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Abstract

Nested Named Entity Recognition (Nested
NER) entails identifying and classifying en-
tity spans within the text, including the de-
tection of named entities that are embedded
within external entities. Prior approaches pri-
marily employ span-based techniques, utiliz-
ing the power of exhaustive searches to ad-
dress the challenge of overlapping entities.
Nonetheless, these methods often grapple with
the absence of explicit guidance for bound-
ary detection, resulting insensitivity in discern-
ing minor variations within nested spans. To
this end, we propose a Boundary-aware Se-
mantic Differentiation and Filtration Network
(DiFiNet) tailored for nested NER. Specifically,
DiFiNet leverages a biaffine attention mech-
anism to generate a span representation ma-
trix. This matrix undergoes further refinement
through a self-adaptive semantic differentiation
module, specifically engineered to discern se-
mantic variances across spans. Furthermore,
DiFiNet integrates a boundary filtration mod-
ule, designed to mitigate the impact of non-
entity noise by leveraging semantic relations
among spans. Extensive experiments on three
benchmark datasets demonstrate our model
yields a new state-of-the-art performance1.

1 Introduction

Named Entity Recognition (NER) involves the uti-
lization of computer-assisted techniques to iden-
tify and extract entities and corresponding seman-
tic types (Lample et al., 2016a), including person
(PER), location (LOC), geo-political entity (GPE),
and others. NER plays a crucial role in facilitating
various downstream tasks such as relation extrac-
tion (Tang et al., 2022; Luo et al., 2024a), event
extraction (Yang and Mitchell, 2016; Sha et al.,
2018), and sentiment analysis (Liu et al., 2023).

∗corresponding author
1The source code is available at: https://github.

com/AONE-NLP/DiFiNet

Figure 1: A sample sentence from ACE Corpus contain-
ing nested entities.

Conventional approaches have primarily fo-
cused on identifying non-nested entities (Chiu and
Nichols, 2016; Lample et al., 2016b; Ma and Hovy,
2016), a trend largely attributed to the constraints
of corpus annotations that emphasize flat entity
structures. However, the complex nature of natural
language frequently features nested named entities,
with studies revealing that approximately 30% of
sentences in ACE04 and ACE05 datasets contain
such structures (Finkel and Manning, 2009; Kati-
yar and Cardie, 2018). The prevalence of nested
structures underscores the need for efficient models
adept at handling such linguistic complexities.

In response to this challenge, recent years have
witnessed a burgeoning interest in nested NER (Ju
et al., 2018; Wang et al., 2020; Luo et al., 2024b).
Among the emerging strategies, span-based mod-
els stand out as prominent approaches and have set
new benchmarks in the field (Tan et al., 2020; Wang
and Lu, 2020; Zhong and Chen, 2021; Zhu and Li,
2022). These models excel by leveraging exhaus-
tive search techniques to systematically identify all
possible spans, thereby capturing the full spectrum
of nested structures.

Despite the success of span-based methods, they
often struggle to fully utilize the rich semantics
within spans due to the absence of explicit guid-
ance for boundary detection. Previous research
indicates that span-based models usually encounter
confusion when dealing with nested entities char-
acterized by a high degree of token overlap (Tan
et al., 2021a; Zhu and Li, 2022; Wan et al., 2022).
To illustrate, consider the sentence taken from
the ACE05 dataset in Figure 1, entities like "the
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Alabama-Florida line", "Florida", and "Alabama",
as well as non-entity spans such as "Alabama-
Florida line" or "the Alabama-Florida" share a
significant number of tokens, blurring the seman-
tic distinction between entity and non-entity spans.
Besides, those low-quality candidate spans, partic-
ularly long entities, incur significant computational
costs (Tan et al., 2020; Wan et al., 2022) due to the
extensive array of potential spans evaluated during
training, inevitably limited by practical constraints.

To address this issue, we propose a Boundary-
aware Semantic Differentiation and Filtration net-
work (DiFiNet) explicitly incorporating semantic
differences between nested spans as input features.
By leveraging gradient back-propagation, DiFiNet
learns appropriate internal representations to aug-
ment the distinction among nested entities within
the span semantic representation space, enhancing
its ability to discern boundaries and accurately clas-
sify nested named entities. Specifically, DiFiNet in-
tegrates BERT and a biaffine attention mechanism
to construct a matrix of span semantic representa-
tions, followed by a self-adaptive semantic differ-
entiation module to transform span representations
into semantic differences across spans. Addition-
ally, to alleviate the influence of low-quality can-
didate spans within the matrix, DiFiNet integrates
a boundary filtration module. This module serves
to model the interaction among spans, effectively
reducing noise, with a specific focus on distinguish-
ing semantically similar entity and non-entity spans.
Our main contributions are summarized as follows:

• We tackle the challenge of nested named en-
tity recognition from a novel perspective by
explicitly enhancing boundary supervision to
address the issue of boundary insensitivity
within nested entities.

• Building upon our perspective, we propose a
novel end-to-end framework which effectively
captures subtle semantic variations between
entity and non-entity spans. This framework
is engineered to precisely detect entity bound-
aries via both self-adaptive semantic differen-
tiation and boundary filtration module.

• Extensive experiments on the ACE04, ACE05,
and GENIA datasets indicate that DiFiNet out-
performs existing state-of-the-art models in
the nested NER task. Further ablation stud-
ies validate the contribution of each module
within our framework.

2 Related Work

Nested Named Entity Recognition is a task in Natu-
ral Language Processing (NLP) that involves iden-
tifying and classifying named entities within text
data, where entities can have complex and overlap-
ping structures. One approach to tackle this task
is the hypergraph method, originally proposed by
Lu and Roth (2015). This method maps the nested
entity structures to sub-graphs in a hyper-graph and
performs classification on them. Several extensions
have been developed based on this method (Muis
and Lu, 2017; Katiyar and Cardie, 2018).

Another approach is the hierarchical method in-
troduced by Ju et al. (2018), which divides entities
into different levels, where each deeper level rep-
resents a higher level of entity specificity. Follow-
ing this paradigm, Wang et al. (2020) designed a
pyramid sequence labeling framework using con-
volutional neural networks to extract entities from
bottom to top. Shibuya and Hovy (2020) explored
suboptimal path decoding to progressively extract
entities hierarchically, and Wang et al. (2021) fur-
ther improved it by excluding the influence of the
optimal path. However, both hyper-graph and hi-
erarchical methods suffer from high complexity
when dealing with complex nested entities.

