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Abstract

New intent discovery (NID) is an important
problem for deploying practical dialogue sys-
tems, which trains intent classifiers on a semi-
supervised corpus where unlabeled user utter-
ances contain both known and novel intents.
Most existing NID algorithms place hope on
the sample similarity to cluster unlabeled cor-
pus to known or new samples. Lacking su-
pervision on new intents, we experimentally
find the intent classifier fails to fully distin-
guish new intents since they tend to assemble
into intertwined centers. To address this prob-
lem, we propose a novel GeoID framework
that learns geometry-aware representations to
maximally separate all intents. Specifically,
we are motivated by the recent findings on
Neural Collapse (NC) in classification tasks
to derive optimal intent center structure. Mean-
while, we devise a dual pseudo-labeling strat-
egy based on optimal transport assignments and
semi-supervised clustering, ensuring proper
utterances-to-center arrangement. Extensive re-
sults show that our GeoID method establishes
a new state-of-the-art performance, achieving
a +3.49% average accuracy improvement on
three standardized benchmarking datasets. We
also verify its usefulness in assisting large
language models for improved in-context per-
formance. The code is available at https:
//github.com/zjutangk/GeoID.

1 Introduction

Intent detection, which aims at recognizing the
intention of the user query, is an important com-
ponent in industrial-grade dialogue systems (Qin
et al., 2021; Li et al., 2022). Though there has been
significant progress in recent years (Perkins and
Yang, 2019; Min et al., 2020; Vedula et al., 2020),
the effectiveness of these models greatly depends
on the predefined intent labels, which often fall
short of fulfilling the application requirements in
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Figure 1: Illustration for the effect of our off-line ETF
structure: Having gotten suboptimal features from the
simple similarity-based method, we achieve an optimal
feature distribution structure by bringing the samples
closer to a fixed ETF structure.

an open-world environment. To address this prob-
lem, new intent discovery (NID) has been proposed
that learns from a semi-supervised corpus contain-
ing: (i)-a limited amount of utterance annotated
with true intents; (ii)-a vast quantity of unlabeled
data containing both known intents and unknown
new intents. The goal of NID is to simultaneously
classify known intents while discovering those un-
known intent clusters.

Emerging attempts have been made to tackle the
NID task (Zhou et al., 2023a; Mou et al., 2023;
Wang et al., 2023). Amongst them, the most pop-
ular methods (Zhou et al., 2023b,c) rely on the
similarity-based assumption, i.e., samples sharing
the same intent typically located at a neighbor re-
gion. Then, they design specific objectives to spon-
taneously group different samples into separated
clusters, e.g. pairwise constraints (Lin et al., 2020),
contrastive learning (Zhang et al., 2022), and graph
diffusion (Shi et al., 2023). However, without new
intent supervision, the learning procedure can be
dominated by the labeled samples, resulting in bi-
ased feature representations. Thus, the unknown
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samples are prone to collapse into intertwined cen-
ters, thus being inseparable, as empirically verified
in Figure 5. This gives rise to a representation
dilemma—how to obtain the optimal hypersphere
distribution for identifying new intents?

To answer this question, we draw inspiration
from a recent study on the neural collapse (NC)
phenomenon (Papyan et al., 2020). It implies that,
under ideal conditions, as a classifier undergoes
training towards convergence, the final-layer char-
acteristics of a specific class gradually converge
towards their average value within that class. These
averages then tend to position themselves on a hy-
persphere with the utmost angular distance, known
as the simplex equiangular tight frame (simplex
ETF), as referenced in (Martinez and Kak, 2001).
The NC phenomenon provides an optimal frame
of hypersphere centers that aligns with our expec-
tations for the final intent centers to be maximally
separated. Nevertheless, it is non-trivial to achieve
NC for NID with largely missing supervision.

