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Abstract
While large language models have significantly
enhanced the effectiveness of discourse relation
classifications, it remains unclear whether their
comprehension is faithful and reliable. We pro-
vide DISQ, a new method for evaluating the
faithfulness of understanding discourse based
on question answering. We first employ in-
context learning to annotate the reasoning for
discourse comprehension, based on the connec-
tions among key events within the discourse.
Following this, DISQ interrogates the model
with a sequence of questions to assess its grasp
of core event relations, its resilience to counter-
factual queries, as well as its consistency to its
previous responses.

We then evaluate language models with differ-
ent architectural designs using DISQ, finding:
(1) DISQ presents a significant challenge for
all models, with the top-performing GPT model
attaining only 41% of the ideal performance in
PDTB; (2) DISQ is robust to domain shifts and
paraphrase variations; (3) Open-source mod-
els generally lag behind their closed-source
GPT counterparts, with notable exceptions be-
ing those enhanced with chat and code/math
features; (4) Our analysis validates the effec-
tiveness of explicitly signalled discourse con-
nectives, the role of contextual information, and
the benefits of using historical QA data.

1 Introduction

While language models can generate coherent and
seemingly human-like text, their true grasp of dis-
course relations remains unclear. Traditionally, dis-
course relation prediction has been evaluated using
accuracy scores from classification tasks. However,
task accuracy may not reflect a reliable understand-
ing, as a high score might not reflect sound rea-
soning or consistent comprehension of discourse
semantics. Drawing inspiration from Socrates’
method of examining his students’ understanding
through a series of questions, we introduce Discur-
sive Socratic Questioning (DISQ), a new method

Discourse relation: Contingency.Cause.Result

Is “they keep changing their prices” a reason for “it’s very frustrating”?

Model’s Answer: True

Is “they keep changing their prices” contrasted with “it’s very frustrating”?

Is “it’s very frustrating” the result of “they keep changing their prices”?

🤖

Targeted Score = 1

Counterfactual Score = 0

Consistency Score = 0

Arg2: It's very frustrating. 
Arg1: When I want to buy, they run from you -- they keep changing their prices.  

Ground-Truth Answer: True

Ground-Truth Answer: False Model’s Answer: True

Ground-Truth Answer: True Model’s Answer: False

Figure 1: DISQ combines three discourse-relevant
scores: (1) Targeted Score, gauging responses to key
events; (2) Counterfactual Score, assessing robustness
against irrelevant queries; (3) Consistency Score, mea-
suring logical coherence to equivalent questions.

that assesses a model’s understanding of discourse
relations by requiring systematic accuracy over
multiple questions, rather than just a single accu-
rate prediction (Figure 1).

While QA-based evaluation is well-researched
(Fabbri et al., 2022b; Hu et al., 2023), DISQ
addresses unique, discourse-centric challenges:
What to Ask: While many discourse spans can
form questions, not all provide salient insights
into discourse understanding. While previous re-
search like e-SNLI (Camburu et al., 2018) rely on
labor-intensive human annotations to extract rel-
evant signals for natural language inference, we
advocate the use of in-context learning (ICL). This
harnesses the power of large language models to
annotate salient discourse signals efficiently. How
to Ask: The manner in which questions are framed
is essential for assessing three key attributes of a
model’s faithfulness: (1) Responsiveness to Targets:
We generate questions centered on key spans with
ground-truth semantics, to which the model should
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respond affirmatively (e.g., affirming a cause in a
contingency relation). (2) Robustness to Counter-
factuals: We design questions based on counterfac-
tual semantics, expecting the model to negate the
query (e.g., dismissing contrast in a contingency
relation). (3) Logical Consistency: We formulate
converse questions with equivalent semantics, an-
ticipating the model to deliver consistent responses
(e.g., aligning answers to a result question with
its corresponding reason). Berglund et al. (2024)
find that LLMs struggle with the “reversal curse”
(finding it hard to infer “B is A” from “A is B”).
We introduce this facet as a discourse-centric test
to the broader LLM research on models’ logical
consistency.

We base our evaluation on the widely-recognized
PDTB corpus (Prasad et al., 2008). Initially, we
select 11 second-level discourse senses and employ
in-context learning to select salient evidence for
questioning. Subsequently, we invite human ex-
perts to validate our chosen evidence, underscoring
the soundness of our questions.

We apply DISQ to a range of models encom-
passing various architectures and sizes. Notably,
many models demonstrate zero-shot capabilities,
even without training on discourse-specific data.
This suggests that the prevailing training paradigms
yield emergent ability to understand discourse se-
mantics. We find that while larger, closed-source
models excel in responsiveness, they also struggle
with the “reversal curse”, indicating a probabilis-
tic approach to discourse semantics without full
logical consistency. We further demonstrate that
DISQ’s measure is robust against domain shifts
(TED-MDB corpus (Zeyrek et al., 2018)) and ques-
tion paraphrasing. We highlight the benefits and
limits of using linguistic features like discourse
connectives, context, and historical QA to enhance
comprehension faithfulness1.

2 Question Bank for DISQ

We detail “what to ask” in DISQ by identifying
key events and use in-context learning to identify
salient evidence. We then perform human verifica-
tion to guarantee the quality of these questions.

2.1 Preliminaries

What counts as discourse understanding? Or-
ganized text makes sense as discourse elements

1The software and data of DISQ are publicly available at
https://github.com/YisongMiao/DiSQ-Score.

link the text together. Such linking elements are
referred to as cohesive devices (Halliday, 1976),
including reference, ellipsis, and lexical cohesion.
Formally, two textual spans s1 and s2 are linked by
the relation r. We define (s1, s2, r) as an evidence
triple to understand the discourse. Concretely,

Definition 1. (s1, s2, r) is an evidence triple to
understand the discourse, where Arg1 and Arg2
are two given discourse arguments participating in
a discourse relation R, and two contiguous spans
s1 ∈ Arg1 and s2 ∈ Arg2 link the two arguments
into a coherent discourse with semantic relation r.

We argue that a model understands discourse
when it reliably identifies such triples. As shown in
Table 1, the event triple (s13, s21, r) is the salient
signal for the causal semantics. A model must iden-
tify them to understand the Contingency discourse
relation (R).

Discourse relation (R): Contingency.Cause.Result
Arg1: When I want to buy, they run from you –

:::
they

:::
keep

:::::::
changing

::::
their

:::::
prices

Arg2:
::
It’s

::::
very

::::::::
frustrating

s11: I want to buy;
s12: they run from you;
s13:

::::
they

:::
keep

:::::::
changing

::::
their

:::::
prices

s21:
:::
It’s

:::
very

::::::::
frustrating

Salient signals: (s13, s21, r), r is “the reason for”.
Targeted question: Is s13 the reason for s21?
Counterfactual question: Does s13 contrast against
s21?
Converse question: Is s21 the result of s13?

Table 1: DISQ formalizes discourse understanding as
question answering (QA).

Define a proxy for discourse understanding:
We approach the notion of understanding by ques-
tioning. We interrogate the model with a set of
questions concerning different semantic relations
and text spans. If a model is said to understand,
it must answer questions in a manner under three
criteria: (1) Responsiveness to targeted questions
(e.g., providing affirmative “True” answers, with-
out abstaining); (2) Robustness against counter-
factual queries (e.g., responding with “False” or
abstaining to answer); (3) Consistency across con-
secutive responses (e.g. consistently saying “True”
(or “False”) to converse questions).

2.2 Annotating Salient Signals Using ICL

As illustrated in Table 1, not all spans serve as
salient signals for understanding the discourse. For
instance, the span “I want to buy” (s11) lacks a
causal connection with “It’s very frustrating” (s21).
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It is important to filter unessential ones to make
our evaluation reliable. Earlier research in explain-
able NLP, such as e-SNLI (Camburu et al., 2018),
adopts a similar span-based reasoning formaliza-
tion. In their corpus, humans are tasked with anno-
tating key spans pivotal to understanding the NLI
labels. However, this method is labor-intensive and
lacks generalizability to other tasks.