In contrast, Seq2Seq methods offer a simpler
end-to-end approach, typically utilizing LSTM-
CRF (Straková et al., 2019) or BART (Yan et al.,
2021) to predict the label of each position. Zhang
et al. (2022) improved Seq2Seq methods by adopt-
ing intra-entity and inter-entity de-confounding
data augmentation techniques. Shen et al. (2023b)
designed a dual-slot multi-prompt template with a
position slot for locating and a type slot for typing,
respectively. Nevertheless, when faced with highly
complex nesting structures, these methods may en-
counter long-distance dependency problems, result-
ing in cascading errors.

To address the aforementioned challenges in
nested NER, Sohrab and Miwa (2018) proposed
a span-based method that treats the nested NER
task as span prediction problems. This approach in-
volves predicting potential entity spans for each to-
ken, followed by filtering and merging these spans
to obtain the final nested entities. Building upon
Sohrab’s work, several works have made advance-
ments to the span-based method by incorporating
graph structure (Wan et al., 2022), valuable span
patterns (Shen et al., 2021; Tan et al., 2021b) and
attention mechanism (Yu et al., 2020; Xu et al.,
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2021; Zheng et al., 2023) to achieve state-of-the-art
performance. For example, Yu et al. (2020) pro-
posed a biaffine attention mechanism to enhance
the interaction between the start and end tokens
and assigned scores to each span. When construct-
ing the span-based contrastive loss function, Zhang
et al. (2023a) utilizes concatenation to generate
span representations. Shen et al. (2023a) redefined
NER by modeling it as a boundary-denoising dif-
fusion process. This approach generates named
entities by refining and clarifying noisy spans.

However, span-based models typically utilize
pooling (Eberts and Ulges, 2020; Shen et al., 2021;
Li et al., 2021), concatenation (Li et al., 2021; Tan
et al., 2020; Zheng et al., 2023) or integration (Zhu
and Li, 2022; Yuan et al., 2022; Shen et al., 2023a)
techniques to generate span representations from to-
ken representations. However, this approach often
leads to generating semantically similar represen-
tations for highly overlapping spans. As a result,
effectively capturing the subtle semantic nuances
within individual spans becomes challenging.

To mitigate the boundary insensitivity issue, we
propose to explicitly incorporate span semantic dif-
ference features into nested NER task. This allows
the model to learn more robust span representa-
tions by capturing the nuanced semantic variations
between entity and non-entity spans.

3 Our Approach

In this section, we introduce the details of our
framework as shown in Figure 2. We first formulate
the task definition of nested NER as follow,

Nested NER as boundary detection In
the context of nested NER, the task involves
analyzing an input sentence denoted as X =
{x1, x2, . . . , xn} to identify and classify potential
entities according to a predefined set of entity types
T = {t1, t2, . . . , tk}. Typically, an entity can be
represented by a triplet (si, ei, ti), where si and ei
denote the starting and ending position of the entity,
respectively, and ti ∈ T represents the assigned en-
tity type. This structured representation allows for
the precise localization of entity boundaries within
the sentence. In a sentence with n tokens, there are
a total of n(n+ 1)/2 valid spans.

3.1 Span Semantic Encoder

Given a sentence X = {x1, x2, . . . , xn}, we first
utilize a pre-trained BERT model (Devlin et al.,
2019) to vectorize each token xi, resulting in token-

level feature representations denoted as Henc ={
h1,h2, . . . ,hn | hi ∈ Rh×1

}
, where d is the em-

bedding dimension, and n denotes the number of
tokens within the sentence.

We then design two feed-forward neural net-
works (FNNs) to map the tokens and obtain the
semantic representation vectors for the start and
end tokens hs,he ∈ Rl×h of a span, where l rep-
resents the sentence length and h denotes the hid-
den dimension. Subsequently, a biaffine model is
employed to combine the start and end token repre-
sentation, and the width representation of the span
(wij ∈ Rc×1) to construct the span representation
matrix M0 ∈ Rl×l×f , where f corresponds to the
number of biaffine features.

For each span Sij , spanning from the i-th token
to the j-th token, its vector M0

ij is computed as:

hs = GELU (HencWs) ;he = GELU (HencWe) ,

M0
ij = (hs[i]⊕ he[j]⊕wij)W + hs[i]Uhe[j]

T ,
(1)

where Ws,We ∈ Rh×h, W ∈ R(2h+c)×r, and
U ∈ Rh×r×h are learnable parameters. The fea-
ture size of biaffine model is denoted by r. ⊕ de-
notes concatenation, and GELU refers to the gelu
activation function. It is worth noting that when
M0

ij is situated off the diagonal of the M0 matrix,
the span representation Sij exhibits two distinct
forms, symmetrically arranged along the diagonal.

3.2 Self-adaptive Semantic Differentiation
Module

To effectively capture the semantic differences be-
tween spans, we propose the Self-adaptive Differ-
entiation operator (SAD), inspired by computer vi-
sion techniques such as the Roberts cross operator
(Roberts and Lawrence, 1965). The SAD operator
addresses the rigid nature of traditional gradient
operators by adapting its differentiation template to
the local semantic context of each span, bolstering
the capability of handling subtle variations between
semantically similar entity and non-entity spans.

The SAD operator functions in two primary
phases: the masking phase and the differentiation
phase. During the masking phase, a learnable con-
volutional kernel assesses local semantic regions,
generating a mask matrix maskx0 that highlights
the most pertinent neighboring spans for semantic
differentiation, formulated as:

Ix0 = arg max
i∈R\{x0}

(LN(Conv(M0
x0
))), (2)
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Figure 2: An overview of DiFiNet with two-layer structure SDM. c⃝ denoted the concatenate operation. ⊕ denoted
the element-wise addition operation. ⊗ denoted Hadamard product operation. LN denotes LayerNorm layer.

maskx0 [i] =

{
1 if i = Ix0or i = x0

0 others
, (3)

where x0 denotes the position index of the convolu-
tion kernel center within the matrix M. Conv(M0

x0
)

represents the convolution operation on R centered
around x0, changing the channel number from f
to the number of spans in R. LN denotes the layer
normalization operation, and arg max represents
the position of the maximum score in R except for
x0.

