
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5677–5700
August 11-16, 2024 ©2024 Association for Computational Linguistics

Benchmarking Data Science Agents

Yuge Zhang1 Qiyang Jiang2 Xingyu Han2 Nan Chen1 Yuqing Yang1 Kan Ren2 *

1Microsoft Research, 2ShanghaiTech University
Yuge.Zhang@microsoft.com, renkan@shanghaitech.edu.cn

Abstract

In the era of data-driven decision-making, the
complexity of data analysis necessitates ad-
vanced expertise and tools of data science, pre-
senting significant challenges even for special-
ists. Large Language Models (LLMs) have
emerged as promising aids as data science
agents, assisting humans in data analysis and
processing. Yet their practical efficacy remains
constrained by the varied demands of real-
world applications and complicated analytical
process. In this paper, we introduce DSEval –
a novel evaluation paradigm, as well as a series
of innovative benchmarks tailored for assess-
ing the performance of these agents throughout
the entire data science lifecycle. Incorporat-
ing a novel bootstrapped annotation method,
we streamline dataset preparation, improve the
evaluation coverage, and expand benchmark-
ing comprehensiveness. Our findings uncover
prevalent obstacles and provide critical insights
to inform future advancements in the field.*

1 Introduction

Data science has become significant, as it helps
individuals and organizations make informed deci-
sions, predict trends, and improve processes by ana-
lyzing large volumes of data. Research on this topic
continues to advance the field, driving innovations
in machine learning, artificial intelligence, and big
data analytics, thus enhancing its impact across
various industries. However, data science requires
extensive knowledge about analytical toolkits (e.g.,
NumPy and Pandas) and professional expertise to
conduct analysis and correctly draw insights from
data, which is challenging even for specialists.

Recent advancements in Large Language Model
(LLM) (Brown et al., 2020; Touvron et al., 2023)
and LLM-powered agents (Shen et al., 2023) have
shown considerable potential in enhancing human

*Correspondence to Kan Ren.
*Source code and data are available at https://github.

com/MetaCopilot/dseval.

Runtime Session

In-memory Data

country landArea pop2010 pop2023 pop2050

India 2973190 1.24E+09 1.43E+09 1.67E+09

China 9424703 1.35E+09 1.43E+09 1.31E+09

… … … … …

External Files

Table data/populations.json

Table https://datasets.org/populations.csv

Text population_description.md

Execution History

Predict the

population of 2050.

pop['pop2050'] = ...

Analyze

relationship

between land area

and population.

pop['pop2023'].corr(
pop['landArea'])

Query
Calculate the population density for
each country in 2023 and 2050.
Result should be a new frame with
"Country" as the index and "2023
Density" and "2050 Density" as the
columns.

Retrieved Context

Large Language Model

pd.DataFrame({
 'Country': pop['country'],
 '2023 Density': pop['pop2023']

 / pop['landAreaKm'],
 '2050 Density': pop['pop2050']

 / pop['landAreaKm']
}).set_index('Country')

Country 2023 Density 2050 Density

India 4.81E+02 5.62E+02

China 1.52E+02 1.39E+02

… … …

G
e

n
e

ra
tio

n
E

x
e

c
u

tio
n

Figure 1: Illustration of a typical workflow of data sci-
ence agents.

capabilities in data science. For instance, Code In-
terpreter† allows ChatGPT to perform data analysis
and visualization by creating a sandboxed Python
interpreter within the platform. Copilots integrated
with Microsoft Excel and PowerBI‡ assist users
in exploring and understanding data and finding
insights. Similar initiatives have also emerged
in the open-source community, such as Jupyter
AI (jupyterlab, 2023), Chapyter (chapyter, 2023),
and CoML (Zhang et al., 2023a).

The tools mentioned are part of an emerging cat-
egory of software known as data science agents,
capable of executing a wide array of data-centric
tasks, including manipulation, aggregation, visu-
alization, and analysis, through natural language
commands. These agents primarily utilize LLMs
to produce and implement code within designated
data science platforms, such as Excel. Essential to
their operation is the ability to comprehend the con-
text of data and files in the ongoing session, along
with the capability to verify and amend outputs
as necessary, as discussed in studies (Cheng et al.,
2023; Zhang et al., 2023b; Tu et al., 2023; Chen

†https://openai.com/blog/chatgpt-plugins
‡https://support.microsoft.com/en-us/

copilot-excel

5677

https://github.com/MetaCopilot/dseval
https://github.com/MetaCopilot/dseval
https://openai.com/blog/chatgpt-plugins
https://support.microsoft.com/en-us/copilot-excel
https://support.microsoft.com/en-us/copilot-excel

Calculate the population density

for each country in 2023 and 2050.

Result should be a new frame

with "Country" as the index and

"2023 Density" and "2050 Density" as the columns.

Query country
landArea

Km
pop2010 pop2023 pop2050

India 2973190 1.24E+09 1.43E+09 1.67E+09

China 9424703 1.35E+09 1.43E+09 1.31E+09

US 9147420 3.11E+08 3.4E+08 3.75E+08

… …

pop['2023 Density'] = pop['pop2023'] / pop['landAreaKm']
growth = (pop['pop2023'] / pop['pop2010']) ** (1 / (2023-2010)) - 1
pop['2050 Population'] = pop['pop2023'] * (1+growth)**(2060-2023)
pop['2050 Density'] = pop['2050 Population'] / pop['landAreaKm']
pop[['country', '2023 Density', '2050 Density']].set_index('country')

CoML

pd.DataFrame({
 'Country': pop['country'],
 '2023 Density': pop['pop2023'] / pop['landAreaKm'],
 '2050 Density': pop['pop2050'] / pop['landAreaKm']
}).set_index('Country')

Code Interpreter

pop = pop.set_index('country')
pop['2023 Density'] = pop['pop2023'] / pop['landAreaKm']
pop['2050 Density'] = pop['pop2050'] / pop['landAreaKm']
pop[['2023 Density', '2050 Density']]

Chapyter

dens_2023 = pop.div(pop['landAreaKm'], axis=0)
dens_2050 = pop.div(pop['landAreaKm'], axis=0)*(1+growth)**(2050-2023)
pd.DataFrame({'Country': pop['country'],
 '2023 Density': density_2023,
 '2050 Density': density_2050})

Jupyter AI

Intact Violation + Wrong Output

Correct

Intact Violation + Presentation Error

Crash

Figure 2: A sample problem to test current data science
agents. Code Interpreter is the only agent that produces
the correct code to answer the query. CoML neglects
the existing “pop2050” column in the table and pre-
dicts the population of 2050 on its own, which is not
desired. Chapyter fails to capitalize the index “Country”
and unintentionally modifies the data (“pop”), violating
intactness. Jupyter AI divides strings by integers and
cannot automatically recover from such failures.

et al., 2023). Figure 1 depicts the typical workflow
of a data science agent, highlighting its interactions
with various components.

However, the reliability and accuracy of cur-
rent data science agents can be inconsistent due
to practical complexity of data science. For in-
stance, when we subjected four different agents to
the same query, as shown in Figure 2, only one
provided the correct response. The errors made by
the others ranged from overlooking a data frame
column, misinterpreting data types, failing to ad-
here to specified output formats, to altering the
original data. These discrepancies can stem from
various issues, including LLM limitations, unclear
or inaccessible context, or a lack of failure recovery
mechanisms. Such shortcomings underscore the
urgent need for focused research and enhancement
of data science agents, with a particular emphasis
on rigorous evaluation and benchmarking.

Evaluating data science agents is essential to
pinpoint their capabilities and limitations, thereby
informing future research trajectories. Yet, ex-

isting evaluation methodologies fall short of ad-
equately addressing this need, being either insuffi-
cient or ill-suited for the task at hand. Some exist-
ing works (Zan et al., 2022; Lai et al., 2023) only
deliver incomplete evaluations of simple code com-
pletion or in-filling capability of LLMs, neglecting
the whole problem-solving ability of agents. Other
recent works (Cheng et al., 2023; Dibia, 2023) per-
form evaluations either on a limited scale or in a
biased manner, mainly due to the heavy human ef-
forts for dataset construction and agent evaluation.

In this paper, we introduce a novel benchmark-
ing framework designed specifically for evalua-
tions of data science agents. Our contributions are
three-fold. First, we propose DSEval, an evaluation
paradigm that enlarges the evaluation scope to the
full lifecycle of LLM-based data science agents.
We also cover aspects including but not limited to
the quality of the derived analytical solutions or
machine learning models, as well as potential side
effects such as unintentional changes to the original
data. Second, we incorporate a novel bootstrapped
annotation process letting LLM themselves gen-
erate and annotate the benchmarks with “human
in the loop”. A novel language (i.e., DSEAL) has
been proposed and the derived four benchmarks
have significantly improved the benchmark scala-
bility and coverage, with largely reduced human
labor. Third, based on DSEval and the four bench-
marks, we conduct a comprehensive evaluation of
various data science agents from different aspects.
Our findings reveal the common challenges and
limitations of the current works, providing useful
insights and shedding light on future research on
LLM-based data science agents.

2 Related Works

In this section, we provide a concise overview of
the pertinent literature. Please refer to Appendix A
for a detailed comparison table.

Evaluating Code Generation Models. The field
of LLMs (Brown et al., 2020) has seen rapid
progress, with many capable models that can gener-
ate high-quality natural language and codes for var-
ious domains and tasks (Chen et al., 2021; Roziere
et al., 2023). Benchmarks for these models (Chen
et al., 2021) have also emerged. Some of them are
specifically designed for the data science domain,
such as PandasEval / NumpyEval (Zan et al., 2022),
DSP (Chandel et al., 2022) and DS-1000 (Lai et al.,
2023). However, what these benchmarks provided

5678

were pre-written prompts, mainly for a fair compar-
ison of completion of in-filling abilities of LLMs
themselves. They do not fully evaluate the skills of
data science agents (Zhang et al., 2023a), such as
handling natural language interactions, managing
runtime sessions, and assembling prompts. Our
evaluation scope is larger, which includes the full
lifecycle of the agents.

