilin, 2019;
Lample et al., 2019; Zhou et al., 2023b). Following
(Lample et al., 2019), we process the dataset and
label the data with two aspects: the sentiment (pos-
itive and negative) and the topic (Books, Clothing,
Music, Electronics, Movies and Sports) with the
meta-data in the original Amazon Review9 dataset.
Hence there are 2× 6 = 12 different attribute com-
binations.

YELP YELP business reviews dataset (YELP,
2014) contains the three aspects of attributes: the
tense (Past and Present), the sentiment (positive
and negative), and the person (singular and plural).
We process the dataset in alignment with (John
et al., 2019) and (Russo et al., 2020) and randomly
re-split the whole dataset for our usage. There are

9https://jmcauley.ucsd.edu/data/
amazon/

2× 2× 2 = 8 different attribute combinations in
this dataset.

Mixture Mixture is the combination of three in-
dividual datasets: IMDb (Maas et al., 2011) (movie
reviews) OpenNER (Agerri et al., 2013) (hotel re-
views) and SenTube (Uryupina et al., 2014) (tablet
and automobile reviews), constructed by (Liu et al.,
2022). Hence each datum in Mixture has two as-
pects of attributes: sentiment (positive and nega-
tive) and topic (movie, hotel, tablet, and automo-
bile) and there are in total 2 × 4 = 8 possible
attribute combinations.

We summarize all details and statistics of these
datasets in Table 6.

B Details of CompMCTG Benchmark

B.1 Two Types of Testing

Our CompMCTG benchmark contains four
datasets: Fyelp, Amazon, Yelp, and Mixture. For
each dataset, we divide it into two disjoint sub-
sets: in-distribution set and the compositional set.
The in-distribution set contains the data that is vis-
ible during training, while the compositional set
contains the data that is not visible during train-
ing. The sets of attribute combinations contained
in the in-distribution set and compositional set are
defined as Ci.d. and Ccomp, respectively. We first
train the model on the in-distribution set and then
there are two types of testing. The first type that in-
volves generating text attribute combinations from
Ci.d. is referred to as in-distribution testing, which
tests the model’s learning ability within the distri-
bution of the training data. The second type that
involves generating text with attribute combina-
tions from Ccomp is referred to as compositional
testing, which tests the model’s compositional gen-
eralization ability beyond the distribution of the
training data.

B.2 Datasets Details

For each dataset, the total number of data points N ,
the number of attribute combinations |C|, and the
number of data points per attribute combinations
Ni are related as N = |C|×Ni (the data points per
attribute combination are equal for all datasets).

For the Hold-Out protocol, we define the in-
distribution set as the subset obtained by removing
one attribute combination from the total dataset.
Therefore, the size of the in-distribution set for the
Hold-Out protocol is given by N × (|C| − 1)/|C|.
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Dataset m |C| Classifier Generator
Train Development Train

Fyelp 4 40 34000 6000 70000
Amazon 2 12 153000 27000 120000
Yelp 3 8 20400 3600 24000
Mixture 2 8 3624 640 4800

Table 6: Information of the datasets in our CompMCTG Benchmark. m is the number of aspects (e.g., sentiment,
topic, tense, and stuff); |C| is the number of attribute combinations. "Classifier" refers to the size of the data
used for training the classifier. We split the data into training and development sets at a ratio of 8.5:1.5 based on
this. "Generator" refers to the size of the data used for training the generative model. The data for each attribute
combination is uniformly distributed across all sub-datasets (i.e., Train and Development of "Classifier" and Train
of "Generator").

For the ACD protocol, we designed it such that
the ratio between the in-distribution set and the
compositional set is 1:1. Therefore, the size of the
in-distribution set for the ACD protocol is N/2.

For the Few-Shot protocol, our requirement for
the in-distribution set is: 1) Each individual at-
tribute must appear at least once, and 2) The total
number of attribute combinations should be mini-
mal. Therefore, for the Few-Shot protocol, the num-
ber attribute combinations in the in-distribution
set is equal to the number of attributes in the as-
pect with the most attributes. Let’s assume that
the aspect with the most attributes in the dataset
contains M attributes. In this case, the size of
the in-distribution set for the Few-Shot protocol is
N ×M/|C|.

Take the Fyelp dataset as an example. The
total number of data points for training genera-
tor is 70000, and the number of attribute com-
binations is 2 × 2 × 2 × 5 = 40. Therefore,
N = 70000, |C| = 40, M = 5. Hence, the size
of the in-distribution set for the Hold-Out protocol
is 70000 × (40 − 1)/40 = 68250, for the ACD
protocol is 70000/2 = 35000, and for the Few-
Shot protocol is 70000× 5/40 = 8750. Similarly,
we can calculate the corresponding sizes of the
in-distribution sets for the other three datasets.

B.3 Why Few-Shot not in Average Results?

In Table 1, the calculation of the Average does not
include results from the Few-Shot protocol. There
are two reasons for this approach: 1) According
to the design principles of our ACD and Few-Shot
protocols, the partitioning results for the datasets
Mixture and Amazon are consistent between ACD
and Few-Shot; 2) The difficult level of the Few-Shot
protocol is relatively high for current models, and
we aim to present this category as a direction for

Dataset Original Hold-Out ACD Few-Shot
Fyelp 1 40 10 2
Amazon 1 12 − 10
YELP 1 8 10 8
Mixture 1 8 − 8

Table 7: The number of partitioning methods included in
different protocols across four datasets in CompMCTG
Benchmark.

future research within the community.

B.4 Results in CompMCTG

As previously mentioned, the results in Table 1
and Table 2 represent the average outcomes across
four datasets. In fact, for each dataset, the results
for each protocol are derived from the average of
multiple experiments.

For the Hold-Out protocol, we define it as ran-
domly selecting one attribute combination from the
complete dataset. In order to eliminate bias during
the experiments, we iterate over all attribute com-
binations, and the final result for each dataset in
the Hold-Out protocol is the average of all these
results.

For the ACD protocol, we maximize attribute
divergence to partition the datasets. In our experi-
ments, there are usually multiple optimal partition-
ing methods, hence we also average over all cases
for the final results.

Similarly, for the Few-Shot protocol, we partition
the datasets by maximizing attribute divergence and
take the average of all optimal partitioning results.

We present the number of partitioning methods
included in different protocols across four datasets
in Table 7.
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C Complexity discussion

In this section, we discuss the complexity of sweep-
ing over all possibilities for “Half&Half” splitting
(i.e.,|Ci.d.| = |Ccomp|) in Section 3.1. Following
the denotations in Section 3.1: m refers to the
number of different aspects; Ai, (1 ≤ i ≤ m)
is the set of attribute values for the i-th aspect;
min1≤i≤m |Ai| = a; the total number of attribute
combinations is O(am).

Sweeping over all possible “Half&Half” split-
ting methods requires O(

(
am

am/2

)
) kinds of situa-

tions, which can be derived as follows (using Stir-
ling’s formula (Robbins, 1955)):

(
am

am/2

)
=

(am)!

(a
m

2 )! · (am2 )!
≈
√
2πam · (ame )a

m

πam · (am2e )a
m

=

√
2πam · 2am

πam

Hence O(
(

am

am/2

)
) ≈ O(

√
2πam·2am
πam ) = O((2 −

η)a
m
) where η → 0. This complexity is expo-

nential to am and thus unacceptable, which highly
calls for an effective sampling strategy (i.e., ACD
in Section 3.1).

D Implementation Details

Our implementation is based on Hugging Face
Transformer models10 and we use GPT-2 Medium
as our backbone for all baselines (except two LLM
baselines). In this section, we provide all the hyper-
parameters for the baselines and our Meta-MCTG
method, as well as the training hyperparameters for
the classifiers used for evaluation.

First of all, we unify the settings for all exper-
iments during the generation phase. Following
previous work (Gu et al., 2022, 2023), we use the
35 prompts from PPLM (Dathathri et al., 2019)
for testing. For all MCTG baselines, we generate
10 texts for each prompt and each attribute com-
bination, each text with a length of 50, and we
adopt topk=200, topp=1.0, and temperature=1.0.
For two LLM baselines, due to time and financial
costs, we generate only one text for each prompt
and each attribute combination. All experiments
are completed on an NVIDIA A100 (80G) GPU.