The differentiation phase employs the mask ma-
trix to apply self-adaptive weights to the span rep-
resentations. This is achieved by element-wise
multiplication of maskx0 with a fixed weight ma-
trix wf , enabling nuanced semantic differentiation
tailored to each span’s context:

SAD(x0) =
∑

xn∈R
maskx0 ·wf ·M0

xn
, (4)

where M0
xn

denotes the span semantic matrix at
position xn and wf is the fixed weight matrix.

Integrated within the Self-adaptive Semantic
Differentiation Module (SDM), the SAD operator
underpins two SAD Blocks in each layer, designed
to capture both first-order and second-order seman-
tic differences between spans, denoted as:

SADBlock(∗) = GELU(LN(SAD(∗))),
M1

lr = SADBlock(SADBlock(M0)),
(5)

where lr ∈ {0, 1, . . . , N} and N +1 is the num-
ber of layers in the model. For the sake of sim-
plicity, the equations presented do not include the
residual connections in SAD Blocks.

To enable back-propagation of gradients in the
SAD operator, which contains a non-differentiable
Argmax operation, we employ the Gumbel softmax
estimator (Jang et al., 2016). Additionally, to en-
sure consistency in the differentiated objects, the
fixed weights of the SAD operators in SDM have
opposite signs. The weight matrix wf is used for
the first SAD operator, while the second SAD oper-
ator adopts the matrix w′

f whose elements are the
negations of wf :

wf =




−1 −1 −1
−1 1 −1
−1 −1 −1


 ,w′

f =




1 1 1
1 −1 1
1 1 1


 . (6)

Subsequently, the SDM processes semantic dif-
ference features, aligning them within a standard-
ized semantic framework. These processed features
are then integrated using a linear layer, which con-
solidates the individual semantic distinctions into a
comprehensive span boundary matrix M2

fuse:

M2
lr = Conv1×1(M

1
lr),

M2
fuse = Wfuse(M

2
0 ⊕ ...⊕M2

lr︸ ︷︷ ︸
N+1

) +Bfuse, (7)
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where Wfuse is the weight matrix and Bfuse is the
bias term of the linear layer. The convolution oper-
ator Conv1×1 denotes a 2D convolution operation
with 1 × 1 kernel, and ⊕ indicates concatenation.

3.3 Boundary Filtration Module
The introduction of low-quality information, partic-
ularly in distinguishing non-entity spans, presents
challenges in the SDM, potentially leading to an
increase in false positives. To mitigate this, we in-
troduce the Boundary Filtration Module (BFM),
designed to reduce the impact of irrelevant span by
extracting and utilizing interactions between spans,
which aids in clarifying entity boundaries.

The BFM utilizes a structured methodology in-
corporating a top-down pathway for semantic in-
teraction extraction and a bottom-up approach for
detail restoration, complemented by lateral connec-
tions for comprehensive span relationship analysis.
The top-down pathway employs a series of convolu-
tion blocks that apply Layer Normalization and the
GELU activation function to refine span features
systematically:

ConvBlock(∗) = GELU(LN(Conv(∗))),
M0

g = ConvBlock(M0),

Mi
g = ConvBlock(Mi−1

g ),

(8)

where i ∈ {1, 2, . . . , n} and n + 1 represents the
number of convolution blocks.

The bottom-up pathway, in contrast, aims to
restore finer details from higher-layer features
through up-sampling, using nearest neighbor tech-
niques to retain critical relational information. This
is synchronized with lateral connections to merge
features from different layers effectively, thereby
avoiding loss of detail and preventing checker-
board artifacts typically associated with interpo-
lation methods:

Mi−1′
g = upSample(Mi

g) +Mi−1
g ,

Mg = Conv(upSample(M0′
g )).

(9)

3.4 Span Semantic Decoder
In order to preserve the complete semantic infor-
mation of span, we incorporate M0 as residual to
M2

fuse. The composite matrix then undergoes lin-
ear decoding to yield prediction logits:

p = σ(Wp(M
0 ⊕M2

fuse ⊕Mg) +Bp), (10)

where p ∈ Rl×l×t, Wp ∈ Rd×t, Bp ∈ Rt. Wp

and Bp are trainable parameters. σ denotes Sig-
moid activation function.

3.5 Training and Inference

Training We minimize the following binary
cross-entropy loss function:

L = −
∑

0≤i,j<l

yij log(pij)+(1−yij) log(1−pij),

(11)
where yij is the ground truth entity type. To ac-
commodate DiFiNet’s architecture, which does not
distinguish between the matrix halves during train-
ing, we incorporate errors from both the upper and
lower triangular sections of pij and pji, aligning
with the symmetric nature of entity representation.

Inference For entity prediction, we average the
values from the upper and lower sections of p to
ensure consistent decoding:

p′
ij = (pij + pji)/2. (12)

Following Yu et al. (2020), we first eliminate
spans deemed non-entities (those with all proba-
bilities below 0.5), then rank the remaining spans
by their highest probability. Spans are selected
sequentially; any span conflicting with previously
chosen spans in terms of boundaries is omitted,
maintaining clear entity demarcation.

4 Experiment

4.1 Datasets

We evaluate our model on three commonly used
nested NER datasets: ACE042, ACE05 3, and GE-
NIA 4. For the ACE datasets, we use the data pre-
processing code released by Yan et al. (2023) and
split the data into training, validation, and test sets
by 8:1:1. For the GENIA dataset, we follow Li et al.
(2022) to categorize entities into five types and split
data into train, dev and test sets by 8:1:1. See Ap-
pendix A for detailed information of datasets.

4.2 Baselines

To evaluate the performance of the proposed model,
we compare it with the following models on three
datasets: Biaffine (Yu et al., 2020), Second-Best
(Wang et al., 2021), Seq2Seq (Yan et al., 2021),
Sequence2Set (Tan et al., 2021b), De-bias(Zhang

2https://catalog.ldc.upenn.edu/
LDC2005T09

3https://catalog.ldc.upenn.edu/
LDC2006T0

4http://www.geniaproject.org/
genia-corpus
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Table 1: The performance of various models on the ACE04, ACE05, and GENIA datasets is presented in Table
1. The "Encoder" column indicates the pre-trained models utilized by each model for the ACE datasets, while all
models employed BioBERT-Base for the GENIA dataset. †signifies that the models were reproduced using the same
pre-processed data and publicly available code. The best results are highlighted in bold font. The subscript denotes
the standard deviation, providing a measure of result variability (e.g., 88.4823 indicates a value of 88.48±0.23).

