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Abstract

Understanding the contribution of the inputs
on the output is useful across many tasks. This
work provides an information-theoretic frame-
work to analyse the influence of inputs for text
classification tasks. Natural language process-
ing (NLP) tasks take either a single or mul-
tiple text elements to predict an output vari-
able. Each text element has two components:
the semantic meaning and a linguistic real-
ization. Multiple-choice reading comprehen-
sion (MCRC) and sentiment classification (SC)
are selected to showcase the framework. For
MCRC, it is found that the relative context influ-
ence on the output reduces on more challenging
datasets. In particular, more challenging con-
texts allows greater variation in the question
complexity. Hence, test creators need to care-
fully consider the choice of the context when
designing multiple-choice questions for assess-
ment. For SC, it is found the semantic mean-
ing of the input dominates compared to its lin-
guistic realization when determining the sen-
timent. The framework is made available at:
https://github.com/WangLuran/n
lp-element-influence.

1 Introduction

Natural Language Processing (NLP) requires ma-
chines to understand language to perform a spe-
cific task (Chowdhary and Chowdhary, 2020).
NLP tasks take a single (e.g. summarization
(Widyassari et al., 2022), sentiment classifica-
tion (Wankhade et al., 2022), machine translation
(Stahlberg, 2020)) or multiple (e.g. reading com-
prehension (Baradaran et al., 2022), question gen-
eration (Kurdi et al., 2020)) text elements at the
input and return a specific output. Each input text
element can further be partitioned into its seman-
tic content and the linguistic realization. Semantic
refers to the inherent meaning while the linguis-
tic realization is the specific wording to present
the meaning. There are several possible linguistic

realizations for any semantic content. Therefore,
for all NLP tasks, the output variable has contribu-
tions from at least two components: the semantic
meaning of the element and the specific linguistic
realization. Here, element refers to a specific input
that is formed of exactly two components.

We analyze the relative sensitivity of the output
variable to each of the input elements as well as
in terms of the breakdown between the elemental
semantic content and its corresponding linguistic
realization. A theoretical information-theoretic ap-
proach is applied to find the shared information
content between each input component and the
output variable. Here, the information-theoretic
approach is framed for NLP classification tasks
where the set of input components influence the
output probability distribution over a discrete set
of classes. We select multiple-choice reading com-
prehension (MCRC) and sentiment classification
(SC) as case studies for the analysis.

MCRC requires the correct answer option to be
selected based on several input elements: the con-
text paragraph, the question and the set of answer
options. Multiple-choice (MC) assessments are a
widely employed method for evaluating the com-
petencies of candidates across diverse settings and
tasks on a global scale (Lai et al., 2017a; Richard-
son et al., 2013a; Sun et al., 2019; Levesque et al.,
2012). Given their consequential impact on real-
world decisions, the selection of appropriate MC
questions tailored to specific scenarios is impor-
tant for content creators. Consequently, there is
a need to comprehend the underlying factors that
contribute to the complexity of these assessments.

Complexity of an MC question is best modelled
by the distribution over the answer options by hu-
man test takers. Therefore, by understanding the
influence of each input element on the output distri-
bution, content creators can be better informed to
what extent the complexity of an MC question can
be controlled from changing each of the input ele-
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ments. Moreover, analyzing the contribution of the
semantic content vs the linguistic realization on the
output human distribution informs the impact of the
specific word choice in the element on the question
complexity. However, it is not scalable to mea-
sure the variation in the output human distribution
with variation in each of the input elements. Liusie
et al. (2023c) demonstrated that the output distribu-
tion of automated systems is aligned (with minimal
re-shaping parameters) to the human distribution.
Therefore, the information-theoretic framework is
applied to the output probability distribution by an
automated comprehension system.

SC is a common NLP classification task where
the dominant sentiment class must be selected from
a discrete set of sentiments based on a block of
input text. This is an example of a single input
text element NLP task. The information-theoretic
approach is applied here to understand the role of
the semantic content and the linguistic realization
on the output distribution over the sentiment classes
for popular datasets. It is interesting to analyze SC
as ideally the sentiment of a text block should be
based on only its semantic meaning. Here, we
determine whether this ideal is held in practice.

2 Related Work

Features or variables are separate properties that
are input to tabular machine learning models to
predict a target variable (Hwang and Song, 2023).
Feature importance is an active area of research
(Huang et al., 2023) where the influence of each
feature on the output is determined. The ability
to determine which features are most important
is useful across many verticals e.g. computer as-
sisted medical diagnosis (Rudin, 2019), weather
forecasting (Malinin et al., 2021), fraud detection
(Xu et al., 2023) and customer churn prediction (Al-
Shourbaji et al., 2023). Similarly, we explore the
importance of different aspects (can be interpreted
as features) at the input including individual ele-
ments and the semantic vs linguistic components
for NLP text classification tasks. Typically, the
structured nature of tabular data allows common
feature selection algorithms to be applied includ-
ing LASSO (Tibshirani, 1996), marginal screening
(Fan and Lv, 2008), orthogonal matching pursuit
(Pati et al., 1993) and decision tree based (Costa
and Pedreira, 2023). Due to the relatively unstruc-
tured nature of text data (compared to tabular data),
we propose an information-theoretic approach to

identify the most influential inputs.
Sugawara et al. (2017) find a weak correlation

between question difficulty and context readability
for MCRC. Additionally, Sugawara et al. (2020)
consider the impact on MCRC datasets when input
elements are omitted. We propose instead an au-
tomated information-theoretic framework for this
analysis. Finally, Sorensen et al. (2022) apply an
information-theoretic approach for prompt engi-
neering. Our approach can instead be generalized
to any NLP classification task.

3 Theory

Here, we describe the generalized framework to
analyze the influence of different elements in NLP
text classification tasks: 1. the individual influence
of each input element on the output class distribu-
tion; 2. the contribution of the semantic content vs
its linguistic realization component for a given ele-
ment. Let an NLP task consist of a set of elements,
{x1, . . . , xN} = x and the output, y, such that:

P (y) = EP (x)P (y|x) (1)

Let X denote the random variables of each the
corresponding instances x. Similarly, let Y be the
random variable for an instance of the output, y.

To measure the influence of input x on output y,
a good metric is the mutual information (Depeweg
et al., 2018; Malinin and Gales, 2018) which mea-
sures how the output changes due to variation in
the input. Thus we can define I(Y ;X) a measure
of the total input influence. Similarly we can de-
fine the influence from an individual element, Xj ,
I(Y ;Xj) and it should obey:

I(Y ;Xj)︸ ︷︷ ︸
element

= I (Y ;X)︸ ︷︷ ︸
total

−I (Y ;X\Xj |Xj)︸ ︷︷ ︸
other

(2)

For each element Xj , its influence is always de-
termined by two components: X

(s)
j , the seman-

tic information and a relating linguistic realization
method which turns an abstract meaning into natu-
ral language. Thus, we can calculate the semantic
influence as I(Y ;X

(s)
j ) and the linguistic influence

implicitly I(Y ;Xj |X(s)
j ). They should satisfy:

I(Y ;Xj)︸ ︷︷ ︸
element

= I
(
Y ;X

(s)
j

)

︸ ︷︷ ︸
semantic

+ I
(
Y ;Xj |X(s)

j

)

︸ ︷︷ ︸
linguistic

(3)

In practice for an element, xj , its semantic content
is too abstract to be available. Instead we get access
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to one of its realization r̃j which is considered to
be generated from its unobserved semantic content,
x
(s)
j . A set of possible realizations of this semantic

element, R(i), are additionally where each member
of this set is, r(i)j drawn as

r
(i)
j ∼ Pr(r|r̃i) ≈ Pr(r|x(s)i ) (4)

