
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6106–6131
August 11-16, 2024 ©2024 Association for Computational Linguistics

Rethinking the Bounds of LLM Reasoning:
Are Multi-Agent Discussions the Key?

Qineng Wang1* Zihao Wang2* Ying Su2 Hanghang Tong3 Yangqiu Song2

1Zhejiang University 2HKUST 3UIUC
wongqineng73@zju.edu.cn, htong@illinois.edu

{zwanggc,ysuay,yqsong}@cse.ust.hk

Abstract

Recent progress in LLMs discussion suggests
that multi-agent discussion improves the rea-
soning abilities of LLMs. In this work, we
reevaluate this claim through systematic experi-
ments, where we propose a novel group discus-
sion framework to enrich the set of discussion
mechanisms. Interestingly, our results show
that a single-agent LLM with strong prompts
can achieve almost the same performance as
the best existing discussion approach on a wide
range of reasoning tasks and backbone LLMs.
We observe that the multi-agent discussion per-
forms better than a single agent only when there
is no demonstration in the prompt. Further
study reveals the common interaction mecha-
nisms of LLMs during the discussion.1

1 Introduction

Large Language Models (LLMs) demonstrate
strong abilities in language understanding and gen-
eration (OpenAI, 2022, 2023; Touvron et al., 2023a;
Zhang et al., 2022a; Chowdhery et al., 2022; Team
et al., 2023). However, LLMs still fall short for
reasoning tasks due to model deficiencies like hal-
lucination and reasoning perspective mistakes (Xu
et al., 2023a). To overcome these issues, numerous
works have been proposed by simulating human
reasoning. Inspired by Society of Mind (Minsky,
1988), multi-agent discussion frameworks such as
Debate (Du et al., 2023), MAD (Liang et al., 2023),
and ReConcile (Chen et al., 2023a) present a novel
approach by involving multiple AI agents. Pow-
ered by LLMs, these agents autonomously engage
in discussions on given topics, improving the rea-
soning abilities of LLMs by emulating the human
discussion process. To further improve the perfor-
mance, most of multi-agent discussion frameworks
leverage task-specific examples, which are often

*These authors contributed equally to this work.
1Our code can be found in https://github.com/

HKUST-KnowComp/LLM-discussion.

Figure 1: Comparative performance of single-agent set-
tings and multi-agent discussion frameworks on FOLIO-
wiki dataset.

termed as demonstrations (Min et al., 2022). This is
based on the insights that LLMs can learn from the
context demonstrations (Brown et al., 2020). We
note that all these discussion frameworks claim that
they outperform the conventional methods with a
single agent, such as Chain-of-Thought (Wei et al.,
2022).

Figure 1 presents a comparison between single-
agent settings and multi-agent discussion frame-
works on FOLIO-wiki dataset (Zhang et al., 2023b;
Han et al., 2022). In this figure, ‘Demo’ means that
the tested single agent is provided with a demon-
stration case, ‘Q-Desc.’ indicates that the single
agent is provided with detailed question descrip-
tion, while ‘Direct’ refers to the single agent with-
out demonstrations. We observe that the single
agent ‘Demo’ tends to reach a performance upper
bound similar to that of all discussion frameworks,
which will be further elaborated on later. This re-
sult suggests that the previous claim is NOT fully
established.

Based on the observation from Figure 1, in this
paper, we conduct systematic experiments to pro-
vide in-depth analysis. As a newly emergent topic,
the number of available discussion frameworks
still remains limited. To provide a more com-

1
6106

https://github.com/HKUST-KnowComp/LLM-discussion
https://github.com/HKUST-KnowComp/LLM-discussion

After careful consideration,

I think that participant A

makes more sense.

Therefore, the proposition

is [Correct].

Final Result

Participant A and B belive

the answer is [Correct].

Participant C believes the

answer is [Incorrect].

Therefore, the proposition

is [Correct].

Final Result

You are a debater in this discussion.

You will be asked to answer a correctness

verification task of a deductive reasoing

proposition derived from given premises.

You will think the proposition is [Correct].

Type 1

You are a debator in this discussion.

You will be asked to answer a correctness

verification task of a deductive reasoing

proposition derived from given premises.

You will think the proposition is [Incorrect].

Type 2

You are the judge in this discussion.

You will be asked to determine which answer

is more plausible. Here are the answers of

the debaters: ...

Type 3

A B

C

D

A B

C

Kickstart Prompt Agents Algorithm Result

Figure 2: Our proposed design pipeline of multi-agent discussion frameworks. This pipeline operates by having
agents starting with a kick-start prompt. Then, agents will start discussion by obeying the rules defined in the
algorithm and come to a result in the end.

prehensive and detailed comparison between the
single-agent settings and discussion frameworks, as
demonstrated in Figure 3, we propose a new discus-
sion framework named CMD, which is inspired by
human group discussion process. Our discussion
pipeline considers multiple design aspects shown in
Figure 2 (see Section 2.1 for more details). We fur-
ther carry out a range of experiments over standard
reasoning benchmarks (ECQA (Aggarwal et al.,
2021), GSM8k (Cobbe et al., 2021), and FOLIO-
wiki (Han et al., 2022; Zhang et al., 2023b)) using
various configurations within different parts of this
pipeline.

We find that multi-agent discussion does not nec-
essarily enhance reasoning when the prompt pro-
vided to an agent is sufficiently robust, which aligns
with the observation from Figure 1. Additionally,
our experimental results reveal that multi-agent dis-
cussion frameworks outperform single-agent setups
when no demonstrations are provided. We also find
that agents powered by weaker LLMs like Bard
(Anil et al., 2023) can improve its performance
on reasoning with the assistance of the stronger
LLMs like Gemini Pro (Team et al., 2023) during
interaction.

In summary, our analysis provides a new way
of understanding when to use multi-agent discus-
sion on reasoning. Our contributions are listed as
follows: (1) We propose a new multi-agent dis-
cussion framework CMD, which simulates human
group discussion process; (2) We observe that sin-
gle agents with a strong prompt match the perfor-
mance of a multi-agent discussion using equally
robust prompts; (3) We identify two common types

of discussion errors: judge mistake and wrong an-
swer propagation; (4) We find that without demon-
strations, multi-agent discussions surpass the single
agent ; (5) In multi-LLMs multi-agent discussions,
agents with stronger LLMs help improve perfor-
mance of agents with weaker LLMs.

2 Preliminary

2.1 What is Multi-Agent Discussion?

Multi-agent discussion refers to an interactive setup
where multiple agents, each powered by an LLM,
engage in an autonomous dialogue. Each agent is
given a prompt that outlines the necessary back-
ground knowledge and guides its behavior through-
out the discussion. Once the topic is given, these
agents can carry on the conversation independently.

Figure 2 illustrates a discussion design pipeline,
which is structured into four main elements: the
Kick-start prompt, agents, algorithm, and result.
The Kick-start prompt supplies essential details
such as background knowledge and the topic for
discussion. This information is then fed to an agent,
which operates based on various LLMs. Next, the
algorithm lays out the specific rules of discussion,
including the number of rounds, decision-making
processes (whether by a judge or through voting),
and the structure of the discussion (such as hier-
archical). Lastly, ‘Result’ describes how the final
decisions are rendered and presented. We further
provide a view from symmetry for prompt-related
mechanism (including discussion) in Appendix B.

2
6107

... Therefore,

the proposition

is True.

... Therefore,

the proposition

is False.

... Therefore,

the proposition

is True.

... Therefore,

the proposition

is False.

... Therefore,

the proposition

is False.

... Therefore,

the proposition

is True.

Round 1

G1

G2

... I maintain

the proposition

is True.

... I now believe

the answer is

True.

... I agree that

the proposition

is True.

... I maintain

the proposition

is False.

... I believe the

proposition is

False.

... I still think

the answer is

True.

Round 2

G1

G2

... I maintain

the proposition

is True.

... Therefore,

the proposition

is still True.

... I agree that

the proposition

is True.

... I maintain

the proposition

is False.

... Therefore,

the proposition

is False.

... Now I agree

that the answer

is False.

Round 3

G1

G2

Group 1

true
true

true

G1

Group 2

false

false

false

G2

Vote (stage 2)
Secretary

3 agents vote for True.

Reasons: ...

3 agents vote for False.

Reasons: ...

Please decide which opinion

is more plausible.

true

Final Decision (stage 3)

Group Discussion (stage 1)

Stages of CMD

Figure 3: Overview of the Conquer-and-Merge Discussion (CMD) Framework.

2.2 Existing Discussion Frameworks

Previous works on multi-agent discussion frame-
works have already covered several common dis-
cussion paradigms. In this paper, we consider the
following discussion frameworks for our experi-
ments: Debate (Du et al., 2023), MAD (Liang et al.,
2023) and ReConcile (Chen et al., 2023a).
Debate replicates a simple turn-based discussion
among agents. Initially, all agents are prompted
to address the assigned task, and their respective
responses are then incorporated into each agent’s
input for the subsequent round. Typically, this pro-
cess consists of three rounds of discussion.
MAD introduces divergent thinking by involving
two participants to discuss a task from opposing
perspectives. A judge then steps in to evaluate
which viewpoint seems more plausible or if further
discussion is needed. The discussion is repeated
until a consensus is reached or the judge favors a
particular solution.
ReConcile implements a round-table discussion
with the agents powered by multiple LLMs. It
reaches a decision through a weighted voting sys-
tem. In this process, agents provide a confidence
level for their answers, and agents in ReConcile
utilize these confidence levels as weights to cast
votes and arrive at a final decision.

Despite these advancements, the number of
multi-agent frameworks is still limited, and none
has yet to consider one of the most prevalent forms
of discussion: group discussion.