To address this challenge, we introduce a new
annotation method requiring minimal human in-
tervention. (1) Candidate extraction: We first
extract m spans from Arg1 and n spans from Arg2,
resulting in m× n evidence triples (s1, s2, r) that
may act as evidence for discourse understanding.
The spans are similar to elementary discourse units
(EDU) in the RST/SDRT theories. They are char-
acterized by a self-contained subject–verb–object
(s–v–o) structure, identified by semantic role la-
beling (SRL), can be regarded as events. How-
ever, only some of them are salient indicators of
discourse relation. (2) Select salient pairs: Sub-
sequently, we leverage In-context Learning (ICL)
(Brown et al., 2020) to identify these pivotal evi-
dence triples. The underlying premise is that by
providing the model with exemplars of salient ver-
sus non-salient triples, it can distinguish them in
new instances. Formally, we ask model to predict
if r holds between events (s1, s2) in a discourse
Arg1, Arg2, R with in-context learning. It makes
its prediction on a new input X after being exposed
to both a positive and a negative example (each
example is structured as X → y).

Input X 
{ 
    “Discourse relation”: …  
    “Arg1”: … 
    “Arg2”: … 
    “Event1”: … 
    “Event2”: … 
    “Event relation (ER)”: … 
}

Output y 
{ 

“DR summary”: … 
“Event1 Comprehension”: … 

     “Event2 Comprehension”: … 
“What if ER holds”: …  
“What if ER does not hold”: …  

     “Predicting ER”: … 
“Final prediction”: …  

}

Figure 2: The input and output for in-context learning
for selecting salient signals.

Figure 2 presents the in-context learning (ICL)
template in JSON, designed for step-by-step rea-
soning to predict event relation (ER). The ICL
performs a binary classification on whether ER
holds. The output y mirrors human reasoning
and includes: “DR Summary”, condensing the
discourse relation (DR) in model-specific terms;
“Event1 comprehension”, linking Event1 to argu-
ment Arg2 (and Event2 to Arg1) and examining
their discourse roles; “What if ER holds” and “What

if ER does not hold” exploring event relation (ER)’s
influence on the discourse; and “Predicting ER” fol-
lowed by the “Final prediction”, synthesizing the
analysis to predict ER between events. We imple-
ment ICL using the LLaMA2-13B model, employ-
ing just one positive and one negative example for
each discourse relation (Appendix A).

2.3 Dataset Statistics

Discourse relation (R) Event relation (r) Q Type # of Q
Comparison.Concession deny or contradict

with
Bi- 1,764

Comparison.Contrast contrast with Bi- 876
Contingency.Reason reason of Uni- 3,264
Contingency.Result result of Uni- 2,796
Expansion.Conjunction contribute to the

same situation
Bi- 4,596

Expansion.Equivalence equivalent to Bi- 420
Expansion.Instantiation example of Uni- 2,352
Expansion.Level-of-detail provide more detail

about
Uni- 3,888

Expansion.Substitution alternative to Uni- 216
Temporal.Asynchronous happen before/after Uni- 1,368
Temporal.Synchronous happen at the same

time as
Bi- 840

Total 22,380

Table 2: PDTB Dataset Statistics: Discourse relations
with their corresponding event relations, the type of
questions (uni- or bi-directional), and question counts.

Table 2 outlines the 11 Level-2 relations from
PDTB-3.0, with modifications in the Contingency
relation to merge smaller groups. It lists each dis-
course relation’s corresponding event relation and
whether the question type is uni- or bi-directional,
aiding in generating converse questions. For bi-
directional relations, the converse mirrors the orig-
inal (e.g., “A happens at the same time as B” and
vice versa), while for uni-directional, the converse
flips the sequence (e.g., “A happens before B” be-
comes “B happens after A”). We annotated all im-
plicit discourse in PDTB test set (Sections 21 and
22 in the PDTB). For counterfactual analysis, we
chose 5 irrelevant r not pertaining to a particu-
lar discourse R. Additionally, both targeted and
counterfactual questions include converse inquiries,
amounting to 22,380 questions in total. See Ap-
pendix C.1 for detailed statistics, including those
for the TED-MDB dataset. DISQ operates at the
finest-grained level in the PDTB taxonomy, us-
ing Level-2 or Level-3 distinctions as applicable.
Level-2 results are reported for consistency, with
detailed Level-3 results in Appendix C.6.

Even though our current implementation is lim-
ited to PDTB-style discourse analysis, extending
DISQ to other discourse formalisms is possible
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(Braud et al., 2023). As long as they provide clear
EDUs and discourse relation annotations, they can
be incorporated. For example, Rhetorical Structure
Theory (RST) (Mann and Thompson, 1987) is a
viable option since it provides these two elements.
RST is particularly interesting because it includes
relations not covered by PDTB (e.g., the “summary”
relation in RST can be approached as a “Does A
summarize B?” question).

2.4 Human Verification

To guarantee the reliability of DISQ evaluations,
we verify the salient event pairs identified by ICL
with humans. Importantly, our verification de-
sign contrasts with many evaluation metrics studies
which align a system’s end output score with hu-
man’s judgements (Fabbri et al., 2021). Rather,
we directly evaluate the questions’ correctness of
the benchmark. Upon verification of the questions,
subsequent steps are transparent, deterministic, and
verifiable — all important features for any measure.

A1&A2 A1&ICL A2&ICL
Agreements 85.2% 85.2% 83.7%
Cohen’s Kappa 38.5% 48.8% 44.9%
Success Rate / 95.8% 93.8%

Table 3: Agreement rates between two annotators (A1
and A2) and ICL method, alongside the success rate.

Verification Results. We invite human annota-
tors to identify whether a relation r exists be-
tween events s1 and s2 in a discourse instance
(Arg1, Arg2, R) – the same binary task that the
ICL method tackles. They annotated 61 event rela-
tion instances across all Level-2 discourse relations,
as detailed in Appendix B.4. Two NLP-specialized
graduate students performed this task, each paid
at the university’s standard rate of US$10 per hour
for 2 hours work. To ensure clarity, instances re-
quiring extensive domain-specific knowledge, such
as finance, were excluded after random sampling.
The annotation began following a basic discourse
semantics tutorial.

Table 3 shows strong agreements between
ICL method’s predictions and human annotators
(~85%). Furthermore, despite the majority of data
samples being positive cases, ICL demonstrates a
decent Cohen’s Kappa score with human annota-
tors. The ICL & human scores are even higher than
the score between humans. A possible reason is
that humans have a higher tendency to respond pos-
itively, increasing chance probability and decreas-

ing the Kappa score. Most importantly, the success
rate – the proportion of positive cases confirmed
by human annotation – exceeds 93%, validating
the effectiveness of our ICL method in identifying
salient event pairs for discourse understanding.

3 Discursive Socratic Questioning for
Evaluation

Having confirmed the validity of salient events in
discourse comprehension, we now consider our
measure’s core as established. Now we outline our
systematic approach to “how to ask”: generating
questions, querying models with these questions,
and subsequently computing the scores.

3.1 Question Generation

Type Formalization Expected
Answer

Score

Targeted Qt = {QG(s1, s2, r)} True st
CF Qc = {QG(s1, s2, r

′)} False scf
Converse Q̃t = {QG(s2, s1,

←−r )} Equivalent
to original

scon

Table 4: Formalization of three question types and their
yielding scores: Targeted Score st, Counterfactual Score
scf , and Consistency Score scon.

We generate three types of questions (Table 4):
(1) Targeted Questions: Ground truth answers
for Qt are always affirmative, as they tap into the
salient signals. We employ a rule-based question
generator (QG) to weave events into a cohesive
query. As an example, for Contingency.Result,
where r denotes “the reason for”, a typical ques-
tion might be “Is s1 the reason for s2?” (2) Coun-
terfactual (CF) Questions: These gauge model
robustness, as their answers are negative, due to the
event relation being altered into a counterfactual
r′. For instance, “Is s1 contrasted against s2?” is
unrelated to contingency discourse. (3) Converse
Questions: These test a model’s response consis-
tency to the logically-equivalent converse question.
For example, “Is s2 the result of s1?” (←−r ) cor-
responds to the earlier question about reason (r).
We anticipate consistent responses from LMs. For
bi-directional questions, only the entity order is
reversed (e.g., “Does A happen at the same time
as B?” becomes “Does B happen at the same time
as A?”). For uni-directional questions, both rela-
tion and entity order are inverted (e.g., “Is A the
reason for B?” to “Is B the result of A?”), detailed
in Appendix C.9.
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3.2 Question Answering

Algorithm 1 DISQ interrogates a language model.
1: Input: Discourse d and its corresponding questionsQ.
2: H = {∅} ▷ The history is initialized.
3: Stage 1: Targeted and Counterfactual QA
4: for qi inQt andQc do
5: ai = LM(q = qi, c = d) ▷ The model performs

QA. The context c is the discourse d.
6: H ← (qi, ai) ▷ The history is updated.
7: end for
8: Stage 2: Converse QA
9: for (qi, ai) inH do

10: q̃ = Lookup(q, {Q̃c, Q̃t)} ▷ Look up the converse
question in converse question sets.