Evaluating Agents. State-of-the-art LLMs (Ope-
nAI, 2023) have been used to power autonomous
agents (Significant-Gravitas, 2023; yoheinakajima,
2023; Wu et al., 2023), some of which get spe-
cialized in solving data science problems, such as
data analysis, visualization and modeling (Li et al.,
2023a; Qian et al., 2023a; Zhang et al., 2023a).
However, there is a lack of rigorous and system-
atic evaluation methods for these agents. Some
existing methods rely on huge human labor in prob-
lem collection and judgment, to assess the quality
of the generated code or analysis (Cheng et al.,
2023), which incurs significant cost and restricts
the scalability of benchmarks. Some others resort
to another more powerful LLM to score the out-
put of the agent (Dubois et al., 2023; Dibia, 2023;
Wang et al., 2023), which may introduce bias and
overlook errors. Our work proposes a novel full-
lifecycle evaluation paradigm to ensure robustness,
and an additional LLM-bootstrapping annotation
to enhance scalability and coverage.

3 DSEval: Evaluation Paradigm for Data
Science Agents

To comprehensively and reliably evaluate a data
science agent, we must first identify the evalua-
tion scope, i.e., the “lifecycle” of an agent (§ 3.1).
Then we propose a paradigm that monitors the full
lifecycle for complete assessments (§ 3.2).

3.1 Evaluation Scope

We argue that a robust data science agent depends
not solely on the LLM capabilities, but also on
the design of its other constituent components. To
identify the necessary scope for a comprehensive
evaluation, we must first have a holistic perspective
on the agent’s lifecycle.

The lifecycle is depicted in the left part of Fig-
ure 3. First, the agent receives a “query” (expressed
in natural language). Then it retrieves some addi-
tional contexts from a stateful “runtime session”,
which is usually hosted by a data analysis platform
(e.g., Jupyter), containing information like vari-

DSEvalData Science Agent

Runtime Session

(variables, execution history, etc.)

Code Generator
1. Query

2. Context 3. Code

5. Result

Code Fixer

4(a) Context

4(c) Code

4(b) Result

Oracle

Agent

Oracle

code

Validators

Verdict

Figure 3: Agent lifecycle, monitored by DSEval. Our
evaluation scope is the green-shadowed area. DSEval
monitors the full lifecycle.

ables, execution history, files, etc. A LLM-powered
code generator then produces a code snippet based
on the query and context. The code is sent back to
the runtime session for execution to get the result.
Optionally, a code fixer can help with error diagno-
sis and quality improvement (as done in tools like
genai§). The lifecycle can repeat itself for multi-
rounds, with the runtime session keeping track of
the conversation and execution history.

Our evaluation focuses on the holistic behavior
of the data science agent, excluding implementa-
tion details of internal components such as code
generators. We design benchmarks with queries
and runtime sessions as the only inputs, which
essentially differs from existing code generation
benchmarks (Chen et al., 2021; Zan et al., 2022).

3.2 Full-Lifecycle Monitoring
The holistic view of the agent lifecycle also makes
us rethink the evaluation paradigm, and we con-
clude that “every step and component involved in
the lifecycle must be continuously monitored”. For
instance, imagine a query requiring in-place dataset
modifications. Here, validating the runtime session
is crucial to confirm the accurate execution. Hence,
we design a validator module that is able to mon-
itor the generated code, execution result, runtime
session, etc. Meanwhile, the validator leverages an
oracle agent equipped with a reference code snip-
pet, provided by benchmarks for comparison. The
process is illustrated in the right part of Figure 3.

The validator implementations within the val-
idator module are fully modular, with each imple-
mentation focusing on a specific phase (e.g., data
matching with fuzzy order, or evaluating trained
model performance on a held-out test dataset). The
full list and their usage frequencies are in § 5 and
Appendix B. Notably, our focus is beyond correct-

§https://github.com/rgbkrk/genai

5679

https://github.com/rgbkrk/genai

ness. For example, we implement an “Intact” val-
idator, which tests whether the agent preserves the
“intactness” of the session. We implement this due
to the belief that minimizing unintended changes
is one important criterion of safety and reliability.

4 Benchmarks based on DSEval

Building upon the DSEval evaluation paradigm, we
initiated the data collection and benchmark devel-
opment process. We came to realize that tremen-
dous efforts were still required to properly rephrase
queries, configure sessions, and adapt validators for
each query. Simple format conversion proved insuf-
ficient due to limitations in existing data sources:
some data sources lack real-world complexity (e.g.,
pandas-exercises (guipsamora, 2020)), while oth-
ers address different-natured tasks (e.g., PandasE-
val (Zan et al., 2022)).

To ensure the benchmark coverage with lim-
ited human efforts, we developed an “LLM-
bootstrapping annotation process”, leveraging
LLMs to automatically create problemsets based
on a minimal “idea”, while incorporating human
input. This process is facilitated by the DSEAL
(DSEval Annotation Language), which is designed
to be compatible with the DSEval framework and
easily comprehensible to LLMs. In this section,
we first introduce DSEAL (§ 4.1), followed by a
detailed description of the annotation process, in-
cluding a Kaggle-inspired case study (§ 4.2).

4.1 DSEAL: DSEval Annotation Language

DSEAL is essentially a language to describe “prob-
lems”. A problem in DSEAL corresponds to one
iteration depicted in Figure 3, where a query is pre-
sented, and agents solve it and return results. We
define a “problemset” as a sequence of interdepen-
dent problems, where later problems may have ses-
sion or semantic dependencies on preceding ones.
A benchmark comprises multiple “problemsets”,
each of which is self-contained and isolated.

The design of DSEAL is guided by three main
objectives. Firstly, it must be compatible with the
DSEval framework, ensuring that its components
are expressive enough to fit within the framework.
Secondly, it should be friendly to human annotators,
for debuggability and ease of diagnosis. Lastly,
it needs to be easily understandable by LLMs to
leverage their power for annotation purposes.

To achieve these goals, we have designed
DSEAL as an extended version of the Python lan-

Previous problems...

%%
"""
query: |

Show the correlation between population
density in 2023 and 2050, rounded to 2 decimals.

validator:
template: basic
namespace_intact:

update: [pop]
or:

result:
atol: 0

output:
execution:

forbid_names:
- pop_heldout_test
max_time: 0.5

data:
pop.csv: https://.../pop.csv

"""
(pop['pop2023'] / pop['landAreaKm'])

.corr(pop['pop2050'] / pop['landAreaKm']).round(2)

Next problems...

Figure 4: An example problemset written in DSEAL
(DSEval Annotation Language).

Outer Loop

Inner Loop

Example Problemsets
(in DSEAL)

DSEAL Guide

LLM Human

Generate

Revise

Idea

New Problemset
(in DSEAL)

Add to
Refine

Figure 5: Illustration of the LLM-Bootstrapping Anno-
tation Process.

guage. Each problemset is represented as a Python
(*.py) file, with problems separated by “# %%” (cell
syntax¶). The code for oracle agents is written in
Python, enabling direct execution and debugging
using standard Python SDK. We use triple-quoted
strings with YAML syntax inside to “configure”
the problem, including the query, validator config-
urations, execution restrictions, and external data
required. An example is provided in Figure 4.

4.2 LLM-Bootstrapping Annotation Process

To alleviate human labor, we leverage the capabil-
ity of LLMs to automatically annotate the bench-
mark as bootstrapping. However, fully depending
on LLMs may derive unreliable benchmarks even
with state-of-the-art LLMs (further details are pro-
vided in the case study). Therefore, we incorporate
“human-in-the-loop” to further enhance the annota-
tion. The bootstrapping process involves an inner
loop and an outer loop, as illustrated in Figure 5.

Inner Loop. To encourage LLMs to generate
problemsets grounded in intended scenarios, we
utilize “idea seeds”. These seeds anchor the gen-

¶https://code.visualstudio.com/docs/
datascience/jupyter-notebooks

5680

https://code.visualstudio.com/docs/datascience/jupyter-notebooks
https://code.visualstudio.com/docs/datascience/jupyter-notebooks

31 datasets from Kaggle

(later than Apr 2023)

31 Problem

sketchesLLM

Notebooks with

most votes
Refined Sketches

+ Instructions

Human AnnotationR
e

-g
e

n

Problem sets
(Full Question +

Code + Validator)
LLM

Refined

Problem Sets

Human AnnotationR
e

-g
e

n

R
e
fe

re
n
c
e

Figure 6: Illustration of the annotation process on
DSEval-Kaggle.

erated problems to a specific scenario, promoting
practicality and diversity across different outputs.
Additionally, we prompt LLMs with a “guide” con-
taining instructions to format the problemset with
DSEAL and ensure clarity and challenge. Few-
shot examples from existing problemsets further
enhance quality (Kaplan et al., 2020).

Following the LLM’s initial “bootstrapping” of
a draft problemset, human experts step in for revi-
sion. Their focus lies in assessing clarity, diversity,
and difficulty, and introducing necessary adjust-
ments the LLM may struggle with independently.
These adjustments can be partial, paving the way
for the LLM to refine or enrich the problem set in
an iterative loop.
Outer Loop. Once humans determine that no
further adjustments are needed, the problemset is
incorporated into the benchmark and serves as an-
other example problemset of the LLM. Addition-
ally, revision comments are leveraged to enhance
the DSEAL guide, preventing similar issues in fu-
ture. This loop, culminating in the accumulation
of high-quality problem sets, exemplifies another
form of “bootstrapping” within our process.
Case Study with DSEval-Kaggle. We selected
31 datasets published after April 2023, with data
sizes less than 10 megabytes and more than 100
votes (by Sept. 2023). We attached the most-voted||

notebook associated with each dataset. These 31
datasets and notebooks serve as the “idea seeds”.

The inner loop has two primary stages in this
case. First, the targeted knowledge points and prob-
lemset sketches are created based on the dataset
and notebook descriptions. Second, the full prob-
lemset is generated based on the sketch from the
first stage. GPT-4 was used throughout the entire
process. The illustration is in Figure 6.

In early experiments, we encountered the follow-
ing issues when relying solely on GPT-4 to generate
the problemset. (i) Lack of diversity due to repeti-
tive generation results; for example, hypothesis test
related queries appeared frequently. (ii) Deviation
from the actual dataset content, neglecting crucial

||https://www.kaggle.com/code?sortBy=voteCount

Benchmark # Sets # Problems Conversational Realistic Difficulty

DSEval-Exercise 21 187 ! % 17.3
DSEval-SO 202 202 % ! 16.1

DSEval-LeetCode 40 40 % % 56.0
DSEval-Kaggle 31 396 ! ! 35.9

Table 1: Overview of the four benchmarks.

initial steps like data cleaning. (iii) Ambiguous
queries resulting in vague or impossible-to-answer
problems. (iv) Incorrect solutions or incorrect val-
idator configurations. Interestingly, the first two
issues can be effectively mitigated as the outer loop
repeats. The other two require resolution within
the inner loop (i.e., from human revisions).