3 CMD: Conquer-and-Merge Discussion

To provide a thorough comparison in following
experiments, we identify and rectify the gap in pre-

vious research, which has not suggested a group-
discussion-based framework. To address this, we
introduce a novel framework for multi-agent group
discussion, referred to as CMD. In CMD, suppose
there are n agents A = {Ai}ni=1 discussing a ques-
tion Q, and agent Ai is powered by an LLM Li.
We use an array H to store the history responses.
The agents will discuss for R rounds. During
each turn r, every agent Ai generates a response
(vi, ei) = CMD(H|Q, r), where vi is the viewpoint
and ei denotes the explanation. Detailed descrip-
tion can be seen in Appendix C.

3.1 Message-Passing Algorithm

For the synchronization of agent communications,
we propose a message-passing algorithm. Previ-
ous works on multi-agent discussion frameworks
focus exclusively on specific scenarios without de-
signing a universal algorithm to synchronize agent
messages across various discussions. Moreover,
discussion forms vary in architecture and agents
can be powered by different LLMs, where each
LLM usually possesses different calling protocols.
Therefore, we design a message-passing algorithm
using a multi-threaded way to overcome these is-
sues. The algorithm establishes a receiving map M
for every agent to store the messages they should
get in the next turn. For each message mj from
Agent Ai, the algorithm first confirms the receivers
Ar, then add mj into the receiving map M by ev-
ery agent Ak ∈ Ar. When the next turn begins, the
algorithm will automatically push stored messages
from M to corresponding agents. Please refer to
Appendix C.4 for more detailed pseudo code.

3
6108

3.2 Three Stages of CMD
As illustrated in Figure 3, CMD consists of three
stages: group discussion, voting and the final de-
cision stage. Typically, the final decision stage is
reserved for instances of a tie and is otherwise un-
necessary. Below is a breakdown of each stage
involved in the CMD framework, and detailed intro-
duction can be seen in Appendix C.3.
Stage 1: Group Discussion. During this stage,
agents A are divided into groups G = {Gk}tk=1

with an equal size. All agents are asked to solve
task Q through discussion. For each agent Ai ∈
Gk, all answers and explanations from Ai ∈ Gk in
the last round are accessible where Aj ∈ Gk and
j ̸= i. In contrast, they can only see the answers
without explanations from agents in other groups.
After R rounds of discussions, CMD moves to the
voting stage.
Stage 2: Voting. When discussion reaches the
maximum number of rounds, all agents A start vot-
ing. Each vote of agent in this discussion is treated
equally, therefore, the result is determined by the
majority decision. In the event of a tie, CMD transi-
tions to stage 3. Otherwise, the discussion process
concludes formally.
Stage 3: Final Decision. If a tie occurs, we intro-
duce an extra agent S in the role of the secretary
to make the final decision. Each proposed answer
is accompanied by an explanation selected from
agents with the same opinion and provided to the
secretary for the final determination. To sum up,
the final decision is made by either Vote(A) or
S(V,O|Q) where V = {vi}n and O = {oi}n,
representing a set of viewpoints and a set of expla-
nations respectively.

4 Experimental Setups

In the experiments, we contrast single-agent setup
with four established multi-agent discussion frame-
works: Debate, MAD, ReConcile, and CMD under
various prompt conditions. These methods are in-
troduced in previous Sections 2.2 and 3.

4.1 Implementation Details and Metrics
Our experiments are primarily implemented with
three advanced LLMs, including ChatGPT-3.5
(OpenAI, 2022), Gemini Pro (Team et al., 2023)
and Bard (Anil et al., 2023). In particular, we em-
ploy the gpt-35-turbo (0613) instance hosted on
Azure OpenAI2 for ChatGPT-3.5, while the chat-

2https://oai.azure.com/

bison-001 model represents Bard via PaLM2 archi-
tecture. Gemini Pro and Bard interfaces operate
through Google MakerSuite API3. A uniform di-
alogue temperature of 0.25 is configured across
LLMs on CMD to ensure consistency. For all multi-
agent discussion frameworks, we set the maximum
discussion round number to 3. Our evaluations use
accuracy to measure performance across all tasks.

4.2 Downstream Tasks

The frameworks are implemented on a suite of rea-
soning tasks, including a commonsense reasoning
task and two deductive reasoning tasks: (1) ECQA
(Aggarwal et al., 2021): A QA dataset centered
on commonsense knowledge, (2) GSM8K (Cobbe
et al., 2021): A benchmark consists of math word
problems, (3) FOLIO-wiki (Zhang et al., 2023b): A
dataset adapted from FOLIO (Han et al., 2022) for
both symbolic and natural language deductive rea-
soning. In alignment with constraints imposed by
computational resources and following precedents
set by earlier research (Du et al., 2023; Chen et al.,
2023a; Liang et al., 2023), a subset of 100 instances
from the test sets of both ECQA and GSM8K are
selectively sampled. For an in-depth analysis, we
choose to conduct a comprehensive experiments
of all 460 cases within the curated version of the
FOLIO-wiki dataset, which removes the flawed
cases to ensure the result authenticity.

5 Experiments on Single LLM

In this section, we conduct our experiments using
a single LLM, ChatGPT-3.5. To gain the initial
insights, we provide an in-depth analysis of the
FOLIO-wiki dataset, examining both single-agent
settings and multi-agent discussions as detailed in
Section 5.1. Afterward, we extend our experiments
to two other datasets GSM8K and ECQA in Section
5.2. We also investigate common mistakes made
by discussions through a case study in Section 5.3.
Finally, we summarize our findings in Section 5.4.

5.1 Analysis of FOLIO-wiki Dataset

We begin by examining if multi-agent discussions
are more effective than an agent using the strongest
prompt on FOLIO-wiki dataset. Drawing from pre-
vious research (Wei et al., 2022; Ling et al., 2023)
on crafting prompts for reasoning tasks, we divide
the prompt into three parts: a detailed question de-
scription, which provides an in-depth background

3https://ai.google.dev/

4
6109

Prompt Components Multi-Agent Discussion (%) Single
Agent (%)Q-Desc. A-Desc. Demo. MAD (3) Debate (3) Debate (6) CMD (6)

64.13 70.00 69.13 73.26 70.22
74.13 75.65 76.30 74.13 73.26
68.91 71.96 71.74 73.89 71.30
71.96 70.22 70.00 71.09 73.91
74.13 75.65 74.78 77.39 76.09

Table 1: Comparative performance of single-agent settings and multi-agent discussions on FOLIO-wiki using
ChatGPT-3.5. Abbreviations are: detailed question descriptions (Q-Desc.), and answer format descriptions (A-
Desc.), demonstrations (Demo.). Only the question itself is used as input when prompt components are disabled.
The number next to the framework represents the number of agents.

of the task; an answer format description, which
instructs how an agent should reply; and a task-
specific demonstration, which shows an example of
a question and answer pair. For this task, we metic-
ulously craft a demonstration for input prompt. We
start by labeling each premise. After that, we quote
all the premises and relate them to every step in the
reasoning process by using these labels, until the
final step is reached. A labeled example is similar
to the case in Table 8. We then test the performance
of various combinations of these components for
both single agents and discussions.
Single Agent. We conduct an evaluation of differ-
ent prompt components with a single agent, and
the results are outlined in Table 1. This table shows
that for both single-agent settings and multi-agent
discussions, the inclusion of a detailed question de-
scription or a task-specific demonstration enhances
reasoning abilities on the FOLIO-wiki dataset. The
detailed question description is helpful because the
possible answers to judge the correctness of a given
proposition—true, false, or unknown—require clar-
ity. Without such clarity, agents often struggle to
differentiate between what is ‘false’ and what is
‘unknown’. Most notably, the addition of a demon-
stration contributes significantly to improved per-
formance, highlighting its value as the most impact-
ful component, in line with what prior studies have
suggested (Min et al., 2022).
Multi-Agent Discussions. We assess the same
prompt components within multi-agent discussion
setups, and Table 1 reveals three key insights: (1)
Demonstrations and detailed question description
enhance multi-agent discussions. (2) Despite simi-
lar overall performance, most multi-agent discus-
sions do not surpass the single agent when a demon-
stration is introduced. (3) CMD performs better than
both single-agent setups and other multi-agent dis-

cussion frameworks on the FOLIO-wiki dataset.
Below is further analysis of our findings.
A Strong Single Agent is Comparable to Dis-
cussion Frameworks. Analyzing experiments
with single-agent settings and multi-agent discus-
sions on the FOLIO-wiki dataset, we find that task-
specific demonstrations significantly enhance a sin-
gle agent’s performance. Additionally, we estab-
lish that a well-supported agent can perform on par
with discussion frameworks. Our analysis indicates
that prompt engineering can boost reasoning per-
formance in large language models, with demon-
strations in both single-agent and multi-agent dis-
cussions pushing towards the upper bound of per-
formance.