11: ãi = LM(q = q̃i, c = d, (qi, ai) ∈ H) ▷ The model
executes QA on the converse question, q̃i, optionally
utilizing the previous response (qi, ai) as supplemental
context.

12: H ← (q̃i, ãi) ▷ The history is updated.
13: end for
14: Output: H

Questioning is divided into two stages (Algo-
rithm 1). In the first stage, DISQ interrogates the
model with targeted questions Qt (expecting a pos-
itive answer) and counterfactual questions Qc (ex-
pecting negative). These questions focus on events
s1 and s2, and reference the discourse context d,
specifically Arg1 and Arg2. Note that we do not
inform the model of the discourse relation; the
model must infer the discourse relation to answer
correctly. The answer to each question updates the
history H. In the second stage, DISQ performs
converse QA to test the model’s consistency. For
each converse q̃i, we look for model’s response to
the original question and can choose to reuse it to
promote the consistency (we find that this choice
affects performance significantly; see §4.4).

It is worth noting that DISQ operates at the
finest-grained level possible in the PDTB taxon-
omy. If a relation cannot be further divided (e.g.,
Comparison.Contrast), we consider it as a Level-2
relation. However, if a Level-3 distinction is possi-
ble (e.g., Comparison.Concession.Arg1-as-denier
or Arg2-as-denier), DISQ operates at Level-3. For
consistency, we report the results for Level-2, while
the Level-3 results are presented in Appendix C.6.

3.3 DISQ Score

We gauge a model’s overall proficiency by its
DISQ Score 2, which combines three scores, as
coefficients of a product: sdisq = st × scf × scon.

2Named after our method DISQ, this term is also used to
denote our measurement score when unambiguous.

DISQ then comprises of (1) Target Score (st);
(2) Counterfactual Score (scf ) — assessing the
accuracy of the model’s answers to targeted and
counterfactual questions; and (3) Consistency
Score (scs) — evaluating the model’s consistent re-
sponses to a question and its converse. Concretely,
for N questions asked:

st =
1

N

N∑

i=1

1[ai = True], qi ∈ {Qt, Q̃t} (1)

scf =
1

N

N∑

i=1

1[ai = False], qi ∈ {Qc, Q̃c} (2)

scon =
1

N

N∑

i=1

1[ai = ãi], qi ∈ Q, q̃i ∈ Q̃ (3)

DISQ uses a product since we favor balanced in-
dividuals scores, which may not occur with a sum
aggregate — c.f., (0.6, 0.6, 0.6) vs. (0.9, 0.9, 0).

4 Evaluations

We guide our evaluation with following research
questions (RQs):
RQ1: How do models perform on DISQ’s three
scores overall?
RQ2: Are DISQ’s scores consistent in different
datasets and variations in question phrasing?
RQ3: What impact do different discourse relations
have on model performance?
RQ4: What linguistic structures can help models
improve their performance on DISQ?

Datasets: Besides PDTB, we also use English
sections of the TED-Multilingual Discourse Bank
(TED-MDB) dataset, with PDTB-style annotations
from TED talks. After preprocessing it in a manner
similar to our treatment of the PDTB, we obtain a
question bank consisting of 448 discourse instances
and 8,376 questions (Appendix C.1).

Models: While any language model can be as-
sessed, our evaluation targets two of the current
strongest large language models (LLMs): (1)
Closed-Sourced Models: GPT-4 and GPT-3.5-
turbo. To manage costs, we limit evaluations to
20% of our test samples (Appendix C.5). De-
spite this constraint, we noted stable performance
throughout our experiment and relation distribu-
tions similar to those of the entire dataset. (2)
Open-Sourced Models: LLaMA-2 (Touvron et al.,
2023) and its variations, Vicuna (Chiang et al.,
2023) and Wizard (Xu et al., 2023). Vicuna is a
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Figure 3: Overall performance on DiSQ (RQ1): This figure shows the overall performance (sdisq) of advanced
GPT models (1st row), LLaMA-2 models with 7B/13B parameters and their chat variants (2nd row), and specialized
Vicuna and Wizard models that are further fine-tuned from the LLaMA architecture (3rd row). Best view in color.

distilled model that refines LLaMA-2 using user in-
teractions with GPT models; and Wizard is specifi-
cally designed for complex code and math instruc-
tion adherence, which we felt might help with
discourse explanation. We use 13B sized models
for all of these but also investigate a smaller 7B
LlaMA-2 model for scaling effects.

Implementation Details: We use a zero-shot
approach in our evaluations to mirror real-world
conditions. Recognizing that smaller models may
falter with different instruction templates, we
experimented with various templates and report the
optimal performances. This method allows us to
focus on evaluating the models’ ability to answer
questions about discourse relation, minimizing the
influence of their instruction comprehension skills.
Respond to a true-or-false question derived from
a two-sentence discourse, comprising Sentence
1 (Sent1) and Sentence 2 (Sent2), linked by a
relationship type like causal, temporal, expansion,
contrasting, etc. The question targets two events
within this discourse, and your task is to evaluate
if these events exhibit the specified relationship.
Answer with ’True’ or ’False’ based on your analysis.

Sent1: “When I want to buy, they run from you –
they keep changing their prices.” Sent2: “It’s very
frustrating.”

Question: Is “It’s very frustrating. (event 2)” the
result of “hey keep changing their prices (event 1)”?
True or False?
Answer:

Following Zhao et al. (2021), we prompt models
with concise instructions, as shown in the example
above, followed by the given discourse context and

questions. We determine predictions based on the
probability of the first token (see Appendix C.4).

4.1 Overall Performance (RQ1)

Figure 3 displays the overall performance of var-
ious models in a zero-shot setting, leading to the
following observations: (A) GPT Models Show
Room for Improvement (1st row): None of the
models achieve an ideal score (all three scores at
1.0), indicating room for growth. GPT-3.5 under-
performs GPT-4 significantly in both the PDTB
and TED-MDB datasets (almost half in sdisq), par-
ticularly in the Targeted Score, which shows its
limitation in understanding discourse. (B) Sig-
nificant Improvements with LLaMA Enhance-
ments (2nd and 3rd row): Initial tests show Vanilla
LLaMA-2 models (7B and 13B) perform below the
random baseline. However, significant improve-
ments are noted with their Chat variants, and fur-
ther enhancements are observed with Vicuna-13B
after tuning on user interaction, and upon further
tuning for Code and Math based on Wizard mod-
els. Vicuna-13B notably surpasses GPT-3.5 in both
datasets, suggesting open-source models can rival
GPT-3.5 in discourse understanding. Our discovery
of the chat variant’s benefit is corroborated by a re-
cent study (Sravanthi et al., 2024), which finds that
LLaMA’s chat variants perform better in pragmatic
understanding tasks (Appendix C.11). (C) Consis-
tent Performance Across Datasets: The scores
for both datasets align well, visualized as blue and
green shapes in the radar charts in Figure 3, demon-
strating DISQ is consistent in differing domains.
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PDTB