Models Encoder
ACE04 ACE05 GENIA

P R F1 P R F1 P R F1

Biaffine (2020) BERT-base 87.30 86.00 86.70 85.20 85.60 85.40 81.8 79.30 80.50
Second-Best (2021) BERT-base 86.42 85.71 86.06 83.95 84.67 84.30 79.20 78.16 78.63
Locate-and-Label (2021) BERT-base 87.44 87.38 87.41 86.09 87.27 86.67 80.19 80.89 80.54
Seq2Seq (2021) BART-large (2020) 87.27 86.41 86.84 83.16 86.38 84.74 78.57 79.30 78.93
Sequence2Set (2021b) BERT-large 88.46 86.10 87.26 87.48 86.63 87.05 82.30 78.70 80.40
Span-Graph (2022) BERT-base 86.70 85.93 86.31 84.37 85.87 85.11 77.92 80.74 79.30
De-bias (2022) T5-base (2020) 86.36 84.54 85.44 83.31 86.56 84.90 81.04 77.21 79.08
BS (2022) † RoBERTa-base 87.32 86.84 87.08 86.58 87.84 87.20 82.53 78.69 80.56
Triaffine (2022) † BERT-large 87.13 87.68 87.40 86.70 86.94 86.82 80.42 82.06 81.23
W2NER (2022) † BERT-large 87.19 87.72 87.45 85.77 87.80 86.76 83.10 79.76 81.39
ICR (2023) BERT-large - - - 87.11 87.14 87.12 79.02 80.68 79.87
BINDER(2023a) † BERT-large 87.34 88.30 87.81 87.41 88.34 87.87 81.69 80.85 81.26
DiffusionNER(2023a) † BERT-large 87.32 87.52 87.42 85.04 88.42 86.70 81.85 79.59 80.70
PromptNER(2023b) † BERT-large 87.02 88.03 87.52 86.01 88.12 87.05 - - -
CNNNER (2023) † RoBERTa-base 87.33 87.29 87.31 86.70 88.16 87.42 83.19 79.70 81.40

DiFiNet
RoBERTa-base 88.57 88.43 88.4514 89.16 88.74 88.9438 83.01 80.80 81.8719BERT-large 88.64 88.32 88.4823 88.62 88.17 88.3931

et al., 2022), W2NER (Li et al., 2022), Locate-and-
Label (Shen et al., 2021), BS (Zhu and Li, 2022),
Triaffine(Yuan et al., 2022), Span-Graph (Wan
et al., 2022), ICR(Zheng et al., 2023), BINDER
(Zhang et al., 2023a), CNNNER (Yan et al., 2023),
DiffusionNER(Shen et al., 2023a) and Prompt-
NER(Shen et al., 2023b). See Appendix B and
C for further elaboration on baseline models and
implementation details of DiFiNet, respectively.

4.3 Main Results

Our evaluation employs three key metrics: Preci-
sion, Recall, and F1-score, to assess the perfor-
mance of the models. We adopt strict evaluation
criteria, whereby precise matches in both entity
boundaries and categories are required for correct
recognition. To validate the consistency and relia-
bility of our findings, we conducted five separate
trials, each initialized with distinct random seeds,
and then proceeded to statistical analysis on the
collected F1 scores. Specifically, we applied the
T-test at a 5% significance level to determine the
statistical significance of the differences observed
between experimental outcomes.

Table 1 presents a comprehensive performance
of DiFiNet and baseline models on ACE04, ACE05,
and GENIA datasets for NER. Across all three
NER datasets, DiFiNet consistently outperforms
the baseline models. Notably, with RoBERTa-base

as the underlying pre-trained model, DiFiNet se-
cures an increase of +1.14% in F1-score on ACE04
and +1.52% in F1 on ACE05 compared to existing
models. Similarly, when leveraging BERT-large as
the pre-trained backbone, DiFiNet attains enhance-
ments of +0.67% F1 on ACE04 and +0.52% F1 on
ACE05. Additionally, DiFiNet exhibits an improve-
ment of +0.47% F1 on the GENIA dataset. It is
essential to highlight that the marginal gains on the
GENIA dataset might stem from its significantly
lower frequency of nested entities (18.41%) com-
pared to ACE04 (45.68%) and ACE05 (39.11%),
as shown in Table 7. These results underscore the
superior performance of DiFiNet in addressing the
complexities of nested NER.

4.4 Ablation Studies

Table 2 reports the F1 score results of the DiFiNet
and its variants. The variations explored include
disabling the Self-adaptive Semantic Differenti-
ation Module (SDM) (w/o SDM), removing the
Boundary Filtration Module (BFM) (w/o BFM),
and excluding both (w/o SDM, BFM). Addition-
ally, to gauge the impact of the self-adaptive mecha-
nism, we examine a configuration without the self-
adaptive mask (w/o Self-adaptive mask). Each
variant demonstrates a drop in F1 score compared
to DiFiNet model, highlighting the individual and
collective importance of these modules in enhanc-
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Table 2: Ablation experiment results (RoBERTa-base
as the pre-trained language model). ∆ denotes the per-
formance drops (F1 Score) under different experimental
conditions compared to our proposed model.

Settings
ACE04 ACE05

F1 ∆ F1 ∆

DiFiNet 88.45 88.94

w/o SDM 87.43 -1.02 87.79 -1.15
w/o BFM 87.78 -0.67 88.21 -0.73
w/o SDM, BFM 87.09 -1.36 87.13 -1.81
w/o Self-adaptive mask 87.53 -0.92 88.32 -0.62

N = 0 87.60 -0.85 87.11 -1.83
N = 2 87.63 -0.82 88.01 -0.93

n = 0 87.48 -0.97 87.43 -1.51
n = 2 87.64 -0.81 88.24 -0.70

SAD Block × 1 87.59 -0.86 88.18 -0.76
SAD Block × 3 87.26 -1.19 87.84 -1.10

ing nested NER performance. Furthermore, we
scrutinize the sensitivity of the model to various hy-
perparameters, such as the number of SDM layers,
the number of SAD Blocks within each SDM layer,
and the number of convolution blocks within the
BFM. The adjustments are made while maintaining
other settings at their optimal levels to isolate the
effects of each parameter.