5.2 Evaluation on All Tasks

In Section 5.1, we discover that demonstrations
play a pivotal role in enhancing performance on
FOLIO-wiki dataset. With this insight in mind, we
simplify our evaluation to two prompt scenarios:
with (referred as direct) and without demonstra-
tions (referred as demo). The results presented in
Table 2 cover all tested reasoning tasks. The find-
ings show: (1) With demonstrations, discussion
frameworks and single-agent settings have compa-
rable performance on average. This is consistent
with our earlier observations. (2) Without demon-
strations, CMD tend to surpass single-agent settings,
both on average and in most individual tasks.
When Does Discussion Work Better? Most
Multi-agent discussion frameworks, especially
CMD, achieve better performance compared with
single-agent settings when neither is supported by
demonstrations. We believe this is because, during
discussions, the input from other agents can intro-
duce new perspectives, leading to a more thorough
reasoning process. Therefore, this collaborative

5
6110

Method ECQA GSM8K FOLIO-wiki Average
Direct Demo Direct Demo Direct Demo Direct Demo

Single Agent 63.00 67.00 69.00 83.00 70.22 76.09 67.41 75.63

MAD (3 Agents) 55.00 58.00 74.00 78.00 61.25 74.13 63.42 70.04
Debate (3 Agents) 67.00 65.00 78.00 81.00 70.00 75.65 71.67 73.88
Debate (6 Agents) 65.00 64.00 74.00 78.00 69.13 74.78 69.38 72.26
CMD (6 Agents) 64.00 63.00 75.00 83.00 73.26 77.39 70.75 74.46

Table 2: Results for all tasks, with and without demonstration settings included. Using ChatGPT-3.5.

advantage makes multi-agent discussions a more
effective option in scenarios lacking specific expert
knowledge or detailed examples.
Why Does Discussion Frameworks Perform Dif-
ferently on Tested Tasks? Table 2 indicates that
MAD is the least effective among the frameworks
tested. We suspect that this is because MAD in-
corporates a divergent thinking way, which asks
agents to disagree with each other. This can some-
times hinder reasoning by introducing irrelevant
information that complicates decision-making. We
explore this further with an error analysis in Sec-
tion 5.3. Additionally, we observed unexpected
behaviors from other discussion frameworks under
specific conditions or tasks. For example, Debate
and CMD perform worse on ECQA dataset when
demonstrations are introduced. We hypothesize
that because ECQA demands more commonsense
knowledge than purely analytical reasoning, the
single-source interaction stemming from a single
LLM might cause agents to overthink. Instead of
clarifying misunderstandings, the increased dia-
logue may introduce complexity without address-
ing the underlying knowledge gaps. In contrast
to ECQA, datasets like GSM8K and FOLIO-wiki
place a greater emphasis on deductive reasoning
abilities. In these cases, the discussion process be-
tween agents can be beneficial as it allows them to
identify and address flaws in each other’s reasoning
through interaction.

5.3 Two Discussion Error Types: A Case
Study

Our experiments show that multi-agent discussions
can sometimes reach incorrect conclusions on ques-
tions that a single agent answers correctly. Fig-
ure 4 presents an example from the FOLIO-wiki
dataset illustrating this point: a single agent pro-
vides the correct answer, but multi-agent discus-
sions lead to an erroneous result. We identify two

1. All advocates of high tariff rates are Republicans.
2. Some Republicans are not conservatives.

Premises

Some conservatives are advocates of high tariff rates.

Proposition

Single Agent

Answer

Unknown

Input Task

Agent 1

Conservatives are ... the
proposition is unknown.

You are wrong ... the
answer should be false.

After reviewing answers,
I believe answer is false.

Discussion Error Type 1: Judge Mistake

Agent 1 Agent 2 Judge

Conservatives are ... the
proposition is unknown.

No, no proof shows ...
the answer is false.

After considering, I agree
that the answer is false.

Discussion Error Type 2: Wrong Answer Propagation

Round 1 Round 1 Round 2Agent 1 Agent 2 Agent 1

We do not know the relationships between conservatives and ...
Therefore, the proposition is unknown.

Figure 4: Two common types of errors that may oc-
cur in multi-agent discussions are judge mistake and
wrong answer propagation. These issues can lead to
circumstances where a multi-agent discussion reaches
an incorrect conclusion, even if single agent can arrive
at the correct one.

unique types of errors in multi-agent discussions:
(1) Judge Mistake: This occurs in situations where
an agent serves as a judge to decide on the final an-
swer. If there are varying responses among agents,
the judge might select the incorrect option as the
final verdict. Frameworks like MAD and CMD are
susceptible to this error, particularly when deci-
sions are made during a tie. (2) Wrong Answer
Propagation: This type of error happens when an
agent, influenced by the input from others, deviates
from its initial correct answer and adopts an incor-
rect consensus, spreading the mistake further in the
discussion. This is the most common mistake the
multi-agent discussion can make, even when most
of their initial answers are correct.

6
6111

5.4 Summary

In this section, we evaluate various prompt com-
ponent combinations for both single-agent settings
and multi-agent discussions. Our findings suggest
that multi-agent discussions are on par with a sin-
gle agent when both have access to demonstrations.
However, in the absence of demonstrations, multi-
agent discussions generally outperform a single
agent, making them a better option in scenarios
where expert knowledge or detailed examples are
insufficient. We also highlight unusual outcomes
and present a case study to identify two frequent
errors in multi-agent discussions: Judge Mistake
and Wrong Answer Propagation.

6 Experiments on Multiple LLMs

In this section, we expand our experimental scope
from a single LLM to multiple LLMs for both
single-agent settings and multi-agent discussion
frameworks, which allows us to test the validity
of our previous findings in multi-LLM scenarios.
Specifically, we assess the performance of agents
powered by three advanced LLMs: ChatGPT-3.5,
Gemini Pro, and Bard. In Section 6.1, we compare
the performance of three single-agent configura-
tions, each using a different LLM, against multi-
agent discussions leveraging all three LLMs. Our
round-level analysis in Section 6.2 yields another
insight: an agent powered by stronger LLM can
enhance the performance of an agent powered by a
less capable LLM.

More experimental results can be found in Ap-
pendix A, where we study the open-source LLMs
and how they interact with other LLMs in CMD.

6.1 Validate Findings on Multiple LLMs
Scenarios

In this section, we evaluate the performance of
three single-agent settings, each supported by a dif-
ferent LLM, and two multi-agent discussion frame-
works, ReConcile and CMD, across all tasks. We
utilize two types of prompt settings for each task:
one with demonstrations and one without. For the
CMD framework, we organize six agents into two
groups of three, with each agent in a group powered
by one of the LLMs: ChatGPT-3.5, Gemini Pro, or
Bard. The results presented in Table 3 support our
previous findings from Section 5 with some slight
modifications.
A Strong Single Agent is Comparable to Dis-
cussion Frameworks. Based on experimental re-

(a) ReConcile (Discussion) (b) CMD (Group Discussion)

Figure 5: Round-level performance of each LLM in
multi-agent discussions on FOLIO-wiki dataset.

sults from Table 3, we can find that discussion
frameworks perform comparably to a single agent
powered by Gemini Pro when both are provided
with demonstrations. This consolidates our earlier
conclusion that a ‘strong’ single agent—supported
by both a well-designed prompt and a SOTA
LLM—can rival the performance of a multi-agent
discussion framework.
Discussion Frameworks Outperform Single
Agents with No Demonstration. Table 3 reveals
that, in multi-LLM scenarios, multi-agent discus-
sions outperform single agents when demonstra-
tions are not provided. This outcome aligns with
our previous observations in single LLM settings.
Furthermore, CMD and ReConcile demonstrate sim-
ilar performance when they both have no access
to demonstrations and they are both powered by
same LLMs. This indicates that our findings are
consistent on different multi-LLM multi-agent dis-
cussions frameworks.

6.2 Enhancing Agents in Weaker LLMs with
Support from Stronger LLMs

As shown in Table 3, single agents using Bard show
the least effectiveness in reasoning tasks such as
those in the FOLIO-wiki dataset. However, multi-
LLM multi-agent frameworks remain competitive.
To understand how a less advanced LLM like Bard
performs during multi-agent discussions, we fur-
ther study the round-by-round performance of each
LLM engaged in the discussions. Figure 5 demon-
strates that agents with less capable LLMs like
Bard and ChatGPT-3.5 gradually enhance their per-
formance over consecutive rounds with the support
of the more robust LLM, Gemini Pro. We infer
that throughout the discussion, Gemini Pro assists
in bridging the gaps in knowledge and reasoning
for the less advanced LLMs, guiding towards a
stronger line of reasoning. Notably, although there
is a slight drop in the performance of Gemini Pro
during the second round, it demonstrates resilience

7
6112

Method Category LLM ECQA GSM8K FOLIO-wiki Average
Direct Demo Direct Demo Direct Demo Direct Demo

Single Agent
Bard 66.00 65.00 47.00 54.00 70.00 71.96 61.00 63.65
Gemini Pro 74.00 75.00 75.00 81.00 74.13 79.78 74.38 78.59
ChatGPT-3.5 63.00 67.00 69.00 83.00 70.22 76.09 67.41 75.63

Discussion ReConcile (Bard, Gemini, ChatGPT) 70.00 71.00 78.00 83.00 80.34 81.09 76.11 78.36

Group Discussion CMD (Bard, Gemini, ChatGPT) 73.00 72.00 78.00 82.00 79.78 81.96 76.93 78.66

Table 3: Results from single-agent and CMD across multiple LLMs on all tasks evaluated with two types of prompts:
with demonstrations and without.

and recovers swiftly, largely maintaining its supe-
rior performance. Again, this finding is applicable
to different multi-LLM discussions, specifically for
both ReConcile and CMD.

7 Related Work

7.1 Prompting LLM for Reasoning

Recent researches have experienced great pro-
gresses in building powerful LLMs (Brown et al.,
2020; OpenAI, 2022, 2023) or exploring the strat-
egy of adopting LLMs over many downstream
tasks via prompt enigineering.

By training with different knowledge tex-
tual sources and parameter size, various LLMs
equipped with different reasoning capabilities are
constructed, such as OPT (Zhang et al., 2022a),
LLaMA (Touvron et al., 2023a,b), BLOOM (Scao
et al., 2022), and PaLM (Chowdhery et al., 2022;
Anil et al., 2023). Recently, Gemini Pro (Team
et al., 2023) extends the capabilities of LLMs to
the field of multi-modality.