1. Random Basline 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
2A. LLaMA2-7B 0.074 0.029 0.083 0.094 0.095 0.076 0.056 0.087 0.067 0.156 0.035 0.048
3A. LLaMA2-7B-Chat 0.174 0.231 0.431 0.131 0.174 0.213 0.104 0.120 0.150 0.199 0.108 0.040
4A. LLaMA2-13B 0.098 0.037 0.100 0.082 0.097 0.127 0.101 0.113 0.107 0.086 0.084 0.092
5A. LLaMA2-13B-Chat 0.253 0.193 0.477 0.129 0.172 0.288 0.157 0.326 0.373 0.291 0.195 0.028
6A. Vicuna-13B 0.325 0.087 0.513 0.200 0.353 0.369 0.000 0.334 0.462 0.195 0.511 0.069
7A. Wizard 0.135 0.221 0.256 0.067 0.107 0.170 0.072 0.167 0.128 0.108 0.097 0.082
8A. Wizard-Code 0.225 0.032 0.268 0.175 0.287 0.121 0.008 0.283 0.329 0.174 0.545 0.109
9A. Wizard-Math 0.234 0.132 0.264 0.241 0.286 0.192 0.046 0.240 0.323 0.201 0.240 0.135
10A. GPT-3.5 0.206 0.151 0.278 0.082 0.161 0.246 0.067 0.257 0.262 0.232 0.388 0.000
11A. GPT-4 0.414 0.053 0.567 0.119 0.351 0.610 0.192 0.659 0.481 0.422 0.692 0.000

TED

2B. LLaMA2-7B 0.029 0.011 0.021 0.053 0.047 0.024 0.037 0.027 0.040 0.037 0.018 0.032
3B. LLaMA2-7B-Chat 0.168 0.182 0.315 0.139 0.160 0.184 0.105 0.089 0.124 0.099 0.167 0.063
4B. LLaMA2-13B 0.028 0.001 0.044 0.020 0.017 0.034 0.029 0.053 0.030 0.000 0.027 0.056
5B. LLaMA2-13B-Chat 0.252 0.196 0.492 0.141 0.175 0.260 0.211 0.376 0.369 0.284 0.203 0.053
6B. Vicuna-13B 0.355 0.098 0.551 0.241 0.387 0.386 0.064 0.509 0.508 0.219 0.448 0.232
7B. Wizard 0.075 0.100 0.159 0.028 0.075 0.063 0.063 0.120 0.100 0.063 0.062 0.008
8B. Wizard-Code 0.207 0.015 0.330 0.114 0.269 0.163 0.000 0.360 0.254 0.096 0.616 0.116
9B. Wizard-Math 0.204 0.126 0.240 0.228 0.258 0.165 0.062 0.302 0.303 0.208 0.224 0.220
10B. GPT-3.5 0.258 0.159 0.562 0.132 0.181 0.240 0.326 0.350 0.500 0.089 0.346 0.000
11B. GPT-4 0.528 0.061 0.688 0.238 0.481 0.652 0.593 0.652 0.403 0.314 0.812 0.592

Table 5: Impact of Discourse Relations on DiSQ Scores (RQ3): We highlight the top three models per discourse
relation in each dataset. GPT-4 dominates, yet open-source models closely rival in several relations.

4.2 Consistency of DISQ Scores (RQ2)
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Figure 4: Models’ performance under different datasets
and various question paraphrasing scenarios (RQ2).

While evaluating DISQ intrinsically through hu-
man assessment of question correctness, we also
present extrinsic evidence of DISQ Scores’ robust-
ness across domain and paraphrase variations. The
first plot in Figure 4 shows DISQ Scores for var-
ious open-source models (abbreviated by initial
letters) across two datasets, with model rankings
demonstrating strong consistency, evidenced by a
Kendall’s Tau correlation of 0.857.

The second plot, focusing on the PDTB dataset,
illustrates models’ resilience to question paraphras-
ing, involving synonym replacement and syntactic
changes, and results in two paraphrase sets. This
analysis shows the DISQ Score remains stable un-
der these variations, with a mean Spearman correla-
tion of 93.6 across three pairs. For the TED dataset,
consistency is also observed (Appendix C.8).

4.3 DISQ Scores by Discourse Relations (RQ3)

Table 5 provides performance per discourse rela-
tion. These results yield several intriguing insights:
(1) Persistent Challenge of Minority Classes
for LLMs: Historically, minority classes have
posed difficulties for supervised methods (Kim
et al., 2020), and this trend continues with LLMs.
Classes like Comp.Concession, Exp.Equivalence,
and Temp.Synchronous remain challenging, evi-
denced by DISQ score at or below 0.3 for most
models, suggesting that merely increasing model
and data samples do not yield comprehensive dis-
course understanding. (2) Open-sourced Mod-
els Rival GPT: The granular analysis of scores
reveals that open-source models are capable of
matching, and in some instances, surpassing the
performance of the esteemed GPT models. For
instance, within Contingency relations, models
like Vicuna-13B (6A, 6B in Table 5) and Wizard-
Code (8A, 8B) as well as Wizard-Math (9A,
9B) excel, even outperforming GPT models. It
underscores the potential of LLaMA-based spe-
cialized training as a promising method to en-
hance discourse comprehension. (3) Task Diffi-
culty Asymmetry: An intriguing pattern is Con-
tingency.Reason consistently outscoring Contin-
gency.Result across all models, despite both ad-
dressing causality. Similar trends are noted in other
fine-grained relations like Temp.Async.Precedence
and Temp.Async.Succession (Appendix C.6), indi-
cating a potential asymmetry in semantic process-
ing by language models.
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4.4 Linguistic Features (RQ4)
We are driven to find what linguistic features can
improve the faithfulness of discourse understand-
ing, especially for open-source models. We exam-
ine the following features:

Feature 1: Is the Presence of Discourse Connec-
tives Beneficial? Discourse connectives trans-
form implicit discourse into explicit forms, enhanc-
ing comprehension (Kurfalı and Östling, 2021).
Does this also extend to LLMs? In short, yes.

Models Overall Exp. Cont. Comp. Temp.

w/o Conn
LLaMA2-13B-Chat 0.253 0.322 0.147 0.293 0.149
Vicuna-13B 0.325 0.374 0.262 0.220 0.357
Wizard-Code 0.225 0.220 0.223 0.101 0.382

w/ Conn
LLaMA2-13B-Chat 0.273 0.328 0.187 0.329 0.149
Vicuna-13B 0.396 0.418 0.382 0.289 0.401
Wizard-Code 0.264 0.249 0.275 0.192 0.376

Table 6: Feature 1: Models’ DiSQ Scores with the help
of discourse connective.

We selected LLaMA2-13B-Chat, Vicuna-13B
and Wizard-Code as representative open-source
models. We then inserted PDTB connectives at the
start of Arg2, and conducted DISQ. While these
experiments are replicated with the one optimal
task template from previous experiments, we also
trial with several random seeds and find that the
results remain consistent. Table 6 reveals that con-
nectives benefit all models, increasing DISQ by 8%
to 22%. For example, it boosts Vicuna’s overall per-
formance from 0.325 to 0.396, closely approaching
GPT-4’s score of 0.414 (which lack connectives).
This suggests that correctly inferring connectives
significantly enhances the accuracy of LMs’ dis-
course comprehension. Our results corroborate the
findings in (Liu and Strube, 2023), which jointly
predict discourse connectives and discourse rela-
tions, highlighting the benefits of exploiting dis-
course connectives.

Feature 2: Does Context Enhance Comprehen-
sion? Next, we assess the influence of surround-
ing context on discourse comprehension. Does it
enhance LLM’s faithfulness? In short, yes.

Models Overall Exp. Cont. Comp. Temp.

w/o Context
LLaMA2-13B-Chat 0.253 0.322 0.147 0.293 0.149
Vicuna-13B 0.325 0.374 0.262 0.220 0.357
Wizard-Code 0.225 0.22 0.223 0.101 0.382

w/ Context
LLaMA2-13B-Chat 0.311 0.402 0.231 0.186 0.169
Vicuna-13B 0.369 0.424 0.333 0.192 0.380
Wizard-Code 0.253 0.245 0.273 0.152 0.331

Table 7: Feature 2: DiSQ Scores with context’s help.

In the PDTB corpus, texts are segmented into
paragraphs. Accordingly, we provide the mod-

els with the local paragraph surrounding the dis-
course arguments. Table 7 demonstrates that
models exhibit overall performance enhancements
when contextual information is integrated. For in-
stance, LLaMA’s overall performance improves
from 0.253 to 0.311. We find the improved per-
formance is primarily due to a significant rise in
Targeted Score with minimal changes in Counter-
factual Score, as detailed in Appendix‘C.7. This
indicates that models particularly benefit from ex-
tra context when positively responding to targeted
questions.