Our findings indicate the following: (1) Ne-
cessity of SDM and BFM: The elimination of
either the SDM, the BFM, or both significantly
diminishes the model’s effectiveness. Such a re-
duction underscores the essential roles that these
modules play in identifying semantic variances
across spans and in bolstering the model’s abil-
ity to detect boundaries; (2) Adaptive Sampling
Benefits: Adaptive sampling within the differen-
tiation process improves performance, indicating
limitations in static approaches for handling com-
plex nested entity structures; (3) SDM Layer Im-
pact: Additional SDM layers do not guarantee
improved outcomes, suggesting an optimal level of
model complexity that avoids unnecessary noise;
(4) BFM Convolution Blocks: Excessive convo-
lution blocks in BFM don’t lead to better results
and may remove essential information, indicating
a balance is needed; (5) Optimization with SAD
Blocks: The model performs best with two SAD
blocks, showing that this balance effectively cap-
tures semantic differences without overcomplicat-
ing the model. Overall, the experiments validate
the importance of each proposed module in opti-
mizing model performance.

Table 3: Results on CoNLL03 dataset. All models
utilize BERT-large as a pretrain encoder, and all results
are from their respective original papers.

Models
CoNLL03

P R F1
W2NER 92.71 93.44 92.07

DiffusionNER 92.99 92.56 92.78
PromptNER 92.48 92.33 92.41

BINDER 93.08 93.57 93.33
DiFiNet 93.84 93.60 93.72

4.5 Performance on Long Entities
Within NER tasks, the identification of long enti-
ties poses substantial challenges, notably due to
a higher likelihood of encompassing nested struc-
tures, which exacerbates boundary insensitivity is-
sues. Additionally, the accurate recognition of long
entities represents a long-tail challenge (Wan et al.,
2022), making their detection particularly complex.

In reflect the advantages of the DiFiNet model
compared to other models in processing long en-
tities, we have conducted our experimental com-
parison to include classic models from related
work. Specifically, we have compared the per-
formance of our proposed DiFiNet model with
PromptNER, DiffusionNER, and CNNNER on the
ACE04 and ACE05 datasets, shown in Table 4. All
models were pretrained using RoBERTa-base as
the language model. The results demonstrate that
DiFiNet achieves state-of-the-art performance in
recognizing entities of all lengths on the ACE05
dataset. On the ACE04 dataset, DiFiNet outper-
forms other models in all length ranges except for
entities with lengths ranging from 13 to 16. No-
tably, DiFiNet shows significant absolute improve-
ments of +10.94% and +16.17% in recognizing
entities with lengths ranging from 10 to 13 and 13
to 16, respectively, on the ACE05 dataset. These
improvements underscore DiFiNet’s ability to dis-
cern subtle semantic variations among overlapping
and extended spans, thereby enhancing its capabil-
ity to identify the boundaries of complex entities.

4.6 Performance on Flat Entities
To evaluate the performance of our model on flat
NER, we compared it against four leading state-of-
the-art models on CoNLL03 dataset 5, W2NER (Li
et al., 2022), DiffusionNER (Shen et al., 2023a),
PromptNER (Shen et al., 2023b), and BINDER

5https://www.clips.uantwerpen.be/
conll2003/ner/

6461

https://www.clips.uantwerpen.be/conll2003/ner/
https://www.clips.uantwerpen.be/conll2003/ner/


Table 4: Entity length-wise results on ACE04 and ACE05 dataset. Entities are divided into six groups based on their
lengths. The % column represents the proportion of entities in each length range out of the total number, rounded to
two decimal places.

Datasets Len % CNNNER DiffusionNER PromptNER DiFiNet Improvement (%)

ACE04

[1,4) 81.03 88.28 87.17 87.18 90.34 +1.96
[4,7) 11.03 84.18 53.78 50.86 84.92 +0.74

[7,10) 4.15 82.17 38.55 37.84 84.37 +2.20
[10,13) 1.51 70.21 14.89 14.58 73.91 +3.70
[13,16) 0.72 77.27 16.00 15.09 72.34 -4.93

[16,+∞) 1.55 63.74 13.64 13.06 66.67 +2.93

ACE05

[1,4) 87.58 88.46 86.70 86.35 89.92 +0.46
[4,7) 7.55 84.93 50.95 50.86 86.04 +1.11

[7,10) 2.32 72.73 39.36 38.74 80.68 +7.95
[10,13) 1.00 71.26 32.99 32.99 82.22 +10.94
[13,16) 0.55 63.83 4.76 7.69 80.00 +16.17

[16,+∞) 1.00 63.77 10.96 8.94 67.50 +3.78

Table 5: Runtime (seconds) comparison to variations
and baselines.

Inference Time ACE04 ∆ ACE05 ∆
DIFiNet 49 0 57 0

w/o SDM 47 -2 53 -4
w/o BFM 46 -3 55 -2

w/o BFM and SDM 42 -7 49 -8
DffsuionNER 193 144 253 196
PromptNER 172 123 215 158

(Zhang et al., 2023a). Table 3 shows that our model
outperforms these benchmarks, particularly in pre-
cision metrics, achieving precision score of 93.84.
This performance indicates that our model’s ex-
plicit guidance for boundary detection not only
aids nested entity recognition but also significantly
enhances flat entity identification.

4.7 Inference Efficiency

Regarding the computational efficiency of DiFiNet,
especially concerning the potential impact of in-
tegrating the Self-adaptive Semantic Differentia-
tion Module (SDM) and the Boundary Filtration
Module (BFM) on inference time, we conducted a
comprehensive analysis of DiFiNet’s performance
in terms of inference efficiency, comparing it both
with and without these modules, and against two
state-of-the-art models, namely PromptNER and
DiffusionNER, on the ACE04 and ACE05 datasets.

The experiment results is shown in Table 5. Our
experiments, meticulously performed on an Nvidia
A100 GPU with a batch size set to 1, reveal that
the inclusion of the SDM and BFM modules intro-
duces a negligible increase in computational over-
head, with an observed increase in inference time
of less than 10 seconds. Furthermore, the impact
on inference efficiency when either the SDM or

BFM is individually integrated is minimal, adding
less than 5 seconds to the overall inference time.