We ensure that all problems are revised at least
once by human annotators, thus guaranteeing the
quality of the benchmark. The entire annota-
tion process required approximately 2.32 million
prompts and 187k completion tokens on GPT-4, as
well as 20 human hours. We estimate a 3x reduc-
tion in human effort compared to purely manual
methods like DS-1000 (Lai et al., 2023). More de-
tails about the annotation process can be found in
subsection F.4.

5 Statistics and Coverage

Based on DSEval, we employed the annotation
process to construct four benchmarks, detailed in
Table 1. These benchmarks encompass problem
sets with diverse properties, ranging from straight-
forward tasks to more intricate challenges. More
technical details about how we created those bench-
marks are available in Appendix F.

Validator Usages. Our evaluation process en-
compasses the entire lifecycle of data science
agents. We employ a total of nine validators, each
targeting distinct facets within the lifecycle. De-
tails regarding their utilization are documented in
Section B. Within our benchmarks, data science
agents undergo validation through 6.5 validators
per problem on average.

Problem difficulty. For a better understanding of
the performance across different difficulty levels,
similar to previous studies (Yu et al., 2018), we
quantify code complexity by considering the num-
ber of function calls, expressions, conditions, and
loops in the reference code for each problem. The
distribution of problem difficulties is depicted in
Figure 7, with the average difficulty detailed in Ta-
ble 1. We observe that DSEval-LeetCode poses the
highest level of difficulty, while DSEval-Kaggle
exhibits the most diverse range of difficulty levels.

5681

https://www.kaggle.com/code?sortBy=voteCount

5 10 20 50 100 200
0

50

100

Pr
ob

le
m

s Kaggle
LeetCode
Exercise
SO

Figure 7: Difficulty distribution of the 4 benchmarks.

APIs (2240)

pandas (1775)

sklearn (188)

numpy (156)

... (121)

DataFrame (929)

Series (628)

Index (52)

read_csv (47)

GroupBy (35)

... (84)

__getitem__ (256)

groupby (98)

loc (67)

__setitem__ (47)

rename (36)

drop (35)

... (390)

__getitem__ (49)

mean (41)

value_counts (40)

... (498)

metrics (38)

... (150)

ndarray (48)

... (108)

(a) Data science APIs involved in the prob-
lems. In the parenthesis are the number of
appearances.

Q1

Q2

Q3

Q4

Q5

Q7

Q8

Q9 Q10

Q6

(b) Dependency
graph of prob-
lemset “student-
performance” in
DSEval-Kaggle.
Solid lines
for “session
dependencies”
and dashed lines
for “semantic
dependencies”.

Figure 8: API coverage and dependency graph example.

API coverage. Collectively, the four benchmarks
covered 2240 API calls spanning 448 distinct APIs
within the oracle code. These APIs are visualized
in Figure 8a. Unsurprisingly, the most frequently
utilized libraries are pandas, sklearn, and numpy.
In total, 12 libraries are covered, with imblearn,
nltk, statsmodels, and catboost being the least fre-
quently employed. The most commonly occurring
API is the [] operation of DataFrame, utilized for
selecting indexes or columns.

Knowledge points coverage. We use GPT-3.5
to summarize the data science knowledge points
essential for solving each problem. As illustrated in
the word cloud of Figure 9, the benchmarks focus
on fundamental data processing concepts such as
data transformation, aggregation, filtering, sorting,
and grouping, as well as encompassing machine
learning concepts like outlier detection, imbalanced
dataset handling, and feature selection.

Problem dependencies. DSEval-Kaggle and
DSEval-Exercise are two conversational bench-
marks where there could be interdependences
among problems. We define “session dependency”
as a scenario where a variable from a previous prob-
lem is used in a subsequent problem, and “semantic
dependency” as a situation where the comprehen-
sion of a later query relies on the context of a pre-
ceding query. We visualize dependency graphs for

data transformation

aggregation
filtering

grouping

sorting

in
de

xi
ng

data loading

data aggregation

data cleaning

da
ta

 m
an

ip
ul

at
io

n

array manipulation

groupby

value counts
datetime conversion

numpy array

data concatenation

column deletion

missing values
dataframe manipulation data type conversion

feature selection

mean calculation

data merging

model evaluation

train-test split

dataframe creation

string manipulation

m
od

el
 fi

tti
ng

file path handling

counting

ca
te

go
ric

al
 d

at
a

ha
nd

lin
g

correlation calculation

data selection

counting unique values conditional logic
in-place modification

data splitting

feature engineering

re
sa

m
pl

in
g

file path

boolean indexing

label encoding

random state

lo
gi

st
ic

 re
gr

es
si

on

descriptive statistics

one-hot encoding

time series analysis

correlation analysis

percentage calculation

index setting
date manipulation

contingency table

hypothesis testing

chi-squared test

statistical analysis

duplicate removal

re
gu

la
r e

xp
re

ss
io

ns

handling missing values data types

missing value imputation

model prediction

array reshaping

numpy

outlier detection

re
na

m
in

g
co

lu
m

ns

ROC AUC

accuracy

f1

data analysis

data extraction

set operations

R-squared value

binning

feature standardization

recall

categorization pivot table

shiftingANOVA

precision

standard deviation

column selection

t-test

array comparison

array flattening

AUC curve

numpy usage

random forest classifier

series manipulation
imbalanced dataset

arithmetic operations

cl
as

si
fic

at
io

n
re

po
rt

p-
va

lu
e

column renaming

Figure 9: Knowledge points involved in the problems.

each problem set (see Figure 8b for example). On
average, we observe an in-degree of 2.08 across all
graphs. Regarding the maximum dependency chain
length, the longest chain spans 10 dependencies,
with an average chain length of 4.06.
Session contexts. A major challenge in our pro-
posed benchmark lies in retrieving and representing
contexts from runtime sessions. On average, we
estimate that each problem involves 3.68 variables,
with a maximum of up to 29. The total data size of
these variables is 1.12 kilobytes at the median, and
can reach up to 268 megabytes in extreme cases.

6 Evaluation

6.1 Setups
Error Categories. When an agent fails to suc-
cessfully respond to a problem, the errors in an
agent-generated code snippet can be classified into
eight major categories, which can be further broken
down into 32 subcategories. The complete catalog
is presented in Figure 10 and Appendix D. Two
common errors are highlighted below:

• Presentation Error: This occurs when the result
is almost correct but problematic in terms of
format or presentation approach. For example,
the agent might fail to capitalize a column name
as instructed or erroneously print results to the
console instead of placing them in cell outputs.

• Intact Violation: Happens when the solution is
almost correct except for violating the concept of
intactness. This typically occurs when the com-
putation requires some intermediate columns
and the agent modifies the original data, which
is unnecessary.

Metrics. The “Pass Rate”, which is the number
of problems passed divided by all problems in the
benchmark, is the default metric used to assess the
quality of an agent. By default, the runtime session
is set to the ground-truth state before evaluating

5682

Framework
DSEval-Kaggle DSEval-Exercise DSEval-LeetCode DSEval-SO

Pass
Rate

Error
Prop

w/o
Intact

w/o
PE

Pass
Rate

Error
Prop

w/o
Intact

w/o
PE

Pass
Rate

w/o
Intact

w/o
PE

Pass
Rate

w/o
Intact

w/o
PE

Si
ng

le
-A

ge
nt Chapyter (chapyter, 2023) 34.1 26.0 35.6 55.3 39.6 28.3 42.2 70.6 45.0 45.0 60.0 46.5 48.5 59.9

CoML (Zhang et al., 2023a) 59.8 56.8 61.1 63.6 78.6 78.6 79.1 81.3 42.5 42.5 62.5 78.2 79.7 79.7
Code Interpreter API (shroominic, 2023) 42.4 41.7 43.9 47.0 67.4 67.9 68.4 71.7 45.0 45.0 55.0 58.4 68.3 65.8

Jupyter-AI (jupyterlab, 2023) 51.8 38.4 52.8 58.1 78.6 55.1 79.1 81.8 57.5 57.5 70.0 50.0 50.0 56.4

M
ul

ti- MetaGPT (Hong et al., 2023) 41.2 - 42.7 51.3 62.0 - 62.0 74.9 45.0 45.0 65.0 63.4 68.8 73.8
ChatDev (Qian et al., 2023a) - - - - - - - - 32.5 32.5 50.0 35.1 35.1 37.6

Table 2: Performance of agent frameworks on DSEval benchmarks. We compare: pass rate, pass rate with error
propagation, pass rate without the constraint of intact violation, and pass rate without considering presentation error.
ChatDev is only evaluated on DSEval-LeetCode and DSEval-SO due to the difficulty of injecting complex context.
MetaGPT is not evaluated under error propagation settings due to similar reasons.

Chapyter on DSEval-Kaggle

Presentation Error
Missing Return
(33.3%)

Wrong Output
Value Mismatch

(7.1%)

Crash
Key Error
(20.8%)

Code Interpreter API on DSEval-SO

Intact Violation
(26.7%)

Presentation Error
Missing Return

(22.7%)

Wrong Output
Unexpected Type

(10.7%)

Figure 10: Two examples of error type breakdowns.
More in Figure 14.

each problem. We refer to “error propagation” as a
special setting where erroneous states accumulate
to affect future problems within the same problem
set. Additionally, we compute the pass rate while
ignoring intact violations and presentation errors
(“w/o Intact” and “w/o PE” respectively), as they
can be considered correct in a looser setting.

6.2 Evaluating Data Science Agents

We evaluate 6 popular LLM-based agents that
are currently applicable to data science scenarios:
Chapyter, ChatDev, CoML, Code Interpreter API,
Jupyter-AI, and MetaGPT (summarized in § C.1).
These selected agents cover mainstream agent-
building approaches, including function calls, ex-
pert knowledge, and multi-agent communications.
For fair comparisons, we use GPT-3.5 (v1106) with
a temperature of 0 as backend LLMs for all agents.