Feature 3: Is QA History Beneficial for Consis-
tency? Open-source LMs typically achieve an
80% Consistency Score without accessing their
own QA history. We explore whether models ex-
hibit greater consistency when referencing their
previous QA interactions. In this process, while
posing converse questions, we include the history
of corresponding targeted and counterfactual ques-
tions, along with the model’s responses, in the in-
put. The ideal outcome is for the model to make
consistent predictions.

w/o history w/ history
LLaMA2-13B-Chat 78.6 70.1
Vicuna-13B 82.8 88.7
Wizard-Code 81.6 99.8

Table 8: Feature 3: Models’ Consistency Scores with
the insertion of QA history.

Table 8 presents mixed outcomes: Vicuna-13B
and Wizard-Code exhibit significant improvements,
whereas LLaMA2-13B-Chat experiences a reduc-
tion in consistency. Further analysis into LLaMA’s
Consistency Scores by question type reveals lower
scores for uni-directional questions (e.g., “happen
before”) and higher for bi-directional (e.g., “hap-
pen at the same time as”). For uni-directional ques-
tions, the converse questions are different from the
original (e.g., “happen before” becomes “happen
after”). However, for bi-directional questions, the
form remains unchanged (Appendix C.9). This
pattern suggests that LLaMA might focus mainly
on literal keywords, lacking in deeper reasoning
abilities, while Wizard-Code’s code-based train-
ing appears to have bolstered its logical reasoning
(detailed in Appendix C.10).

5 Related Work

Evaluation Methods in NLP: Recent ap-
proaches for evaluating and interpreting LMs in-
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clude: (1) The probing paradigm takes out the
representation of LMs and train a model to pre-
dict whether one linguistic property is captured by
the representation (Tenney et al., 2019; Wallace
et al., 2019; Li et al., 2021). (2) Behavior analysis
and post-hoc interpretation produce fine-grained
interpretation of model’s output. The common
practice is to perturb the text to reveal the deci-
sion boundary or unwanted bias of the model (Be-
linkov et al., 2020; Ribeiro et al., 2016; Poliak et al.,
2018; Rudinger et al., 2018). But the creation of
the perturbation usually requires manual efforts.
(3) QA-based Evaluation offers a transparent and
granular approach (Hu et al., 2023; Fabbri et al.,
2022a), yet its application in evaluating discourse
faithfulness remains unexplored. There are several
efforts re-formalizing discourse parsing as QA, in-
cluding QADiscourse (Pyatkin et al., 2020), QA
for reference/ellipsis resolution (Hou, 2020; Ara-
likatte et al., 2021), and Question Under Discus-
sion (QUD) framework (Ko et al., 2022; Wu et al.,
2023). However, their focus is on parsing rather
than utilizing QA for evaluating faithfulness.

Discourse Modeling and Evaluation: (1) Dis-
course Modeling: Language Models (LMs) serve
as the core for custom neural networks to predict
discourse relations (Liu et al., 2021; Jiang et al.,
2021; Zhou et al., 2022; Xiang et al., 2022; Chan
et al., 2023; Wang et al., 2023). These approaches
show improvements over traditional feature-based
methods (Pitler et al., 2009; Rutherford and Xue,
2014) but lack in interpretability. Additionally,
LMs are applied in coherence modeling (Joty et al.,
2018; Jwalapuram et al., 2022) and hierarchical
discourse parsing (Huber and Carenini, 2022; Ko
et al., 2023), yet they often overlook robustness
evaluation, a key contribution of DISQ. (2) Dis-
course Evaluations: Recent benchmarks have
moved beyond traditional treebanks like PDTB
(Webber et al., 2019). DiscoEval by Chen et al.
(2019) assesses sentence embeddings across vari-
ous discourse tasks. Wu et al. (2023) evaluate QUD
parsers, and Chan et al. (2024) analyze ChatGPT’s
capabilities in diverse discourse tasks. However,
none of these studies focus on the faithfulness as-
pect of LMs.

6 Conclusion and Future Work

In this paper, we contribute Discursive Socratic
Questioning (DISQ), the first systematic evaluation
for faithful discourse comprehension. To ensure

the reliability of DISQ’s assessment, we employ
both intrinsic verification via human annotation and
extrinsic evaluation to demonstrate its resilience
against domain shifts and paraphrase variations.
Our extensive experiments reveal that even lead-
ing models like GPT-4 have their shortcomings in
DISQ, and that open-source models — despite trail-
ing GPT-4 — can close this gap with fine-tuning
on chat and code/math data. To advance LLMs’
understanding, we suggest incorporating linguistic
features such as discourse connectives, contextual
information, and historical QA data. In the future,
we aim to extend our analysis to longer-range dis-
course, incorporate additional discourse annotation
frameworks beyond PDTB, and distilling knowl-
edge from larger models to benefit smaller models.
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particular, we ensure that none of the phrases in-
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When performing DISQ, we note that output an-
swers may be offensive in certain contexts, because
the model can respond True/False to any question.
This is a common concern for all LMs to overcome,
not specific to DISQ. But according to our pilot
study, we have not found any cases of such offen-
sive Q&A pairs.

DISQ also has particular limitations. (1) We
only use the behavior of the model given a set of
questions as a proxy for understanding. It is not
a causal analysis. We may causally study the role
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of individual neuron or subnetwork for discourse
function in the future, similar to a recent study
about individual neuron’s role for factual knowl-
edge (Meng et al., 2022; Liu et al., 2024). (2) We
have only studied standard English corpora. It is
meaningful to apply DISQ to LMs’ understanding
of discourse on other English corpora with lan-
guage variations and to corpora in other languages.
(3) Our study primarily utilizes PDTB-style an-
notations, yet adapting DISQ to other discourse
frameworks is also feasible. To the best of our
knowledge, PDTB and TED-MDB are the only two
compatible corpora in English, since other datasets
like GUM, adhere to the RST framework, and a
suitable Twitter-based PDTB corpus is not openly
accessible. Consequently, we chose TED-MDB as
our supplementary dataset due to its compatibility.
Our study examined written text in the genres of
news articles and public speeches, so may not gen-
eralise beyond these domain. However, we believe
it is possible to extend DISQ’s analysis to a broader
range of genres in future work.
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A Details for Question Bank Preparation

Input X 
{ 
    “Discourse relation”: …  
    “Arg1”: … 
    “Arg2”: … 
    “Event1”: … 
    “Event2”: … 
    “Event relation (ER)”: … 
}

Output y 
{ 

“DR summary”: … 
“Event1 Comprehension”: … 

     “Event2 Comprehension”: … 
“What if ER holds”: …  
“What if ER does not hold”: …  

     “Predicting ER”: … 
“Final prediction”: …  

}

Figure 5: ICL Template: The input and output for in-
context learning for selecting salient signals.

In Section 2.2, we briefly introduced our In-
Context Learning (ICL) approach; here, we offer
a more detailed explanation. Figure 5 elucidates
the ICL template. The ‘DR summary’ section en-
capsulates the discourse using the model’s specific
terminology. In ‘Event1 comprehension’, Event1 is
linked with Arg2, exploring its role in discerning
the discourse relation. A similar analysis is con-
ducted for Event2 in ‘Event2 comprehension’. This
stage prompts LMs to begin reasoning, as demon-
strated in Example 2, where the model identifies
the actual object of denial, such as ‘shipping the
card’. The sections ‘What if ER holds’ and ‘What
if ER does not hold’ present hypothetical scenar-
ios of ER’s presence or absence, exploring their
implications for the given DR. The model is en-
couraged to offer explanations (like “It suggests
to the audience that IBM’s actions are inconsistent
and perhaps not well-planned”). ‘Predicting ER’
synthesizes the preceding rationale to predict an ER
between Event1 and Event2, leading to the ‘Final
prediction’ that provides the definitive conclusion.
While our focus is on using ICL to identify salient
signals in discourse understanding, we have not
fully explored the potential of prompt engineering.
Concretely, for 11 Level-2 discourse relations, we
create 22 examples in total.