With these settings, the mutual information is cal-
culated as follows. The total influence is:

I(Y ;X) (5)

= H
(
EP (x)[P (y|x)]

)
− EP (x)[H(P (y|x))]

We can also get the element influence as :

I(Y ;Xj) (6)

= H
(
EP (x)[P (y|x)]

)
− EP (xj) [H(P (y|xj))]

It can be decomposed as the semantic influence:

I
(
Y ;X

(s)
j

)
= H

(
EP (x)[P (y|x)]

)
(7)

−E
P
(
x
(s)
j

)
[
H

(
P
(
y|x(s)j

))]

and the linguistic influence:

I
(
Y ;Xj |X(s)

j

)
= E

P
(
x
(s)
j

)
[
H

(
P
(
y|x(s)j

))]

−EP (xj) [H (P (y|xj))] (8)

The relative contribution of an element to the total
influence and of the semantic component for an
element can respectively be expressed as:

relative element influence =
I(Y ;Xj)

I(Y ;X)
(9)

relative semantic influence =
I
(
Y ;X

(s)
j

)

I(Y ;Xj)
(10)

3.1 Multiple-choice reading comprehension
In this task, candidates are provided with a context
passage, c and a corresponding question, q. The
objective is to determine the correct answer from a
defined set of options, denoted as o. This process
involves understanding the question and utilizing
the context passage as a source of information to
ascertain the most appropriate answer option. The
output distribution can be categorised as:

P (y) = EP (c,q,o)P (y|c, q, o) (11)

Figure 1: Data generation for the multiple-choice read-
ing comprehension task.

3.1.1 Data generation
For a typical MCRC dataset, the data generation
process is shown in Figure 1. A specific seman-
tic content c(s) is chosen and a context c is gener-
ated when a certain linguistic realization is applied.
Therefore, the influence of the context C can be di-
vided into I(Y ;C(s)), I(Y ;C|C(s)) respectively.
A similar procedure is applied on the questions and
the options but usually (for the scope of this work)
they are generated together as a question-option
pair q: from a certain context, a content probe or
linguistic probe is generated and then a question-
option pair in natural language is a linguistic real-
ization of this probe as described by: P (q|c). Thus,
the output distribution can be rewritten as:

P (y) = EP (c(s))EP (c|c(s))EP (q|c)P (y|q, c) (12)

We consider only the questions generated from the
semantic contents and ignore the questions con-
strained to a specific realization, by filtering out
all questions generated from the specific linguistic
realization of the context. This allows our investi-
gation on the question influence to be agnostic of
the original context realization.

3.1.2 Measure of component influence
The question-option pair in Equation 12 appear
as P (q|c), thus instead of I(Y ;Q), we consider
I(Y ;Q|C) and get the decomposition:

I(Y ;C)︸ ︷︷ ︸
context

= I(Y ;C,Q)︸ ︷︷ ︸
total

−I(Y ;Q|C)︸ ︷︷ ︸
question

(13)

The context influence can be further decomposed:

I(Y ;C)︸ ︷︷ ︸
context

= I(Y ;C(s))︸ ︷︷ ︸
semantic

+ I(Y ;C|C(s))︸ ︷︷ ︸
linguistic

(14)

Equations 13 and 14 are examples of Equations
2 and 3 respectively. Thus, similar to Section 3,
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the influence terms can be calculated according to
Equations 5 to 8. Besides the assumption made
in Equation 4 which is general for all the tasks, a
further assumption about the questions are made for
the MCRC task: instead of sampling from the ideal
question generation process, for the ith context
realization in the dataset, r̃i, we only observe the
question-option pairs generated by humans, Q̃(i),
where each member of this set is, q̃(i)j drawn as:

q̃
(i)
j ∼ Pman(q|r̃i) ≈ Pq

(
q|c(s)i

)
(15)

If we generate several paraphrases conditional on
the original context such that r ∼ Pgpt(r|c), we
then make the following approximations:

EP (c,q) [P (y|c, q)] ≈ (16)

1

ns

ns∑

i=1

1

|R(i)||Q̃(i)|
∑

r∈R(i),q̃∈Q̃(i)

P (y|q̃, r)

EP (c,q) [H(P (y|c, q))] ≈ (17)

1

ns

ns∑

i=1

1

|R(i)||Q̃(i)|
∑

r∈R(i),q̃∈Q̃(i)

H(P (y|q̃, r))

EP (c) [H(P (y|c))] ≈ (18)

1

ns

ns∑

i=1

1

|R(i)|
∑

r∈R(i)

H(
1

|Q̃(i)|
∑

q̃∈Q̃(i)

P (y|q̃, r))

EP (c(s))

[
H(P (y|c(s)))

]
≈ (19)

1

ns

ns∑

i=1

H(
1

|R(i)|
∑

r∈R(i)

1

|Q̃(i)|
∑

q̃∈Q̃(i)

P (y|q̃, r))

with ns as the number of contexts in a dataset. The
detailed derivation of Equations 16 to 19 are shown
in Appendix A.

3.2 Sentiment classification
For the SC task, the candidate receives a sentence
or a short paragraph x and then is requested to
choose the sentiment class. Here we are only inter-
ested in the influence to the output y from semantic
content x(s) and its linguistic realization method:
I(Y ;X(s)), I(Y ;X|X(s)), as there is only one el-
ement at the input. Following Equation 3, the se-
mantic and linguistic breakdown is expressed as:

I(Y ;X)︸ ︷︷ ︸
text

= I(Y ;X(s))︸ ︷︷ ︸
semantic

+ I(Y ;X|X(s))︸ ︷︷ ︸
linguistic

(20)

In practice, the following approximations are made:

EP (x) [P (y|x)] ≈ (21)

1

ns

ns∑

i=1

1

|R(i)|
∑

r∈R(i)

P (y|r)

EP (x) [H(P (y|x))] ≈ (22)

1

ns

ns∑

i=1

1

|R(i)|
∑

r∈R(i)

H(P (y|r))

EP (x(s))

[
H(P (y|x(s)))

]
≈ (23)

1

ns

ns∑

i=1

H(
1

|R(i)|
∑

r∈R(i)

P (y|r))

4 Systems

4.1 Linguistic realization
To analyze the impact of the linguistic realization
of a given text element, it is necessary to fix the
semantic content of the element. In other work
(such as Sugawara et al. (2022)), they attempt to
evaluate the effect of linguistic content of the con-
text for MCRC. However, they ignore the require-
ment to fix the semantic content. We employ a
paraphrasing system to generate different linguistic
realizations for the same semantic content of a text
element. The paraphrasing approach is applied to
the context in MCRC and to the input element in
SC. To consider a broad range of linguistic real-
izations for a specific text’s semantic content, we
generate 8 paraphrases at different readability lev-
els. Hence, we assume (this assumption is assessed
in Appendix F) that the linguistic realizations at
different readability levels maintain the same se-
mantic content. To change the readability of the
text element, we use the zero-shot method as in
Farajidizaji et al. (2023) based on Equation 4 to
generate the paraphrase with the jth readability
from the ith context:

r
(i)
j ∼ PLLM(r|r̃i) (24)

In practice, the zero-shot large language model
(LLM) (GPT-3.5-turbo) is fed with the original text
along with an instruction to alter the language of
the text to match the desired readability level. The
model, not previously trained on this specific task,
uses its pre-existing knowledge and understanding
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of language structure to alter the readability whilst
maintaining the same semantic meaning. The read-
ability level is measured by Flesch reading-ease
(Flesch, 1948) score (FRES). See the prompts in
Appendix Table 7.