Numerous advancements have been made in the
field of improving reasoning abilities of LLMs
with prompt engineering. Chain of Thought (CoT)
(Wei et al., 2022; Kojima et al., 2022) is a linear
problem-solving approach where each step builds
upon the previous one. Fu et al. (2022) propose to
apply CoT to multi-step reasoning tasks. To auto-
mate the CoT, Auto-CoT (Zhang et al., 2022b) con-
structs demonstrations by sampling diverse ques-
tions and generating reasoning chains. Active-
Prompt (Diao et al., 2023) aims to select the most
uncertain questions for task-specific annotations.
Other prompt strategies designed to enhance rea-
soning in LLMs include the PS Prompt (Wang et al.,
2023a), which breaks tasks into subtasks, ToT (Yao
et al., 2023a) which expands on the reasoning pro-
cess by considering multiple paths of reasoning
and self-evaluating choices, the effective GoT (Yao
et al., 2023b), which frames thoughts as graphs,

Natural Program (Ling et al., 2023) which helps to
improve the deductive reasoning tasks, re-reading
prompt (Xu et al., 2023b) which revisits the ques-
tion information embedded within input prompts.

7.2 Multi-agent Discussion for Reasoning with
LLMs

Multi-agent discussion utilizes multiple LLMs as
agents to collectively discuss and reason given
problems in an interactive way. Abundant re-
searches have explored how to improve the rea-
soning ability of single LLM, while multi-agent
discussion among LLMs is still under exploration.

The Multi-Agent Debate framework, introduced
by (Du et al., 2023), establishes a mechanism
for symmetric discussions among agents. During
the same period, the MAD (Multi-Agent Debate)
framework (Liang et al., 2023) introduces an asym-
metric mechanism design. It assigns different roles
(debater and judge) asymmetrically. Other similar
works include (Chan et al., 2023). Also, the ReC-
oncile framework (Chen et al., 2023a) exemplifies
an asymmetric discussion mechanism by involv-
ing different LLMs and using a weighted voting
mechanism. To understand discussion more deeply,
Zhang et al. (2023a) aim to explain such collabora-
tion mechanism in a social psychology view.

Unlike these works, we aim to explore the po-
tential effects of prompting contents over the dis-
cussion process by our defined multi-agent group
discussion framework CMD.

8 Conclusion

In this paper, we re-examine the claim that multi-
agent discussions are superior to a single agent in
reasoning tasks by conducting systematic experi-
ments. We introduce a novel framework CMD for a
comprehensive and fair assessment. By conducting
experiments over standard benchmarks, we find
that (1) A single agent with a strong prompt and
powered by a strong LLM achieves comparable per-

8
6113

formance with multi-LLM multi-agent discussions;
(2) In the absence of demonstrations, multi-agent
discussion frameworks outperform single agents on
most tasks; (3) When multiple LLMs are involved
in multi-agent discussions, agents with stronger
LLMs can enhance the performance of agents with
weaker LLMs as discussion progresses.

9 Ethical Considerations

Our study employs publicly available datasets and
LLMs accesses via official APIs, ensuring respon-
sible and ethical use. Specifically, our ethical con-
siderations can be summarized as follows:
Public Datasets. Datasets we use are designed
for academic research. No personal data has been
processed.
Licensed API Usage. Our application of LLMs
complies with the API usage policies, maintain-
ing fair use standards and respecting intellectual
property.
Transparency. We provide detailed experimenta-
tion methods to allow for result reproduction and
encourage transparent scientific practices.

10 Limitations

Our research offers comprehensive experiments to
study the performance of a strong single agent and
multi-agent discussions. However, several aspects
highlighted below can be further refined and ex-
plored in future work.
Enhancing Agent Complexity. Currently, all dis-
cussion frameworks including CMD considers an
LLM session as an AI Agent. This perspective
simplifies the the concept of LLM-based AI Agent
defined in the literature (Weng, 2023). By integrat-
ing more sophisticated techniques such as Tree-of-
Thought (Yao et al., 2023a) or Cumulative Reason-
ing (Zhang et al., 2023b), or incorporating with
external tools or knowledge bases, we could poten-
tially improve the overall reasoning performance
of multi-agent discussions.
Expanding Task Diversity. While our study
mainly focuses on reasoning tasks for assessing
both single-agent settings and multi-agent discus-
sions, the adaptive nature of discussions allows for
a broader types of applications. Future research
could explore the use of agent discussions in di-
verse scenarios such as real-world strategic plan-
ning or the integration of agents into interactive
gaming environments.

Experimenting with Additional LLMs. Due to
computational and financial constraints, our inves-
tigation is limited to testing three LLMs—Bard,
Gemini Pro, and ChatGPT-3.5. Expanding our anal-
ysis to include additional LLMs could provide a
more extensive understanding of the capabilities
and variances across different language models, of-
fering valuable insights into the generalizability
and scalability of our findings in multi-agent dis-
cussion frameworks.

11 Acknowledgement

The authors of this paper were supported by the
NSFC Fund (U20B2053) from the NSFC of China,
the RIF (R6020-19 and R6021-20), and the GRF
(16211520 and 16205322) from RGC of Hong
Kong. We also thank the support from the UGC
Research Matching Grants (RMGS20EG01-D,
RMGS20CR11, RMGS20CR12, RMGS20EG19,
RMGS20EG21, RMGS23CR05, RMGS23EG08).

References
Shourya Aggarwal, Divyanshu Mandowara, Vishwajeet

Agrawal, Dinesh Khandelwal, Parag Singla, and Di-
nesh Garg. 2021. Explanations for commonsenseqa:
New dataset and models. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3050–3065.

Philip W Anderson. 1972. More is different: Broken
symmetry and the nature of the hierarchical structure
of science. Science, 177(4047):393–396.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz
Lehmann, Michal Podstawski, Hubert Niewiadomski,
Piotr Nyczyk, et al. 2023. Graph of thoughts: Solv-
ing elaborate problems with large language models.
arXiv preprint arXiv:2308.09687.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan

9
6114

Liu. 2023. Chateval: Towards better llm-based eval-
uators through multi-agent debate. arXiv preprint
arXiv:2308.07201.

Justin Chih-Yao Chen, Swarnadeep Saha, and Mohit
Bansal. 2023a. Reconcile: Round-table conference
improves reasoning via consensus among diverse
llms. arXiv preprint arXiv:2309.13007.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023b. Teaching large language mod-
els to self-debug. arXiv preprint arXiv:2304.05128.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Constantinos Daskalakis and Seth Matthew Weinberg.
2012. Symmetries and optimal multi-dimensional
mechanism design. In Proceedings of the 13th ACM
conference on Electronic commerce, pages 370–387.

Shizhe Diao, Pengcheng Wang, Yong Lin, and Tong
Zhang. 2023. Active prompting with chain-of-
thought for large language models. arXiv preprint
arXiv:2302.12246.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. arXiv preprint arXiv:2305.14325.

Dheeru Dua, Shivanshu Gupta, Sameer Singh, and
Matt Gardner. 2022. Successive prompting for
decomposing complex questions. arXiv preprint
arXiv:2212.04092.

Weizhi Fei, Xueyan Niu, Pingyi Zhou, Lu Hou, Bo Bai,
Lei Deng, and Wei Han. 2023. Extending context
window of large language models via semantic com-
pression. arXiv preprint arXiv:2312.09571.

Weizhi Fei, Zihao Wang, Hang Yin, Yang Duan, Hang-
hang Tong, and Yangqiu Song. 2024. Soft reason-
ing on uncertain knowledge graphs. arXiv preprint
arXiv:2403.01508.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark,
and Tushar Khot. 2022. Complexity-based prompt-
ing for multi-step reasoning. arXiv preprint
arXiv:2210.00720.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting
Qi, Martin Riddell, Luke Benson, Lucy Sun, Eka-
terina Zubova, Yujie Qiao, Matthew Burtell, et al.
2022. Folio: Natural language reasoning with first-
order logic. arXiv preprint arXiv:2209.00840.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2022. Decomposed prompting: A modular
approach for solving complex tasks. arXiv preprint
arXiv:2210.02406.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Jean-Jacques Laffont and David Martimort. 2000.
Mechanism design with collusion and correlation.
Econometrica, 68(2):309–342.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2022. On the
advance of making language models better reasoners.
arXiv preprint arXiv:2206.02336.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and
Shuming Shi. 2023. Encouraging divergent thinking
in large language models through multi-agent debate.
arXiv preprint arXiv:2305.19118.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang,
Mingu Lee, Roland Memisevic, and Hao Su. 2023.
Deductive verification of chain-of-thought reasoning.
arXiv preprint arXiv:2306.03872.

Lihui Liu, Zihao Wang, Ruizhong Qiu, Yikun Ban, and
Hanghang Tong. 2024. Logic query of thoughts:
Guiding large language models to answer complex
logic queries with knowledge graphs. arXiv preprint
arXiv:2404.04264.

Ruibo Liu, Jason Wei, Shixiang Shane Gu, Te-Yen Wu,
Soroush Vosoughi, Claire Cui, Denny Zhou, and An-
drew M Dai. 2022a. Mind’s eye: Grounded language
model reasoning through simulation. arXiv preprint
arXiv:2210.05359.

Zhixuan Liu, Zihao Wang, Yuan Lin, and Hang Li.
2022b. A neural-symbolic approach to natural lan-
guage understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
2159–2172.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and Jian-
feng Gao. 2023. Chameleon: Plug-and-play compo-
sitional reasoning with large language models. arXiv
preprint arXiv:2304.09842.

Aman Madaan, Niket Tandon, Peter Clark, and Yim-
ing Yang. 2022. Memory-assisted prompt editing
to improve gpt-3 after deployment. arXiv preprint
arXiv:2201.06009.

10
6115

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? arXiv
preprint arXiv:2202.12837.

Marvin Minsky. 1988. Society of mind. Simon and
Schuster.

OpenAI. 2022. Chatgpt. https://openai.com/
blog/chatgpt.

OpenAI. 2023. Gpt-4 technical report.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A Smith, and Mike Lewis. 2022. Measuring
and narrowing the compositionality gap in language
models. arXiv preprint arXiv:2210.03350.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Kristopher Tapp. 2021. Symmetry. Springer.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023a. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022a. Self-consistency improves
chain of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Zihao Wang, Weizhi Fei, Hang Yin, Yangqiu Song,
Ginny Wong, and Simon See. 2023b. Wasserstein-
fisher-rao embedding: Logical query embeddings
with local comparison and global transport. In Find-
ings of the Association for Computational Linguistics:
ACL 2023, pages 13679–13696.