D.1 MCTG Baselines
Fudge Fudge (Yang and Klein, 2021) uses a fu-
ture discriminator to guide the GPT-2 for the gener-

10https://github.com/huggingface/
transformers

Dataset Original Hold-Out ACD Few-Shot
Fyelp 8000 8000 4000 4000
Amazon 6000 6000 − 4000
YELP 4000 4000 6000 8000
Mixture 10000 10000 − 10000

Table 8: Training steps of different datasets and different
protocols in Distributional Lens (Gu et al., 2022).

ation. Following previous work (Zeng et al., 2023),
for each dataset, we train a Multilayer Perceptron
(MLP) of dimension dembd ×m as the future dis-
criminator, where dembd is the embedding dimen-
sion of GPT-2 Medium, and m is the number of all
attribute combinations in the dataset. We set batch
size to 8, epoch to 5, and learning rate to 3e-5 in
the training phase for all datasets and all protocols.
As for the generation, we set control strength α to
20 for all datasets and all settings.

PPLM PPLM (Dathathri et al., 2019) uses a dis-
criminator to calculate gradient to update the states
of a language model and guide the model to gener-
ate texts with a certain attribute. We train a Mul-
tilayer Perceptron of dimension dembd ×m as the
discriminator-like fudge to guide the model. For
each dataset and each protocol, we set the batch
size to 8, epoch to 5, and learning rate to 3e-5 in the
training phase. As for the generation, we followed
the hyperparameters in Dathathri et al. (2019). We
set γ to 1.5, num-iterations to 3, num-samples to
10, stepsize to 0.03, window-length to 5, fusion-kl-
scale to 0.01, and fusion-gm-scale to 0.99.

Distributional Lens During the training phase,
we follow all the hyperparameters of the original
work (Gu et al., 2022), with the only change made
to the number of training steps. We sweep across
training steps from {2000,4000,6000, ...,30000}
and select the minimum number of steps for con-
vergence as our experimental setup. We summarize
it in the Table 8. In the generation phase, for sim-
plicity and fairness, we set all aspect weights to 1,
and all other settings are consistent with the origi-
nal paper.

Prior Proposed by (Gu et al., 2023), this method
is based on the model trained in Gu et al. (2022),
with the training loss of the Normalizing Flows
added for further training. Therefore, during the
training phase, we further train based on all models
trained by method Gu et al. (2022), with the hyper-
parameters consistent with the original work and
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Dataset Original Hold-Out ACD Few-Shot
Fyelp 30000 30000 30000 30000
Amazon 30000 30000 − 30000
YELP 5000 5000 5000 5000
Mixture 30000 30000 − 30000

Table 9: Training steps of different datasets and different
protocols in Prior Control (Gu et al., 2023).

only a change made to the number of training steps.
Like experiments in Gu et al. (2022), we sweep
across training steps from {5000, 10000, ..., 50000}
and select the minimum number of steps for conver-
gence as our experimental setup. We summarize it
in the Table 9. In the generation phase, we find that
aspect weights setting to 1 for the Fyelp dataset do
not yield satisfactory results. Therefore, we attempt
to adjust the aspect weights on this dataset and fi-
nally set weights to [12,4,24,12] corresponding to
aspect ["sentiment", "gender", "cuisine", "tense"]
and std to 0.1. For the other three datasets, we set
weight to 1 for all aspects and set std to 1.

Catprompt As this is a naive method derived
from Yang et al. (2023), there is no clear experi-
ment setup for reference. We sweep across prompt
length from {10,20,40,60,80,100,120}, selecting
the length with the best test results for each attribute
as our experimental hyperparameters. The specific
results are as follows. For the Fyelp dataset, in
the non-FewShot protocols, we set prompt length
to 120, batch size to 16, epochs to 20, and learn-
ing rate to 5e-5, and in the FewShot protocol, we
set prompt length to 100, batch size to 16, epochs
to 40, and learning rate to 5e-5. For the Amazon
dataset, we set prompt length to 10, batch size to
16, epochs to 5, and learning rate to 5e-5 for all
settings. For the YELP dataset, in the non-FewShot
protocols, we set prompt length to 20, batch size to
16, epochs to 20, and learning rate to 5e-5, and in
the FewShot protocol, we set prompt length to 20,
batch size to 16, epochs to 40, and learning rate to
5e-5. For the Mixture dataset, we set prompt length
to 10, batch size to 16, epochs to 50, and learning
rate to 5e-5 for all settings.

DCG Following previous work (Zeng et al.,
2023), for all settings across all datasets, prompt
length is set to 50 (where attribute prompt length
is set to 6 and task prompt length is set to 44), the
disentanglement loss weight is set to 0.1, the batch
size is set to 8, and the number of Pseudo Combi-
nations is set to 7. For the setting of epochs, we set

epochs to 3 for dataset Fyelp and Amazon, epochs
to 8 for dataset YELP, and epochs to 7 for dataset
Mixture. And for all datasets and protocols, we set
the learning rate to 7.5e-5.

CTRL Following previous work (Zeng et al.,
2023), we concatenate multi-attribute control codes
with training datasets to fine-tune the GPT-2. Since
we find that CTRL is not sensitive to hyperparam-
eters, we set the batch size to 8, epochs to 5, and
learning rate to 3e-5, which converges well for all
datasets and protocols.

Contrastive Prefix-Tuning Following previous
work (Qian et al., 2022a), we set each attribute’s
prefix length to 10. For the dataset Fyelp and Ama-
zon, we set the batch size to 8 and epochs to 2
for all protocols. For the dataset YELP, we set the
batch size to 8 and epochs to 5 for all protocols.
For the dataset Mixture, we set the batch size to 8
and epochs to 5 for non-FewShot protocols. For
the FewShot protocol of the dataset Mixture, we set
the batch size to 8 and the epoch to 10. And for all
datasets and protocols, we set the learning rate to
3e-5.

D.2 LLM Baselines and Prompts

In this section, we introduce the LLMs we use in
Section 3.3 and the prompt template we used for
In-Context Learning.

Prompt Following (Sun et al., 2023), we use
5-shot in context learning prompt template to
evaluate the compositional generalization capac-
ity of LLMs regarding ICL. Namely, we insert five
demonstrations (Input, Output) for each time of
controllable generation. Here is our prompt tem-
plate:

\\5-shot in-context-learning
\\prompt template
"Task: write a sentence that meets the

requirement of input control
conditions.

Below are some examples (Input, Output)
for the task:

Input: <attribute combination 1>.
Output: <text 1> # demonstration_1
Input: <attribute combination 2>.
Output: <text 2> # demonstration_2
Input: <attribute combination 3>.
Output: <text 3> # demonstration_3
Input: <attribute combination 4>.
Output: <text 4> # demonstration_4
Input: <attribute combination 5>.
Output: <text 5> # demonstration_5
Input: <testing attribute combination>.
Output: <a head of text>" \\ generation
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For in-distribution testing, we insert five demon-
strations that share the control conditions (in the at-
tribute combinations) with the testing one. For com-
positional testing, we uniformly sample five demon-
strations (of different attribute combinations) from
the whole training set.

Another point that is worth noting is that we en-
code the control conditions in a standard format
(e.g., in Yelp we use “cuisine-0” to represent Asian
cuisine, “cuisine-1” to represent Mexican cuisine,
“gender-0” to represent gender Male, “gender-1”
to represent gender Female and so on). The un-
derlying reason is that we aim to test the LLM’s
ability to understand the relationship between con-
trol attributes and target text content, as well as
their capacity to generalize to new combinations of
previously seen control attributes.

LLM For LLaMA-2 (Touvron et al., 2023), we
adopt the version of “LLaMA-2-7B-hf”11. Our
generation configuration is following the default
configuration provided by Meta:

\\LLaMA-2-7B generation configuration
GEN_CONFIGS["llama2-7b"]={
"bos_token_id": 1,
"do_sample": True,
"eos_token_id": 2,
"pad_token_id": 0,
"temperature": 0.6,
"max_length": 50,
"top_p": 0.9,
"transformers_version": "4.31.0.dev0"

}

For ChatGPT (OpenAI, 2023), we use the OpenAI-
api12 and adpot the version of “gpt-3.5-turbo-
0613”. The default generation configuration is as
follows:

\\gpt-3.5 generation configuration
GEN_CONFIGS["gpt-3.5-turbo-0613"]={
"temperature": 1.0,
"max_length": 50,
"top_p": 0.9,
"openai_version": "0.28.0"

}

Cost For the evaluation of LLaMA-2-7B, we do
experiments on a NVIDIA A100 GPU for around
60 hours. For the evaluation of ChatGPT, we spend
around 3.5e7 tokens in total, costing 70 dollars.