The key observations from Table 2 are as fol-
lows: (i) Chapyter is the worst-performing agent,
but its pass rate significantly improves when pre-
sentation errors are ignored. (ii) CoML is the best
for most benchmarks, except for LeetCode, where
Jupyter-AI outperforms greatly. (iii) When errors
propagate, Chapyter and Jupyter-AI suffer greatly,
yet the other two frameworks remain stable. (iv) In-
tact violations sometimes occur, but not frequently.
(v) While multi-agent frameworks incur signifi-

cantly higher costs due to increased interaction
rounds, they do not demonstrate clear advantages
over single-agent frameworks.

To gain a better understanding of these error
types, we did several case studies and visualized
the percentages of error causes in Table 2 in Fig-
ure 10. We can see that the primary issue with
Chapyter is missing returns (e.g., using “print()”
instead of “return” to show the output) and key er-
rors (e.g., referencing non-existing columns). Code
Interpreter API on DSEval-SO often triggers in-
tact violations, as the framework has a tendency to
perform inplace modifications to existing variables.

6.3 Context Selection and Representations

Aiming to investigate the key factor that impacts
the performance, we identify one fundamental dif-
ference among the agent frameworks, which is how
they select and represent contexts from the sessions.
Contexts are crucial for agents as they complement
the missing parts of the query. Under the scope of
our benchmarks, contexts are roughly categorized
into variable descriptions and executed code his-
tory (see Figure 11 an illustrative example). The
section delves into the selection and representation
of contexts in prompts.

We conduct experiments with different combi-
nations and orders of variable descriptions, code
histories, and queries. We pick CoML as the base-
line agent framework as it appears to be the best-
performing one in previous experiments. The re-
sults are shown in Table 3. We observe that without
any context, LLMs struggle to produce correct re-
sults. Providing code history and variable descrip-
tions as context improve performance of agents.
Code history seems to be more essential, especially
for simpler tasks like DSEval-Exercise. The order
of the context also has a slight impact: placing vari-
able descriptions and queries at the end of the input
tends to improve the results.

5683

Context DSEval-Kaggle DSEval-Exercise
Pass Rate w/ Error Prop Pass Rate w/ Error Prop

Q 13.9 13.9 13.9 13.9
C+Q 53.8 40.4 81.3 80.7
V+Q 52.3 51.5 73.3 71.1

C+V+Q 61.4 52.5 80.7 80.2
V+C+Q 59.8 56.8 78.6 78.6
Q+V+C 58.3 53.5 74.3 71.7

Table 3: Comparison of combinations in the context.
“C” stands for “Code history”, “V” stands for “Variable
descriptions” and “Q” stands for “Query”.

pandas.DataFrame(shape=(5, 3),
columns=[{'column': 'name', 'properties':
{'dtype': 'string', 'samples': ['banana',
'elderberry', 'cherry', 'apple', 'durian'],
'num_unique_values': 5}}, {'column':
'price', 'properties': {'dtype': 'string',
'samples': ['$0.50', '$1.00', '$0.75',
'$1.20', '$2.50'], 'num_unique_values':
5}}, {'column': 'color', 'properties':
{'dtype': 'string', 'samples': ['yellow',
'purple', 'red', 'green'],
'num_unique_values': 4}}])

LIDA

pandas.DataFrame(shape=(5, 3),
columns=["name", "price",
"color"])
 name price color
 0 apple $1.20 red
 1 banana $0.50 yellow

 3 durian $2.50 green
 4 elderberry $1.00 purple

CoML

Figure 11: Illustration of data table formatter in LIDA
and CoML.

Encoding the context into the prompt poses an-
other challenge. Previous work (Sui et al., 2024)
has explored this issue and proposed different meth-
ods to compress megabytes of data into dozens
of tokens. We evaluate the approaches used in
LIDA (Dibia, 2023) and CoML, with differences
shown in Figure 11.

As shown in Table 4, LIDA and CoML have
similar performance on DSEval-Kaggle, but LIDA
outperforms CoML on DSEval-Exercise. This dif-
ference in performance could be due to LIDA en-
coding more information such as the data type and
the unique-value count of each column. However,
this also means that LIDA consumes more tokens
than CoML to represent the same table.

6.4 Evaluating LLMs

We experimentally combine CoML with different
LLMs and compare their performance. The re-
sults are shown in Figure 12. In addition to GPT-
3.5, which we have already tried, we include four
more models for comparison: GPT-4 (OpenAI,
2023), Gemini-Pro (Team et al., 2023), CodeLlama-
7B (Roziere et al., 2023), and CodeLlama-34B. The
rank of the models is approximately as follows:
CodeLlama-7B ≈ CodeLlama-34B < Gemini-Pro
< GPT-3.5 < GPT-4. More details are in § C.4.

6.5 Self Repair

To evaluate the diagnostic and self-repair abili-
ties of data science agents, we apply the self-
debug (Chen et al., 2023) to the DSEval bench-
marks. We use the CoML implementation, which

Format DSEval-Kaggle DSEval-Exercise
Pass Rate # Tokens Pass Rate # Tokens

CoML 59.8 2963.7 78.6 2126.3
LIDA 59.8 4192.7 82.4 2547.6

Table 4: Comparison of pass rate and consumed prompt
tokens for different code and data encodings in prompts.

DSEval-Kaggle

DSEval-Exercise

DSEval-LeetCode

DSEval-SO
10

20
30

40
50

60
70

80
90

64.9

81.3

75.0

83.7

GPT-4
GPT-3.5
Gemini-Pro
CodeLlama-34B
CodeLlama-7B

Figure 12: Performance of CoML combined with differ-
ent LLMs on four benchmarks of DSEval.

sends the output and errors to LLMs for line-by-
line analysis and feedback, before receiving a re-
vised code. We do not use any hints from validators
during this process. It repeats until we obtain a
correct result or reach the maximum number of at-
tempts. We also compare self-debug with a simple
resampling baseline, which resamples a new code
snippet if the previous one is incorrect.

Figure 13 shows two main findings. First, both
self-debug and resampling enhance performance,
but self-debug is generally more effective. Second,
models with lower capabilities (e.g., GPT-3.5) can
outperform models with higher capabilities (e.g.,
GPT-4) with enough self-repair attempts.

We also analyzed the error types that can be fixed
via self-repair on DSEval-Kaggle and found that
around half of them are “Crash” errors. Among
all the “Crash” errors, 15% will still crash after
the 4th attempt, and 41% will turn into other error
types. Among all error types except "Crash", the
type that is most likely to be fixed is “Presentation
Error”, with a fixed probability of 20% (4 / 20).
This suggests there is room for improvement in
current self-repairing techniques.

7 Conclusion

In this paper, we introduce DSEval, an evaluation
paradigm for data science agents. Based on DSE-
val, we created 4 benchmarks that cover different
aspects of data science tasks, and existing agents
were evaluated and analyzed on the benchmarks.

5684

1 2 3 4

60

70

Pa
ss

 R
at

e
DSEval-Kaggle

1 2 3 4

80

85
DSEval-Exercise

1 2 3 4
Attempts

50

75

Pa
ss

 R
at

e

DSEval-LeetCode

1 2 3 4
Attempts

80

90
DSEval-SO

Self-Debug (GPT-3.5)
Resampling (GPT-3.5)

Self-Debug (GPT-4)
Resampling (GPT-4)

Figure 13: Self-debug versus vanilla resampling.

We aim to establish a standard for evaluating data
science agents and we welcome more contributions
of problemsets from the community.

8 Ethical Considerations

Modern data science agents have made it easier to
analyze, visualize and process data. However, such
agents can also pose serious risks if they are not
used carefully. For example, a data science agent
can alter the data without the user’s awareness, or
generate a misleading data analysis that appears to
be correct but is actually erroneous.

Our work is the first to address these issues in a
comprehensive way. For instance, we developed a
validator that can track the full lifecycle of agent
and assess whether the agent causes any unwanted
changes (via “Intact” validator). We think future
data science agents should follow our benchmarks
as a reference, to ensure that they produce reliable
and safe outcomes.

9 Limitations

Evaluating Planning Ability. The goal of plan-
ning is to break down a complex task into several
simple, executable tasks, which is a key skill of
LLM agents (Shen et al., 2023; Wu et al., 2023).
In this paper, we focus on evaluating data science
agents’ performance on single tasks. Although
some tasks (especially those in DSEval-Kaggle) are
very complex and require careful planning to solve,
we did not include high-level data science tasks
that are vague and open-ended, such as “design
a data pipeline that will win this Kaggle competi-
tion”. However, we think that DSEval framework
can also support those tasks, as long as the evalu-
ation criteria (i.e., validator) are properly defined

Model Temp Repeat Kaggle Exercise LeetCode SO

CodeLlama-7B 0.0 0 30.6 52.9 12.5 45.5
CodeLlama-7B 0.0 1 30.3 52.9 12.5 45.5
CodeLlama-7B 0.5 30.8 46.0 15.0 47.0

CodeLlama-34B 0.0 0 27.8 50.3 17.5 48.0
CodeLlama-34B 0.0 1 27.8 49.7 10.0 48.0
CodeLlama-34B 0.5 25.5 48.1 30.0 45.5

Gemini-Pro 0.0 0 48.7 73.8 32.5 73.3
Gemini-Pro 0.0 1 47.2 73.3 32.5 73.3
Gemini-Pro 0.5 43.4 65.2 37.5 66.8

GPT-3.5 0.0 0 59.8 78.6 42.5 80.2
GPT-3.5 0.0 1 60.6 80.7 45.0 79.2
GPT-3.5 0.0 2 60.4 79.7 42.5 78.2
GPT-3.5 0.5 58.8 79.1 47.5 80.7

GPT-3.5 (v0613) 0.0 61.9 80.7 37.5 79.2

GPT-4 0.0 0 64.9 81.3 75.0 83.7
GPT-4 0.0 1 64.1 81.3 70.0 84.7
GPT-4 0.0 2 64.6 82.4 77.5 85.1
GPT-4 0.5 64.6 82.4 72.5 85.1

GPT-4-32k 0.0 65.4 80.2 67.5 80.7

Table 5: Reproducibility test by repeating the experi-
ment, and possibly varying the temperature and model
version. Default versions for GPT-3.5 and GPT-4 are
v1106.

and configured.
Reproducibility and Stableness. We conducted
extensive evaluations and obtained some interest-
ing insights, but unfortunately we could not repeat
every experiment to check the reproducibility of
each result due to the budget constraint. Instead,
we focused more on evaluating different settings
and benchmarks, which we believe are more in-
formative. In Table 5, we verified some of the
experiments by either repeating them, using a dif-
ferent model version, or changing a parameter (e.g.,
the temperature). We observed that the results
are not very stable and can vary by up to ±2%
even with a minimized temperature. On DSEval-
LeetCode, the variation is even more significant,
probably because the benchmark only has 40 prob-
lems. However, we remark that we have published
4 benchmarks based on DSEval, multiple results
on different benchmarks can still have some sig-
nificance. We encourage the community to adhere
to the following guidelines to enhance the repro-
ducibility:

1. Repeat experiments. Run the evaluation mul-
tiple times and report the average whenever the
budget permits.

2. Run all benchmarks. The insights and find-
ings should validated to be significant across all
proposed benchmarks, to ensure that they have
covered different aspects of the data science do-
main.