Zihao Wang, Yangqiu Song, Ginny Wong, and Si-
mon See. 2023c. Logical message passing networks
with one-hop inference on atomic formulas. In The
Eleventh International Conference on Learning Rep-
resentations.

Zihao Wang, Hang Yin, and Yangqiu Song. 2021.
Benchmarking the combinatorial generalizability of
complex query answering on knowledge graphs. In
Thirty-fifth Conference on Neural Information Pro-
cessing Systems Datasets and Benchmarks Track
(Round 2).

Zihao Wang, Hang Yin, and Yangqiu Song. 2022b. Log-
ical queries on knowledge graphs: Emerging inter-
face of incomplete relational data. Data Engineering,
page 3.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Lilian Weng. 2023. Llm-powered autonomous agents.
lilianweng.github.io.

Yixuan Weng, Minjun Zhu, Shizhu He, Kang Liu,
and Jun Zhao. 2022. Large language models are
reasoners with self-verification. arXiv preprint
arXiv:2212.09561.

Zhiheng Xi, Senjie Jin, Yuhao Zhou, Rui Zheng,
Songyang Gao, Tao Gui, Qi Zhang, and Xuanjing
Huang. 2023. Self-polish: Enhance reasoning in
large language models via problem refinement. arXiv
preprint arXiv:2305.14497.

Fangzhi Xu, Qika Lin, Jiawei Han, Tianzhe Zhao, Jun
Liu, and Erik Cambria. 2023a. Are large language
models really good logical reasoners? a comprehen-
sive evaluation from deductive, inductive and abduc-
tive views. arXiv preprint arXiv:2306.09841.

Xiaohan Xu, Chongyang Tao, Tao Shen, Can Xu,
Hongbo Xu, Guodong Long, and Jian-guang Lou.
2023b. Re-reading improves reasoning in language
models. arXiv preprint arXiv:2309.06275.

Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, Yangqiu
Song, Hanghang Tong, Kang Liu, and Jun Zhao.
2024. Generate-on-graph: Treat llm as both agent
and kg in incomplete knowledge graph question an-
swering. arXiv preprint arXiv:2404.14741.

11
6116

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2303.08774
https://lilianweng.github.io/posts/2023-06-23-agent/

Tianci Xue, Ziqi Wang, Zhenhailong Wang, Chi Han,
Pengfei Yu, and Heng Ji. 2023. Rcot: Detect-
ing and rectifying factual inconsistency in reason-
ing by reversing chain-of-thought. arXiv preprint
arXiv:2305.11499.

Zhicheng Yang, Jinghui Qin, Jiaqi Chen, Liang Lin,
and Xiaodan Liang. 2022. Logicsolver: Towards
interpretable math word problem solving with log-
ical prompt-enhanced learning. arXiv preprint
arXiv:2205.08232.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023a. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Yao Yao, Zuchao Li, and Hai Zhao. 2023b. Be-
yond chain-of-thought, effective graph-of-thought
reasoning in large language models. arXiv preprint
arXiv:2305.16582.

Hang Yin, Zihao Wang, and Yangqiu Song. 2024a. Meta
operator for complex query answering on knowledge
graphs. arXiv preprint arXiv:2403.10110.

Hang Yin, Zihao Wang, and Yangqiu Song. 2024b. Re-
thinking complex queries on knowledge graphs with
neural link predictors. In The Twelfth International
Conference on Learning Representations.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. Star: Bootstrapping reasoning with rea-
soning. Advances in Neural Information Processing
Systems, 35:15476–15488.

Jintian Zhang, Xin Xu, and Shumin Deng. 2023a. Ex-
ploring collaboration mechanisms for llm agents:
A social psychology view. arXiv preprint
arXiv:2310.02124.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al.
2022a. Opt: Open pre-trained transformer language
models. arXiv e-prints, pages arXiv–2205.

Yifan Zhang, Jingqin Yang, Yang Yuan, and An-
drew Chi-Chih Yao. 2023b. Cumulative reason-
ing with large language models. arXiv preprint
arXiv:2308.04371.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022b. Automatic chain of thought prompt-
ing in large language models. arXiv preprint
arXiv:2210.03493.

12
6117

https://openreview.net/forum?id=1BmveEMNbG
https://openreview.net/forum?id=1BmveEMNbG
https://openreview.net/forum?id=1BmveEMNbG

A Extended Empirical Results

A.1 Open-source language model
Table 4 shows the results of CMD on GSM8k with direct prompt (no demonstration). The open-source
weak models also affect the results. As expected, the 7B LLM makes the overall performance worse than
the 70B case.

Table 5 demonstrates how these three LLMs interact during the discussion. Our main claim that the
weaker LLMs can be improved during the discussion also holds. We can see that Llama-7b and Llama-70b
have been significantly improved.

Furthermore, by adding weaker LLMs, we can identify more fine-grained interactions.

• When the weakest LLM is sufficiently weak (Llama 7b), the stronger LLMs (Gemini
Pro/Bard/ChatGPT3.5) are affected. However, the results are ensembled in the final decision
stage, making the overall performance still compatible. (To see this, the baseline LLM performance
of Llama is about 20%.

• When the weakest LLM is not sufficiently weak (Llama 70b), the performance of stronger LLMs
(Gemini Pro/Bard/ChatGPT3.5) follows Figure 5. And the final results are good.

The experimental results with weak open-source LLMs reveal additional fine-grained information about
LLM discussion.

A.2 CMD and other methods to enhance LLMs
Self-consistency is a simple and effective way of improving the performance of LLMs. We argue that
CMD and such approaches are orthogonal, so we can attach such methods within each agent inside CMD.

Table 6 below compares self-consistency against single-agent prompts and CMD. Self-consistency (6),
with six trials, performs on par with the single agent with demonstration and CMD(6). We note that the
self-consistency (6) runs with prompts with demonstrations, which matches the single-agent input.

When considering self-consistency (6) as a "discussion" without interactive messages, our claim that a
single agent with strong prompts performs similarly to a multi-agent discussion still holds.

It is also interesting to consider self-consistency as a way to improve agents rather than a "discussion". In
this way, self-consistency can be plugged into any discussion mechanisms. Given its similar performance
with single-agent experiments revealed in the table above, one could expect that the improvement of adding
self-consistency into other discussions is very marginal. Meanwhile, the number of tokens consumed by
such discussion + self-consistency will be approximate -times of the cost of original discussion methods,
where is the number of trials in self-consistency.

Similarly, self-consistency can be understood as one general technique to improve the performance of
methods. Therefore, all discussion models can be further improved by running multiple times. However,
such engineering hacking is beyond the scope of this paper, where we focus more on language model
discussion. Besides, self-consistency can improve stability; it might bring more improvement when the
weak but cheap LLMs, such as Llama-7b. However, how to improve weak LLMs is beyond the scope of
the discussion itself.

B Discussion Engineering and Agent Symmetry

This section introduces a general framework to understand the discussion engineering of large language
models. Let L be a Large Language Model (LLM) and x be the input text, the forward inference generates

Table 4: CMD with Llama 7B and 70B

Method 7B 70B

CMD(Gemini Pro, Bard, Llama2) 62.00% 61.00%
CMD(Gemini Pro, Llama2, ChatGPT-3.5) 74.00% 80.00%

13
6118

Table 5: Multi-round interaction of multiple LLMs in CMD

Method LLM Round1 Round2 Round3

CMD
Gemini Pro 68.00% 58.50% 55.50%
Bard 47.00% 45.50% 39.00%
Llama 2 7B 22.00% 30.50% 32.00%

CMD
Gemini Pro 65.00% 64.00% 61.00%
Bard 46.50% 43.00% 40.50%
Llama 2 70B 41.50% 51.50% 51.50%

CMD
Gemini Pro 67.00% 66.50% 68.50%
Llama 2 7B 22.50% 28.50% 36.50%
ChatGPT-3.5 68.50% 72.50% 73.50%

CMD
Gemini Pro 66.50% 73.00% 76.00%
Llama 2 70B 42.50% 67.00% 71.50%
ChatGPT-3.5 70.00% 75.50% 77.50%

Table 6: Self consistency and CMD

Method GSM8K FOLIO-wiki ECQA

Standard CoT 69% 70.22% 63%
Demonstrations 83% 76.09% 67%
Self-Consistency (6) 80% 76.96% 68%
CMD (6) 83% 77.39% 63%

a response of surprising quality, which is written as

ŷ = L(x). (1)

Given the high price of obtaining one large language model, one essential research question is to unlock
the reasoning capability of large language models so that they can perform better on various tasks. One of
the key directions is prompt engineering, where the format and content of the input texts are decorated to
improve performances for downstream tasks. Specifically, for a task T , the original input x is decorated
as a task-specific prompt input p(x; T ,L). The function p(·; T ,L) is denoted as a prompt decorator for
T and L. Then, output ŷ is generated by prompt engineering, which is written as

ŷ = L(p(x; T ,L)). (2)

Another way to improve the reasoning capability of L(x) is to leverage multiple times of inference of
large language models, leading to a way larger space for mechanism design. The output ŷ derived by
mechanismM is considered as

ŷ = M (x; {(Li, pi(·, T ,Li))}ni=1) , (3)

where M is the mechanism pipeline, Li is the i-th inference of LLM, and pi(·, T ,Li) is the corresponding
prompt decorator. A mechanismM is designed by jointly consideringM = (M, {(Li, pi)}ni=1), i.e.,
how to organize prompt decorated LLM inferences into the mechanism pipeline M .