B Annotation Details for Human
Verification

B.1 Annotator Recruitment

Following Institutional Review Board (IRB) ap-
proval, we enlisted two graduate students special-
izing in Natural Language Processing (NLP) to
conduct our annotations. These individuals possess
strong English proficiency and academic expertise,
equipping them with the necessary skills to com-
prehend our discourse task effectively. They have
consented to the use of their anonymized data, with

the assurance that their identities will remain confi-
dential.

B.2 Annotator Training

Discourse and events

Positive case:
    {
        "Discourse relation": "Expansion.Level-of-detail.Arg2-as-detail, which means 
Arg2 provides more detail about Arg1",
        "Arg1": "An international group approved a formal ban on ivory trade despite 
objections from southern African governments, which threatened to find 
alternative channels for selling elephant tusks",
        "Arg2": "The move by the Convention on Trade in Endangered Species, 
meeting in Switzerland, places the elephant on the endangered-species list",
        "Event1": "An international group approved a formal ban on ivory trade",
        "Event2": "The move places the elephant on the endangered - species list",
        "Event relation": "Event2 provides more detail about Event1"
    }

(a) Training slides screenshot: Positive sample (negative sam-
ple omitted).

Your task

Given a discourse, predict whether Event1 and Event2 satisfy event relation (ER). 

Step 1: Read the discourse and the events. 

Step 2: Judge ER. 

(b) Task instructions for annotators.

Figure 6: Training annotators to understand the task:
Tutorials and instructions to perform the task.

An author led the training for the two annotators,
starting with a tutorial on discourse semantics by
referring to PDTB annotation guideline (Webber
et al., 2019). This session then equipped annota-
tors with the skills to discern positive and negative
Event Relation (ER) cases (Figure 6). Our task in-
structions were straightforward, focusing on binary
classification.

B.3 Annotation Interface
Our annotation interface: (Figure 7) adopts a
minimalist style, straightforwardly prompting the
annotators to determine whether an Event Relation
(ER) is present in the given scenario.

Annotation Execution: On average, the anno-
tators spent approximately one minute to answer
each question. The 61 questions were divided into
two sessions, with each session lasting about 40
minutes.

B.4 Samples for annotation
We selected these samples randomly, but excluded
any that necessitate extensive domain knowledge.
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Example 1 (Positive)
Input:
{

“Discourse relation”: “Comparison.Concession.Arg2-as-denier, which indicates that Arg2 denies or contradicts something in Arg1”,
“Arg1”: “In late September, IBM began shipping a plug-in card that converts its PS/2 model 70-A21 from a 80386 machine to an 80486 machine”,
“Arg2”: “the company told customers Monday about the bugs and temporarily stopped shipping the product”,
“Event1”: “IBM began shipping a plug-in card”,
“Event2”: “The company temporarily stopping the shipping of the product”,
“Event relation”: “Event1 is denied by (or contrasted with) Event2”

}
Output:
{

“DR Summary”: “The discourse revolves around IBM’s actions concerning a specific product. The discourse relation is of ‘Comparison.Concession.Arg2-as-denier’ type, which
implies that Arg2 denies or contradicts a point made in Arg1. The key elements are IBM’s initial action of shipping a plug-in card and the subsequent action of halting the shipping
due to issues.”,

“Event1 Comprehension”: “Event1 (’IBM began shipping a plug-in card’) is a positive action, highlighting a company’s forward momentum in its business strategies. It contributes
to the DR by being the initial statement that gets contradicted by Arg2. This helps establish the ‘denier’ aspect in the discourse relation.”,

“Event2 Comprehension”: “Event2 (’The company temporarily stopping the shipping of the product’) is a corrective action that contradicts the assertion made in Arg1. It adds
nuance to the discourse by showing that IBM’s initial action had flaws, thereby satisfying the ‘denier’ role in the discourse relation.”,

“What if ER Holds”: “If the Event Relation directly holds, Event1 (beginning the shipping) is directly denied by or contrasted with Event2 (stopping the shipping). This amplifies
the impact of Arg2 as a ‘denier,’ confirming the failure or problems in the initial action represented by Arg1. It suggests to the audience that IBM’s actions are inconsistent and
perhaps not well-planned, potentially affecting the company’s reputation.”,

“What if ER Does Not Hold”: “If the Event Relation does not directly hold, it implies that the act of IBM stopping shipping may not necessarily contradict or negate their initial
action of shipping the plug-in card. This could lead to a range of interpretations. It might suggest that the company had valid, perhaps unrelated, reasons for halting shipments, such
as supply chain issues or broader quality checks, without implicating the plug-in card specifically.”,

“Predicting ER”: “Given the analyses in the ‘What if ER Holds’ and ‘What if ER Does Not Hold’ sections, we see two contrasting implications. If ER directly holds, the
inconsistency and potential poor planning in IBM’s actions become the focal point, amplifying Arg2’s role as a ‘denier’ in the discourse. On the other hand, if ER does not directly
hold, the ‘denier’ role of Arg2 gets weakened, and other factors might be considered as reasons for stopping the shipping, thereby reducing the impact on IBM’s reputation. In this
specific discourse, the halting of shipping appears to directly negate IBM’s initial action of beginning the shipping, supporting the ‘Comparison.Concession.Arg2-as-denier’ relation.
Therefore, the prediction is that ‘ER Directly Holds’.”
}
Example 2 (Negative)
Input:
{

“Discourse relation”: “Comparison.Concession.Arg2-as-denier, which indicates that Arg2 denies or contradicts something in Arg1”,
“Arg1”: “In late September, IBM began shipping a plug-in card that converts its PS/2 model 70-A21 from a 80386 machine to an 80486 machine”,
“Arg2”: “the company told customers Monday about the bugs and temporarily stopped shipping the product”,
“Event1”: “Plug-in card converting PS/2 model 70-A21 from a 80386 machine to an 80486 machine”,
“Event2”: “The company temporarily stopping the shipping of the product”,
“Event relation”: “Event1 is denied by (or contrasted with) Event2”

}
Output:
{

“DR Summary”: “The discourse relation here is ‘Comparison.Concession.Arg2-as-denier,’ suggesting that Arg2 should negate or contradict Arg1. Arg1 discusses IBM’s initial act
of shipping a specific plug-in card, while Arg2 presents the company halting this action due to bugs.”,

“Event1 Comprehension”: “Event1 highlights the functionality of the plug-in card, focusing specifically on its ability to convert a PS/2 model from one specification to another.
This is more of a technical detail than a core message in the discourse.”,

“Event2 Comprehension”: “Event2 is about IBM stopping the shipping of a product, presumably the plug-in card. This action seems to contradict or deny Arg1’s claim that IBM
began shipping the card.”,

“What if ER Holds”: “If ER directly holds, the discourse would imply that the specific functionality of the plug-in card (conversion of machine specifications) is directly negated
by IBM stopping its shipping. This would make the halt in shipping an explicit refutation of the plug-in card’s value or functionality.”,

“What if ER Does Not Hold”: “If ER doesn’t directly hold, stopping the shipping may not directly deny the specific conversion capability of the plug-in card. The focus shifts from
the functionality of the plug-in card to the broader issue of IBM’s decision-making. It might suggest problems beyond the card’s functionality, such as quality control, that led to the
halt in shipping.”,

“Predicting ER”: “Given the analyses in the ‘What if ER Holds’ and ‘What if ER Does Not Hold’ sections, it seems that the discourse isn’t centered around denying the specific
functionality of the plug-in card. Rather, Arg2 denies the broader action of shipping the product. Given this nuance, the prediction is ‘ER Indirectly Holds or Does Not Hold’.”
}

Table 9: Examples for In-Context Learning for salient event relation prediction.

Discourse relation # of event pairs
Comparison.Concession 6
Comparison.Contrast 4
Contingency.Reason 6
Contingency.Result 10
Expansion.Conjunction 8
Expansion.Equivalence 4
Expansion.Instantiation 5
Expansion.Level-of-detail 4
Expansion.Substitution 4
Temporal.Asynchronous 6
Temporal.Synchronous 4
Total 61

Table 10: Annotation details: Discourse relations and
the number of event pairs to be judged by human anno-
tators.

Figure 7: Annotation Interface: The interface guides
annotators in making binary judgments, focusing on
discourse arguments, two distinct events, and their po-
tential event relation.