4.2 Reading comprehension
In this work, MCRC systems are required to return
a probability distribution over the answer options.
Two alternative architectures are considered for per-
forming the reading comprehension task: encoder-
only and decoder-only as shown in Figure 2.

Encoder-only is based on the works of Yu et al.
(2020); Raina and Gales (2022a); Liusie et al.
(2023b); Raina et al. (2023b). Within the family of
encoder-only models, we consider a BERT (Devlin
et al., 2018) and RoBERTa (Liu et al., 2019) based
systems. Each option is individually encoded along
with both the question and the context to produce a
score. Softmax is then applied to the scores linked
to each option, transforming them into a probabil-
ity distribution. During inference, the anticipated
answer is chosen as the option with the highest
associated probability.

Inspired by Liusie et al. (2023a) and the recent
success observed in finetuning large open-source
instruction finetuned language models (Touvron
et al., 2023a,b; Jiang et al., 2023, 2024; Tunstall
et al., 2023) on various NLP tasks, this work addi-
tionally finetunes Llama-2 (Touvron et al., 2023b)
as a decoder-only architecture. The context, ques-
tion and answer options are concatenated into a sin-
gle natural language prompt. As an autoregressive
language model, Llama-2 is requested to effectively
return a single token at the output, represented by a
single logit distribution over the token vocabulary.
The logits associated with the tokens A,B,C,D are
respectively normalized using softmax to return
the desired probability distribution over the answer
options. As with the encoder-only architecture, the
option with the highest probability is selected as
the answer at inference time. All model outputs are
calibrated post-hoc (see Appendix D.3).

4.3 Data complexity classification

standard c + q + oA + oB + oC + oD
context c
context-question c + q

Table 1: Input formats for the complexity system.

Here, an automated complexity system takes all

the components of an MC question and classifies
it into one of the 3 classes: easy, medium or hard.
The standard architecture is used for MC question
complexity classification (Raina and Gales, 2022b;
Benedetto, 2023) (see Appendix Figure 6). All ele-
ments of an MC question and concatenated together
and fed into a transformer. The embedding of the
prepended [CLS] token is taken as the sentence
embedding, which is passed to a classification head,
to return a distribution over the three complexity
levels. To empirically investigate the relative im-
portance of each element, various input formats are
trialled. Table 1 presents different combinations of
the context, question and answer options.

4.4 Sentiment classification

SC models take the input text and return a probabil-
ity distribution over the set of sentiments. Here, the
sentiments considered are {negative, positive }. We
take the standard approach of taking a pretrained
transformer encoder model (Vaswani et al., 2017)
with a classification head at the output (Liusie et al.,
2022). Similar to the encoder-only approach for
MCRC and the data complexity classification sys-
tem, the SC system only passes the hidden embed-
ding of the [CLS] token to the classification head.
Softmax normalizes the logits over the sentiments.

5 Experiments

5.1 Data

We use the RACE++ MCRC dataset (Lai et al.,
2017b; Liang et al., 2019a) train split for train-
ing both the MC data complexity system and the
MCRC model. RACE++ is the largest publicly
available dataset from English exams in China par-
titioned into three difficulty levels: middle school,
high school and college (see Appendix E.1 for de-
tails about the splits). Additionally, various MCRC
datasets are considered as test sets for investigating
the influence of each element including the test sets
from RACE++, MCTest (Richardson et al., 2013b)
and CMCQRD (Mullooly et al., 2023). MCTest re-
quires machines to answer MCRC questions about
fictional stories. CMCQRD is a small-scale MCRC
dataset from the pre-testing stage partitioned into
grade levels B1 to C2 on the Common European
Framework of Reference for Languages scale.

For SC, we use IMDb (Maas et al., 2011), Yelp-
polarity (Yelp) (Zhang et al., 2015) and Amazon-
polarity (Amazon) (McAuley and Leskovec, 2013)
datasets. IMDb has reviews from the Internet
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Figure 2: Architectures for multiple-choice reading comprehension with context, c, question, q and options, o.

# examples # options # words # questions semantic diversity linguistic diversity

MCRC
MCTest 142 4 209 4 0.079±0.015 0.018±0.006
RACE++ 1,007 4 278 3.7 0.101±0.015 0.016±0.007
CMCQRD 150 4 683 5.5 0.092±0.010 0.022±0.011

SC
IMDB 500 2 226 - 0.084±0.019 0.023±0.011
Yelp 500 2 133 - 0.108±0.037 0.030±0.024
Amazon 500 2 74 - 0.135±0.024 0.037±0.022

Table 2: Statistics for multiple-choice reading comprehension (MCRC) and sentiment classification (SC) test
datasets. See Appendix Table 5 for additional datasets.

Movie Database. Yelp consists of reviews where
1 or 2 stars is interpreted as negative while 4 or
5 stars is interpreted as positive. Amazon has re-
views over a period of 13 years on various products.
Hence, all 3 datasets are binary classification tasks.

Table 2 details the main statistics. All the MCRC
test sets have 4 options while the selected SC test
sets have 2 options: negative and positive. The
number of words for MCRC is the lengths of the
contexts. It is seen that the test sets have vary-
ing lengths from 200 to 700 words and 75 to 230
words for MCRC and SC tasks respectively. For
the MCRC datasets, the total examples are reported
after filtering out all linguistic probe questions (Ap-
pendix E.3 for the procedure). So the focus is only
on the semantic probe questions as assumed in Sec-
tion 3.1.2. For the SC test sets, a subset of 500
examples is selected for each dataset to remain
within the financial budget for use of ChatGPT for
the generation of different linguistic realizations.

The semantic diversity is also calculated for each
dataset. This score is the mean cosine distance be-
tween each text embedding to the centroid of all
embeddings (Raina et al., 2023a). Greater the score,
greater the semantic variation in the set of texts be-

ing considered. The sentence embedder from Ni
et al. (2022) is used to generate the embeddings1.
The semantic diversity is calculated on the contexts
for MCRC. Finally, the linguistic diversity calcu-
lates the mean variation in the embedding space for
different linguistic realizations for each text.

5.2 Model details

The decoder-only implementation of the MCRC
system is based upon the pretrained instruction
finetuned Llama2-7B model2. The main paper for
MCRC focuses only on the decoder-only imple-
mentation (see Appendix E.2 for the encoder-only
implementations). ELECTRA-base (Clark et al.,
2020) is selected for the data complexity evalua-
tor models. The pretrained model is finetuned on
the RACE++ train split with the complexity class
(easy, medium or hard) as the label (hyperparam-
eter tuning details in Appendix E.2). For SC, the
main paper reports results based on a RoBERTa
architecture. The selected model has been fine-

1Available at: https://huggingface.co/sente
nce-transformers/sentence-t5-base

2Available at https://huggingface.co/meta-l
lama/Llama-2-7b-chat-hf
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dataset accuracy influence
original para total question context context-semantic context-linguistic

MCTest 92.5 85.8 0.212 0.116 (54.7%) 0.096 (45.3%) 0.068 (70.6%) 0.028 (29.4%)
RACE++ 86.0 82.9 0.298 0.161 (56.1%) 0.131 (43.9%) 0.108 (82.5%) 0.023 (17.5%)
CMCQRD 79.9 69.4 0.290 0.211 (72.7%) 0.079 (27.3%) 0.067 (83.8%) 0.012 (16.2%)

Table 3: Decomposition of total input influence for Llama-2 on MCRC datasets.

tuned on IMDb training data3. Due to the similarity
in content between Yelp, Amazon and IMDb, the
RoBERTa model finetuned on IMDb is also applied
on all SC test sets. For reproducibility, see BERT
(Devlin et al., 2018) system in Appendix E.2.