More importantly, the analysis highlights that
DiFiNet, even with the additional functionalities
provided by the SDM and BFM, exhibits sig-
nificantly better inference efficiency compared
to PromptNER and DiffusionNER. Specifically,
DiFiNet demonstrates a 3.51 to 3.93 times improve-
ment in time efficiency over PromptNER and Diffu-
sionNER on the ACE04 dataset, and a 3.77 to 4.43
times improvement on the ACE05 dataset. Our
results strongly indicate that DiFiNet achieves an
optimal balance between computational efficiency
and model performance.

5 Case Study

Table 6 shows a case study conducted on ACE05
to compare DiFiNet with CNNNER (Yan et al.,
2023). The first observation highlights that DiFiNet
demonstrates superior ability to identify nested
long entities due to its proficiency in detecting sub-
tle distinctions between spans. The second sample
demonstrates that DiFiNet excels in recognizing
entities not encountered during training, leveraging
semantic differences between spans. For instance,
in the absence of training data for the boundary
word "fred", it becomes challenging for the model
to identify it based solely on span representation.
However, by drawing guidance from the semantic
difference between "i am fred fred" and "fred fred",
DiFiNet can recognize the pattern of "i am [name]"
in context, facilitating the accurate identification
of the entity "fred fred". Furthermore, DiFiNet
exhibits advantages in resolving ambiguous entity
references. By leveraging the semantic difference
between "persuaded them otherwise" and "them",
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Table 6: Case Study on ACE05. The labels in the lower right corner indicate the entity type, while the superscripts
indicate the nesting level. [The candidate entity]T denotes predicted with incorrect type T. {m1The candidate
entitym1} represents the missed ground true entities whose number m1 .

Sentence 1

Ground True / DiFiNet [1These Iraqis1]PER were rifling [1a home of [2a senior member of [3the Mukhabarat3]ORG,
[3[4Saddam4]PER’ s dreaded secret police3]ORG2]PER1]FAC.

CNNNER [1These Iraqis1]PER were rifling {m1a home of {m2a senior member of [1the Mukhabarat1]ORG,
[1[2Saddam2]PER’ s dreaded secret police1]ORG m2} m1}.

Sentence 2
Ground True / DiFiNet from [1the [2cnn2]ORG center in [2atlanta2]GPE 1]FAC, [1i1]PER’ m [1fred fred1]PER.

CNNNER from [1the [2cnn2]ORG center in [2atlanta2]GPE 1]FAC, [1i1]PER’ m {m1fred fredm1}.
Sentence 3

Ground True / DiFiNet
But [1neighboring Malaysia1]GPE’ s success in integrating [1[2Russian2]GPE MiG-29s1]VEH
and [1[2American2]GPE [2F/A-182]VEH Hornets1]VEH persuaded [1them1]PER otherwise,
[Sudarsono]PER said.

CNNNER
But [1neighboring Malaysia1]GPE’ s success in integrating [1[2Russian2]GPE MiG-29s1]VEH
and [1[2American2]GPE [2F/A-182]VEH Hornets1]VEH persuaded [1them1]GPE otherwise,
[Sudarsono]PER said.

DiFiNet effectively recognizes the pattern of "per-
suaded [person] otherwise" and appropriately clas-
sifies "them" as PER. However, due to CNNNER
lacking awareness of subtle semantic differences,
it fails to correctly identify all entities in three ex-
amples. We provide extended case studies in Ap-
pendix D to further illustrate DiFiNet’s ability to
capture subtle semantic differences between spans.

6 Conclusion

This paper proposes a Boundary-aware Semantic
Differentiation and Filtration Network (DiFiNet)
to effectively address the issue of boundary insen-
sitivity in nested named entity recognition tasks.
DiFiNet introduces the self-adaptive semantic dif-
ferentiation module to capture semantic difference
information between spans and incorporates the
boundary filtration module to reduce noise from
non-entity spans and enhance the differences of
boundary semantics between spans. Experimental
results demonstrate that DiFiNet achieves superior
performance compared to existing approaches on
three benchmark datasets. Ablation experiments
and case studies further validate the effectiveness
of the proposed model. Looking ahead, we aim to
extend utilization of boundary information in tasks
such as event extraction and relation extraction.

Limitations

We discuss here the limitations of the method in
this paper. First, this method still needs to tra-
verse all spans, bringing high computational costs.

Second, since the biaffine model encodes spans as
continuous entities, it results in the prediction of
only contiguous entities. Therefore, this method
has limited applicability for noncontinuous entity
recognition tasks. Finally, effectively integrating
multi-level span semantic difference information is
a promising direction for optimization.
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Table 7: Statistics of the datasets used in the experi-
ments. The "Len" column represents the average length
of sentences or entities in each dataset.

Train Dev Test Len Overlap rate

ACE04
Sen 6,297 742 824 23.52

45.68%
Ent 22,231 2,514 3,036 2.64

ACE05
Sen 7,178 960 1,051 20.59

39.11%
Ent 25,300 3,321 3,099 2.40

GENIA
Sen 15,023 1,669 1,854 25.41

18.41%
Ent 45,144 5,365 5,506 1.97

A Data Statistics

The ACE04 and ACE05 datasets contain seven
entity types: Person (PER), Organization (ORG),
Geo-Political Entity (GPE), Location (LOC), Facil-
ity (FAC), Weapon (WEA), and Vehicle (VEH). The
GENIA datasets including five categories: DNA,
RNA, Protein, Cell line, and Cell type.
According to statistical analysis, 30% of the sen-
tences in the ACE04 and ACE05 datasets contain
nested entities, while the GENIA dataset has 17%
of sentences with nested entities. The statistical in-
formation of the three benchmark datasets is shown
in Table 7.

It is worth emphasizing that Yan et al. (2023) ob-
served that despite the usage of the same dataset in
recent studies (Wan et al., 2022; Zhu and Li, 2022;
Yuan et al., 2022; Li et al., 2022), the statistics
of the training datasets differ due to variations in
preprocessing methods. Consequently, it would be
unfair to directly compare model performance us-
ing different versions. In order to address this con-
cern, we utilized the preprocessing code provided
by(Yan et al., 2023) and applied it to our dataset.
Subsequently, we re-implemented several baseline
models in 2022 using the preprocessed dataset and
publicly available code. The performance metrics
of these models are recorded in Table 1. However,
due to the unavailability of code and limited model
details, we were unable to fully replicate the Span
Graph(Wan et al., 2022) and De-bias(Zhang et al.,
2022) models.