3. Open source. Make the logs and results public
to ensure that they are reliable and trustworthy.

5685

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Shubham Chandel, Colin B Clement, Guillermo Serrato,
and Neel Sundaresan. 2022. Training and evaluat-
ing a jupyter notebook data science assistant. arXiv
preprint arXiv:2201.12901.

chapyter. 2023. chapyter. https://github.com/
chapyter/chapyter.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Liying Cheng, Xingxuan Li, and Lidong Bing. 2023.
Is gpt-4 a good data analyst? arXiv preprint
arXiv:2305.15038.

Victor Dibia. 2023. Lida: A tool for automatic gener-
ation of grammar-agnostic visualizations and info-
graphics using large language models. arXiv preprint
arXiv:2303.02927.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023. Alpaca-
farm: A simulation framework for methods that learn
from human feedback.

guipsamora. 2020. pandas_exercises. https://
github.com/guipsamora/pandas_exercises.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu,
Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi Zhang,
Jinlin Wang, Li Zhang, Lingyao Zhang, Min Yang,
Mingchen Zhuge, Taicheng Guo, Tuo Zhou, Wei Tao,
Wenyi Wang, Xiangru Tang, Xiangtao Lu, Xiawu
Zheng, Xinbing Liang, Yaying Fei, Yuheng Cheng,
Zongze Xu, and Chenglin Wu. 2024. Data interpreter:
An llm agent for data science.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jürgen Schmidhuber. 2023. Metagpt: Meta pro-
gramming for a multi-agent collaborative framework.

jupyterlab. 2023. jupyter-ai. https://github.com/
jupyterlab/jupyter-ai.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A
natural and reliable benchmark for data science code
generation. In International Conference on Machine
Learning, pages 18319–18345. PMLR.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem.
2023a. Camel: Communicative agents for" mind"
exploration of large scale language model society.
arXiv preprint arXiv:2303.17760.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023b. Struc-
tured chain-of-thought prompting for code genera-
tion. arXiv preprint arXiv:2305.06599.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B
Dolan, Lawrence Carin, and Weizhu Chen. 2022.
What makes good in-context examples for gpt-3?
In Proceedings of Deep Learning Inside Out (Dee-
LIO 2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114.

Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carignan,
Richard Edgar, Nicolo Fusi, Nicholas King, Jonathan
Larson, Yuanzhi Li, Weishung Liu, Renqian Luo,
Scott Mayer McKinney, Robert Osazuwa Ness, Hoi-
fung Poon, Tao Qin, Naoto Usuyama, Chris White,
and Eric Horvitz. 2023. Can generalist foundation
models outcompete special-purpose tuning? case
study in medicine.

OpenAI. 2023. Gpt-4 technical report.

Chen Qian, Xin Cong, Wei Liu, Cheng Yang, Weize
Chen, Yusheng Su, Yufan Dang, Jiahao Li, Juyuan
Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. 2023a.
Communicative agents for software development.

Chen Qian, Yufan Dang, Jiahao Li, Wei Liu, Weize
Chen, Cheng Yang, Zhiyuan Liu, and Maosong
Sun. 2023b. Experiential co-learning of software-
developing agents.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
GPT: Solving AI tasks with chatGPT and its friends
in hugging face. In Thirty-seventh Conference on
Neural Information Processing Systems.

shroominic. 2023. codeinterpreter-api. https://
github.com/shroominic/codeinterpreter-api.

5686

https://github.com/chapyter/chapyter
https://github.com/chapyter/chapyter
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
https://github.com/guipsamora/pandas_exercises
https://github.com/guipsamora/pandas_exercises
http://arxiv.org/abs/2402.18679
http://arxiv.org/abs/2402.18679
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
https://github.com/jupyterlab/jupyter-ai
https://github.com/jupyterlab/jupyter-ai
https://www.microsoft.com/en-us/research/publication/can-generalist-foundation-models-outcompete-special-purpose-tuning-case-study-in-medicine/
https://www.microsoft.com/en-us/research/publication/can-generalist-foundation-models-outcompete-special-purpose-tuning-case-study-in-medicine/
https://www.microsoft.com/en-us/research/publication/can-generalist-foundation-models-outcompete-special-purpose-tuning-case-study-in-medicine/
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2307.07924
http://arxiv.org/abs/2312.17025
http://arxiv.org/abs/2312.17025
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://github.com/shroominic/codeinterpreter-api
https://github.com/shroominic/codeinterpreter-api

Significant-Gravitas. 2023. Autogpt. https://github.
com/Significant-Gravitas/AutoGPT.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2024. Table meets llm: Can large
language models understand structured table data? a
benchmark and empirical study. In The 17th ACM
International Conference on Web Search and Data
Mining (WSDM ’24).

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Xinming Tu, James Zou, Weijie J Su, and Linjun
Zhang. 2023. What should data science education
do with large language models? arXiv preprint
arXiv:2307.02792.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen,
Lifan Yuan, Hao Peng, and Heng Ji. 2023. Mint:
Evaluating llms in multi-turn interaction with tools
and language feedback.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

yoheinakajima. 2023. babyagi. https://github.com/
yoheinakajima/babyagi.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin,
Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen,
and Jian-Guang Lou. 2022. CERT: Continual pre-
training on sketches for library-oriented code genera-
tion. In The 2022 International Joint Conference on
Artificial Intelligence.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and
Yuqing Yang. 2023a. Mlcopilot: Unleashing the
power of large language models in solving machine
learning tasks.

Wenqi Zhang, Yongliang Shen, Weiming Lu, and Yuet-
ing Zhuang. 2023b. Data-copilot: Bridging bil-
lions of data and humans with autonomous workflow.
arXiv preprint arXiv:2306.07209.

5687

https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://www.microsoft.com/en-us/research/publication/table-meets-llm-can-large-language-models-understand-structured-table-data-a-benchmark-and-empirical-study/
https://www.microsoft.com/en-us/research/publication/table-meets-llm-can-large-language-models-understand-structured-table-data-a-benchmark-and-empirical-study/
https://www.microsoft.com/en-us/research/publication/table-meets-llm-can-large-language-models-understand-structured-table-data-a-benchmark-and-empirical-study/
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2309.10691
https://github.com/yoheinakajima/babyagi
https://github.com/yoheinakajima/babyagi
http://arxiv.org/abs/2304.14979
http://arxiv.org/abs/2304.14979
http://arxiv.org/abs/2304.14979

A DSEval Compared to Other Evaluation Frameworks

We summarize the differences between DSEval and other recent frameworks in the table below.

Benchmark Scale (# Problems) Task Domain Evaluation Target Evaluation Methodology Annotation

HumanEval (Chen et al., 2021) 164 General LLMs’ code completion abilities Unit-tests for function correctness Hand-written
PandasEval /
HumanEval [4] 202 Pandas and NumPy LLMs’ code completion abilities Unit-tests for result correctness Rule-based filtering

+ manual cleaning

DSP (Chandel et al., 2022) 1119 General Data Science
(e.g., Pandas, Scipy) LLMs’ code completion abilities Unit-tests for result correctness Rule-based filtering

DS-1000 (Lai et al., 2023) 1000 General Data Science
(e.g., Pandas, Scipy)

LLMs’ code completion /
in-filling abilities

Unit-tests for results +
Surface-form code checking Human (1200 hours)

(Cheng et al., 2023) 1000 General Data Science
(e.g., Pandas, Scipy)

Agents’ ability in generating
figures and analysis 3 aspects with human evaluation Not needed

LIDA (Dibia, 2023) 57 Data Visualization Agents’ ability in visualizing data 6 aspects with GPT self-evaluation Not needed

Ours 825 General Data Science
(e.g., Pandas, Scipy)

Agents’ full ability in handling
data science problems

Full-lifecycle monitoring,
7 aspects + their combinations,
configurable and automated

LLM-bootstrapping with
human-in-the-loop
(around 20 human hours)

Table 6: Comparison with other evaluation frameworks.

B Validator Implementations

In Table 7, we list the currently supported validator implementations and the purpose for each of them.
We also show how many times each validator has appeared in the four benchmarks.

Name Alias Purpose #

Crash error Fail if the generated code crashes. 825
Return-Val execute_result Fail if the executed result of generated code is not expected. 796
Variables namespace_check Fail if some variables are not correctly created or modified. 276
Unit-test table_test The defined function fail in at least one of the test cases. 136
ModelEval model Fail if the defined model does not satisfy the criteria. 26
Console stream_output Fail if the console output is not expected. 1
AnswerInCode answer_in_source Succeed if the answer to the query is shown within the generated

code itself.
825

Intact namespace_intact Fail if some variables are unexpectedly modified, violating in-
tactness constraints.

825

And and Fail if at least one of the sub-validators fails. 825
Or or Succeed if at least one of the sub-validators succeeds. 825

Table 7: Supported validators and their usage counts.

Every validator within our framework are designed to target specific aspects of an agent’s lifecycle.
When addressing a new problem, the problem writer is given the flexibility to select from existing
validators, create new validators, or combine existing and new validators to meet all necessary criteria.
However, in our benchmark construction process, we discovered that 99.6% of the problems could be
constructed and thoroughly evaluated using the built-in validators alone, with only a minimal number
requiring the creation of new validators. This indicates that our validators possess strong generability and
completeness.

C Supplementary Evaluations

C.1 Introduction to Benchmarked Data Science Agents

We briefly introduce the benchmarked data science agents as below.

• Chapyter (chapyter, 2023): A JupyterLab extension translating natural language intentions into Python
code with automatic execution. It generates codes based on some predefined examples as well as the
conversation history.