In this paper, we propose a novel Geometry-
aware representation learning framework for
NID (dubbed GeoID), which encourages both
known/unknown intents to be equiangular sepa-
rative and maximally discriminative. Specifically,
GeoID replaces the learnable weights of the intent
classifier (implicitly the class centers) with fixed
ETF weights. That is, it pulls the sample features
to predefined intent centers instead of merely clus-
tering by sample similarity themselves. Moreover,
we develop a dual pseudo-labeling strategy to en-
sure proper sample allocation to the centers: (i)-
optimal transport-based objective to refine pseudo-
labels from classifier predictions, which is reliable
with pattern fitting; (ii)-semi-supervised clustering-
driven pseudo-labeling that is more robust in the
early stages. Finally, We train the NID classifier to
fit both pseudo-labels for improved robustness.

We comprehensively evaluate GeoID on three
NID benchmark datasets. Specifically, our visual-
ized analysis shows that GeoID does indeed learn
highly distinguishable intent clusters (Figure 5(c)),
and its mean intent centers almost achieve neural
collapsed distribution (Figure 3(c)). Thanks to this
excellent geometry property, our GeoID establishes
new state-of-the-art NID performance, e.g., it im-
proves the accuracy by +2.90%, +3.88%, and
+3.69% accuracy on the BANKING, StackOver-
flow, and CLINC datasets, respectively. We hope
our work will inspire future NID studies to tackle
this important problem of cluster separability.

2 Related Work

New Intent Discovery (NID). NID is a de-
veloping research area aiming to identify unla-
beled utterances from known and new intents (Wu
et al.; Liang and Liao, 2023; Kumar et al., 2022;
An et al., 2023a). To address this issue, initial
efforts were made from the perspective of con-
strained clustering. Hsu et al. (2018a,b) utilized
pairwise similarity-constrained clustering and re-
finement module to discover new intents and Zhang
et al. (2021) employed pretraining techniques and
aligned clustering labels to learn clustering-friendly
representations. Subsequent work aims to learn
more discriminative feature representations from
the perspective of contrastive learning. Wei et al.
(2022) emphasized intra-class compactness by em-
ploying contrastive learning following (Kim et al.,
2021; Yan et al., 2021; Giorgi et al., 2021) to bring
samples with the same pseudo-label closer in fea-
ture space. An et al. (2023b) adopted a decou-
pled training approach to construct prototype learn-
ing, aiming to obtain more discriminative features.
Zhang et al. (2022) harnessed neighbor contrastive
learning and more challenging pre-training tasks
to achieve outstanding performance. In addition,
Zhang et al. (2023a) integrated techniques from
previous works including aligned clustering and
contrastive learning. These works primarily tackle
the intra-class compactness issue while neglecting
the influence of bias on inter-class separation.

Neural Collapse (NC). The NC phenomenon
was initially discovered by Papyan et al. (2020).
They observed that towards the end of training, a
classification model would exhibit the collapse of
last-layer features towards their respective within-
class centers. These within-class centers, along
with the classifiers, will converge to form a simplex
equiangular tight frame (ETF). Subsequent studies
have sought to provide theoretical insights into this
elegant phenomenon. It has been proven that neu-
ral collapse corresponds to the global optimality of
simplified models under various conditions, includ-
ing regularization (Tirer and Bruna, 2022; Zhou
et al., 2022; Zhu et al., 2021)and constraints (Fang
et al., 2021; Graf et al., 2021). These findings hold
for both cross-entropy (CE) (Ji et al., 2021; Graf
et al., 2021) and mean squared error (MSE) loss
functions (Han et al., 2021; Zhou et al., 2022). Phe-
nomenon of neural collapse (NC) has also been
explored in specific scenarios, such as imbalanced
learning (Xie et al., 2023; Yang et al., 2022; Zhong
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et al., 2023), learning with noisy labels (Nguyen
et al., 2022), and transfer learning (Galanti et al.,
2021; Xiao et al., 2024), but they have never tapped
in language domain. We are the first to investigate
the NC phenomenon in the NID task.

3 Method

Problem Statement. Confronted with a new in-
tent discovery task, we are usually given an intent
dataset Dtrain encompassing two subsets: a labeled
set Dl = {(xi, yi) | yi ∈ Cknown}mi=1, and an un-
labelled set Du = {xi | yi ∈ Cknown ∪ Cnovel}ni=1,
where xi refers to the input utterance,Cknown is the
set of known intent labels and Cnovel is the set of
new intent labels. We set |Cknown ∪ Cnovel| to L.
NID can be viewed as a direct extension of general
category discovery and the objective comprises two
main goals: firstly, to identify new intents from un-
labelled data, and secondly, to accurately classify
inputs into their respective intents.