The discussion engineering, characterized by the mechanismM = (M, {(Li, pi)}ni=1), includes careful
designs at three levels: (1) the (i-th) inference Li of an LLM, (2) the prompt decorator pi for the inference
Li, and (3) the mechanism M(·, {Li, pi}) to organize the inferences of LLMs. We further introduce the
symmetry of the multi-agent system of LLMs to demonstrate the complexity ofM. Under our framework,
several examples are discussed.

14
6119

B.1 Agent symmetry in discussion engineering
Symmetry and its breaking is a fundamental concept and widely investigated in science (Anderson, 1972).
Symmetry also plays an important role in the context of mechanism design of multiple agents (Laffont
and Martimort, 2000; Daskalakis and Weinberg, 2012). Here we introduce a formal description to justify
the agent symmetry of the mechanismM.

Definition 1 (Computational graph). Given the mechanism M = (M, {(Li, pi)}ni=1), let G = (V ∪
{x, y}, E) be the directed graph whose node set V ∪ {x, y} includes the inference operation of LLM and
the computational input node and output nodes. x is the node to emit the input text, y is the node that
takes the inputs from one or multiple inferences and emits the final output, and vi ∈ V is the inference
node that describes the i-th LLM inference with (Li, pi). The directed edge in (vi, vk) ∈ E describes the
output of inference node vi is then the input of inference node vk.

We note that the graph G contains all the necessary information to determine the mechanismM.
Then we introduce how the LLM agents are associated with the computational graph. To make an LLM

conversational session, the entire conversational history is always concatenated as part of the input of
each inference call, resulting in many additional connections of the computational graph. The presence of
agents allows us to conceptually assume the agents “know” the information in the conversation history,
and then the complexity of the graph can be largely reduced. In this paper, we consider the computational
graph with agents, so the connections that feed conversation history to the inference nodes are ignored for
simplicity.

Let A = {A1, ..., Am} be the set of m discussion agents. The inference call of an agent also concate-
nates its conversation history, denoted as Aj(x).

Definition 2 (Agent assignment). Let A = {A1, ..., Am} be the set of m discussion agents. Each
inference node vi ∈ V is assigned to an agent Aj ∈ A. Let [n] present integers from 1 to n, α : [n] 7→ [m]
is the assignment map that assigns the i-th inference to the α(i)-th agent. Let P ∈ {0, 1}n×m be the
agent-inference assignment matrix, such that

Pij =

{
1 j = α(i),
0 j ̸= α(i)

. (4)

The assignment matrix P is equivalent to the assignment map α.

Then a multi-agent discussion mechanism is defined by the triple D = (M,A, α) = (G,A, α), which
is the central object of discussion engineering. Then, we can further introduce the concept of the coloring
of the computational graph.

Definition 3 (Agent coloring of the computational graph). Given the the multi-agent discussion D =
(G,A, α), then each inference node vi is described by (Li, pi) = (Aα(i), pi). Let cDi = (Aα(i), pi) be
the color of vi and CD(vi) = cDi be the color mapping of nodes, and CD = (V,E,CD) be a colored
computational graph.

Then the agent symmetry is established by the permutation operation over the agent set A. Then we
can discuss the symmetry by the agent permutation. We begin with the concept of mechanism invariance.

Definition 4 (Mechanism invariance under the agent permutation). Given the multi-agent discussion
D = (G,A, α) and a permutation mapping π : [m] 7→ [m], the new discussion Dπ = (G,A, π ◦ α) is
derived by applying π to the agents. We say a discussion D is invariant under π if and only if there is an
isomorphism ϕ between two colored graphs CD = (V,E,CD) and CDπ = (V,E,CDπ), such that

(1) ϕ is a bijection,

(2) ∀(vi, vj) ∈ E, (ϕ(vi), ϕ(vj)) ∈ E,

(3) ∀v ∈ V,CD(v) = CDπ(ϕ(v)).

We can also define the model invariance to justify the symmetry in the multi-model setting (Chen et al.,
2023a).

15
6120

Definition 5 (Model invariance under the agent permutation). Given the agent A = {A1, ..., Am}, and
their underlying LLM {L1, .., Lm} (i.e., ChatGPT, GPT4, etc.), the permutation π : [m] 7→ [m] is
invariant if for i = 1, ...,m Li = Lπ(i).

Following the definition of invariance, the symmetry group of agents is naturally defined following the
standard algebra (Tapp, 2021). The largest possible symmetry group for a discussion of m agents is the
group Sm. However, the group Sm is not always the symmetry group of a given multi-agent discussion
mechanism D, the reasons for not achieving the largest symmetry group can be due to the asymmetry
in the mechanism and asymmetry in models, respectively. Furthermore, for asymmetric mechanisms,
there are two major ways of symmetry breaking. Referring to the three conditions of establishing the
isomorphism, the dissatisfaction of condition (2) implies the asymmetry in the computational graph or
asymmetry in the mechanism pipeline M , and that of condition (3) implies the asymmetry in prompt
decorators.

C CMD: Conquer and Merge Discussion Framework

C.1 Motivation

The Debate framework proposes that an increased number of agents and discussion rounds will result
in improved performance in multi-agent discussions (Du et al., 2023). Also, the ReConcile framework
asserts that a greater number of discussion rounds leads to a higher level of consensus among agents, and
the higher the consensus among agents, the more accurate the discussion outcomes become (Chen et al.,
2023a). However, as the number of agents increases in a discussion, it leads to increased overhead in each
round of discussion: 1. Each agent has to read more viewpoints from others, resulting in a sharp rise in
input tokens. 2. The increase in input tokens puts significant pressure on language models with context
token limitations. Inspired by real-life group discussions, we propose a variant framework for Debate
called CMD. Fig 3 shows the overview of our method.

C.2 Problem Definition

Assume that there are n agents A = {Ai}mi=1 are discussing the given debate task Q, and each agent is
a session created from a LLM. Suppose that the maximum number of the discussion rounds is R, the
current round is r, the current discussion level is L, and the current active agents set is A′. For each agent
Ai ∈ A′, an answer it generates is Ansi = (vi, ei), where vi denotes the viewpoint and ei denotes the
explanation. A debate history is H(r) =

⋃t
i=1Ansi where t = |A′|. Ans

(r)
i is generated through the

input prompt Ai(Q, Ans
(r−1)
i , O

(r−1)
i), where O(r)

i indicates the opinions generated by Aj ̸=i in (r−1)-th
round. The formal definition of O(r)

i is

O
(r)
i =

|H(r−1)|⋃

j=1,j ̸=i

(
vi, ei · 1{Group(L)(Ai) = Group(L)(Aj)}

)
. (5)

This represents that Ai will receive all information from the group members while it can only receive
viewpoints from agents that are not in the same group. Our goal is to obtain the final result a through an
unweighted vote. In the event of a tie, either a can be made by a secretary S, or representatives from each
group will proceed to the next level of discussion until the tie is resolved. Each discussion group has only
one representative. Note that Q can be described differently for each Ai. For example, different agents
may be asked to hold different views at first.

C.3 CMD Stages

Generally, there are three stages in CMD. In stage 1, the group map and all states will be initialized, then
all the participants will generate their initial answers. Then, in stage 2, the participants will continue the
discussion during the remaining rounds in groups. When the discussion round reaches the maximum
number, it moves to stage 3. In this stage, all participants will vote to get the final answer.

16
6121

Algorithm 1 CMD: A Conquer and Merge Style Multi-Agents Discussion Framework

Require: Debate Task Q, Maximum Discussion Rounds R, Agents A = {Ai}ni=1, Secretary S
Ensure: Final Result a

1: function CMD(Q, R,A, S)
2: A′ ← A ▷ Initialize current active agents
3: Ng ← n/3 ▷ Initialize group numbers, every 3 agents a group
4: r ← 0, L← 0 ▷ Initialize current round and current discussion level
5: Lmax ← getMaxLevel(A, S)
6: Mg ← genGroupMap(A, Ng, Lmax) ▷ Assign agents as groups based on discussion levels
7: Ansi ← ∅, Oi ← ∅, H ← [] ▷ Initialize answer, others’ opinions and history
8: while L ≤ Lmax do
9: while r ≤ R do

10: if r > 0 then ▷ Stage 2
11: Update Oi from H
12: end if
13: H ← []
14: for each Ai ∈ A′ do
15: Ansi ← Ai(Q, Ansi, Oi) ▷ Ansi = (vi, ei)
16: H ← H + [Ansi]
17: end for
18: r ← r + 1
19: end while
20: a← AnswerVote(H)
21: if a ̸= Tie then break
22: else if S is not None then ▷ Check if the secretary mode is on
23: a← S(Q, H); break
24: else ▷ Secretary mode is off, representative mode is on
25: L← L+ 1
26: A′ ← currentActiveAgents(L,Mg)
27: end if
28: r ← 0 ▷ The higher-level discussion has commenced
29: end while
30: return a
31: end function

• Stage 1 : Group Discussion Initialization. In this stage, A′ will be initialized as all participants. All
participating agents are initially assigned names in uppercase letters, and they are then grouped in
sets of three. For getMaxLevel, if secretary mode is on, then it will be set to 1. Otherwise, it will be
determined based on the current number of agents. For getGroupMap, the algorithm will automatically
generate the groups for all levels. Higher-level groups are generated among the current representatives.
All active agents will generate their first response Ansi.

• Stage 2 : Multi Rounds Discussion. In this stage, the active agents will continue to discuss in the
remaining rounds. Assume current round number is r, for each agent Ai ∈ A′,
1. The algorithm will start to update the opinions history O

(r−1)
i from H . For each record hj whose

sender Aj(j ̸= i) stored in H , if Aj and Ai are in the same group, O(r−1)
i will record both the

viewpoint and explanation from hj ; otherwise, O(r−1)
i will only record the viewpoint from hj . After

traversing all the records in H , Oi will first gather all opinions of agents from other groups, then
O

(r−1)
i will gather local group explanations based on group members opinions.