• ChatDev (Qian et al., 2023a,b): A software development framework that operates through the com-
munication between multiple agents, all powered by LLMs. It is non-trivial to adapt ChatDev into an
interactive coding agent, thus we only tested it on DSEval-LeetCode.

• CoML (Zhang et al., 2023a): An interactive coding assistant specifically built for the assistance of
data scientists and machine learning practitioners. It has incorporated few-shot examples (Brown et al.,

5688

2020), session variable representations, and code history into the prompt, and also implemented an
auto-fixer in case of errors.

• Code Interpreter API (shroominic, 2023): An open-sourced implementation of ChatGPT code inter-
preter. It uses a natural language chatbot as its primary interface. The code executor functions as an
external tool.

• Jupyter-AI (jupyterlab, 2023): A helpful tool for calling LLMs within a notebook. The generation is
purely based on history calls are does not rely on contextual information such as session variables.

• MetaGPT (Hong et al., 2023): A multi-agent framework that leverages role playing and communication
techniques to realize the goal. Specifically, we used Data Interpreter (Hong et al., 2024) as our
implementatiion since it is optimized for solving data-related problems.

C.2 Error Reason Analysis
From Figure 14, we can see that although Chapyter on DSEval-Kaggle and ChatDev on DSEval-Kaggle
both suffer from presentation error, one is primarily due to missing return (e.g., using “print()” instead
of “return” to show the output), the other is due to index match (e.g., naming the columns with a wrong
name). The error cause of Jupyter-AI is rather diverse, with “wrong output” being the dominant cause.
Code Interpreter API on DSEval-SO often triggers intact violation, as the framework has a tendency to
perform inplace modifications to existing variables.

A detailed explanation of each error reason can be found in Appendix D.

Chapyter on DSEval-Kaggle

Presentation Error
Missing Return
(33.3%)

Wrong Output
Value Mismatch

(7.1%)

Crash
Key Error
(20.8%)

Jupyter-AI on DSEval-Exercise

Presentation Error
Missing Return
(15.8%)

Wrong Output
Value Mismatch

(13.2%)

Wrong Output
Unexpected Type

(23.7%)

ChatDev on DSEval-LeetCode

Presentation Error
Index Mismatch
(33.3%)Unit-test Failure

Shape Mismatch
(14.3%)

Unit-test Failure
Columns Mismatch

(14.3%)

Code Interpreter API on DSEval-SO

Intact Violation
(26.7%)

Presentation Error
Missing Return

(22.7%)

Wrong Output
Unexpected Type

(10.7%)

Intact Violation
Presentation Error - Index Mismatch
Presentation Error - Missing Return
Presentation Error - Partial Match
Presentation Error - Non-code
Wrong Output - Shape Mismatch

Wrong Output - Dtype Mismatch
Wrong Output - Columns Mismatch
Wrong Output - Value Mismatch
Wrong Output - Unexpected Type
Wrong Variables - Shape Mismatch
Wrong Variables - Dtype Mismatch

Wrong Variables - Columns Mismatch
Wrong Variables - Value Mismatch
Wrong Variables - Unexpected Type
Unit-test Failure - Shape Mismatch
Unit-test Failure - Dtype Mismatch
Unit-test Failure - Columns Mismatch

Unit-test Failure - Value Mismatch
Unit-test Failure - Unexpected Type
Timeout
Crash - Module Not Found
Crash - Attribute Error

Crash - Key Error
Crash - Name Error
Crash - Type Error
Crash - Value Error
Syntax Error

Figure 14: A catalog of all error reasons supported by DSEval (full explanations in Appendix D). The error causes
of a selected subset of data science agents on the benchmarks are visualized in the pie charts.

C.3 Prompt Techniques
We incorporate various prompt techniques that are commonly used for different tasks into CoML for
evaluation. Our goal is to identify the strengths and weaknesses of these techniques under data science
scenarios.
Chain-of-thought. CoT (Wei et al., 2022) is a popular method for generating prompts that can handle
various tasks. However, as shown in Table 8, CoT does not perform well on DSEval benchmarks as
expected. A possible explanation is that the code itself already has a logical structure and does not require
additional chain-of-thoughts. This result is consistent with recent works such as SCoT (Li et al., 2023b),
which introduces CoT variants for code generation tasks. However, since most data science code lacks the
“structure” of loops and conditions, adapting the method is challenging and we leave it as future work.

Prompt Kaggle Exercise LeetCode SO

CoML 59.8 78.6 42.5 78.2
CoML + COT 57.8 80.2 45.0 76.2

Table 8: Comparison of CoML w/ and w/o CoT.

5689

Few-shot prompting. Few-shot prompting (Kaplan et al., 2020) is a method that uses demonstrations
in prompts to help the model learn from the context. CoML uses a 5-shot prompt (5 demonstrations) by
default to improve the quality of its generation. Few-shot prompting has the drawback of using more
tokens (around 1k for 5 demonstrations). We want to see what happens when we use less demonstrations
in the prompt.

In Figure 15a, we use a simple strategy, that is to keep the first k demonstrations in the order of
appearance, where k is the number of demonstrations to keep. We ran the experiment with different
backend LLMs, including two versions of GPT-3.5, GPT-4, and Gemini-Pro. The results show that the
performance tends to get better with more shots (i.e., demonstrations). But there are also some exceptions.
For instance, the pass rate of GPT-3.5 keeps going down on DSEval-LeetCode. On DSEval-Kaggle, the
pass rate also fluctuates and the zero-shot performance is not worse than more shots.

We hypothesize that this phenomenon is because of a misalignment between the demonstrations and
the benchmarks. The demonstrations in CoML are made with toy datasets and problems, which might
not match the problems in each benchmark. In Figure 15b, we manually created two more sets of
demonstrations. One is from real-world situations such as data processing and model training. The other
is from interview questions, from platforms like LeetCode. We made sure that the demonstrations did
not overlap with any problem in the benchmarks. As shown in Figure 15b, with demonstrations from
interviews, DSEval-LeetCode benefits a lot from demonstrations. However, this set of demonstrations
does not work well for other benchmarks. Demonstrations from real-world have an unstable performance
and generally not satisfactory, implying that choosing the right demonstrations is a challenging issue in
this scenario.

0 1 2 3 4 5
40

60

Pa
ss

 R
at

e

DSEval-Kaggle

0 1 2 3 4 5

70

80

DSEval-Exercise

0 1 2 3 4 5
Shots

50

75

Pa
ss

 R
at

e

DSEval-LeetCode

0 1 2 3 4 5
Shots

60

80

DSEval-SO

GPT-3.5 (v0613)
GPT-3.5 (v1106)

GPT-4
Gemini-Pro

(a) With different LLMs.

0 1 2 3 4 5

55

60

Pa
ss

 R
at

e

DSEval-Kaggle

0 1 2 3 4 5

75

80

DSEval-Exercise

0 1 2 3 4 5
Shots

50

60

Pa
ss

 R
at

e

DSEval-LeetCode

0 1 2 3 4 5
Shots

75.0

77.5

DSEval-SO

CoML Native
From Interview

From Real-World

(b) Different sets of demonstrations.

0 1 2 3 4 5

60

65

Pa
ss

 R
at

e

DSEval-Kaggle

0 1 2 3 4 5

77.5

80.0

DSEval-Exercise

0 1 2 3 4 5
Shots

50
60
70

Pa
ss

 R
at

e

DSEval-LeetCode

0 1 2 3 4 5
Shots

80

85
DSEval-SO

GPT-3.5
GPT-3.5+Reranking

GPT-4

(c) Rerank the examples by relevance.
Figure 15: Impact of number of examples used for few-shot prompting.

Reranking. Another well-known technique that is often used in conjunction with few-shot prompting is
reordering the demonstrations (Liu et al., 2022; Nori et al., 2023), which is also known as “similarity-
based example selector” or “kNN-curated dynamic few-shot exemplar”. In our setting, we reorder the
demonstrations by their cosine similarity (on “text-embedding-ada-002”) with the incoming query at
inference time, and select the top k demonstrations as the k shots. The outcomes are presented in
Figure 15c. Reordering the demonstrations is generally helpful for the performance, but the improvement
is marginal. The performance is still much lower than a more powerful LLM (e.g., GPT-4).

C.4 Comparison of Different LLMs
As can be seen in Table 9, less capable models tend to suffer more from stricter evaluation settings
(e.g., with error propagation). More capable models are also better at following instructions to preserve
intactness or follow the desired format. For CodeLlama and Gemini, the pass rates can improve up to
7∼9% when loosing the presentation error, but for GPT-3.5 and GPT-4 the improvement is much smaller.

D Verdict Catalog

The following table summarize all the verdicts and subverdicts supported in DSEval. We refer to the code
generated by the benchmarked agent as “submission” and the oracle code as “reference”.

5690

Model
DSEval-Kaggle DSEval-Exercise DSEval-LeetCode DSEval-SO

Pass
Rate

Error
Prop

w/o
Intact

w/o
PE

Pass
Rate

Error
Prop

w/o
Intact

w/o
PE

Pass
Rate

w/o
Intact

w/o
PE

Pass
Rate

w/o
Intact

w/o
PE

CodeLlama-7B 30.6 24.5 31.6 37.9 52.9 44.4 53.5 56.7 12.5 12.5 22.5 45.5 47.0 53.0
CodeLlama-34B 27.8 17.9 28.8 39.4 50.3 43.3 50.3 59.9 17.5 17.5 25.0 48.0 48.5 55.9

Gemini-Pro 48.7 41.9 49.0 56.1 73.8 67.4 73.8 77.0 32.5 32.5 45.0 73.3 73.3 79.2
GPT-3.5 59.8 56.8 61.1 63.6 78.6 78.6 79.1 81.3 42.5 42.5 62.5 78.2 79.7 79.7
GPT-4 64.9 59.3 67.4 69.7 81.3 78.1 81.3 82.4 75.0 75.0 80.0 83.7 84.7 86.1

Table 9: Comparison of different LLMs. The metrics are: pass rate, pass rate with error propagation, pass rate
without the constraint of intact violation, and pass rate without considering presentation error.

Verdict Sub-verdict Explanation Example
Correct Correct.
Intact Violation The submission violates the con-

straints of not modifying, updat-
ing or deleting existing variables
unless necessary.