B Baseline Details

We compare our method with the following base-
lines:

1) Biaffine: Yu et al. (2020)used a biaffine model
to identify nested named entities, predicting the
named entity boundaries by predicting the depen-
dency relationship between two words.

2) Second-Best: Wang et al. (2021) recognized
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nested entities by explicitly excluding the influence
of the optimal path of the probability graph.

3) Seq2Seq: Yan et al. (2021) used a pointer-
based approach to convert the entity tagging task
into a sequence generation task.

4) Sequence2Set: Tan et al. (2021b) proposed a
novel neural network architecture for set prediction
specifically for nested NER.

5) De-bias: Zhang et al. (2022) analyzed the
incorrect biases in the generation process and used
the intra- and inter-entity de-confounding data aug-
mentation methods, to reduce the model’s bias.

6) W2NER: Li et al. (2022) modeled uni-
fied NER as word-word relationship classification,
avoiding conflicts between labels in traditional se-
quence labeling methods.

7) Locate-and-Label: Shen et al. (2021) mod-
eled the nested NER task as a joint task of entity
boundary regression and span classification, im-
proving the training and inference efficiency.

8) BS: Zhu and Li (2022) proposed a boundary
smoothing method, which reassigns probabilities
from annotated spans to the surrounding ones, to
improve the performance of NER models.

9) CNNNER: Yan et al. (2023) used CNN to
model the spatial relationships in the score matrix
to solve the nested named entity recognition task.

10) Triaffine: Yuan et al. (2022) improved en-
tity recognition performance by obtaining various
interaction information between heterogeneous ele-
ments such as tokens, entity types, and boundaries.

11) Sequence2Set: Tan et al. (2021b) proposed a
novel neural network architecture for set prediction
specifically for nested NER.

12) Span-Graph: Wan et al. (2022) modeled
nested NER using a span-based graph structure,
where each span is represented as a node and spans
are connected by edges to enhance the semantic
representation capability of the spans.

13) DiffusionNER: Shen et al. (2023a) used the
diffusion model for NER task, generating entities
by progressive boundary refinement over the noisy
spans.

14) PromptNER: Shen et al. (2023b) designs a
dual-slot multi-prompt template with the position
slot and type slot to prompt locating and typing
respectively.

15) DINDER: Zhang et al. (2023a) frame NER
as a representation learning problem that maxi-
mizes the similarity between the vector representa-
tions of entity mentions and their types.

Table 8: Hyper-parameter settings on different bench-
marks

ACE04 ACE05 GENIA

Batchsize 48 48 8
Epoch 80 80 10
Learning rate 2e-5 2e-5 7e-6
Biaffine size 120 120 400
CNN channel dim 120 120 200
Dropout rate 0.2 0.2 0.1

16) ICR: Zheng et al. (2023) introduces a scale
transformation mechanism and a supervised con-
trastive learning loss to explore interactive and con-
trastive relations among spans.

C Hyper-parameter Details

We utilize RoBERTa-Base (Liu et al., 2019) and
BERT-Large (Devlin et al., 2019) as the pre-trained
models for the ACE dataset, with a hidden layer
size of 768. For the GENIA dataset, we employ
BioBERT-Base-v1.1 (Lee et al., 2020) as the pre-
trained model, also with a hidden layer size of 768.
In the SDM module, the number of layers N + 1
is set to 2 for all datasets. In the BFM module, the
number of convolution blocks n+ 1 is set to 2 for
all datasets. Except for the extra annotation, the
size of Conv used in the model is 3 × 3. To mini-
mize memory usage, the SAD operator employed
in each layer of the SDM shares parameters, ex-
cept having different fixed weight templates. The
hyper-parameters for the biaffine model were cho-
sen based on the study conducted by (Yan et al.,
2023), which also incorporates the multi-head bi-
affine attention mechanism in its implementation.
We set the number of heads to 4 and introduce a
span width embedding with a size of 25. By default,
the temperature parameter in the Gumbel Softmax
estimator is set to 1.

Our model is trained using the AdamW opti-
mizer (Loshchilov and Hutter, 2019). To control
overfitting, the L2 norm of the gradient is limited
to within 5 by gradient clipping (Pascanu et al.,
2013), employed by our model. In the first 10%
of the training steps, we gradually increased the
learning rate using a linear warm-up scheduler. Af-
ter the warm-up period, we gradually reduced the
learning rate using a linear decay scheduler. All
experiments are conducted on NVIDIA Tesla A100
(80G). Other hyper-parameters that vary depending
on the datasets are detailed in Table 8.
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Figure 3: illustrations of the semantic similarity
heatmaps for the entity "a senior member of the
Mukhabarat, Saddam’s dreaded secret police" in Sen-
tence 1. The heatmaps compare two cases: "w/o SDM
and BFM" (without Semantic Difference Modeling and
Boundary Fusion Module) and "DiFiNet" (with SDM
and BFM).
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Figure 4: Semantic similarity visualization. It illustrates
the semantic similarity between the entity "them" and
other entities in Sentence 3. Each column has a similar
meaning to the corresponding column in Figure 3.

D Semantic Similarity Visualization and
Analysis of Cases

In order to visualize the semantic similarity be-
tween example instances from Table 6, we pro-
vide corresponding semantic similarity heatmaps.
Specifically, Figure 3 and Figure 4 display partial
semantic similarity heatmaps for instance 1 and in-
stance 3, respectively. To ensure optimal clarity, we
present the complete semantic similarity heatmap
for instance 2, as shown in Figure 5 and Figure 6.
Within these heatmaps, each value within a color
block represents the cosine similarity of the span
semantic vectors.