2. To save up tokens, last round history H will be reset. Then, the new prompt p(r)i will be generated

17
6122

based on (Q, Ans(r−1)
i , O

(r−1)
i). Ai will make a response Ansi = (vi, ei) when given p

(r)
i . At last,

Ansi will be appended to current round history H for the further use.

3. Repeat 1. and 2. until the maximum number of discussion rounds is reached.

• Stage 3 : Vote for the Final Result. In this stage, all agents will vote based on their final viewpoints
stored in the history H(r) to obtain the result a. If there is no tie, then a will be the final result, thus
the discussion is over. If there is a tie and secretary mode is on, then the final result will be obtained
through S based on the viewpoints and explanations from all sides. If there is a tie and representative
mode is on, then the discussion will move to the higher level, and deactivate agents that do not represent
their groups. The representatives will be assigned to new groups, and return to Stage 2 for further
discussion. If there is still a tie, new representatives will be designated for further discussion, until
either the tie is resolved or only one agent is activated for the discussion.

C.4 Message-Passing Algorithm

Below is the detailed message-passing algorithm that synchronize all agents messages during the discus-
sion process. This algorithm supports various discussion architectures.

Suppose we have a discussion rule R, agents A, agent attribute table T and agent initial prompts
M. Here, the agent attribute table T catalogs the various methods by which an agent processes inputs
and formulates responses. These methods might range from LLMs such as ChatGPT-3.5 to synergistic
approaches like self-consistency. Now, let’s focus on how our algorithm works.

Our system employs two primary global queues that span all agent threads. Queue Qmsg is designated
for holding messages originating from agents that await processing by MESSYNC, while queue Qsend

contains processed messages to deliver to respective agents. Each message has the basic info, including
message content, sender, and receivers. Usually, receivers are determined either by default (predefined
receiving scope) or by the discussion ruleR (temporarily changed receiving scope).

MESSYNC broadly operates in three stages: Initialization, Message Passing, and Message Receiving.

Initialization: Here, parameters Qmsg, Qsend, speaker S, and discussion depth d are initialized. d is
important to determine correct dispatch and receipt timings. The system then enters an iterative state to
check whether the discussion is finished. For instance, in Debate, all agents speak for each round, meaning
that messages from each agent are not immediately sent to others until proceeding to the next round.

Message Passing: If the discussion continues without pending messages, it’s presumed a silence situation
(like a teacher asks if students have questions and they remain silent to mean “no”). To gauge discussion
progress, the heading depth in Qmsg is peeked and assigned to the depth d, and all messages at that
depth are gathered. To prevent repeat dispatching, all messages destined for a particular agent Ai are
amalgamated into one, mi, which is then placed in Qsend.

Message Receiving: Now receivers enter focus. After receiving a message, they may stay silent at the
next depth d+ 1 (like the students above).

To avoid the biases caused by explicitly asking LLM to stay silent, we introduce a signal HOLD to
denote buffering m′ at d into H . For simplicity, the pseudo-code showcases how to buffer messages for
one depth. In normal cases, the speaker is then set to the message receiver. Raw input will be preprocessed
as tin based on rule R. A bot (or method) boti in T is chosen to generate response tout. If R validates
this, it seeks out the next message receiver set A′, creates a new message mnew, and pushes it into Qmsg.
Stages 2 and 3 iterate until the end of the discussion. Now, agents can safely sync messages, and all we
need to do is to design the discussion ruleR like Debate and CMD.

18
6123

Algorithm 2 MesSync: A Message-Passing Algorithm for Multi-Agents Communication

Require: Discussion RuleR, Agents A = {Ai}ni=1, Agent Attribute Table T = {boti}ni=1, Agent Initial
Prompt MessagesM = {pj}tj=1

1: function MESSYNC(R,A, T ,M)
2: Qmsg ←M ▷ Initialize messages storage queue
3: Qsend ← [] ▷ Initialize messages to be sent queue
4: S ← R.Sfirst ▷ Initialize the first speaker
5: d← 0 ▷ Initialize the discussion depth to 0
6: while Qmsg ̸= ∅ or notR.isOver do
7: if Qmsg is ∅ then
8: Qmsg ← pushSilenceMessage(d)
9: end if

10: d← peekDepth(Qmsg) ▷ Peek the discussion depth of the first message
11: Md ← popAllMessagesAtDepth(Qmsg, d)
12: for each Ai ∈ A do
13: mi ← R.mergeCommonMessages(Md, Ai)
14: Qsend.push(mi)
15: end for
16: m′ ← Qsend.pop()
17: isHold← m′.hold ▷ Signal to merge messages from this round with the next
18: H ← {} ▷ Initialize the map of messages to hold in the current depth
19: dnext ← d+ 2 if isHold else d+ 1
20: while m′ and m′.d < dnext do
21: if m′.hold then H[m′.name]← m′.content
22: else
23: S ← m′.name
24: Mraw ← m′.content ∪H[S]
25: tin ← R.modifyRawInput(Mraw)
26: tout ← sendText2Bot(tin, S, d, T)
27: tout ← R.validateOutput(tin, tout, S, d)
28: A′ ← R.getReceivers(S, d) ▷ Get the receivers of the new message
29: if A′ ̸= ∅ then
30: mnew ← genMessage(tout, S,A′, dnext) ▷ (content, sender, receivers, depth)
31: Qmsg.push(mnew)
32: end if
33: end if
34: m′ ← Qsend.pop()
35: end while
36: ifR.isOver then break
37: end if
38: end while
39: end function

D An CMD Example

In the upcoming demonstration, we’ll walk you through the CMD framework from the viewpoint of agent
A among six agents using ChatGPT-3.5.

19
6124

D.1 Meta Prompt

System

You will be asked to answer a correctness verification task of a deductive reasoing proposition.

Use knowledge only comes from the given premises.

The suffix of your answer should be the your opinion of one of these answer type:

1. [Correct], 2. [Incorrect], 3. [Unknown].

Do not omit the brackets.

Table 7: Vanilla Prompt

D.2 Round 1 Answer

Assistant (ChatGPT-3.5) - Agent A

First let’s write down all the premises with labels:

#1. Neocrepidodera Corpulentas are flea beetles or moths.

#2. The species Neocrepidodera Corpulenta is in the Chrysomelidae family.

#3. There are no moths within the Chrysomelidae family.

Next, let’s answer the question step by step with reference to the question and reasoning process:

#4. (by #1, #2) Neocrepidodera Corpulenta is either a flea beetle or a moth, and it is in the Chrysomeli-
dae family.

#5. (by #3, #4) Since there are no moths within the Chrysomelidae family, Neocrepidodera Corpulenta
must be a flea beetle.

Final Step (by #5): Neocrepidodera Corpulenta is a flea beetle, so the proposition “There are no flea
beetles within the Chrysomelidae family” is [Incorrect].

Table 8: The Answer of Agent A in Round 1

20
6125

D.3 Middle System and User Prompts in Round 1

System

There are 2 groups of people discussing on the same topic. I will provide you the detailed opinions and
reasoning steps from your group member and opinions from other group members. Use these opinions
and your previous opinion as additional advice, note that they maybe wrong. Do not copy other’s entire
answer, modify the part you believe is wrong.

Other group members’ opinions:

Three agents think the proposition is Incorrect.

Your group’s opinions:

One agent thinks the proposition is Correct. Below is his answer:

First let’s write down all the premises with labels:

· · ·
Next, let’s answer the question step by step with reference to the question and reasoning process:

#4. (by #1, #2) Neocrepidodera Corpulenta is either a flea beetle or a moth, and it is in the Chrysomeli-
dae family.

#5. (by #3) There are no moths within the Chrysomelidae family.

#6. (by #4, #5) Neocrepidodera Corpulenta cannot be a moth because there are no moths in the
Chrysomelidae family.

Final Step (by #6): The proposition “There are no flea beetles within the Chrysomelidae family” is
[Correct] because Neocrepidodera Corpulenta, which is in the Chrysomelidae family, cannot be a moth
according to premise #5.

One agent thinks the proposition is Incorrect. Below is his answer:

· · ·
Next, let’s answer the question step by step with reference to the question and reasoning process:

#4. (by #1, #2) Neocrepidodera Corpulenta is a species of Neocrepidodera Corpulentas, so it is either a
flea beetle or a moth.

#5. (by #3, #4) Since there are no moths within the Chrysomelidae family, Neocrepidodera Corpulenta
must be a flea beetle.

Final Step (by #5): The proposition states that there are no flea beetles within the Chrysomelidae family.
However, from premise #2, we know that Neocrepidodera Corpulenta, which is a flea beetle, is in the
Chrysomelidae family. Therefore, the proposition is [Incorrect].

User

Use the provided opinions and your previous answer as additional advice critically, please provide an
updated answer. Make sure to state your opinion over proposition at the end of the response in the
given format: [Correct], [Incorrect] or [Unknown], and such format should be only used to determine
the correctness of the proposition.

Table 9: Middle System Prompt at the End of Round 1

21
6126

D.4 Round 2 Answer

Assistant (ChatGPT-3.5) - Agent A

Based on the opinions provided by the other group members and my previous answer, I will critically
evaluate the reasoning steps and provide an updated answer.

The first agent from my group argues that the proposition is correct. Their reasoning is as follows:

#4. (by #1, #2) Neocrepidodera Corpulenta is either a flea beetle or a moth, and it is in the Chrysomeli-
dae family.

#5. (by #3) There are no moths within the Chrysomelidae family.

#6. (by #4, #5) Neocrepidodera Corpulenta cannot be a moth because there are no moths in the
Chrysomelidae family.

Final Step (by #6): The proposition “There are no flea beetles within the Chrysomelidae family” is
[Correct] because Neocrepidodera Corpulenta, which is in the Chrysomelidae family, cannot be a moth
according to premise #5.

The second agent from my group argues that the proposition is incorrect. Their reasoning is as follows:

#4. (by #1, #2) Neocrepidodera Corpulenta is a species of Neocrepidodera Corpulentas, so it is either a
flea beetle or a moth.