6 Results

6.1 Reading Comprehension

Table 3 presents the performance of Llama-2 on
the various MCRC datasets. The highest accuracy
is observed on MCTest with 92.5% and the lowest
on CMCQRD with 79.9%. Additionally, the per-
formance of the model is reported on each dataset
after generating 8 paraphrases for each context (see
Section 4.1). It is observed there is a consistent
drop in performance on the paraphrased contexts
compared to the original. This is expected as the na-
ture of the machine generated paraphrased contexts
do not necessarily align with the type of contexts
observed in the original dataset. Table 3 further
investigates the influence of the different elements:
specifically the context influence compared to the
question influence (note the question includes the
options - see Section 3.1). The context of an MCRC
question plays an important role in the output with
influences up to 45% for MCTest.

The complexity of an MCRC question is de-
scribed by the shape of the output distribution. A
sharp distribution about the correct answer is in-
dicative of an easy question while a flatter distribu-
tion over all the answer options indicates a harder
question. Therefore, the strong influence of the
context demonstrated in Table 3 emphasises that
the context (alongside the specific posed question)
is important in controlling the complexity of a ques-
tion. To further verify the influence of the context,
Figure 3 plots the complexity score output by the
data complexity classifier. In particular, the distri-
bution is shown for the complexity scores on the
different subsets from RACE++ (for CMCQRD see
Appendix Figure 10) of different complexity lev-

3Available at https://huggingface.co/wrmur
ray/roberta-base-finetuned-imdb

Figure 3: Normalized ranks (rank / total examples) of
complexity scores for each complexity level using 3
evaluators: context, context-question and standard. See
Appendix G.1.1 for the performance.

Figure 4: The relative question influence changes with
the subset chosen by the rank of context complexity.

els. Note, the normalized ranks of the complexity
scores is plotted where the global rank is found
for a given complexity score and divided by the
total number of examples. The distributions are
shown for the standard system (context, question
and options), context-question system (context and
question) and the context-only system. The context
is clearly sufficient to determine the complexity lev-
els of MC questions for these datasets, empirically
supporting the importance of the context.

For the context, Table 3 further reports the influ-
ence for the semantic and linguistic components.
For all 3 datasets, the semantic meaning of a con-
text has a greater influence on the final output dis-
tribution but the specific linguistic realization also
influences the output. Specifically, the relative se-
mantic influence is greatest for MCTest and lowest
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dataset accuracy influence
original para total semantic linguistic

IMDB 94.8 93.4 0.472 0.444 (94.0%) 0.028 (6.0%)
Yelp 94.3 93.9 0.472 0.445 (94.2%) 0.027 (5.8%)

Amazon 91.0 89.5 0.361 0.325 (90.0%) 0.036 (10.0%)

Table 4: Decomposition of input influence for different models in various datasets for sentiment classification.

(a) MCRC (b) SC

Figure 5: Entropy filtered pairwise agreement in paraphrase readability and true class probability ordering with
various minimum readability gaps.

for CMCQRD. This is supported by Table 2 where
the calculated semantic diversity is the lowest for
MCTest with similar linguistic diversities across
the datasets. Additionally, Table 3 suggests a re-
lationship between the difficulty of a dataset (indi-
cated by the accuracy of the model) and the relative
question influence. The relative question influence
increases with more challenging datasets. To fur-
ther explore this observation, Figure 4 determines
whether the question influence is directly linked to
the complexity of a question. The data complexity
classifier (QC system) is used to rank all the con-
texts according to their complexity. Then retaining
a certain fraction of the most complex contexts,
the relative question influence is plotted. The plot
is for all the datasets combined (for RACE++ see
Appendix Figure 11). Compared to the random
ordering, it is clear that retaining the most complex
contexts leads to larger question influence scores.
The increase in question influence with more chal-
lenging contexts supports the trend from Table 3.
Therefore, a more challenging context allows a
greater variation in question difficulties, leading to
a greater question influence on the output.

6.2 Sentiment classification

For the SC task there is only a single input. There-
fore, we focus on exploring the relative contribu-
tions of the semantic and linguistic components of
the input. Intuitively, the sentiment of a passage

of text should be determined solely by its semantic
content. However, Table 4 shows that for 3 popular
SC datasets, the linguistic realization does influ-
ence the output. In particular, the relative linguistic
component for Amazon hits 10% of the total. It
appears the semantic component is more dominant
for IMDb and Yelp compared to Amazon. One
possible reason is that the length of texts is shorter
for Amazon compared to the other datasets (see
Table 2). Hence, longer texts have a greater op-
portunity to reinforce sentiment being expressed,
which makes it more robust to different linguistic
realizations. Appendix G.2 further explores this
hypothesis by considering additional SC datasets.

6.3 Impact of linguistic realization

Section 6.1 demonstrated that the linguistic real-
ization of the context in MCRC has measurable
influence on the output distribution over the op-
tions. Here, we investigate the correlation between
the readability of a given paraphrase of the original
text and the output probability of the true class,
termed true class probability (TCP). An entropy
filter is applied to remove examples for which the
entropy of the output distribution is too high, as
high entropy examples suggest a random guess
and hence challenging to ascertain whether a cor-
relation exists. Figure 5a sweeps the fraction of
examples retained according to the entropy filter
and plots the fraction of the remaining examples for
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which the ordering of TCP scores for every pair of
paraphrases matches the ordering of their real read-
ability scores. The plots are indicated for minimum
readability gaps of 0, 25 and 50 for the pairs of
paraphrases. It is observed that the readability of a
paraphrase corresponds to the returned TCP, with a
stronger correlation when the minimum readability
gap between the pairs of paraphrases is higher. A
similar process is applied for SC in Figure 5b to de-
termine the relationship between the readability of
the linguistic realization of the input and the TCP.
Like MCRC there is a positive correlation between
the readability level and the TCP, with a more pro-
nounced relationship by constraining the pairs of
paraphrases to have a larger readability gap.

7 Conclusions

This work describes an information-theoretic
framework for text classification tasks. The frame-
work determines the influence of each input ele-
ment on the output. Additionally, each element is
partitioned into its semantic and linguistic compo-
nents. MCRC and SC are considered as case study
tasks for analysis. For MCRC, it is found that both
the context and question elements play influential
roles on the output distribution. It is further estab-
lished that selection of more challenging contexts
permits greater variation (in terms of complexity)
of questions on the context. Simpler contexts limit
the range of the complexity to only easy questions.
Hence, content creators need to carefully consider
the choice of the context when designing MC ques-
tions to cater to a range of difficulty levels. In SC,
the linguistic realization of the input has a measur-
able impact on the output. Hence, the text wording
cannot be neglected when deducing the sentiment.
For both tasks, higher the readability of a specific
linguistic realization, greater the probability of the
true class in the output distribution.
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9 Limitations

This work has several assumptions that must be
stated. For the multiple-choice reading comprehen-
sion analysis, the question influence is based on
real questions generated by humans on the original
context. However, there is the possibility that the
set of questions on a given context are not gener-
ated independently but instead the question creator
has curated the question set together. Additionally,
it is assumed that the paraphrasing of texts only
changes the linguistic realization. However, it is
likely that it also has an impact on the semantic
content to an extent, which is reflected in the lin-
guistic component influence on the output. We do
quantify the appropriateness of the paraphrasing
system in the Appendix.
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A Additional Derivations

In Equations 13 and 14, we demonstrate the decom-
position of influence for the MCRC task, following
the framework established in Equations 2 and 3.
Equations 5 through 8 detail the theoretical compu-
tation of various mutual information metrics. The
rationale for Equation 6 is as follows:

I (Y ;Xj)

= H (P (y))− EP (xj) [H(P (y|xj))]
= H

(
EP (x)[P (y|x)]

)
− EP (xj) [H(P (y|xj))]

Similarly, Equations 13 and 14 can be written as:

I (Y ;C,Q) = H
(
EP (c,q)[P (y|c, q)]

)

− EP (c,q) [H (P (y|c, q))]

I (Y ;C) = H
(
EP (c,q)[P (y|c, q)]

)

− EP (c) [H (P (y|c))]

I (Y ;Q|C) = EP (c)H ([P (y|c)])
− EP (c,q) [H (P (y|c, q))]

I (Y ;Cs) = H
(
EP (c,q)[P (y|c, q)]

)

− EP(c(s))

[
H

(
P
(
y|c(s)

))]

I (Y ;C|Cs) = EP(c(s))

[
H

(
P
(
y|c(s)

))]

− EP (c) [H (P (y|c))]

There are 4 terms to be calculated:

EP (c,q)[H(P (y|c, q))], H
(
EP (c,q)[P (y|c, q)]

)

EP (c)[H(P (y|c))], EP (c(s))[H
(
[P (y|c(s))]

)

They are approximated in Equations 16 to 19. Take
Equation 16 as an example:

EP (c,q)[P (y|c, q)] =
∫ ∫

P (y|c, q)P (c, q)dqdc

=

∫ ∫
P (y|c, q)P (q|c)P (c)dqdc

=

∫ ∫ ∫
P (y|c, q)P (q|c)P (c|cs)P (cs)dqdcdcs

The integral is intractable. Thus we use Monte
Carlo as an approximation. For the innermost inte-
gral:
∫

P (y|c, q)P (q|c)dq ≈ 1

|Q|
∑

q∼P (q|c)
P (y|c, q)

Similarly, with Monte Carlo, the whole equation
can be approximated as:

1

|C(s)|
∑

c(s)

1

|C|
∑

c∼P (c|c(s))

1

|Q|
∑

q∼P (q|c)
P (y|c, q)

In practice, given a dataset, we have ns data points
(the ith data point contains a context realization
r̃i which is an example of context element ci or a
realization of c(s)i , and a number of |Q̃i| question-
option pairs). Thus we have |C(s)| = ns . As
mentioned in section 3.1.2, we use ChatGPT to
generate paraphrases ri from the observed context
r̃i as different linguistic realizations given the same
semantic meaning. (performance of paraphrasing
generation system is in Appendix E). Thus we have
|C| = |Ri| and c ∼ P (c|c(s)) → r ∈ R(i). The
observed questions Q̃(i) can be seen as q ∼ P (q|c)
directly. Thus we have q ∼ P (q|c) → q̃ ∈ Q̃ with
|Q| = |Q̃(i)|. Overall, we get:

1

ns

ns∑

i=1

1

|R(i)|
∑

r∈R(i)

1

|Q̃(i)|
∑

q̃∈Q̃
P (y|r, q̃)

Or

1

ns

ns∑

i=1

1

|R(i)||Q̃(i)|
∑

r∈R(i),q̃∈Q̃
P (y|r, q̃)

Similar procedure works for equations 17 to 23.

B Extended related work

In multiple-choice reading comprehension, the in-
fluence of each element on the final output dis-
tribution is directly linked to the complexity of a
multiple-choice question. More complex multiple-
choice questions can expect to have flat distribu-
tions over the answer options while easier questions
are sharp around the correct answer. Numerous
studies have looked at the factors that potentially
influence complexity of context passages in rela-
tion with reading comprehension tasks. Sugawara
et al. (2022) observed that the diversity of con-
texts in MC questions determines the diversity of
questions possible conditioned on the contexts. In
their work they found that variables such as pas-
sage source, length, or readability measures do not
significantly affect the model performance. Fur-
ther, Khashabi et al. (2018) introduced the role of
the original source from which the contexts are
extracted in shaping overall complexity. Through
the augmentation of the dataset by diversifying the
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corpus sources, they aimed to enhance the dataset
quality.

Question complexity has repeatedly been dis-
cussed within prior literature, with varying defi-
nitions. Liang et al. (2019b) classified questions
into distinct categories with complexity scores
ranking from lowest to highest for word match-
ing, paraphrasing, single-sentence reasoning, multi-
sentence reasoning, and ambiguous questions. Gao
et al. (2018) quantified complexity as the number
of reasoning steps required to derive the answer.
Similar definitions have been upheld by Yang et al.
(2018) and Dua et al. (2019), who expanded the un-
derstanding of question complexity to encompass
not only contextual comprehension but also factors
such as the confidence of a pretrained question-
answering model.

Distractor (incorrect options for multiple-choice
questions) complexity has been less explored. Gao
et al. (2019) determined distractor complexity
based on the similarity between distractors and the
ground-truth. Employing an n-gram overlap metric,
Banerjee and Lavie (2005) introduced a method to
assess distractor complexity. Dugan et al. (2022)
further dissected distractor complexity, analyzing
qualities such as relevance, interpretability and ac-
ceptability compared to human markers.

As not explored in previous MCRC complexity
literature, in this work the information-theoretic
approach is applied to characterize the influence
of each element in a given multiple-choice reading
comprehension dataset. Greater the influence of an
element, greater the scope to control the complexity
of the multiple-choice reading comprehension task.

In sentiment classification, it is expected the sen-
timent class should be dependent on the semantic
meaning of the text rather than its linguistic real-
ization. However, Liusie et al. (2022) find that
shortcut systems that have access only to the stop-
words in the original text are also able to identify
the sentiment class. Hence, they find the stop words
chosen in the text do influence the sentiment class,
which we express as the specific linguistic realiza-
tion. Chew et al. (2023) further aim to correct for
the bias from spurious correlations. In this work,
we explicitly quantify the influence of the semantic
and linguistic components of the text.

C Additional Tasks

C.1 Grade classification
In the grade classification task, the system is input
a prompt z and a response x and then is required
to output a number in the range 1 to 6 with 6 de-
noting the highest degree of alignment between the
given prompt and its corresponding response. The
task is traditionally a regression-oriented but here
we apply our information-theoretic classification
framework by treating it as a 6-option classification
task.

P (y) = EP (z,x)P (y|z, x) (25)

Further, the semantic meaning of the response x
can be seen as generated from P (x|z). In the con-
sidered datasets, a prompt has a large-scale number
of responses while the number of prompts are lim-
ited. Thus, here we focus only on the analysis of
the influence of the response. The output equation
can be rewritten as:

P (y) = EP (z)EP (x(s)|z)EP (x|x(s))P (y|x, z) (26)

Therfore, we can calculate the influence from the
semantic meaning and the linguistic realization of
the responses:

I(Y ;X|Z)︸ ︷︷ ︸
text

= I(Y ;X(s)|Z)︸ ︷︷ ︸
semantic

+ I(Y ;X|X(s), Z)︸ ︷︷ ︸
linguistic

(27)

In practice, we collect the prompt set Z and a re-
sponse set X for each prompt. For each response
x(i,j) of the prompt z(i), we observe a realization
r̃(i,j) and additionally generate a set of realizations
R(i,j) of the semantic meaning of the responses.
The following approximations are made:

EP (z)

[
H

(
EP (x|z) [P (y|x, z)]

)]
≈ (28)
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1
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|R(i,j)|
∑
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P (y|r, zi))

EP (x(s),z)

[
H(P (y|x(s), z))

]
≈ (29)
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EP (x,z) [H(P (y|x, z))] ≈ (30)
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|R(i,j)|
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H(P (y|r, zi))
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where ni
s is the number of responses for prompt

z(i).