Intent Representation. Similar to the majority
of mainstream tasks, we use BERT (Devlin et al.,
2019) to extract intent representations. First, we
input utterance xi to BERT and get all its token
embeddings [CLS, T1, . . . , TM ]. Next, we utilize
mean-pooling and dense layer to obtain intent fea-
ture representation zi. For contrastive learning,
we utilize Random Token Replacement (RTR) fol-
lowing (Zhang et al., 2022) as data augmentation
strategy to generate zi

′.

Overview of Our Approach. Figure 2 illustrates
the overall architecture of our method. We learn
geometry-aware representations to maximally sep-
arate all intents by pushing utterances close to the
corresponding vertex of the ETF structure inspired
by the NC phenomenon. To achieve this, we devise
pseudo-labeling a dual strategy based on optimal
transport and clustering to assign samples to the
correct centers.

3.1 Neural Collapse for Separation
In this section, we introduce the neural collapse
(NC) phenomenon (Papyan et al., 2020) to demon-
strate the characteristics of an ideal intent classifier
for NID. In concrete, NC says the features learned
from deep neural networks, in which last-layer fea-
tures have the following appearances:(1) For each
class, features collapse to the class mean. (2) The
within-class means of all classes are located on a
hypersphere and form a simplex equiangular tight
frame (Simplex ETF).

Simplex ETF. Suppose the vector space is d-
dimensional. When d ≥ L − 1, we can al-
ways derive a collection of L equal-length and
maximally-equiangular d-dimensional embedding
vectors E = [e∗1, . . . , e

∗
L] ∈ Rd×L to construct a

simplex equiangular tight frame (ETF).

E =

√
L

L− 1
U(IL −

1

L
1L1

⊤
L ) (1)

where IL is the identity matrix, 1L is a vector of
all ones and U ∈ Rd×L is a rotation matrix.

As mentioned above, an optimal ETF structure
for the arrangements of features facilitates the min-
imization of within-class variance and the maxi-
mization of between-class variance for the features.
This is very appealing for the NID task to distin-
guish all known/unknown intents.

In our GeoID framework, we calculate a set of
pre-assigned centers E = [e∗1, . . . , e

∗
l ] ∈ Rd×L,

each of which is a vertex of a random simple ETF
structure according to Eq. (1). Then we optimize
the following cross-entropy loss to pull these sam-
ples close to these centers:

Letf (xi, ŷi) = −log
exp(z⊤

i · e∗ŷi)∑L
l=1 exp(z⊤

i · e∗l )
(2)

where zi is feature representation of xi gotten by
deep neural model. The key difference here from
traditional CE loss is that we keep the classifier
weights E fixed.

There remains one crucial problem — how to
assign a sample xi to its corresponding ETF vertex
e∗ŷi . For labeled utterances (xi, yi), we can directly
set ground-truth label yi as ŷi. For the rest of un-
labeled utterances, we resort to a pseudo-labeling
algorithm to group them to proper centers, as de-
scribed in the sequel.

3.2 Dual Pseudo-Labeling

To promote the formation of the novel class NC
structure, we design two complementary pseudo-
label generation strategies to guide the samples
moving toward their corresponding ETF vertices.