11https://huggingface.co/meta-llama/
Llama-2-7b-hf

12https://openai.com/blog/openai-api

Dataset Aspect Batch Epochs Accuracy

Fyelp

Sentiment 512 5 98.68%
Gender 512 3 70.68%
Cuisine 64 4 77.97%
Tense 32 4 88.57%

Amazon
Sentiment 128 5 98.41%

Topic 64 5 92.84%

YELP
Sentiment 1024 5 97.11%

Person 32 8 99.42%
Tense 256 3 99.78%

Mixture
Sentiment 128 4 84.37%

Topic 512 8 98.59%

Table 10: The specific configuration and the perfor-
mance of the classifiers used in our benchmark.

D.3 Classifiers

To avoid the impact of domain differences
among different datasets on the accuracy of the
classifier, we train a classifier using Roberta-
Large (Liu et al., 2019) for each aspect of
each dataset. We sweep over batch sizes from
{4,8,16,32,64,128,256,512,1024} and epochs from
{1,2,3,4,5,6,7,8,9,10}, choosing the settings that
yield the highest accuracy on the test set as our
experimental configuration. The specific configura-
tion results and the performance of the classifiers
on the test set for all datasets and all attribute as-
pects are shown in Table 10.

D.4 Meta-MCTG

In the experiments of Meta-MCTG, we select the
three best-performing joint-training-based methods
from the baselines, namely CTRL (Keskar et al.,
2019) , DCG (Zeng et al., 2023), and Contrastive
Prefix (Qian et al., 2022b). For different datasets
and protocols in our benchmark, we search λ from
{0.01,0.05,0.1,0.2} based on the original exper-
imental hyperparameters, and further refine the
value of λ based on the results. For the majority
of cases, we opt for λ to be 0.01. For the learning
rate β in all MCTG experiments, we set β to be the
same as the learning rate α of each baseline.

E Evaluation on diversity

Following previous work (Li et al., 2016), we use
distinctness to measure the generated text’s diver-
sity. For each text, we calculate 3-grams named
Dist-3 to evaluate distinctness. We choose to con-
duct diversity evaluation on the data under the three
protocols of Original, Hold-Out, and ACD. The
whole results are shown in Table 11.
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Method Original Hold-Out ACD Average
Dist-3i.d.(↑) Dist-3i.d. Dist-3comp Dist-3i.d. Dist-3comp Dist-3avg

LLM+In-context Learning
LLaMA-2 (Touvron et al., 2023) 0.587 0.430 0.577 0.456 0.451 0.500
ChatGPT (OpenAI, 2023) 0.611 0.408 0.660 0.451 0.457 0.517
Decoding-Time based
Fudge (Yang and Klein, 2021) 0.656 0.652 0.621 0.625 0.587 0.628
PPLM (Dathathri et al., 2019) 0.697 0.622 0.694 0.621 0.617 0.650
Separate-Training based
Dis-Lens (Gu et al., 2022) 0.473 0.466 0.462 0.454 0.427 0.456
Prior (Gu et al., 2023) 0.573 0.547 0.548 0.539 0.540 0.549
Joint-Training based
CTRL (Keskar et al., 2019) 0.625 0.623 0.634 0.616 0.622 0.624
CatPrompt (Yang et al., 2023) 0.642 0.636 0.656 0.677 0.688 0.660
Con.Prefix (Qian et al., 2022b) 0.701 0.696 0.727 0.682 0.717 0.705
DCG (Zeng et al., 2023) 0.677 0.694 0.716 0.675 0.695 0.691

Table 11: Averaged overall evaluation results of diversity for state-of-the-art baseline approaches on our CompM-
CTG benchmark (Hold-Out testing and ACD testing). Subscript i.d. and comp refer to in-distribution and composi-
tional generalization performance.

F Human Evaluation

Following previous work (Zhang and Song, 2022;
Zhong et al., 2023), we evaluate generated texts
from two aspects: Relevance (R) which reflects
the degree of achievement for the desired control
attribute combination and Fluency (F) which eval-
uates the text’s fluency. Unlike automated evalua-
tion, where the accuracy of individual attributes is
measured and averaged, human evaluation directly
scores the satisfaction of the given control condi-
tion (attribute combination). For each dataset and
baseline in each protocol (Original, HoldOut, and
ACD), we randomly sample 10 texts (for HoldOut
and ACD, we sample 10 texts from in-distribution
result and 10 texts from compositional result) and
employ three annotators to score them on the two
metrics on a scale from 1 (very bad) to 5 (very
good). Finally, we calculate the average of these
scores and get the final result shown in Table 12.
We can find that the results of human evaluation are
consistent with the results of automated evaluation.

F.1 Specific Scoring Guidelines

In this subsection, we provide specific scoring
guidelines for each human evaluation metric.

Relevance

• 5: The generated texts are perfectly aligned with
the desired attribute combination.

• 4: The generated texts are very related to the
desired attribute combination.

• 3: The generated texts are related to the desired
attribute combination. At most one attribute does
not match.

• 2: The generated texts are less related to the
desired attribute combination. At most two at-
tributes do not match.

• 1: The generated texts are not aligned with the
desired attribute combination. None of the at-
tributes meet the requirements.

Fluency

• 5: The generated texts are grammatically correct,
fluent, and easy to understand.

• 4: The generated texts are grammatically correct,
but slightly less smooth, yet still easily under-
standable.

• 3: The generated texts have a few grammar errors,
but do not hinder understanding.

• 2: The generated texts have a few grammar errors
and are not very easy to understand.

• 1: The generated texts have many grammar er-
rors, lack coherence, and are difficult to under-
stand.
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Method Original Hold-Out ACD Average
Ri.d.(↑) Fi.d. (↑) Ri.d. (↑) Fi.d.(↑) Rcomp(↑) Fcomp(↑) Ri.d. (↑) Fi.d. (↑) Rcomp (↑) Fcomp(↑) Ravg (↑) Favg (↑)

LLM+In-Context Learning
LLaMA-2 (Touvron et al., 2023) 3.12 4.56 3.23 4.48 2.37 4.43 3.31 4.60 2.22 4.59 2.85 4.53
ChatGPT (OpenAI, 2023) 2.89 4.78 2.86 4.75 2.47 4.81 2.75 4.88 2.57 4.74 2.71 4.79
Decoding-Time based
PPLM (Dathathri et al., 2019) 2.07 1.12 2.22 1.07 2.01 1.09 2.16 1.14 1.82 1.03 2.06 1.09
Fudge (Yang and Klein, 2021) 2.88 2.35 2.68 2.13 2.07 1.87 2.59 1.90 1.97 2.24 2.44 2.10
Separate-Training based
Dis-Lens (Gu et al., 2022) 4.24 2.86 4.10 3.12 2.55 3.01 4.44 3.21 2.42 2.91 3.55 3.02
Prior (Gu et al., 2023) 3.67 2.96 3.53 3.04 2.42 3.20 3.78 3.03 2.39 3.24 3.16 3.09
Joint-Training based
CTRL (Keskar et al., 2019) 3.98 3.87 3.78 3.92 3.75 3.94 3.80 3.81 3.55 3.84 3.77 3.88
CatPrompt (Yang et al., 2023) 3.23 3.52 3.27 3.49 3.04 3.58 3.01 3.07 2.45 3.61 3.00 3.45
Con.Prefix (Qian et al., 2022a) 4.22 3.44 4.19 3.40 4.01 3.13 4.15 3.23 3.52 3.12 4.02 3.26
DCG (Zeng et al., 2023) 3.92 3.80 3.90 3.68 3.84 3.64 3.88 3.83 3.39 3.73 3.79 3.74

Table 12: Averaged overall human evaluation results for state-of-the-art baseline approaches on our CompMCTG
benchmark (Hold-Out testing and ACD testing). "R" refers to metric "Relevance" and "F" refers to metric "Fluency".
Subscript i.d. and comp refer to in-distribution and compositional generalization performance.