D Systems

D.1 Grade classification
The architecture of the model used for grade classi-
fication is based on the decoder-only transformer
architecture with Llama-2 as described in Section
4.2. Hence, the prompt and the response are con-
catenated together at the input to the model, which
is trained to return a probability distribution over
the 6 grade classes.

D.2 Data complexity classification
The system is required to output a probability dis-
tribution among options: easy, medium and hard.
The architecture is presented in Figure 6. The com-
plexity score Sc is calculated as:

Sc = 0 ∗ Peasy + 0.5 ∗ Pmedium + 1 ∗ Phard (31)

Figure 6: Architecture for MC question complexity
classifier with context, c, question, q and options, {o}.

D.3 Calibration
The trained models were calibrated post-hoc using
single parameter temperature annealing (Guo et al.,
2017). It is necessary to calibrate the models for
the absolute information-theoretic measures to be
meaningful. Uncalibrated, model probabilities are
determined by applying the softmax to the output
logit scores si:

P (y = k;θ) ∝ exp(sk) (32)

where k denotes a possible output class for a predic-
tion y. Temperature annealing ‘softens’ the output
probability distribution by dividing all logits by a
single parameter T prior to the softmax.

PCAL(y = k;θ) ∝ exp(sk/T ) (33)

As the parameter T does not alter the relative rank-
ings of the logits, the model’s prediction will be un-
changed and so temperature scaling does not affect

the model’s accuracy. The parameter T is chosen
such that the accuracy of the system is equal to the
mean of the maximum probability (as is expected
for a calibrated system).

E Experiments

E.1 Data

Table 5 provides a breakdown of the RACE++
dataset, which is divided into three subsets: RACE-
M, RACE-H, and RACE-C. These subsets corre-
spond to English exam materials from Chinese mid-
dle schools (RACE-M), high schools (RACE-H),
and colleges (RACE-C) respectively. Table 5 dis-
plays key statistics for each of these subsets includ-
ing the number of contexts, the average number
of questions for one context, and the semantic and
linguistic diversity. Note, for all MCRC datasets,
the options are re-ordered such that the true class
is the first option.

SST-2 (Socher et al., 2013) and TweetEval (Bar-
bieri et al., 2020) are considered as additional
datasets for sentiment classification, which were
not presented in the main text. SST-2 (Stanford
Sentiment Treebank) corpus consists of movie re-
views provided by Pang and Lee (2005) which are
classified as either positive or negative. TweetE-
val consists of seven heterogeneous tasks based on
tweets from Twitter. Here, the focus is on the tweet-
emotion task where each tweet is classified as joy,
sadness, optimism or anger. These two datasets are
included here as they have shorter inputs texts than
IMDb, Yelp and Amazon.

Hewlett foundation (Hamner et al., 2012), a com-
petition requiring automated grading of student-
written essays, is included as the dataset for the
grade classification task. In total it has 8 subgroups
and each subgroup has 1 prompt with several re-
sponses. Here we only choose the first 2 subgroups
and turn them into a 6 option classification task
with 6 denoting the highest degree of alignment
between the given prompt and its corresponding
response. 3,583 responses are sampled for the train-
ing split while 500 are selected randomly as the test
split. From Table 5, it is clear compared to other
dataset, the responses in Hewlett are mutually se-
mantically closer in meaning compared to other
datasets as they are all responses to just 2 prompts.

Table 5 also supports that our paraphrasing sys-
tem is sensible by showing the linguistic diversity
is much lower than the semantic diversity among
all responses. A more detailed quality verification
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process of our paraphrasing system is shown in
Appendix F.

E.2 Models

For the multiple choice reading comprehension
tasks, three models are used: Llama2, RoBERTa
and Longformer.

Pretrained Llama-2 (7 billion parameters) is fine-
tuned specifically on the train split of RACE++
with hyperparameter tuning on the validation split.
However, it is not computationally feasible to train
all the model parameters of Llama-2. Therefore,
parameter efficient finetuning is used with quan-
tized low rank adapters (QLoRA) (Dettmers et al.,
2023). The final training parameters finetune the
model with a learning rate of 1e-4, batch size of
4, lora rank of 8 with lora α = 16 and dropout 0.1.
The model is trained for 1 epoch taking 7 hours
on an NVIDIA A100 machine. For the main paper
results, the Llama-2 model is selected due to its
best accuracy.

RoBERTa (82 million parameters)4 is finetuned
on the train split of the RACE dataset (RACE-M
and RACE-H). The details of the specific Long-
former (336 million parameters)5 are detailed in
Manakul et al. (2023). For the main paper results,
the Llama-2 model is selected due to its best accu-
racy.

For the data complexity classification system,
pretrained ELECTRA-base (110 million parame-
ters) is finetuned on the RACE++ train split with
the complexity class (easy, medium or hard) as
the label. The model is trained using the AdamW
optimizer, a batch size of 3, learning rate of 2e-5,
max number of epochs of 3 with all inputs trun-
cated to 512 tokens. An ensemble of 3 models is
trained. Training for each model takes 3 hours on
an NVIDIA V100 graphical processing unit.

For the sentiment classification task, we used the
models from RoBERTa and distilBERT(82 million
parameters) (Sanh et al., 2019) family and the they
are finetuned on various datasets as explained in
the following. The train split of IMDb is used to
finetune RoBERTa6 and BERT7. Both of these mod-
els are applied on the test sets for IMDb, Yelp and

4Available at https://huggingface.co/LIAMF
-USP/roberta-large-finetuned-race

5Available at https://huggingface.co/potsa
wee/longformer-large-4096-answering-race

6Available at: https://huggingface.co/wrmur
ray/roberta-base-finetuned-imdb

7Available at : https://huggingface.co/lvwer
ra/distilbert-imdb

Amazon. The models we used for SST-2 and Tweet-
Eval are finetuned n their corresponding training
split, namely RoBERTa-SST28, distilBERT-SST29,
RoBERTa-Tweet10, distilBERT-Tweet11.

For the grade classification task, we finetuned
Llama-2 on the training split of the Hewlett dataset
using QLoRA. The chosen training parameters fine-
tune the model with a learning rate of 1e-4, batch
size of 4, lora rank of 8 with lora α = 16 and
dropout 0.1. The model is trained for 1 epoch
taking 30 minutes on an NVIDIA A100 machine.
The sentiment classification datasets do not state
licenses.

E.3 Question filter

Based on manual observation, the RACE++ dataset
has some questions that are generated from the lin-
guistic contents of the contexts rather than from
the semantic contents. As explained in Section 3.1,
these questions will invalidate the theoretical as-
sumption when calculating the influence of each
component because the question would be unan-
swerable for a generated paraphrase that does not
maintain the same linguistic information. Namely,
these linguistic questions are often related to their
positions in the context and are always correlated
with certain key words such as ‘in paragraph 2’.
Thus, we apply a word-matching question filter
to filter out all such examples, ensuring that only
relevant and contextually coherent questions are re-
tained for further processing. We specifically filter
out all questions containing the following phrases:
‘{number} + word/sentence/paragraph + {number}
+ refer to/mean’.

In total, for the RACE++ dataset, approximately
6.2% questions are found to be generated from the
linguistic content of the context and thus filtered
out. The effects of the filter on the element influ-
ence analysis using Llama-2 is shown in Table 6.
It is clear the measured question influence drops as
expected by 1.6%.