We summarize the distribution of the number of
questions (i.e., event pairs for annotators to deter-
mine) in Table 10. Samples for one discourse rela-
tion originate from one or two instances in PDTB.
The presence of more pairs in some samples is
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attributable to the extended context in those cases.

C Experiment Details

C.1 Detailed Dataset Statistics

In Table 11, we provide detailed statistics of our
dataset, which encompasses 11 Level-2 discourse
relations. For PDTB, we use the new sense tax-
onomy from PDTB 3.0 (Webber et al., 2019), but
we only retain instances with provenance in PDTB
2.0 (Prasad et al., 2008). This approach is taken
because most studies focus on PDTB 2.0, and we
want our scores to provide a more relevant refer-
ence. Most of the new instances from PDTB 3.0
are intra-sentence short arguments, which can be
adapted using our method. It would be interest-
ing to compare their performance with existing
instances, which are mostly inter-sentence or inter-
clause. The TED-MDB corpus only has 448 in-
stance, which is smaller than PDTB. Due to its
small size, we remove the discourse connectives in
explicit discourse instances to augment the data for
implicit discourse instances. It contributes 8,376
questions, aiding our examination of the cross-
domain robustness of DISQ scores.

There are around 2% of corner cases where ICL
methods fail to deliver any salient event pair pre-
diction (as a positive prediction) in a discourse
instance. Therefore, as an approximation, we con-
sider all event pairs as valid to represent such in-
stances. We find that the final DISQ score changes
only slightly when these corner cases are ablated,
and the rankings of models remain unchanged.

C.2 Model Details

We list the models being evaluated in Table 12,
using APIs and weights hosted on Huggingface.
We also use AllenNLP (Gardner et al., 2018) for
semantic role labeling toolkit.

C.3 Computing Resource and AI Tools

We use one NVIDIA A40 GPU to perform our
experiment. For in-context learning for ER predic-
tion, it takes around 30 seconds for each instance
due to long reasoning to be decoded. It takes less
than one day to finish all predictions. For the eval-
uating models against DISQ, since it only needs to
decode a short answer, it takes around 0.1 seconds
for one instance. It takes around 2-3 hours to finish
evaluation of one model against DISQ.

We employ GitHub Copilot as a coding assistant,
primarily to complete specific lines of code once

the core functions are established. Additionally, we
use GPT for grammar checking, but all the writing
is conducted independently by us.

C.4 Task template
We adopt the approach outlined by Zhao et al.
(2021), employing a straightforward instruction
template in Table 13. Initially, a succinct instruc-
tion is provided, followed by the context informa-
tion for the model. Recognizing that the model
may not be well-versed in discourse semantics, we
use the term “sentence” in place of “argument” for
clarity. Subsequent to the question, we include
an “Answer: ” prompt, guiding the model to re-
spond with either “True” or “False” tokens. Dur-
ing evaluation, we consolidate the probabilities for
the “True” token (covering variations like “True”,
“true”, “TRUE”, etc.), and similarly for the “False”
token.

We tested three template variations and report
each model’s best outcomes: (1) removing the
“True or False” phrase, (2) inserting a line break at
the end, and (3) placing a line break between the
“question” and “answer”.

C.5 Samples for GPT Experiments
Table 14 displays the distribution of discourse rela-
tions in both the PDTB and TED-MDB datasets for
GPT evaluation. We selected the first 200 samples
from PDTB and randomly chose 100 samples from
TED-MDB to ensure their relation distributions
align closely with each dataset. This selection pro-
cess was designed to match the overall distribution
without needing random sampling for PDTB.

The analysis reveals that PDTB features a higher
prevalence of causal discourse, whereas TED-
MDB exhibits a greater number of expansions, re-
flecting the distinctive nature of TED Talks. This
difference highlights the unique characteristics of
each dataset.

C.6 Level-3 Discourse Relations
It is important to note that DISQ functions at the
most detailed level within the PDTB taxonomy.
When a relation cannot be further subdivided (e.g.,
Comparison.Contrast), we treat it as a Level-2 rela-
tion. However, if a Level-3 distinction is available
(e.g., Comparison.Concession.Arg1-as-denier or
Arg2-as-denier), DISQ operates at Level-3.

Table 15 presents the DISQ scores for all
Level-3 discourse relations in PDTB, omitting
rare classes not present in our test set (e.g.,
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Discourse Relation Event Relation # of TED Instance # of Q # of PDTB Instance # of Q
Comparison.Concession deny or contradict with 42 816 86 1,764
Comparison.Contrast contrast with 20 384 45 876
Contingency.Reason reason of 38 648 162 3,264
Contingency.Result result of 45 936 113 2,796
Expansion.Conjunction contribute to the same situation 172 3,084 192 4,596
Expansion.Equivalence equivalent to 11 156 26 420
Expansion.Instantiation example of 15 432 120 2,352
Expansion.Level-of-detail provide more detail about 49 876 180 3,888
Expansion.Substitution alternative to 14 240 14 216
Temporal.Asynchronous happen before/after 25 516 56 1,368
Temporal.Synchronous happen at the same time as 17 288 32 840
Total 448 8,376 1,026 22,380

Table 11: Comprehensive Dataset Statistics: This summarizes the count of discourse instances within the PDTB
and TED-MDB datasets, alongside the number of questions generated for each discourse relation.

Model Resource
GPT-3.5-turbo API GPT-3.5-turbo-0613 Version
GPT-4 API GPT-4-0613 Version
LLaMA2-7B https://huggingface.co/meta-llama/Llama-2-7b-hf
LLaMA2-7B-Chat https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
LLaMA2-13B https://huggingface.co/meta-llama/Llama-2-13b-hf
LLaMA2-13B-Chat https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
Vicuna-13B https://huggingface.co/lmsys/vicuna-13b-v1.5
Wizard https://huggingface.co/WizardLM/WizardLM-13B-V1.2
Wizard-Code https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0
Wizard-Math https://huggingface.co/WizardLM/WizardMath-13B-V1.0

Table 12: Model Detail: For the GPT models, access is provided through their APIs, as these are closed-source. In
contrast, for open-source models, we utilize their weights hosted on Huggingface.

Respond to a true-or-false question derived from
a two-sentence discourse, comprising Sentence 1
(Sent1) and Sentence 2 (Sent2), linked by a relation-
ship type like causal, temporal, expansion, contrast-
ing, etc. The question targets two events within this
discourse, and your task is to evaluate if these events
exhibit the specified relationship. Answer with ’True’
or ’False’ based on your analysis.

Sent1: “When I want to buy, they run from you –
they keep changing their prices.” Sent2: “It’s very
frustrating.”

Question: Is “It’s very frustrating. (event 2)” the
result of “hey keep changing their prices (event 1)”?
True or False?
Answer:

Table 13: Instruction Template begins with a concise
task instruction for the Language Model (LM) (1st line),
followed by the provision of context (2nd line), and
culminates with posing the question (3rd line).

Discourse relation PDTB TED-MDB
Comparison.Concession 6.5% 11.0%
Comparison.Contrast 1.5% 3.0%
Contingency.Cause.Reason 20.0% 9.0%
Contingency.Cause.Result 10.5% 7.0%
Expansion.Conjunction 19.5% 38.0%
Expansion.Equivalence 4.5% 3.0%
Expansion.Instantiation 13.0% 4.0%
Expansion.Level-of-detail 18.5% 10.0%
Expansion.Substitution 1.5% 5.0%
Temporal.Asynchronous 3.5% 5.0%
Temporal.Synchronous 1.0% 5.0%

Table 14: GPT Experiment Details: The sample distri-
bution for expeirments used for GPT in both PDTB and
TED-MDB.
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LLaMA2-7B 0.087 0.07 0.066 0.156 0.095 0.094 0.005 0.032 0.037 0.009
LLaMA2-7B-Chat 0.12 0.067 0.158 0.199 0.174 0.131 0.149 0.239 0.116 0.025
LLaMA2-13B 0.113 0.116 0.107 0.086 0.097 0.082 0.037 0.037 0.085 0.076
LLaMA2-13B-Chat 0.326 0.289 0.383 0.291 0.172 0.129 0.155 0.197 0.203 0.122
Vicuna-13B 0.334 0.273 0.487 0.195 0.353 0.2 0.048 0.091 0.53 0.354
Wizard 0.167 0.132 0.128 0.108 0.107 0.067 0.22 0.22 0.102 0.043
Wizard-Code 0.283 0.269 0.335 0.174 0.287 0.175 0.053 0.03 0.558 0.417
Wizard-Math 0.24 0.405 0.314 0.201 0.286 0.241 0.161 0.128 0.248 0.143

Table 15: Results for Level 3 Discourse Relations: This table reports DISQ scores for PDTB’s Level 3 discourse
relations. Note that rare classes are omitted because they do not exist in the test set, e.g., Exp.Subst.Arg1-as-subst.