Q: What is the most dangerous decade
to live in the US? Write it in the format
of “19XXs” or “20XXs”.
crimes['Total_Crimes'] = crimes.iloc[:,

1:].sum(axis=1)↪→
most_dangerous_decade =

crimes['Total_Crimes'].idxmax()↪→
most_dangerous_decade.strftime("%Ys")

Presentation Error

Index Mismatch Only for DataFrame / Se-
ries outputs. The submis-
sion DataFrame / Series is cor-
rect, but has the wrong column
names, incorrect index, or not
properly sorted.

Count the number of fatalities for each
year. Return a Series with “Year” as
the index and “Number of Fatalities”
as the values.
fatalities['date_of_event'] \

.dt.year.value_counts() \

.rename("Number of Fatalities")

Missing Return The submission output is printed
to the console output rather than
put into the desired returning
value.

Q: Show the first rows of the dataset.
print(df.head())

Partial Match The desired output can be par-
tially found within the submis-
sion output. For example, the
reference output is a subset
DataFrame of the submission, or
the index of the submitted series,
etc.

Q: List the names of the top 10 indus-
tries that have produced the most bil-
lionaires.
billionaires.groupby('industries') \

['personName'].count() \
.sort_values(ascending=False). \
head(10)

Non-code The submission generates plain
texts (rather than code) to an-
swer the query.

Q: What is the number of columns in
the dataset?
The number of columns in the dataset is

5.↪→

Wrong Output

Shape Mismatch Output is wrong in the shape of
the DataFrame or array.

Q: Select all columns except the last 3.
euro12.iloc[: , 0:7]

Dtype Mismatch Submission output is a
DataFrame / Series and is
wrong in the data type.

Q: Encode the categorical feature with
label encoder and transform it into
float.
LabelEncoder().fit_transform(x)

Columns Mismatch Submission output is a
DataFrame / Series and the
column names are not expected.

Q: Remove excessive spaces from the
column names. Save the cleaned
dataset in-place.
netflix.columns =

netflix.columns.str.strip()↪→
Value Mismatch Output is wrong in the data it-

self.
Q: Is there any duplicate dates?
apple.index.duplicated().any()

Unexpected Type Q: Get a summary with the mean, min,
max, std and quartiles of the dataset.
baby_names['Count'].describe()

Others Uncategorized wrong output.

5691

Wrong Variables

Shape Mismatch
Dtype Mismatch
Columns Mismatch
Value Mismatch
Unexpected Type
Others

Variables are incorrect after exe-
cution of the submission code.
Sub-verdicts are the same as
“Wrong Output”.

Q: Add another column called place.
The values of place are as follows: Bul-
basaur is in park, Caterpie is in forest,
Squirtle is in lake, Charmander is in
street.
pokemon_col["place"] = [

"park", "forest", "lake", "street"]

Unit-test Failure

Shape Mismatch
Dtype Mismatch
Columns Mismatch
Value Mismatch
Unexpected Type
Others

The function in the submission
did not pass the pre-defined unit-
tests. Sub-verdicts are the same
as “Wrong Output”.

Q: Write a sentiment prediction func-
tion called predict_sentiment. The
function should take a review as in-
put and return the predicted sentiment
(“Positive”, “Negative”, or “Neutral”)
as output.
def predict_sentiment(review):

words = word_tokenize(review.lower())
words = [word for word in words if

word.isalpha() and word not in
stopwords.words('english')]

↪→
↪→
features =

vectorizer.transform(words)↪→
return model.predict(features)

Timeout The code fails to finish in the
limited time. It could be due to
endless loops or inefficiency.

Q: Use grid search to tune the hyperpa-
rameters of the random forest classifier.
The time limit is 30 seconds.
param_grid = {

'n_estimators': [100, 200, 300],
'max_depth': [None, 10, 20],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 5, 10],
'bootstrap': [True, False],
'criterion': ['gini', 'entropy']

}

grid_search = GridSearchCV(model,
param_grid, cv=5, n_jobs=-1,
verbose=1)

↪→
↪→
grid_search.fit(X_train, y_train)

Crash

Module Not Found Usually when the code fails to
import a library.

Q: Conduct a chi-squared test to exam-
ine the relationship between “Gender”
and “Discount Applied”. Show the chi-
squared statistic.
import pandas as pd
import numpy as np
from stats import chi2_contingency
pd.crosstab(shopping['Gender'],

shopping['Discount Applied'])↪→
No module named 'stats'

Attribute Error Usually happens when referenc-
ing a non-existing method or at-
tribute.

Q: Fill the missing values with NaN
salaries_growth_rate = \

salaries_growth_rate \
.fillna(value=pd.np.nan)

Key Error Usually happens when referenc-
ing a non-existing column.

Q: Select the third cell in the row
named Arizona
army.loc["Arizona", 2]

Name Error Referencing an undefined vari-
able or using an unimported
API.

Q: Calculate the pearson correlation
between the final worth and age of bil-
lionaires.
df['finalWorth'].corr(df['age'])
name 'df' is not undefined

Type Error Happens when a type is misused.
For example, running numeric
operations on string types.

Q: How many products have a unit cost
more than $10.00?
chipo['item_price'] > 10
'>' not supported between instances

of 'str' and 'int'↪→

5692

Value Error Happens when operations can
not process certain values.

Q: Compute the correlation of heart
attack risk against other numeric fea-
tures. Sort the factors by the absolute
values of the correlation coefficients in
descending order.
corr_matrix = heart.corr()
corr_matrix.abs().sort_values(

ascending=False)
could not convert string to float:

'BMW7812'↪→
Others Uncategorized Crash.

Syntax Error Code has syntax error.

Table 10: Catalog of verdicts supported by DSEval. In case a solution is problematic from multiple perspectives, the
verdicts from the bottom of the table have higher priorities to appear.

E Result Visualizer

We build a visualizer accompanying DSEval, to facilitate the examination and diagnosis of the results. A
demonstration is shown in Figure 16.

Figure 16: Result Visualizer.

F Benchmark Annotation Details

F.1 DSEval-Exercise

Pandas-exercises (guipsamora, 2020) contains 252 tutorial-purposed pandas questions organized in 27
notebooks. Each notebook contains multiple mutually correlated questions, featuring one specific theme,
which could be filtering, sorting, time series, visualization and etc. The notebooks can be converted into
DSEAL through a simple rule-based conversion script. We manually clarified some vague questions
and corrected the validator configurations for each question to allow for proper error tolerances for
some problems. Visualization problems are discarded due to validators of charts are not implemented,

5693

which we left as future work. We end up selecting 187 problems from 21 problem sets, which we call
“DSEval-Exercise”.

F.2 DSEval-SO

CERT (Zan et al., 2022) presents PandasEval and NumpyEval, which altogether contain 202 pandas and
numpy problems, collected from StackOverflow (SO). The queries are mostly related to usages of pandas
or numpy APIs and tricks. Most answers are very short in terms of the number of operations involved.
The original benchmarks are in the form of code completion. We manually clarified ambiguous queries
and converted them into DSEAL with the help of GPT-4 (OpenAI, 2023).

F.3 DSEval-LeetCode

LeetCode has published several dozens of problems targetting data science areas**. By August 2023, 40
of them were available to free-tier accounts, which we crawled and converted into DSEAL with GPT-4.

We prompt GPT-4 to start the converted query by “Write a function ˋdef ...:ˋ”, followed by the
explanation of its inputs and outputs. We also instruct GPT-4 to include both the problem statement and
sample inputs/outputs in our query part as we found that the query could often be ambiguous without the
samples. “table_test” validators are used to validate the agents’ output as the task of the agents is to
write a function that can handle specific kinds of inputs. Since test cases and standard solutions are not
obtainable directly from LeetCode, those parts are also written by GPT-4. The test cases are meant to
cover the samples, scaled inputs, and some corner cases. To ensure the generated test cases were legal, we
also asked the GPT-4 to generate a function to prevent illegal cases from coming into the benchmark.

After the conversion, we first submitted the generated solutions to the LeetCode platform for verification.
38 solutions were successfully submitted (as the other 2 turned out to require premium access), out of
which 27 were correct. We manually fixed 10 out of 11 wrong solutions, while we found the other one
mistakenly judged to be incorrect due to an invalid test case on LeetCode. We then tested the solutions on
the auto-generated test cases, and manually corrected the tests, validators, or solutions where the results
turned out to be incorrect. Finally, we used a data science agent (GPT-3.5 with CoML) for a trial run on
this benchmark, and cross-checked our verdicts with the verdict on LeetCode online. We strengthened
several test cases where our system returned correct and LeetCode returned otherwise. We show an
example problem in DSEval-LeetCode in Appendix G.

F.4 DSEval-Kaggle

Here, we detail the annotation process and costs associated with the DSEval-Kaggle problemsets, building
upon the process outlined in the main text.

The dataset comprises 31 problemsets. During the initial iteration, all 31 were generated without an
exemplary problemset for reference. Human annotators then reviewed and selected one for revision,
leaving the remaining 30 for further generation. This iterative process continued, with two problemsets
revised at the second stage, two problemsets revised at the third stage, four problemsets revised at the
third stage, until all 31 had undergone revision at the fifth stage. When the number of few-shot examples
exceeded five, random selection was employed.

The total prompt token consumption for sketch generation amounted to 877 thousand tokens, while
generating the full problemset consumed 1.44 million tokens.

We employed 2 human annotators, each with 1 year and 3 years of experience in the data science field,
respectively. To ensure the high quality of our benchmark, we ensure all problemsets are examined and
revised at least once (revision rate 100%). In terms of time required for revision, initially, annotators
reported requiring 0.5 to 2 hours to revise each problemset sketch. However, this time decreased to
“20 to 30 minutes” after adding more high-quality problemsets as examples for problem generation. To
address controversial scenarios, DSEval was dry run on a vanilla CoML (Zhang et al., 2023a) agent with
GPT-3.5 in our early experiments, and all controversial cases were discussed in a roundtable meeting
among annotators and paper authors.

**https://leetcode.com/problemset/pandas/

5694

https://leetcode.com/problemset/pandas/

The criterion for a “high-quality” problemset is shown below, which is meanwhile used as the prompt
for LLMs to auto-generate or auto-revise the problemset.