8Available at: rasyosef/roberta-base-finet
uned-sst2

9Available at: https://huggingface.co/disti
lbert/distilbert-base-uncased-finetuned
sst-2-english

10Available at: cardiffnlp/twitter-roberta-b
ase-dec2021-emotion

11Available at: https://huggingface.co/phils
chmid/DistilBERT-tweet-eval-emotion
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# examples # options # words # questions semantic diversity linguistic diversity

MCRC
RACE-M 362 4 200 4 0.096±0.017 0.017±0.007
RACE-H 510 4 308 3.3 0.100±0.012 0.016±0.006
RACE-C 135 4 375 5.2 0.097±0.011 0.018±0.006

SC SST-2 500 2 20 - 0.145±0.021 0.087±0.034
TweetEval 500 4 17 - 0.149±0.022 0.081±0.033

GC Hewlett 500 6 383 2 0.063±0.017 0.021±0.009

Table 5: Statistics for breakdown of additional test datasets including RACE-M, RACE-H, RACE-C for RACE++ in
multiple-choice reading comprehension (MCRC); SST-2, TweetEval in sentiment classification (SC) and Hewlett in
grade classification (GC).

filter accuracy influence
original para total question context context-semantic context-linguistic

No 84.2 81.5 0.284 0.164 (57.7%) 0.120 (42.3%) 0.135 (81.4%) 0.031 (18.6%)
Yes 86.0 82.9 0.298 0.161 (56.1%) 0.131 (43.9%) 0.108 (82.5%) 0.023 (17.5%)

Table 6: The effect of the question filter on element influence for Llama-2 on the RACE++ test set.

F Paraphrasing

The readability level is measured by Flesch reading-
ease (Flesch, 1948) score (FRES) where higher
scores indicate material that is easier to read while
lower scores are reflective of more challenging
texts.

FRES = 206.835 − 1.015
(
nw

nse

)
− 84.6

(
nsy

nw

)

nw is the total number of words, nse is the total
number of sentences, nsy the total number of sylla-
bles.

We grouped the original texts into eight differ-
ent readability levels: 5, 20, 40, 55, 65, 75, 85,
and 95 for the reading comprehension and grade
classification tasks and used the final 7 groups for
the sentiment classification task as there were no
texts in sentiment classification that fell into the
most challenging category of 0-10 on the readabil-
ity scale. The specific prompts for each difficulty
level we used are shown in Table 7. Here we also
present the quality of our paraphrase generation
process. Figure 7 displays the average readability
score of the paraphrased text for each combination
of original and target readability levels. From the
heatmap, we can see that while the readability of
the paraphrased text is influenced by the readability
of the original text, the paraphrases still fall within
an acceptable range of readability. We also report
the averaged BertScore F1 (Zhang et al., 2019) and
Word Error Rate (WER) (Och, 2003) to ensure the
quality of our paraphrasing system as shown in Fig-
ure 8 and Figure 9. An ideal paraphrasing system

should expect high semantic similarity with high
BERTScore and low linguistic similarity with high
WER.

G Additional results

Here we present the results from some additional
experiments that act as a supplement to the main
paper.

G.1 Reading comprehension

G.1.1 Data complexity classifier
In Section 4.3, we used the data complexity clas-
sifier with the data context as the input. Here we
assess its quality by testing its performances in-
domain (with an ensemble of 3 models) on the
RACE++ test set. We additionally compare the
performance on the standard input with other pos-
sible combinations of the input, as shown in Table
8. As well as accuracy, macro F1 is reported to
account for the imbalance in the complexity level
classes. The results for the mode class indicate the
baseline performance when the mode class is se-
lected for every example in the test set. All systems
significantly outperform the baseline. Inputting the
context alone is sufficient to get an accuracy close
to the full input and when extra information is in-
putted, the gain is marginal. Hence, compared with
question and options, the context carries a substan-
tial proportion of the information to determine the
complexity of a question.

In Figure 10, the data complexity classifier
model shows strong generalizability by clearly
classifying different subsets of CMCQRD dataset,
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Target Level (US) Prompt

5 Professional Paraphrase this document for a professional. It should be extremely difficult to read and best
understood by university graduates.

20 College graduate Paraphrase this document for college graduate level (US). It should be very difficult to read
and best understood by university graduates.

40 College Paraphrase this document for college level (US). It should be difficult to read.

55 10-12th grade Paraphrase this document for 10th-12th grade school level (US). It should be fairly difficult
to read.

65 8-9th grade Paraphrase this document for 8th/9th grade school level (US). It should be plain English and
easily understood by 13- to 15-year-old students.

75 7th grade Paraphrase this document for 7th grade school level (US). It should be fairly easy to read.

85 6th grade Paraphrase this document for 6th grade school level (US). It should be easy to read a

95 5th grade Paraphrase this document for 5th grade school level (US). It should be very easy to read and
easily understood by an average 11-year old student.

Table 7: Prompts to generate paraphrases with different target readability (using FRES).

(a) Reading Comprehension (b) Sentiment Classification

Figure 7: Averaged measured readability.

input format accuracy F1
single ens single ens

mode class 61.6 – 25.4 –

standard 84.7±0.5 87.2 81.7±1.1 83.7
context 84.9±0.3 85.1 81.8±0.8 81.7
context-question 84.7±0.7 86.0 81.8±0.6 82.2
question-option 70.2±0.5 71.3 67.3±0.7 68.2

Table 8: Accuracy of data complexity evaluators on the
RACE++ test set.

which differ a lot from the model’s training dataset.
The plot also supports the context is a sufficient
input to determine the different complexity levels.

G.1.2 Additional models
In Section 6, we analyse the influence from differ-
ent elements and components on the output for two
specific models: Llama-2 for the multiple choice
reading comprehension task, Roberta for the sen-
timent classification task. Here we show the in-

fluence terms calculated are not model-specific by
showing the consistency of the element influences
on the same datasets but evaluated by different
models: Llama-2, Roberta and Longformer as in
Table 9.

G.1.3 Further analysis

In Figure 4, we show a strong positive correla-
tion between the question influence and the context
complexity when we consider all three dataset to-
gether. Here we show the rule still holds for data
points inside a single dataset in Figure 11 where
the trend in RACE++ dataset is pretty similar to
the all three datasets together.

We also explore other potential factors influenc-
ing the relative question influences. From Table
2, there are two marked differences between the
datasets: the number of words (length) and the
number of questions. To find their influence in the
relative question influence score, Figure 12a and
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(a) Reading Comprehension (b) Sentiment Classification

Figure 8: Averaged BERTScore F1.

(a) Reading Comprehension (b) Sentiment Classification

Figure 9: Averaged Word Error Rate.

Figure 12b show the relative question influence of
the subset chosen from the contexts ranked by their
number of words or the number of questions of
the corresponding context. A strong positive trend
between the relative question influence scores and
the context length is observed as expected: a longer
context naturally has a larger question generation
capacity. As shown in Figure 12b, the number of
questions does not have a direct impact, indicating
the results are not affected by the specific number
of questions per context.

G.1.4 Question Generation
In Section 3.1 we investigate the influence of differ-
ent element of model input and focuses on human-
generated questions only. Here we investigate the
influence from the LLM-generated questions.

To be more specific, for each context, using GPT-
4, we generate 4 questions with prompt:

“Given the context: {context}, please generate
four multiple choice questions with options where
the first option is the correct answer and the other
three are distractors. The questions should be of

varying difficulty levels: low, middle, high, and
very high. Please output the questions in the format
of a dictionary with the keys: ‘easy’, ‘middle’,
‘high’, and ‘very high’. Each key should map to a
dictionary representing a question, with the fields
‘question’, ‘options’, and ‘answer’ indicating the
correct answer.”