Exp.Subst.Arg1-as-instance and Exp.Subst.Arg1-
as-subst). We observe a notable performance gap
between converse relation pairs. For instance, Con-
tingency.Reason consistently performs worse than
Contingency.Result across all models. Similar dis-
parities are found in other converse relation pairs,
suggesting a potential intrinsic asymmetry in Large
Language Models’ (LLMs) processing of semantic
relationships.

C.7 Contextual Results

To explore the effect of surrounding context on the
comprehension of discourse arguments, we decom-
pose the DISQ Score into Targeted and Counter-
factual categories, as detailed in Table 16. Our
analysis reveals that the overall enhancement in the
DISQ Score is predominantly due to the elevation
in Targeted Score. For the majority of relations, we
observe a pronounced increase in Targeted Score,
contrasted with a decrease or slight rise in Coun-
terfactual Score. This indicates that context pri-
marily benefits affirmatively answering Targeted
questions.

C.8 Paraphrasing Performance on TED-MDB

Figure 8: Models’ performance under paraphrasing in
TED-MDB corpus.

In the main paper, we focused solely on para-
phrasing within the PDTB dataset. We now extend
our reporting to include model performance on
the TED dataset regarding paraphrasing variability.

Figure 8 demonstrates a high degree of correla-
tion among the three sets, with a mean Spearman
correlation of 94.4 across the three pairs.

To build upon our original questions, which de-
tail the event relations in Table 11, we introduce
two sets of paraphrases:

Paraphrase set 1: ‘is the consequence of’, ‘is
the cause of’, ‘does occurs simultaneously as’,
‘does occurs before’, ‘does occurs after’ ‘is op-
posed to’, ‘is negated by’, ‘negates’ ‘serves as a
substitute for’, ‘is being provided an substitute by’
‘provide additional information about’, ‘is being
provided additional information by’, ‘is equal to’,
‘are contributed to the same circumstance’ ‘is an
instance of’, ‘is being instantiated by’

Paraphrase set 2: ‘is due to’, ‘leads to’, ‘takes
place simultaneously as’, ‘does takes place before’,
‘does takes place after’, ‘is contrary to’, ‘is refuted
by’, ‘refutes’, ‘acts as a replacement for’, ‘is re-
placed by’ ‘present more specifics on’, ‘is pre-
sented with more specifics by’, ‘is on par with’,
‘are contributed to the same scenario’, ‘serves as an
example of’, ‘is exemplified by’.

C.9 Converse questions

A key aspect of DISQ involves the inclusion of
converse questions. Table 17 outlines the discourse
relations, original questions, and their converse
counterparts. In bi-directional questions, we re-
verse only the order of entities (e.g., from “Does A
happen at the same time as B?” to “Does B happen
at the same time as A?”). For uni-directional ques-
tions, we invert both the relation and the order of
entities (e.g., changing “Is A the reason for B?” to
“Is B the result of A?”).
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Overall Exp. Cont. Comp. Temp.

LLaMA2-13B-Chat w/o Context
0.588 / 0.547 0.762 / 0.536 0.381 / 0.489 0.516 / 0.718 0.323 / 0.564
0.645 / 0.586 0.833 / 0.572 0.529 / 0.551 0.384 / 0.647 0.307 / 0.685

Wizard-Code w/o Context
0.332 / 0.799 0.332 / 0.797 0.308 / 0.820 0.123 / 0.820 0.647 / 0.722
0.459 / 0.672 0.456 / 0.652 0.484 / 0.695 0.228 / 0.755 0.682 / 0.610

Table 16: Influence of Context on Targeted and Counterfactual Scores: Each cell reports the Targeted and
Counterfactual Scores as X/Y, respectively. For both LLaMA and Wizard models, we observe a significant rise in
Targeted Scores accompanied by a decrease or marginal enhancement in Counterfactual Scores.

Discourse relation Original question Converse question Question type
Temporal.Synchronous Does A happen at the same time as B? Does B happen at the same time as A? Bidirectional
Comparison.Contrast Is A contrasted with B? Is B contrasted with A? Bidirectional
Comparison.Concession Does A deny or contradict with B Is B denied or contradicted with A? Bidirectional
Expansion.Conjunction Does A contribute to the same situation with B? Does B contribute to the same situation with A? Bidirectional
Expansion.Equivalence Is A equivalent to B? Is B equivalent to A? Bidirectional
Contingency.Reason Is A the reason of B? Is B the result of A? Unidirectional
Contingency.Result Is A the result of B? Is B the reason of A? Unidirectional
Expansion.Instantiation Is A an example of B? Is B exemplified by A? Unidirectional
Expansion.Level-of-detail Does A provide more details about B? Is B provided more details by A? Unidirectional
Expansion.Substitution Is A an alternative to B? Is B provided an alternative by A? Unidirectional
Temporal.Asynchronous Does A happen before B? Does B happen after A? Unidirectional

Table 17: Converse Questions: This table outlines discourse relations along with their original and converse
questions, including the type of each question.

Question Consistency Score Question Type
happen before 26.5 Unidirectional
happen after 26.5 Unidirectional
provide more detail about 40.3 Unidirectional
being provided more detail by 40.3 Unidirectional
contrasted with 58.4 Bidirectional
equivalent to 65.4 Bidirectional
the result of 74.0 Unidirectional
the reason for 74.1 Unidirectional
denied or contradicted with 76.8 Bidirectional
deny or contradict with 76.8 Bidirectional
an example of 78.8 Unidirectional
being exemplified by 78.8 Unidirectional
an alternative to 83.3 Unidirectional
an alternative by 83.3 Unidirectional
happen at the same time as 98.6 Bidirectional
contributed to the same situation 99.2 Bidirectional

Table 18: Historical QA Consistency: A comparison
of LLaMA2-13B-Chat’s Consistency Scores, showing
bi-directional questions scoring higher in consistency
than uni-directional ones.

C.10 Details for Experiments Using Historical
QA

Table 18 details consistency scores for each ques-
tion type, revealing that bi-directional questions
generally achieve higher Consistency Scores. For
instance, “happen at the same time as” scores an
impressive 98.6, while uni-directional questions,
such as “happen before”, score merely 26.5. Fig-
ure 9 offers a clear visual comparison, showing an
average consistency score of 79.2 for bi-directional
relations versus 60.6 for uni-directional ones.

This trend indicates that LLaMA-13B-Chat may
predominantly rely on literal keyword matching,
possibly at the expense of deeper reasoning ca-
pabilities in question answering. Conversely, the

0.0 25.0 50.0 75.0 100.0

Unidirectional

0.0 25.0 50.0 75.0 100.0

Bidirectional

Mean Consistency Score 
= 60.6

Mean Consistency Score 
= 79.2

“happen at the same time as”
“contributed to the same situation”

“happen before”
“happen after”

Figure 9: Feature 3: LLaMA’s consistency score w.r.t.
relations. Bidirectional relations have higher scores.

code-based training of Wizard-Code seems to en-
hance its logical reasoning, leading to better overall
performance.

C.11 Pragmatic Understanding Tasks
Corroborates Our Findings

Evaluation on DISQ reveals that LLaMA models
benefit from their chat-enhanced variants. This
finding is corroborated by a recent study (Sravanthi
et al., 2024), which evaluates language models in
pragmatics understanding tasks. The study finds
that chat variants perform better in the zero-shot set-
ting. These pragmatic understanding tasks include
Direct/Indirect Response Classification, Implica-
ture NLI, and Reference via Metonymy, among
others, which share a similar formalization to co-
interpreting several linguistic units and inferring
implicatures, as we do in discourse understanding.

6295