Method Original Hold-Out ACD
Ri.d.(↑) Fi.d. (↑) Ri.d. (↑) Fi.d.(↑) Rcomp(↑) Fcomp(↑) Ri.d. (↑) Fi.d. (↑) Rcomp (↑) Fcomp(↑)

LLM+In-context Learning
LLaMA-2 (Touvron et al., 2023) 0.823 0.805 0.834 0.816 0.840 0.809 0.825 0.833 0.836 0.824
ChatGPT (OpenAI, 2023) 0.811 0.814 0.805 0.843 0.827 0.840 0.829 0.860 0.851 0.837
Decoding-Time based
PPLM (Dathathri et al., 2019) 0.910 0.908 0.887 0.893 0.828 0.839 0.834 0.890 0.887 0.836
Fudge (Yang and Klein, 2021) 0.845 0.814 0.838 0.829 0.845 0.789 0.830 0.892 0.846 0.837
Separate-Training based
Dis-Lens (Gu et al., 2022) 0.923 0.898 0.914 0.887 0.791 0.867 0.910 0.879 0.801 0.882
Prior (Gu et al., 2023) 0.858 0.838 0.835 0.846 0.837 0.821 0.845 0.883 0.826 0.818
Joint-Training based
CTRL (Keskar et al., 2019) 0.830 0.808 0.845 0.794 0.815 0.829 0.810 0.822 0.816 0.815
CatPrompt (Yang et al., 2023) 0.782 0.804 0.793 0.811 0.824 0.815 0.806 0.785 0.823 0.836
Con.Prefix (Qian et al., 2022a) 0.898 0.843 0.904 0.826 0.876 0.837 0.879 0.841 0.844 0.820
DCG (Zeng et al., 2023) 0.857 0.886 0.854 0.874 0.818 0.825 0.857 0.867 0.834 0.826

Table 13: Averaged overall Fleiss’Kappa coefficient of human evaluation results for state-of-the-art baseline
approaches on our CompMCTG benchmark (Hold-Out testing and ACD testing). "R" refers to the Kappa coefficient
of metric "Relevance" and "F" refers to the Kappa coefficient of metric "Fluency". Subscript i.d. and comp refer to
in-distribution and compositional generalization performance.

F.2 Inter-Annotator Agreement Score

We also use Fleiss’Kappa coefficient (Fleiss,
1971) to measure the inter-annotator agreement
score for each human evaluation metric. The result
is shown in Table 13.

G Case Study

In this section, we show some specific generation
examples, primarily to compare the difference in
generation results before and after using the Meta-
MCTG framework. Cases in this section are from
the compositional result of ACD protocol of dataset
Fyelp. The specific results are shown in Table 14.

H Algorithm Pseudo-Code

We conclude the pseudo-code of constructing ACD
splits in Algorithm 1 and the pseudo-code of Meta-
MCTG training in Algorithm 2.

Following the denotations in Section 3.1: m
refers to the number of different aspects; Ai, (1 ≤
i ≤ m) is the set of attribute values for the i-
th aspect; min1≤i≤m |Ai| = a; the total num-
ber of attribute combinations is O(am). The
time complexity of Algorithm 1 (Greedily con-
structing ACD splits) is O(T1 · T2 · am) (linearly
increasing with am) which is much better than
O((2 − ϵ)a

m
), (ϵ ← 0) (exponentially increasing

with am) in Appendix C.

I Additional Results

I.1 Why do Separate-Training-based methods
perform badly in compositional testing?

In this section, we briefly discuss the reasons why
the seperate-training-based MCTG methods fail
in compositional testing. We take Dis-Lens (Gu
et al., 2022) as an example to illustrate. This type
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Algorithm 1 Constructing ACD splits

Require: Attribute combination set C.
Require: Divergence function D(·, ·).
Require: Maximum step T1, T2, maximum diver-

gence threshold η ∈ (0, 1).
1: Initialization: current step t1 = 0; maximum

divergence dm = 0.
2: A set of ACD splits result = ∅.
3: while t1 < T1 do
4: t1 = t1 + 1
5: Randomly split C into Ci.d. and Ccomp where

|Ci.d.| = |Ccomp|.
6: t2 = 0
7: Compute current divergence d:

d = D(Ci.d., Ccomp).
8: Update maximum divergence: dm = d.
9: while t2 < T2 do

10: t2 = t2 + 1
11: c1 = None.
12: for c ∈ Ci.d. do
13: if dm < D(Ci.d. − {c}, Ccomp + {c})

then
14: c1 = c.
15: dm = D(Ci.d.−{c}, Ccomp+ {c}).
16: break
17: end if
18: end for
19: if c1 == None then
20: continue
21: end if
22: Ci.d. = Ci.d. − {c1}.
23: Ccomp = Ccomp + {c1}.
24: for c ∈ Ccomp do
25: if dm < D(Ci.d. + {c}, Ccomp − {c})

then
26: dm = D(Ci.d.+ {c}, Ccomp−{c}).
27: Ci.d. = Ci.d. + {c1}.
28: Ccomp = Ccomp − {c1}.
29: break
30: end if
31: end for
32: end while
33: for dm ≥ η do
34: Add (Ci.d.,Ccomp) into result.
35: end for
36: end while
37: return result

Algorithm 2 Meta-MCTG
Require: Training set Dtrain

Require: Base MethodM
Require: Learning rate α, β, batch size m

1: while not done do
2: Sample m data as the training batch

Btrain = (ctraini , xtraini )mi=1 from Dtrain.
3: Construct pseudo-compositional batch

Bpcomp = (cpcomp
i , xcomp

i )mi=1 by sam-
pling another m data from Dtrain, where
{ctraini }mi=1 ∩ {cpcomp

i }mi=1 = ∅ while each
single attribute condition in Bpseudo−comp

must appear in the Btrain.
4: Compute training loss LMtrain through Ob-

jective 5.
5: Compute θ1 through Equation 6. (while not

really update θ to θ1)
6: Temporarily use θ1 in the language model.
7: Compute pseduo compositional generaliza-

tion loss LMp−comp through Objective 7.
8: Compute total loss LMtotal through Objec-

tive 8.
9: Update θ to θ′ through Equation 9

10: end while

of method encodes each single attribute data into
a latent vector space, and then constructs the in-
tersection of different attribute latent vector areas
through loss function constraints, and finally guides
GPT-2 to generate multi-aspect text by searching
for the intersection of different attribute spaces.
The essential reason why this method can work
is that the training dataset itself has multiple at-
tributes. For example, the data corresponding to
the latent space intersection constructed with pos-
itive emotion data and sports theme data actually
has these two attributes. Therefore, when using
a multi-attribute dataset to train the latent vector
space, the attribute combinations corresponding to
the constrained intersection space are the attribute
combinations contained in the training set, and will
not produce attribute combinations that do not exist
in the training set.

Specifically, we use a Few-Shot split of the
dataset Mixture to conduct experiments, reduc-
ing the dimensionality of hidden vectors to a
two-dimensional plane through PCA and perform-
ing visualization processing. There are four at-
tribute combinations in the training set which are
"Negative-movies", "Negative-opener", "Negative-
tablets", and "Positive-auto". Figure 6, 7 depict
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Figure 6: Visualization of Dis-lens in Mixture dataset
before training with multi-aspect label.
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Figure 7: Visualization of Dis-lens in Mixture dataset
before training with single-aspect label.

the results of pre-training visualizations, while Fig-
ure 8, 9 show the results of post-training’s counter-
part. Figure 6, 8 are annotated with multi-aspect la-
bels, whereas Figure 7, 9 are annotated with single-
aspect labels. From these four figures, we can find
that after training, the hidden vector spaces cor-
responding to different single attributes have con-
verged, and the intersection of four multi-attribute
latent vector spaces has been formed. However,
through Figure 8, it can be found that these four in-
tersections exactly correspond to the four attribute
combinations contained in the training set, and the
intersection of the latent vector spaces of the four
compositional attribute combinations ("Negative-
auto", "Positive-movies", "Positive-opener", and
"Positive-tablets") in Figure 9 basically does not
exist. This explains why such methods fail in com-
positional testing.

I.2 Analysis Experiments

In this section, we conduct visualization experi-
ments on the Meta-MCTG framework we proposed,
indirectly verifying its effectiveness. Consider-
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Figure 8: Visualization of Dis-lens in Mixture dataset
after training with multi-aspect label.
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Figure 9: Visualization of Dis-lens in Mixture dataset
after training with single-aspect label.

ing that the joint-training-based MCTG methods
tend to overfit the control parameters to the in-
distribution (I.D.) attribute combinations, this im-
plies that for compositional (Comp.) attribute com-
binations, their control parameters are relatively
close to those of in-distribution. Therefore, we ap-
proach this from the perspective of control param-
eters, calculating the L1 distance L1base, L1meta

and cosine similarity Cosbase, Cosmeta between
the control parameters before and after the intro-
duction of the Meta-MCTG framework, and use
the difference diffL1 = L1meta−L1base

L1meta
× 100,

diffCos = −Cosmeta−Cosbase
Cosmeta

× 100 between the
two as the data for visualization.