#5. (by #3, #4) Since there are no moths within the Chrysomelidae family, Neocrepidodera Corpulenta
must be a flea beetle.

Final Step (by #5): The proposition states that there are no flea beetles within the Chrysomelidae family.
However, from premise #2, we know that Neocrepidodera Corpulenta, which is a flea beetle, is in the
Chrysomelidae family. Therefore, the proposition is [Incorrect].

After critically evaluating the reasoning steps, I agree with the second agent from my group that the
proposition is incorrect. Neocrepidodera Corpulenta is a species of Neocrepidodera Corpulentas, which
are either flea beetles or moths according to premise #1. Since Neocrepidodera Corpulenta is in the
Chrysomelidae family according to premise #2, it cannot be concluded that there are no flea beetles
within the Chrysomelidae family. Therefore, the proposition is [Incorrect].

Table 10: The Answer of Agent A in Round 2

D.5 Middle System Prompt at the End of Round 2

System

There are 2 groups of people discussing on the same topic. I will provide you the detailed opinions and
reasoning steps from your group member and opinions from other group members. Use these opinions
and your previous opinion as additional advice, note that they maybe wrong. Do not copy other’s entire
answer, modify the part you believe is wrong.

Other group members’ opinions:

Three agents think the proposition is Incorrect.

Your group’s opinions:

Two agents think the proposition is Incorrect. Below are their answers:

· · ·
User

This part is the same user part shown in table 9.

Table 11: Middle System Prompt at the End of Round 2

22
6127

D.6 Round 3 Answer

Assistant (ChatGPT-3.5) - Agent A

Based on the opinions provided by the other group members and my previous answer, here is an
updated response:

First, let’s write down all the premises with labels:

#1. Neocrepidodera Corpulentas are flea beetles or moths.

#2. The species Neocrepidodera Corpulenta is in the Chrysomelidae family.

#3. There are no moths within the Chrysomelidae family.

Next, let’s answer the question step by step with reference to the question and reasoning process:

#4. (by #1, #2) Neocrepidodera Corpulenta is either a flea beetle or a moth, and it is in the Chrysomeli-
dae family.

#5. (by #3) There are no moths within the Chrysomelidae family.

#6. (by #4, #5) Neocrepidodera Corpulenta cannot be a moth because there are no moths in the
Chrysomelidae family.

Final Step (by #6): The proposition “There are no flea beetles within the Chrysomelidae family”
contradicts the given premises, as Neocrepidodera Corpulenta, which is in the Chrysomelidae family,
is a flea beetle. Therefore, the proposition is [Incorrect].

After critically evaluating the reasoning steps and considering the opinions provided by the other group
members, I agree that the proposition is [Incorrect]. The given premises state that Neocrepidodera
Corpulenta is in the Chrysomelidae family and that it is either a flea beetle or a moth. Since there are
no moths within the Chrysomelidae family, it can be concluded that Neocrepidodera Corpulenta must
be a flea beetle. Therefore, the proposition “There are no flea beetles within the Chrysomelidae family”
contradicts the given premises.

Table 12: The Answer of Agent A in Round 3

E CMD Secretary - A Tie Case Solution

In the event of a tie between two groups, we suggest employing a secretary to resolve such cases. The
complete chat transcript below in table 13 illustrates a scenario where the secretary provides the ultimate
resolution.

23
6128

System

6 agents are discussing the correctness of a proposition based on the given premises. The given premises
are: · · · The proposition is: “IBM has an office in London or Zurich.”

However, now there is a draw:

Three agents think the proposition is Correct. Below is one of their answers: · · ·
Three agents think the proposition is Unknown. Below is one of their answers: · · ·
User

Your task is to carefully determine which opinion is more plausible. Answer opinion types are:
[Correct], [Incorrect], [Unknown]. You should give your response in the required format. You are
forbidden to copy others’ reasoning steps. You can only use the given premises and your reasoning
steps to answer the question.

Here are the instructions how you organize your answer format:

First, let’s write down all the premises with labels. The labels look like “#{premise_number}.”

Next, let’s answer the question step by step with reference to the question and reasoing pro-
cess. There will be a prefix in your every reasoning step with the format “#{number} (by
{list_of_premises_and_steps_used})”. In your final step, you should come to your conclusion with the
format “Final Step (by {list_of_premises_and_steps_used}):”.

The suffix of your answer should be the answer type: [Correct], [Incorrect] or [Unknown].

Here are several hints to help you conclude the final answer:

1. Pay attention to the logic of quantifiers and distinguish the meanings of quantifiers such as “all” and
“some”.

2. When two quantifiers are connected as the premise of existence, the conclusion may not be
established, that is, it is unknown.

Assistant (ChatGPT-3.5) - Secretary

First, let’s write down all the premises with labels:

#1. Evangelos Eleftheriou is a Greek electrical engineer.

#2. Evangelos Eleftheriou worked for IBM in Zurich.

#3. If a company has employees working for them somewhere, then they have an office there.

#4. IBM is a company.

Next, let’s answer the question step by step with reference to the question and reasoning process:

#5 (by #4, #3) Since IBM is a company, and according to premise #3, if a company has employees
working for them somewhere, then they have an office there. Therefore, IBM has an office in Zurich.

Now, let’s consider the opinions of the other group members:

- One agent thinks the proposition is Correct.

- Two agents think the proposition is Unknown.

Considering the opinions of the other group members, there is disagreement regarding the correctness
of the proposition. However, based on the premises and the reasoning process, it can be concluded that
IBM has an office in Zurich.

Final Step (by #5): Since IBM has an office in Zurich, the proposition “IBM has an office in London or
Zurich” is [Correct].

Table 13: Secretary to solve a tie case.

24
6129

F Extended Related Work

F.1 Large language models L
With the advent of large language models (LLMs) like GPT-3 (Brown et al., 2020), chatGPT (OpenAI,
2022), GPT-4 (OpenAI, 2023), Llama series (Touvron et al., 2023a,b) and PaLM 2 (Anil et al., 2023),
prompt engineering is a burgeoning field that focuses on optimizing the output of language models by
crafting effective input prompts.

F.2 Prompt decorator p(·; T ,L) for reasoning

Numerous advancements have been made in the field of improving reasoning abilities of LLMs with
prompt engineering. Chain of Thought (CoT) (Wei et al., 2022; Kojima et al., 2022) is a linear problem-
solving approach where each step builds upon the previous one. Fu et al. (2022) propose to apply
CoT to multi-step reasoning tasks. To automate the CoT, Auto-CoT (Zhang et al., 2022b) constructs
demonstrations by sampling diverse questions and generating reasoning chains. Active-Prompt (Diao
et al., 2023) aims to select the most uncertain questions for task-specific annotations. Other prompt
strategies include PS prompt (Wang et al., 2023a) which divides task into subtasks then solve them,
effective GoT (Yao et al., 2023b) which models human thought processes as a graph rather than a chain,
Natural Program (Ling et al., 2023) which helps to improve the deductive reasoning tasks, re-reading
prompt (Xu et al., 2023b) which revisits the question information embedded within input prompts.

F.3 MechanismM for reasoning

In addition to focusing on the design of prompts themselves, some works incorporate different mechanisms
to assist language models in reasoning.

The design directions of these mechanisms include: 1. Breaking down the reasoning process into
multiple stages, with possible verification at each stage. 2. Optimizing the reasoning process via ensemble
methods. 3. Iteratively prompting the model for reflection and correction. 4. Utilizing external tools to
aid in reasoning. These approaches aim to enhance the overall reasoning capabilities of language models
by introducing additional support and guidance throughout the process.
Break Down the Reasoning Process into Multiple Stages. Breaking the original tasks into several
operations is an important approach to solving reasoning problems (Liu et al., 2022b) and handling longer
contexts (Fei et al., 2023). For reasoning with external knowledge base, this approach leads to many
problems when each specific step can be explicitly realized by predicates (Xu et al., 2024; Liu et al.,
2024) or logical operations (Wang et al., 2021, 2022b, 2023b,c; Yin et al., 2024b,a; Fei et al., 2024). For
LLMs approaches, Self-Polish (Xi et al., 2023) make models to progressively refine given problems with
multiple stages of prompts. Additionally, some works (Khot et al., 2022; Press et al., 2022; Dua et al.,
2022; Zhang et al., 2023b) study over decomposing the tasks into smaller tasks, and use an individual
prompt to solve each subtask.
Optimize the Reasoning Process via Ensemble Methods. Tree of Thoughts (ToT) (Yao et al., 2023a)
expands on the reasoning process by considering multiple paths of reasoning and self-evaluating choices.
Graph of Thoughts (GoT) (Besta et al., 2023) further advances this by modeling information as an arbitrary
graph, enabling complex networks of thoughts. And some works propose to first sample reasoning paths
then vote for the best one, including self-consistency (Wang et al., 2022a) and step-aware verifier (Li
et al., 2022). Discussion Engineering is also one category of ensemble methods. We leave it to section 7
for further introduction.
Iteratively Prompt the Model for Reflection and Correction. These works (Zelikman et al., 2022;
Weng et al., 2022; Shinn et al., 2023; Madaan et al., 2023; Chen et al., 2023b; Xue et al., 2023) are mainly
based on iteratively asking model to find the mistakes or inconsistencies among previous reasoning steps
or the knowledge, then solve them one by one.
Utilize External Tools or Knowledge to Aid in Reasoning. Mind’s Eye (Liu et al., 2022a) proposes to
use a physical simulator to help models reason in the physical world. There are also other works (Lu et al.,
2023; Imani et al., 2023) that will equip models with tools to solve problems. Furthermore, some works

25
6130

like MemPrompt (Madaan et al., 2022) and LogicSolver (Yang et al., 2022) use external knowledge to
assist LLMs with reasoning.

26
6131