Problem Sketch Instruction

Your task is to help a teacher design a problemset for an examination. The problemset is to test the students’ ability
to write Python code to solve data science problems (using numpy and pandas). The dataset that will be used for the
problemset is pre-determined and shall be given by the user. You will also be provided a reference that might give you
some ideas on what can be done with this dataset, but do not rely on it or copy it. You should write a sketch of the new
problemset using the provided dataset. The sketch should include the following information:

• The knowledge points of the problemset: what knowledge points or programming skills are tested in the problemset?

• A sketch of the problemset: How many subproblems roughly are there in the problemset? what is each subproblem
in the problemset about? How are the subproblems related to each other?

<DATASET DESCRIPTION>
For the new dataset mentioned above, please design a new problemset that is more difficult and more challenging than
all the problemsets above, and write its desired knowledge points and sketch. Please follow the instructions below:

• The new problemset should also be different from the existing problemsets, i.e., it should not be a combination of
existing problemsets.

• The new problemset should cover some new knowledge points or programming skills that are not covered by the
existing problemsets.

• The problemset should contain roughly 10 - 15 problems.

• But try to follow the format of the existing problemsets.

• Problems with more logical thinking and reasoning challenges are preferred.

• Do not include visualization problems, system design problems, model training problems or open questions as I
won’t be able to automatically evaluate their results.

• Please do not be constrained by the ideas from existing problemsets. You can design a problemset that is novel,
creative and interesting.

5695

Full Problemset Writing Instruction

Your task is to help a teacher design a problemset for an examination. The problemset is to test the students’ ability
to write Python code to solve data science problems (using numpy and pandas). In particular, you are to write a full
problemset based on a scratch.
The desired format is a Python file with multiple cells separated with “# %%”. The first cell is some preparation code
(e.g., import libraries like pandas), and the rest are the tasks. Each task consists of a docstring (containing question and
validator) and a code block (containing the reference solution). The docstring is written in YAML, and the code block is
written in Python.
Some extra instructions:

• Data files used in the problems are located under inputs/. You can use them in your problemset.

• If the sketch contains problems that are ambiguous or do not make sense, you can refine them. You can also add
more problems to the problemset.

• When the sketch gives problem examples like “such as”, “e.g.”, “for example”, etc., you can think of your own
problem based on the given data. You don’t need to follow the exact concrete problems given in the sketch.

• When using external data, you should use your knowledge to find the right URL on the Internet. You should write a
separate question to read the data from online, and then use the data in the following questions.

• The result of each subproblem’s reference code should ideally be a single value (e.g., a number, a string, a list, a
dictionary, a dataframe, etc.). When students submit their code, the result of their code will be compared with the
result of the reference code. If the results are the same, the student’s code is considered correct. Otherwise, the
student’s code is considered incorrect.

• When manipulating the data and creating the features, try to adhere to the style and content of original data. For
example, if the data columns are named in camel case, you should also name new columns in camel case. If the data
only contains values between 0 and 1, you should not create a new feature that categorizes the data into 0-10, 10-20,
etc.

• To make the comparison above possible, the result of the reference code should be the one and only possible answer
to the question. Therefore, the question should be specific enough to have only one possible answer. For example,
instead of asking “Provide a summary of the dataset”, you should ask “What is the mean, std of the temperature
anomalies of dataset_a? Put them in a tuple”, or “return the results in a dataframe with columns mean and std”, or
“show the first 5 rows of the dataframe”, etc. If the question is clear enough, please omit this.

• Use the validator only when necessary. For when and how to use the vaildators, please refer to the examples.

• Some problemset references are provided below. They are real-world problemsets that are used in data science
courses. However, they are not the best examples of problemsets. You are encouraged to write better problemsets
than them.

G Problem Examples

We provide a few examples for each benchmark here. The full benchmarks will also become publicly
available.

G.1 DSEval-Kaggle
We show the first few problems from “disease-symptoms-and-patient-profile-dataset’ in DSEval-Kaggle.

%%
import pandas as pd
import numpy as np

%%
"""
query: |
Import the dataset from `inputs/Disease_symptom_and_patient_profile_dataset.csv`. Assign it to a

variable called `disease`.↪→

validator:
namespace_check:

disease:
"""

disease = pd.read_csv('inputs/Disease_symptom_and_patient_profile_dataset.csv')

%%
"""
query: |

5696

Check the balance of the dataset. Count the number of positive and negative outcomes. Put them in a
Series with "Positive" and "Negative" as the index.↪→

"""

disease['Outcome Variable'].value_counts()

%%
"""
query: |

Handle the imbalance in the dataset using oversampling. Randomly duplicate some rows from the
minority class to make it have the same number of rows as the majority class (use `resample` in
sklearn with `random_state` 123 please). Save the balanced dataset in `disease_balanced`.

↪→
↪→

validator:
namespace_check:
disease_balanced:
ignore_order: true

"""

from sklearn.utils import resample

Separate majority and minority classes
df_majority = disease[disease['Outcome Variable']=='Positive']
df_minority = disease[disease['Outcome Variable']=='Negative']

Upsample minority class
df_minority_upsampled = resample(df_minority,

replace=True, # sample with replacement
n_samples=df_majority.shape[0], # to match majority class
random_state=123) # reproducible results

Combine majority class with upsampled minority class
disease_balanced = pd.concat([df_majority, df_minority_upsampled])

%%
"""
query: |

Convert binary features into indicator (0/1) variables, and other categorical features (except
"Disease" column) into numerical features using one-hot encoding. Save the encoded dataset
in-place.

↪→
↪→

validator:
namespace_check:
disease_balanced:

"""

for column in ['Fever', 'Cough', 'Fatigue', 'Difficulty Breathing']:
disease_balanced[column] = disease_balanced[column].map({'Yes': 1, 'No': 0})

disease_balanced['Outcome Variable'] = disease_balanced['Outcome Variable'].map({'Positive': 1,
'Negative': 0})↪→

categorical_columns = [column for column in disease_balanced.columns if
disease_balanced[column].dtype == 'object' and column != "Disease"]↪→

disease_balanced = pd.get_dummies(disease_balanced, columns=categorical_columns)

%%
"""
query: |

Let's assume the name of disease irrelevant for the following case study.
Split the dataset into training and test sets. The test size should be 20% of the whole dataset.

Random state should be set to 42. Use `X_train`, `y_train` to store the training set and
`X_test`, `y_test` for test set.

↪→
↪→

validator:
namespace_check:
X_train:
y_train:
X_test:
y_test:

"""

5697

from sklearn.model_selection import train_test_split

X = disease_balanced.drop(['Outcome Variable', 'Disease'], axis=1)
y = disease_balanced['Outcome Variable']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

... more problems omitted

G.2 DSEval-Exercise

Part of problem set “02-filtering-sorting-euro12” from DSEval-Exercise.

%%
import pandas as pd

%%
"""
query: |
Import the dataset from `inputs/euro12.csv`.
Assign it to a variable called euro12.

validator:
namespace_check:

euro12:

data:
euro12.csv:

https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv↪→
"""

euro12 = pd.read_csv('inputs/euro12.csv', sep=',')

%%
"""
query: Select only the Goal column.
"""

euro12.Goals

%%
"""
query: How many team participated in the Euro2012?
"""

euro12.shape[0]

%%
"""
query: What is the number of columns in the dataset?
"""

euro12.info()

%%
"""
query: View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called

discipline↪→

validator:
namespace_check:

discipline:
"""

discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']]

... more problems omitted

5698

G.3 DSEval-LeetCode
Problem “duplicate-emails” from DSEval-LeetCode.
%%

import pandas as pd

%%

"""
query: |
Write a function `def duplicate_emails(person: pd.DataFrame) -> pd.DataFrame`.

`person` is a DataFrame with the following columns:
- id: int
- email: str
`person` contains an email for each record. The emails will not contain uppercase letters.

The function should return all the duplicate emails. Note that it's guaranteed that the email field
is not NULL. Return the result table in **any order**.↪→

The result format is in the following example.

Example input:
```
person:
+----+---------+
| id | email |
+----+---------+
| 1 | a@b.com |
| 2 | c@d.com |
| 3 | a@b.com |
+----+---------+
```

Example output:
```
+---------+
| email |
+---------+
| a@b.com |
+---------+
```

Example explanation: a@b.com is repeated two times.

validator:
table_test:
function_name: duplicate_emails
input_validator: |
def _validate(person):

assert person.shape[0] > 0
assert person.dtypes.equals(pd.Series({'id': 'int64', 'email': 'object'}))
assert person.id.is_unique
assert person.email.str.match(r'^[a-z0-9._%+-]+@[a-z0-9.-]+\.[a-z]{2,}$').all()

output_checker:
ignore_order: true

test_cases:
- # example
- "`pd.DataFrame({'id': [1, 2, 3], 'email': ['a@b.com', 'c@d.com', 'a@b.com']})`"

- # corner case: only one email
- "`pd.DataFrame({'id': [1], 'email': ['a@b.com']})`"

- # corner case: all emails are the same
- "`pd.DataFrame({'id': [1, 2, 3], 'email': ['a@b.com', 'a@b.com', 'a@b.com']})`"

- # corner case: all emails are different
- "`pd.DataFrame({'id': [1, 2, 3], 'email': ['a@b.com', 'c@d.com', 'e@f.com']})`"

- # corner case: some emails are the same
- "`pd.DataFrame({'id': [1, 2, 3, 4], 'email': ['a@b.com', 'c@d.com', 'a@b.com', 'c@d.com']})`"

5699

- # corner case: some emails are the same, but not all
- "`pd.DataFrame({'id': [1, 2, 3, 4, 5], 'email': ['a@b.com', 'c@d.com', 'a@b.com', 'c@d.com',

'e@f.com']})`"↪→
"""

def duplicate_emails(person: pd.DataFrame) -> pd.DataFrame:
Group by email and count the occurrences
email_counts = person.groupby("email").size().reset_index(name="count")

Filter the emails with count greater than 1 (duplicates)
duplicates = email_counts[email_counts["count"] > 1]

Return the duplicate emails as a DataFrame
return duplicates[["email"]]

G.4 DSEval-SO
Problem “numpyeval-001” from DSEval-SO.

%%
import numpy as np
from numpy import newaxis

a = np.array([[1, 2, 3], [3, 4, 5], [5, 6, 7]])

%%
"""
query: |
I have a 2d array with shape (x, y) which I want to convert to a 3d array with shape (x, y, 1).
Is there a nice Pythonic way to do this?

"""

a[:, :, newaxis]

5700