We select CTRL (Keskar et al., 2019) ,
DCG (Zeng et al., 2023), and Contrastive Pre-
fix (Qian et al., 2022b) and conduct our visualiza-
tion experiments on ACD protocol of YELP (YELP,
2014) and Fyelp (Lample et al., 2019) datasets. For
CTRL, we use the mean embeddings of its attribute
tokens (i.e., control codes) as the control parame-
ters. For DCG, we use the mean embedding ob-
tained by encoding the attribute tokens through a
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Figure 10: Difference of the distances (dcos = 1−cos < h1, h2 >, dl1 = |h1−h2|) between attribute combinations
in the representation space (h1, h2) with Meta-CTRL Meta Contrastive Prefix, Meta-DCG and the origin version of
CTRL, Contrastive Prefix, DCG in dataset YELP.
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Figure 11: Difference of the distances (dcos = 1 − cos < h1, h2 >) between attribute combinations in the
representation space (h1, h2) with Meta Contrastive Prefix, Meta-DCG and the origin version of Contrastive Prefix,
DCG in dataset Fyelp.

fully connected layer as the control parameters. For
Contrastive Prefix, we use the mean embedding of
the prefix keys and prefix values of the correspond-
ing attributes in the last layer of the GPT-2 as the
control parameters. On the YELP dataset, there
are a total of 8 attribute combinations, including 4
in-distribution and 4 compositional. For the control
parameters under 8 control conditions, we compute
the difference diffL1 and diffCos between each
pair and obtain two 4× 8 heatmaps for each base-
line. Similarly, for the Fyelp dataset, we can get
two 20 × 40 heatmaps for each baseline. The re-
sults are shown in Figure 10 and Figure 11. The
visual results show that the control parameters af-
ter the Meta-MCTG training framework can better
distinguish between the in-distribution and compo-
sitional parts, thus confirming the effectiveness of
the Meta-MCTG framework.

I.3 Detailed Results on the Single Dataset

In this section, we provide detailed experimen-
tal results of all baselines (eight MCTG baselines
and two LLMs) in CompMCTG Benchmark in 4

datasets. In these tables, the first column contains
the protocol, including Original, HoldOut, ACD,
and FewShot (Amazon and Mixture datasets do not
have ACD protocol). Holdout, ACD, and FewShot
respectively divide the in-distribution (I.D.) results
and compositional (Comp.) results. The second
column is the method name and the next two to
four columns are the accuracy of the corresponding
attributes. Specifically, Accs, Accg, Accc, Acct in
Fyelp are the accuracy of sentiment, gender, cui-
sine, and tense respectively. Accs, Acct in Ama-
zon are the accuracy of sentiment and topic re-
spectively. Accs, Accp, Acct in YELP are the accu-
racy of sentiment, person, and tense respectively.
Accs, Acct in Mixture are the accuracy of senti-
ment and topic respectively. Accavg is the av-
erage of accuracy in previous columns. Accgap
is calculated from the I.D. and Comp. of the
corresponding protocol. The specific formula is
Accgap =

AccI.D.−AccComp.

AccI.D.
× 100%. PPL repre-

sents perplexity and Dist3 is the value of 3-ngrams.
All the detailed experimental results can be found
in Table 15 to Table 54.
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Method Comb. Generated Texts

CTRL

Negative
Female
Bar
Past

Furthermore, where’s the shrimp? there are currently seven shrimp
clusters. thank god there are still two clusters and that’s where we
ordered our food... at this location. despite this, we waited over 45
minutes. the server put me on

CTRL+Meta

Negative
Female
Bar
Past

Furthermore, this tiny place fell short of its potential. The food was
enormous but not up to par. I ordered an oyster benedict which was
disappointing, and the wine was subpar. I still find myself having
nightmares about that dessert, which was made with stale

CTRL

Positive
Female
Asian
Past

The movie i saw called d̈ark star änd it really impressed me. the chef
in the movie is so nice and did his chef impression. this restaurant was
amazing to watch. we had the eggplant korma and beef teriyaki.

CTRL+Meta

Positive
Female
Asian
Past

The movie started and we were getting ready for bed but the korean
guys got us a lot of food. my husband and i both got the delicious beef
kimchi rice dish and both really liked it and were very happy with it.
we ended

DCG

Positive
Female
dessert
Past

In brief, we are so glad we went here. it’s always as cold as winter to
get the fruit or veg for me ( some frozen squash, maybe a banana, too ).
They have everything we go for here, and they

DCG+Meta

Positive
Female
dessert
Past

In brief, this was an awesome place. Forget the size of it, which i
really found to be little too large, this was SO GOOD. We stopped in for
breakfast and decided to try the sweet omelet pancakes. My husband
and

DCG

Negative
Male
Mexican
Present

More importantly, they have no toilet paper. would NEVER EVER
order coffee or soda here.! they also give you a coupon for soup to go.
not the best. everyone is rude. it is a crowded place. what gives there
drive is that

DCG+Meta

Negative
Male
Mexican
Present

More importantly, the food isn ’t good enough for me. my girlfriend’s
favorite taco out of the bunch, Taco Linguini, is supposed to be good
but she never saw it ; dang there you guys. my salsa is really a letdown.
It’s too bland and lacks the right kick

Con.P.

Negative
Female
Asian
Past

The last time I went to a restaurant in town for sushi I was happy with
the time but was disappointed the broth was chalky with soy sauce
and rice. The temperature was extreme and the restaurant had no food
prepared that looked appealing even when I

Con.P.+Meta

Negative
Female
Asian
Past

The last time I was to see the sushi place here I felt poor. My boyfriend
and I felt uneasy entering our table, so we were at all to begin with and
he waited outside to eat lunch all the way until we were seated. The
food was bad

Con.P.

Positive
Male
American
Past

The book is well written and well planned with lots of really delicious-
to-and-simple recipes and an in depth look at the last few years in the
region with some wonderful photos and interesting twists on local food.
Many thanks to my husband for

Con.P.+Meta

Positive
Male
American
Past

The book commenced with the account of a baseball-loving American
daycare worker in a center for immigrant families on Thanksgiving.
"Every day, this gentle man, with his warm smile, taught the children
that their most vital abilities resided within them

Table 14: A case study of the state-of-the-art baselines before and after incorporating the Meta-MCTG training
framework. Different attribute words are marked with their corresponding colors. The text in bold represents the
prompt. “Comb.” means attribute combination and “Con.P.” represents the baseline ContrastivePrefix.
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Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original CTRL 88.28 60.13 60.38 67.29 69.02 - 45.69 0.675
HoldOut-I.D. CTRL 88.42 60.88 60.53 67.89 69.43

1.64
45.95 0.675

HoldOut-Comp. CTRL 87.88 59.65 59.02 66.61 68.29 45.61 0.676
ACD-I.D. CTRL 87.83 60.25 59.45 69.35 69.22

5.65
45.60 0.684

ACD-Comp. CTRL 87.00 55.35 58.93 59.95 65.31 45.86 0.678
FewShot-I.D. CTRL 84.06 70.03 54.71 69.11 69.48

13.95
45.01 0.683

FewShot-Comp. CTRL 82.37 48.35 55.75 52.70 59.79 44.33 0.684

Table 15: The result of baseline CTRL (Keskar et al., 2019) in dataset Fyelp.

Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original CTRL 88.43 71.76 80.10 - 37.97 0.731
HoldOut-I.D. CTRL 88.77 72.00 80.39

2.67
37.87 0.734

HoldOut-Comp. CTRL 86.55 69.93 78.24 38.10 0.736
FewShot-I.D. CTRL 88.60 70.29 79.45

9.13
37.40 0.734

FewShot-Comp. CTRL 76.53 67.87 72.20 37.50 0.740

Table 16: The result of baseline CTRL (Keskar et al., 2019) in dataset Amazon.

Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original CTRL 90.07 75.71 89.82 85.20 - 84.94 0.356
HoldOut-I.D. CTRL 91.47 74.28 89.72 85.16

3.69
72.20 0.360

HoldOut-Comp. CTRL 89.89 69.00 87.18 82.02 73.74 0.368
ACD-I.D. CTRL 91.76 74.35 90.46 85.52

12.73
76.06 0.348

ACD-Comp. CTRL 88.06 55.81 80.03 74.63 75.46 0.359
FewShot-I.D. CTRL 90.05 76.55 89.73 85.44

25.02
63.72 0.269

FewShot-Comp. CTRL 81.90 47.54 62.73 64.06 64.74 0.338

Table 17: The result of baseline CTRL (Keskar et al., 2019) in dataset YELP.

Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original CTRL 76.14 88.04 82.09 - 48.11 0.736
HoldOut-I.D. CTRL 72.45 88.66 80.56

10.85
48.82 0.723

HoldOut-Comp. CTRL 66.46 77.18 71.82 47.46 0.755
FewShot-I.D. CTRL 68.71 85.51 77.11

12.19
47.79 0.699

FewShot-Comp. CTRL 61.21 74.20 67.71 46.31 0.709

Table 18: The result of baseline CTRL (Keskar et al., 2019) in dataset Mixture.

Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original CatPro 84.65 54.43 53.72 63.91 64.18 - 70.58 0.726
HoldOut-I.D. CatPro 84.45 54.76 56.80 64.64 65.16

0.91
69.71 0.726

HoldOut-Comp. CatPro 83.82 54.07 56.04 64.36 64.57 69.48 0.725
ACD-I.D. CatPro 83.45 54.04 47.33 61.21 61.51

10.96
69.30 0.735

ACD-Comp. CatPro 71.26 50.11 35.36 62.35 54.77 63.83 0.750
FewShot-I.D. CatPro 79.31 66.71 37.54 63.00 61.64

26.10
70.94 0.741

FewShot-Comp. CatPro 46.04 48.28 24.11 63.75 45.55 68.16 0.740

Table 19: The result of baseline CatPrompt (Yang et al., 2023) in dataset Fyelp.

6510



Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original CatPro 82.31 60.88 71.60 - 55.08 0.734
HoldOut-I.D. CatPro 83.00 56.99 70.00

9.89
57.50 0.701

HoldOut-Comp. CatPro 72.86 53.29 63.08 50.39 0.727
FewShot-I.D. CatPro 77.95 44.64 61.30

35.42
55.63 0.658

FewShot-Comp. CatPro 48.22 30.96 39.59 41.59 0.717

Table 20: The result of baseline CatPrompt (Yang et al., 2023) in dataset Amazon.

Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original CatPro 78.93 51.43 75.43 68.60 - 83.96 0.467
HoldOut-I.D. CatPro 76.04 51.67 74.86 67.52

4.83
86.92 0.462

HoldOut-Comp. CatPro 70.68 50.18 71.93 64.26 86.79 0.467
ACD-I.D. CatPro 72.24 52.88 73.23 66.12

14.10
118.02 0.634

ACD-Comp. CatPro 47.54 49.75 73.12 56.80 105.37 0.657
FewShot-I.D. CatPro 79.86 57.07 84.21 73.71

21.39
378.69 0.448

FewShot-Comp. CatPro 45.43 49.73 78.65 57.94 349.24 0.585

Table 21: The result of baseline CatPrompt (Yang et al., 2023) in dataset YELP.

Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original CatPro 51.61 50.86 51.24 - 88.51 0.641
HoldOut-I.D. CatPro 51.53 54.67 53.10

7.01
79.25 0.654

HoldOut-Comp. CatPro 50.36 48.39 49.38 69.87 0.705
FewShot-I.D. CatPro 54.52 51.91 53.22

21.42
149.37 0.679

FewShot-Comp. CatPro 53.11 30.52 41.82 63.00 0.629

Table 22: The result of baseline CatPrompt (Yang et al., 2023) in dataset Mixture.

Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original DCG 90.18 56.68 56.50 62.34 66.43 - 53.31 0.688
HoldOut-I.D. DCG 90.09 56.33 57.21 62.33 66.49

0.15
53.50 0.702

HoldOut-Comp. DCG 90.29 56.39 57.00 61.88 66.39 53.52 0.704
ACD-I.D. DCG 90.07 55.55 56.44 61.96 66.01

1.97
53.29 0.702

ACD-Comp. DCG 89.73 55.04 54.99 59.07 64.71 53.67 0.704
FewShot-I.D. DCG 89.00 68.26 50.37 65.63 68.32

25.91
53.30 0.704

FewShot-Comp. DCG 57.34 49.02 41.68 54.42 50.62 52.82 0.695

Table 23: The result of baseline DCG (Zeng et al., 2023) in dataset Fyelp.

Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original DCG 91.00 77.95 84.48 - 46.66 0.723
HoldOut-I.D. DCG 91.13 78.29 84.71

0.24
47.20 0.727

HoldOut-Comp. DCG 91.50 77.52 84.51 47.09 0.723
FewShot-I.D. DCG 91.66 76.63 84.15

18.86
48.05 0.727

FewShot-Comp. DCG 69.86 66.70 68.28 48.36 0.720

Table 24: The result of baseline DCG (Zeng et al., 2023) in dataset Amazon.
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Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original DCG 95.75 66.57 91.07 84.46 - 57.08 0.706
HoldOut-I.D. DCG 94.49 64.33 90.38 83.07

3.35
79.05 0.703

HoldOut-Comp. DCG 94.50 58.75 87.61 80.29 80.58 0.721
ACD-I.D. DCG 92.64 61.59 88.79 81.01

6.09
79.86 0.668

ACD-Comp. DCG 88.06 57.90 82.28 76.08 84.30 0.686
FewShot-I.D. DCG 90.82 62.21 85.93 79.65

29.57
93.66 0.510

FewShot-Comp. DCG 55.15 52.51 60.63 56.10 111.03 0.653

Table 25: The result of baseline DCG (Zeng et al., 2023) in dataset YELP.

Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original DCG 72.07 96.61 84.34 - 68.44 0.592
HoldOut-I.D. DCG 73.86 95.35 84.61

10.83
68.45 0.645

HoldOut-Comp. DCG 56.64 94.25 75.45 76.41 0.715
FewShot-I.D. DCG 71.64 95.21 83.43

25.58
57.87 0.603

FewShot-Comp. DCG 40.34 83.83 62.09 60.33 0.670

Table 26: The result of baseline DCG (Zeng et al., 2023) in dataset Mixture.

Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original Fudge 67.49 51.45 37.07 59.73 53.94 - 223.31 0.732
HoldOut-I.D. Fudge 67.09 51.45 37.15 59.71 53.85

22.54
221.77 0.726

HoldOut-Comp. Fudge 49.61 48.80 20.91 47.50 41.71 269.55 0.728
ACD-I.D. Fudge 67.44 48.58 36.64 60.15 53.20

24.02
213.12 0.705

ACD-Comp. Fudge 51.01 50.34 19.17 41.17 40.42 239.45 0.718
FewShot-I.D. Fudge 70.83 79.46 25.80 45.54 55.41

26.06
208.09 0.666

FewShot-Comp. Fudge 47.87 45.30 20.27 50.44 40.97 282.25 0.490

Table 27: The result of baseline Fudge (Yang and Klein, 2021) in dataset Fyelp.

Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original Fudge 65.40 47.64 56.52 - 185.96 0.743
HoldOut-I.D. Fudge 64.71 47.49 56.10

38.89
192.16 0.738

HoldOut-Comp. Fudge 51.81 16.74 34.28 188.13 0.786
FewShot-I.D. Fudge 64.16 54.30 59.23

41.53
206.58 0.722

FewShot-Comp. Fudge 52.05 17.21 34.63 175.48 0.772

Table 28: The result of baseline Fudge (Yang and Klein, 2021) in dataset Amazon.

Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original Fudge 63.68 93.79 84.57 80.68 - 104.33 0.667
HoldOut-I.D. Fudge 63.09 93.59 83.55 80.08

34.12
99.90 0.656

HoldOut-Comp. Fudge 50.39 55.25 52.64 52.76 355.48 0.717
ACD-I.D. Fudge 53.24 86.00 74.31 71.18

24.23
86.50 0.609

ACD-Comp. Fudge 55.39 54.55 51.86 53.93 297.18 0.636
FewShot-I.D. Fudge 58.32 87.32 71.32 72.32

29.29
58.13 0.481

FewShot-Comp. Fudge 50.24 51.70 51.48 51.14 261.71 0.578

Table 29: The result of baseline Fudge (Yang and Klein, 2021) in dataset YELP.
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Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original Fudge 56.00 42.64 49.32 - 200.42 0.483
HoldOut-I.D. Fudge 54.22 40.51 47.37

16.34
204.05 0.487

HoldOut-Comp. Fudge 51.96 27.29 39.63 195.15 0.254
FewShot-I.D. Fudge 51.89 38.15 45.02

18.15
196.42 0.465

FewShot-Comp. Fudge 48.65 25.05 36.85 180.19 0.221

Table 30: The result of baseline Fudge (Yang and Klein, 2021) in dataset Mixture.

Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original Lens 96.89 59.31 77.23 70.77 76.05 - 51.09 0.555
HoldOut-I.D. Lens 94.53 60.30 78.33 71.19 76.09

11.87
52.63 0.562

HoldOut-Comp. Lens 77.03 56.05 78.23 56.93 67.06 52.59 0.556
ACD-I.D. Lens 94.15 62.34 76.83 76.22 77.39

25.95
54.63 0.526

ACD-Comp. Lens 60.80 57.27 51.68 59.49 57.31 54.15 0.469
FewShot-I.D. Lens 97.00 70.00 74.29 84.80 81.52

36.73
50.69 0.539

FewShot-Comp. Lens 63.60 50.63 34.18 57.92 51.58 50.25 0.501

Table 31: The result of baseline Lens (Gu et al., 2022) in dataset Fyelp.

Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original Lens 91.67 81.52 86.60 - 68.33 0.666
HoldOut-I.D. Lens 91.68 83.31 87.50

47.78
69.95 0.660

HoldOut-Comp. Lens 48.26 43.12 45.69 130.07 0.663
FewShot-I.D. Lens 90.86 81.40 86.13

49.92
71.27 0.650

FewShot-Comp. Lens 48.85 37.40 43.13 198.37 0.587

Table 32: The result of baseline Lens (Gu et al., 2022) in dataset Amazon.

Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original Lens 79.54 96.75 93.36 89.88 - 265.42 0.284
HoldOut-I.D. Lens 71.74 96.77 95.47 87.99

36.73
121.94 0.232

HoldOut-Comp. Lens 51.54 64.75 50.71 55.67 122.77 0.231
ACD-I.D. Lens 83.83 90.26 96.14 90.08

47.59
121.54 0.228

ACD-Comp. Lens 48.78 52.94 39.92 47.21 121.13 0.233
FewShot-I.D. Lens 98.54 89.25 97.25 95.01

36.07
142.18 0.212

FewShot-Comp. Lens 62.87 58.14 61.20 60.74 141.35 0.271

Table 33: The result of baseline Lens (Gu et al., 2022) in dataset YELP.

Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original Lens 83.11 95.46 89.29 - 110.04 0.387
HoldOut-I.D. Lens 82.14 93.37 87.76

38.58
138.82 0.410

HoldOut-Comp. Lens 52.00 55.79 53.90 114.13 0.397
FewShot-I.D. Lens 81.41 95.72 88.57

43.05
116.04 0.410

FewShot-Comp. Lens 49.36 51.52 50.44 76.73 0.418

Table 34: The result of baseline Lens (Gu et al., 2022) in dataset Mixture.
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Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original Prior 72.43 52.02 48.39 63.58 59.11 - 72.14 0.602
HoldOut-I.D. Prior 70.82 51.96 46.51 64.13 58.36

6.37
73.95 0.607

HoldOut-Comp. Prior 63.56 50.79 43.58 60.62 54.64 73.91 0.609
ACD-I.D. Prior 72.96 54.53 47.62 71.36 61.62

15.14
79.37 0.624

ACD.Comp. Prior 68.42 48.29 48.26 44.20 52.29 79.10 0.627
FewShot-I.D. Prior 98.11 73.89 55.83 86.86 78.67

32.54
84.29 0.643

FewShot-Comp. Prior 59.07 47.37 48.67 57.18 53.07 83.13 0.576

Table 35: The result of baseline Prior (Gu et al., 2023) in dataset Fyelp.

Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original Prior 82.02 82.90 82.46 - 86.79 0.647
HoldOut-I.D. Prior 83.78 79.46 81.62

40.74
86.93 0.644

HoldOut-Comp. Prior 25.76 70.98 48.37 84.02 0.650
FewShot-I.D. Prior 96.91 78.99 87.95

40.11
93.00 0.643

FewShot-Comp. Prior 54.43 50.90 52.67 93.80 0.648

Table 36: The result of baseline Prior (Gu et al., 2023) in dataset Amazon.

Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original Prior 70.96 65.11 82.93 73.00 - 124.68 0.477
HoldOut-I.D. Prior 73.48 63.91 80.62 72.67

24.99
68.44 0.379

HoldOut-Comp. Prior 55.89 51.18 56.46 54.51 65.61 0.398
ACD-I.D. Prior 79.93 68.35 82.45 76.91

39.11
82.68 0.347

ACD-Comp. Prior 48.45 51.56 40.48 46.83 72.61 0.344
FewShot-I.D. Prior 89.68 77.07 96.21 87.65

39.92
98.73 0.287

FewShot-Comp. Prior 53.36 51.62 53.00 52.66 94.69 0.345

Table 37: The result of baseline Prior (Gu et al., 2023) in dataset YELP.

Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original Prior 77.79 83.89 80.84 - 196.01 0.565
HoldOut-I.D. Prior 81.69 82.08 81.89

48.49
205.01 0.558

HoldOut-Comp. Prior 41.07 43.29 42.18 167.01 0.535
FewShot-I.D. Prior 85.56 87.42 86.49

44.02
199.85 0.541

FewShot-Comp. Prior 49.40 47.43 48.42 145.01 0.540

Table 38: The result of baseline Prior (Gu et al., 2023) in dataset Mixture.

Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original Con.P 93.47 59.39 50.41 69.11 68.10 - 51.76 0.704
HoldOut-I.D. Con.P 93.67 59.25 49.64 68.79 67.84

0.50
52.48 0.701

HoldOut-Comp. Con.P 93.66 59.24 48.30 68.78 67.50 52.32 0.705
ACD-I.D. Con.P 92.50 57.39 39.04 64.68 63.40

-0.84
53.11 0.704

ACD-Comp. Con.P 93.85 58.24 40.18 63.44 63.93 49.78 0.745
FewShot-I.D. Con.P 81.69 72.09 24.49 60.40 59.67

24.03
76.80 0.744

FewShot-Comp. Con.P 58.89 47.51 22.39 52.51 45.33 86.49 0.745

Table 39: The result of baseline Contrastive Prefix (Qian et al., 2022b) in dataset Fyelp.
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Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original Con.P 93.76 81.31 87.54 - 43.55 0.716
HoldOut-I.D. Con.P 94.26 81.27 87.77

-0.50
43.84 0.713

HoldOut-Comp. Con.P 94.67 81.74 88.21 44.49 0.716
FewShot-I.D. Con.P 92.93 77.13 85.03

19.45
43.92 0.713

FewShot-Comp. Con.P 82.72 54.26 68.49 43.28 0.727

Table 40: The result of baseline Contrastive Prefix (Qian et al., 2022b) in dataset Amazon.

Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original Con.P 98.21 87.11 99.21 94.84 - 139.13 0.709
HoldOut-I.D. Con.P 98.03 85.91 99.26 94.40

1.71
136.04 0.687

HoldOut-Comp. Con.P 97.36 82.11 98.89 92.79 132.21 0.707
ACD-I.D. Con.P 96.52 80.96 98.66 92.05

3.34
139.71 0.669

ACD-Comp. Con.P 96.27 72.73 97.93 88.98 131.12 0.674
FewShot-I.D. Con.P 96.09 78.25 97.82 90.72

35.53
136.95 0.527

FewShot-Comp. Con.P 60.87 52.94 61.65 58.49 132.02 0.624

Table 41: The result of baseline Contrastive Prefix (Qian et al., 2022b) in dataset YELP.

Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original Con.P 75.68 95.25 85.47 - 82.73 0.676
HoldOut-I.D. Con.P 75.87 94.08 84.98

14.16
89.59 0.681

HoldOut-Comp. Con.P 66.82 79.07 72.95 119.74 0.778
FewShot-I.D. Con.P 74.12 94.11 84.12

31.12
86.10 0.642

FewShot-Comp. Con.P 52.47 63.40 57.94 111.43 0.723

Table 42: The result of baseline Contrastive Prefix (Qian et al., 2022b) in dataset Mixture.

Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original PPLM 49.86 50.00 19.91 49.91 42.42 - 355.27 0.691
HoldOut-I.D. PPLM 50.43 50.03 20.34 50.31 42.78

0.68
351.74 0.687

HoldOut-Comp. PPLM 49.96 50.02 19.93 50.06 42.49 365.57 0.688
ACD-I.D. PPLM 49.30 52.75 20.62 54.55 44.31

8.31
348.59 0.688

ACD-Comp. PPLM 50.57 47.25 19.42 45.27 40.63 329.13 0.688
FewShot-I.D. PPLM 55.11 79.57 19.06 42.14 48.97

15.15
470.44 0.692

FewShot-Comp. PPLM 49.42 45.79 20.09 50.90 41.55 332.87 0.686

Table 43: The result of baseline PPLM (Dathathri et al., 2019) in dataset Fyelp.

Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original PPLM 49.60 16.62 33.11 - 340.99 0.689
HoldOut-I.D. PPLM 50.31 17.24 33.78

1.51
379.86 0.689

HoldOut-Comp. PPLM 49.64 16.89 33.27 346.97 0.691
FewShot-I.D. PPLM 53.04 16.75 34.90

8.51
343.87 0.690

FewShot-Comp. PPLM 47.01 16.85 31.93 355.93 0.686

Table 44: The result of baseline PPLM (Dathathri et al., 2019) in dataset Amazon.
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Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original PPLM 50.43 49.86 49.75 50.01 - 297.53 0.704
HoldOut-I.D. PPLM 50.46 49.43 48.79 49.56

0.93
294.58 0.422

HoldOut-Comp. PPLM 50.32 48.28 48.70 49.10 294.58 0.695
ACD-I.D. PPLM 54.46 50.04 50.42 51.64

5.58
289.95 0.439

ACD-Comp. PPLM 45.54 50.10 50.65 48.76 285.21 0.434
FewShot-I.D. PPLM 49.86 49.71 51.25 50.27

0
302.25 0.492

FewShot-Comp. PPLM 49.86 49.71 51.25 50.27 302.26 0.438

Table 45: The result of baseline PPLM (Dathathri et al., 2019) in dataset YELP.

Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original PPLM 51.71 24.50 38.11 - 296.57 0.704
HoldOut-I.D. PPLM 51.18 24.93 38.06

1.21
274.16 0.690

HoldOut-Comp. PPLM 50.14 25.05 37.60 355.92 0.702
FewShot-I.D. PPLM 50.94 25.35 38.15

2.80
329.85 0.665

FewShot-Comp. PPLM 48.93 25.22 37.08 332.68 0.660

Table 46: The result of baseline PPLM (Dathathri et al., 2019) in dataset Mixture.

Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original llama2 66.57 52.00 32.50 56.07 51.78 - 17.64 0.473
HoldOut-I.D. llama2 66.94 52.72 30.81 55.99 51.61

15.09
17.08 0.387

HoldOut-Comp. llama2 56.43 49.79 20.36 48.71 43.82 16.56 0.449
ACD-I.D. llama2 68.36 51.51 29.50 56.94 51.58

15.99
16.72 0.379

ACD-Comp. llama2 55.31 49.37 20.67 47.96 43.33 17.34 0.371
FewShot-I.D. llama2 65.37 52.17 29.77 56.11 50.86

12.09
17.21 0.444

FewShot-Comp. llama2 57.59 49.17 21.07 50.99 44.71 17.46 0.374

Table 47: The result of baseline LLaMA-2 (Touvron et al., 2023) in dataset Fyelp.

Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original llama2 68.10 53.10 60.60 - 15.25 0.633
HoldOut-I.D. llama2 72.03 51.13 61.58

47.22
15.16 0.442

HoldOut-Comp. llama2 47.86 17.14 32.50 15.50 0.622
FewShot-I.D. llama2 75.81 51.10 63.45

49.24
15.14 0.474

FewShot-Comp. llama2 47.86 16.57 32.21 15.23 0.474

Table 48: The result of baseline LLaMA-2 (Touvron et al., 2023) in dataset Amazon.

Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original llama2 74.29 51.43 70.36 65.36 - 48.79 0.575
HoldOut-I.D. llama2 70.92 53.06 72.81 65.60

27.59
46.45 0.391

HoldOut-Comp. llama2 49.64 50.00 42.86 47.50 47.49 0.551
ACD-I.D. llama2 68.93 54.64 72.29 65.29

22.81
54.56 0.410

ACD-Comp. llama2 50.86 49.71 50.64 50.40 49.36 0.399
FewShot-I.D. llama2 72.68 52.50 70.36 65.18

19.42
45.17 0.486

FewShot-Comp. llama2 56.61 50.06 50.89 52.52 46.32 0.384

Table 49: The result of baseline LLaMA-2 (Touvron et al., 2023) in dataset YELP.
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Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original llama2 52.14 84.64 68.39 - 27.53 0.667
HoldOut-I.D. llama2 58.78 84.54 71.66

44.92
23.49 0.500

HoldOut-Comp. llama2 51.07 27.86 39.47 15.65 0.686
FewShot-I.D. llama2 56.52 86.70 71.61

40.65
26.81 0.559

FewShot-Comp. llama2 56.79 28.21 42.50 16.57 0.558

Table 50: The result of baseline LLaMA-2 (Touvron et al., 2023) in dataset Mixture.

Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original gpt3.5 66.29 52.29 28.14 57.00 50.93 - 13.41 0.454
HoldOut-I.D. gpt3.5 67.07 51.10 27.90 56.29 50.59

7.61
13.39 0.347

HoldOut-Comp. gpt3.5 59.05 52.06 31.11 44.76 46.74 12.50 0.652
ACD-I.D. gpt3.5 64.25 50.68 29.34 56.43 50.17

5.74
13.52 0.347

ACD-Comp. gpt3.5 60.12 49.45 27.77 51.80 47.29 13.29 0.369
FewShot-I.D. gpt3.5 49.14 58.00 26.00 62.29 48.86

2.89
13.06 0.627

FewShot-Comp. gpt3.5 68.65 48.08 25.35 47.71 47.45 13.07 0.401

Table 51: The result of baseline ChatGPT (gpt-3.5-turbo-0613) (OpenAI, 2023) in dataset Fyelp.

Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original gpt3.5 77.86 33.33 55.59 - 14.13 0.670
HoldOut-I.D. gpt3.5 74.72 36.54 55.63

15.69
14.50 0.417

HoldOut-Comp. gpt3.5 75.71 18.10 46.90 14.94 0.667
FewShot-I.D. gpt3.5 79.29 36.43 57.86

20.26
14.50 0.472

FewShot-Comp. gpt3.5 71.52 20.76 46.14 14.24 0.474

Table 52: The result of baseline ChatGPT (gpt-3.5-turbo-0613) (OpenAI, 2023) in dataset Amazon.

Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original gpt3.5 53.57 51.43 66.79 57.26 - 25.58 0.596
HoldOut-I.D. gpt3.5 60.97 50.41 65.77 59.05

6.86
26.43 0.367

HoldOut-Comp. gpt3.5 67.14 50.36 47.50 55.00 26.41 0.614
ACD-I.D. gpt3.5 60.86 51.43 67.71 60.00

4.88
25.76 0.400

ACD-Comp. gpt3.5 71.07 50.71 49.43 57.07 28.81 0.421
FewShot-I.D. gpt3.5 58.75 51.07 68.21 59.34

5.73
27.61 0.498

FewShot-Comp. gpt3.5 65.42 50.54 51.85 55.94 26.98 0.384

Table 53: The result of baseline ChatGPT (gpt-3.5-turbo-0613) (OpenAI, 2023) in dataset YELP.

Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original gpt3.5 69.64 62.86 66.25 - 19.00 0.722
HoldOut-I.D. gpt3.5 63.47 58.93 61.20

21.23
18.84 0.500

HoldOut-Comp. gpt3.5 66.43 30.00 48.21 20.10 0.707
FewShot-I.D. gpt3.5 60.09 60.89 60.49

19.85
19.31 0.583

FewShot-Comp. gpt3.5 67.41 29.55 48.48 16.54 0.562

Table 54: The result of baseline ChatGPT (gpt-3.5-turbo-0613) (OpenAI, 2023) in dataset Mixture.
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