However, as indicated in (Sun et al., 2023),
LLMs struggle at tasks with hard constraints, Ta-
ble 10 shows the generated questions are relatively
easy and have a lower influence on model output.

G.1.5 Ordering

For humans taking multiple-choice tests, the role
of the context compared to the question may be
influenced by the ordering in which they read each
of these elements. Similarly, a reading comprehen-
sion system may be susceptible to the ordering of
the context and the question. Here we compare
the influence of the ordering by reversing the stan-
dard context followed by question at the input to
the question followed by the context . Table 11
demonstrates that the ordering for the automated
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(a) RACE++ (b) CMCQRD

Figure 10: Normalized ranks (rank / total examples) of complexity scores for each complexity level using three
complexity evaluators: context, context-question and standard.

dataset model accuracy influence
orig para total question context c-semantic c-linguistic

MCTest
RoBerta 95.3 93.0 0.254 0.140 (55.2%) 0.114 (44.8%) 0.076 (67.0%) 0.037 (33.0%)

Longformer 98.3 91.3 0.285 0.152 (53.5%) 0.133 (46.5%) 0.068 (70.6%) 0.028 (29.4%)
Llama2 92.5 85.8 0.212 0.116 (54.7%) 0.096 (45.3%) 0.068 (70.6%) 0.028 (29.4%)

RACE++
RoBerta 84.2 81.5 0.379 0.213 (56.3%) 0.166 (43.7%) 0.135 (81.4%) 0.031 (18.6%)

Longformer 81.6 79.3 0.390 0.228 (58.6%) 0.162 (41.1%) 0.135 (83.2%) 0.027 (16.8%)
Llama2 86.0 82.9 0.298 0.161 (56.1%) 0.131 (43.9%) 0.108 (82.5%) 0.023 (17.5%)

CMCQRD
Roberta 73.5 69.4 0.383 0.287 (74.9%) 0.096 (25.1%) 0.074 (77.5%) 0.022 (22.4%)

Longformer 71.9 69.8 0.467 0.326 (69.9%) 0.141 (30.1%) 0.114 (81.0%) 0.027 (19.0%)
Llama2 79.9 69.4 0.290 0.211 (72.7%) 0.079 (27.3%) 0.067 (83.8%) 0.012 (16.2%)

Table 9: Decomposition of total input influence for different models in various multiple-choice reading comprehen-
sion datasets. With c-semantic is context semantic, c-linguistic is context-linguistic

system does not lead to differing influences on each
element. The results here are provided for the fine-
tuned Llama-2 model from Section 5.2.

G.2 Sentiment classification

For the sentiment classification task, to show the
consistency of the element influence among dif-
ferent models, Table 12 presents additional results
using the BERT model as a comparison against the
RoBERTa model.

It can be observed also that for shorter input
text datasets, such as SST-2 and TweetEval, the lin-
guistic component is more significant, approaching
20% of the total.

G.3 Grade classification

The influence to the model output from the re-
sponse, its semantic component and linguistic com-
ponent are respectively shown in Table 13. We ob-
serve a large influence from the linguistic content
of the responses which agrees with the 15% drop
in model accuracy when the paraphrased dataset is
used. Further, we measure the correlation between
the readability and true class probability in Figure

13. It is clear that with a higher readability, the
probability of selecting the true grade increases.

H Future work

The analysis in this work has applied the frame-
work to specifically NLP classification tasks. It
would be interesting to extend the framework to
both regression and sequence output tasks. For se-
quential outputs, there needs to be a methodology
to convert the generated sequence to a single score
such that its sensitivity can be measured to each
input element.

The framework applied to textual data to explore
the influence of semantic vs linguistic components
can also be extended to image inputs. Here, we
can perceive the semantic content as the object
being described in the image while the linguistic
realization is based on the recording equipment
that controls aspects such as orientation, resolution
(blurring), camera angle, e.t.c. Therefore, the pro-
posed information-theoretic approach has potential
applications across several modalities.
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(a) Total (b) RACE++

Figure 11: The relative question influence changes with the subset chosen by the rank of context complexity in all
three datasets (left) and in RACE++ only (right). 12 0.2 in x-axis means we leave contexts with top 20% context
complexity as the subset.

(a) Length (b) Number of questions

Figure 12: The relative question influence for a subset of contexts swept in order of length (left) or average number
of questions per context (right) for all MCRC datasets with Llama-2.

Figure 13: Entropy filtered pairwise agreement in para-
phrase readability and true class probability ordering
with various minimum readability gaps.

I Licenses

The RACE dataset is available for non-commercial
research purposes only. Also for CMCQRD,
the license13 states the licensed dataset for non-
commercial research and educational purposes only.
MCTest is copyright free. There are no licenses

13Available at: https://englishlanguageituto
ring.com/datasets/cambridge-multiple-cho
ice-questions-reading-dataset

stated for the remaining datasets.
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Question Source accuracy influence
original para total question context context-semantic context-linguistic

human 84.2 81.5 0.284 0.164 (57.7%) 0.120 (42.3%) 0.135 (81.4%) 0.031 (18.6%)
automatic 96.1 93.7 0.266 0.121 (45.4%) 0.145 (54.6%) 0.101 (69.5%) 0.044 (30.5%)

Table 10: Human sources questions vs GPT4 generated questions for Llama-2 on the RACE++ test set.

dataset direction influence
total question context context-semantic context-linguistic

RACE++ Forward 0.304 0.171 (56.3%) 0.133 (43.7%) 0.109 (82.1%) 0.024 (17.9%)
Reverse 0.305 0.172 (56.7%) 0.133 (43.6%) 0.109 (82.3%) 0.024 (17.7%)

MCTest Forward 0.212 0.116 (54.7%) 0.096 (45.3%) 0.068 (70.6%) 0.028 (29.4%)
Reverse 0.229 0.129 (56.6%) 0.100 (43.4%) 0.067 (67.2%) 0.032 (32.3%)

CMCQRD Forward 0.290 0.211 (72.7%) 0.079 (27.3%) 0.067 (83.8%) 0.012 (16.2%)
Reverse 0.278 0.204 (73.4%) 0.074 (26.6%) 0.061 (82.5%) 0.013 (17.5%)

Table 11: Decomposition of total input influence for different models in various datasets for context-question
(forward) vs question-context (reverse) using Llama-2.

dataset model accuracy influence
original para context semantic linguistic

IMDb RoBERTa 94.8 94.0 0.472 0.444 (94.2%) 0.028 (5.8%)
BERT 93.3 92.9 0.483 0.458 (94.7%) 0.025 (5.3%)

Yelp RoBERTa 94.3 93.9 0.472 0.445 (94.2%) 0.027 (5.8%)
BERT 92.9 92.6 0.518 0.488 (94.2%) 0.030 (5.8%)

Amazon RoBERTa 91.0 89.5 0.361 0.325 (90.0%) 0.036 (10.0%)
BERT 91.2 90.3 0.425 0.389 (91.5%) 0.036 (8.5%)

SST-2 RoBERTa 87.4 82.5 0.210 0.171 (81.4%) 0.039 (18.6%)
BERT 89.0 84.7 0.274 0.229 (83.5%) 0.045 (16.5%)

TweetEval RoBERTa 85.2 74.5 0.570 0.469 (82.2%) 0.101 (17.8%)
BERT 77.7 75.3 0.592 0.506 (85.5%) 0.086 (14.5%)

Table 12: Decomposition of total input influence for different models in various sentiment classification dataset

accuracy influence
original para response response-semantic response-linguistic

79.2 64.4 0.399 0.283 (70.9%) 0.116 (29.1%)

Table 13: Influence from semantic meaning and linguistic realization of the responses in grade classification task in
Hewlett dataset.
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