Figure 3 demonstrates the effectiveness of appro-
priately modeling semantic difference information
between spans in addressing the issue of boundary
insensitivity between nested entities. By utilizing
SDM and BFM, the semantic similarity between
different nested entities decreases, facilitating their
differentiation by the classifier. For instance, in
Figure 3, the entity "a senior ... police" with PER
type exhibits a 15% decrease in semantic similar-
ity with the entity "the Mukhabarat" of ORG type.
In Figure 4, the explicit incorporation of span se-
mantic difference information is shown to enhance
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Figure 5: The similarity heatmap of span semantics gen-
erated by DiFiNet without SDM and BFM. It illustrates
the semantic similarity between the entity "fred fred"
and other entities in Sentence 1. The tokens on the verti-
cal axis represent the starting tokens of the spans, while
the tokens on the horizontal axis represent the ending
tokens of the spans.
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Figure 6: Display of the similarity heatmap of span
semantics generated by DiFiNet, with the same vertical
and horizontal axis settings as Figure 5.

the semantic representation capability of DiFiNet,
leading to improved overall robustness. In the ab-
sence of SDM and BFM, the similarity between
"them" and other entities tends to be relatively high,
with over half of the entities displaying a similar-
ity of 70% or higher. However, with the inclusion
of semantic difference information, the similarity
between entities decreases significantly. Even the
highest semantic similarity, which occurs with the
same type entity "sudarsono", remains below 70%.

The visualization results of sentence 2 (Figure
5 and 6) further validate the aforementioned ob-
servation. The original model faces difficulties in
distinguishing the named entity "fred fred" from
non-entity spans when confronted with the unseen
boundary word "fred", leading to a boundary insen-
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Table 9: Comparsion experiments with LLMs

Models Setting ACE04 ACE05 Genia CoNLL03
ChatGPT 0-shot 27.80 23.38 38.09 60.10
ChatGPT 5-shot + ICL 38.52 36.17 48.82 70.53
ChatGPT 5-shot +CoT 40.57 33.98 50.89 74.63

PADeLLM-NER Instruction Tuning —— 85.02 77.66 92.52
DiFiNet —— 88.45 88.94 81.87 93.72

sitivity problem. In contrast, by leveraging the guid-
ance of span semantic difference information, the
model accurately identifies "fred fred" as a named
entity of type PER and successfully distinguishes
it from the nearly identical span "fred".

E Comparsion with GPT Models

LLMs demonstrate the remarkable capabilities
across a spectrum of NLP tasks. To futher experi-
ments, we incorporated these LLMs as benchmarks
to validate the efficacy of DiFiNet in handling the
complexities inherent in Nested NER.

Our comparative analysis, incorporating data
from recent studies (Han et al., 2023; Lu et al.,
2024) in Table 9, reveals that under a zero-shot
setting, GPT-3.5’s performance significantly falls
short when compared to DiFiNet. This trend per-
sists even under a five-shot setting, despite em-
ploying strategies such as In-Context Learning
(ICL) prompts (Dong et al., 2022) and the Chain of
Thought (CoT) reasoning (Kojima et al., 2022), in-
dicating that GPT-3.5 struggles to match DiFiNet’s
performance in Nested NER tasks.

Furthermore, we evaluated the PaDeLLM-
NER, a version of Llama2 specifically fine-tuned
for the NER task, using the ACE05, GENIA,
and CoNLL03 datasets. Despite the Llama2-
7b model’s comprehensive tuning (Zhang et al.,
2023b), DiFiNet demonstrated superior perfor-
mance across all mentioned datasets, outper-
forming PaDeLLM-NER by noticeable margins.
DiFiNet outperforms PaDeLLM-NER in terms of
F1-score by 3.92% and 4.21% on the ACE05 and
GENIA datasets, respectively. Additionally, on the
flat NER dataset CoNLL03, DiFiNet’s performance
also surpasses that of PaDeLLM-NER by 1.20%.

Above results suggest that in the nested NER do-
main, DiFiNet significantly outperforms the afore-
mentioned LLMs while maintaining substantially
fewer model parameters. These outcomes under-
score DiFiNet’s exceptional capability in accurately
identifying and distinguishing nested entities, a task

where LLMs, due to their potential oversensitivity
to irrelevant context (Han et al., 2023), may not
perform as effectively. DiFiNet’s architecture, de-
signed to discern subtle semantic differences and
filter out non-entity spans, affords it a distinct ad-
vantage in processing complex sentence structures
and accurately identifying multiple nested spans.

F The Stability Test for Gumbel Softmax
Operation

The Gumbel-Softmax reparameterization tech-
nique is indeed crucial for enabling gradient back-
propagation through discrete variables by provid-
ing a differentiable approximation of the argmax
function, thereby maintaining the differentiability
of the SAD operator in scenarios that traditionally
rely on non-differentiable operations.

To elaborate, the Gumbel-Softmax operation is
defined by the equation:

zi =
exp ((log (πi) + gi) /τ)∑K
j=1 exp ((log (πj) + gj) /τ)

(13)

where, zirepresents the output for category i, gi is
a noise term sampled from the Gumbel distribution,
πi is the log probability of the original input, and
K is the total number of categories. As indicated
in (Jang et al., 2016), a smaller value of τ results in
the distribution of being closer to one-hot encoding,
albeit with larger gradient variances. Conversely,
a larger τ yields a smoother distribution of z with
smaller gradient variances.

However, the potential training stability issues
may arise from the choice of τ during training
within the Gumbel-Softmax operation (Gu et al.,
2018). To test the training stability of our model,
we carefully conducted additional sensitivity anal-
ysis on the temperature coefficient τ by setting the
τ range from 0.1 to 0.9.

As illustrated in Table 10, our results, under-
pinned by statistical analysis, indicate that the
model’s effectiveness is maintained across diverse
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Table 10: Sensitivity analysis on the temperature coefficient τ .

τ
ACE04 ACE05

P R F1 P R F1
0.10 88.08 89.10 88.59 88.43 89.25 88.84
0.30 88.02 89.13 88.57 88.19 90.09 89.13
0.50 88.70 88.61 88.65 89.11 88.48 88.80
0.70 88.15 88.61 88.38 88.37 89.00 88.68
0.90 87.81 88.77 88.29 88.02 89.13 88.57

Average 88.15 88.84 88.50 88.42 89.19 88.80

settings, with no notable decline in essential perfor-
mance metrics across all evaluated datasets. This
consistency is attributed to the implementation of
a Gumbel-Softmax operation followed by a Lay-
erNorm layer, which recalibrates and rescales the
backward gradients to maintain distribution stabil-
ity (Xu et al., 2019).
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