Optimal Transport-based Strategy. Having got-
ten the softmax-based classifier prediction P =
{pi | pi = softmax(z⊤

i ·E)}, one straightforward
technique to obtain pseudo-labels is to adopt the
maximum index of prediction (Sohn et al., 2020).
However, due to the lack of supervision informa-
tion, the classifier can be largely dominated by
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Figure 2: Overall framework of GeoID. We use an ETF structure to guide samples clustering into a pre-defined
optimal distribution. To ensure the appropriate allocation of samples to the centers, we design a dual pseudo-labeling
strategy based on optimal transport assignments and semi-supervised clustering. These components jointly promote
learning geometry-aware representation.

known classes, making the representation of un-
known classes collapse. To mitigate this problem,
we introduce equipartition constraint into label as-
signment and transform pseudo-labeling into an
optimal transport problem. Formally, given a batch
of b unlabelled samples, we search for optimal label
assignment Q = [q1, . . . , qb] close to the current
prediction P while subject to some constraints:

Q = max
Q∈∆

Tr(Q⊤P ) =
i=b∑

i=1

j=L∑

j=1

q⊤ijpij

s.t. ∆ = {[qij ]L×b | Q1b = r,Q⊤1L = c}
(3)

where Tr(·) is the trace function. qij is the j-th
element of pseudo-label assignment for the i-th
sample. r = 1

L1L is an L-dimensional uniform
probability distribution indicating the prior class
distribution. We set c = 1

b1b indicating that b sam-
ples in a batch are sampled uniformly. The solution
of Eq.(3) can be obtained by the Sinkhorn-Knopp
algorithm (Cuturi, 2013); see Appendix A.3.

Such a strong assignment inevitably introduces
a significant amount of noise. To alleviate the
accumulation of label errors, we filter pseudo-
labels by high-confidence selection. For each class
j ∈ [1, L], we select samplesDj

sel:

Dj
sel = {(xi, y

ot
i ) | yot = j, qij > τj} (4)

where yoti = argj max qij is the predicted category
label of the ETF classifier on xi. τj is the confi-
dence threshold that enables selecting the top R%
ranked samples in the data subset whose prediction
is class j. Lastly, we only calculate LETF on Dl

and Dsel = ∪Lj=1Dj
sel. In other words, we select

the most reliable samples within each cluster and
employ them as pivots to guide the whole cluster
being moved toward the ETF centers.

Clustering-based Strategy. Even with optimal
transport-based allocation, the classifier can be
unreliable at the early stage of training. To this
end, we supplement a data-driven strategy by using
feature-based clustering to regularize the learning
procedure. It should be noted such a data-driven
strategy does not suffer from the bias caused by the
absence of supervision and thus largely enhances
the robustness of GeoID during the early stages.

Specifically, we harness the rationality of clus-
tering algorithms to generate pseudo-labels once
per epoch. Considering that we have labeled data
available, we adopt semi-supervised k-means fol-
lowing (Vaze et al., 2022) as the clustering algo-
rithm. The indices of clustering labels obtained by
k-means are randomly permuted in each training
epoch which makes it challenging for us to leverage
the supervision information provided by the clus-
tering results fully. To address this issue, we devise

5644



a clustering label alignment strategy that combines
with simplex ETF structure. To be specific, we
align the cluster centers of different epochs with the
pre-assigned centers E provided by NC to ensure
consistent cluster assignment in semi-supervised
k-means employing Hungarian algorithm (Kuhn,
2010) and obtain the aligned cluster label yalign

which can be found in Appendix A.4.
Finally, we allow the model to fit both pseudo-

labels in a trade-off manner :

Lcls = αLetf (x,yot) + (1− α)Letf (x,yalign)
(5)

where yot and yalign respectively correspond to the
set of pseudo-labels generated by the two strategies.
α is the trade-off hyperparameter ramped up from
0 to 1 during the training process.

In the beginning, our ETF classifier tends to trust
the clustering pseudo-labels to avoid representa-
tion collapse. As the training proceeds, the filtered
OT labels can gradually become more trustworthy,
guiding the data clusters to move toward prede-
fined ETF frames. In the meantime, the data-driven
clustering pseudo-label still serves a proper regu-
larization term that aligns the remaining data to
its filtered neighbors, ensuring full data utilization.
Finally, all data samples are tightly clustered to
their corresponding centers, achieving the optimal
geometry distribution we desire.

3.3 Contrastive Representation Enhancement
Finally, we also involve contrastive learning for
improved representation. To explore semantically
neighboring information and further enhance intra-
class compactness and inter-class variance, we pro-
pose a contrastive loss following (Khosla et al.,
2020) which brings similar samples close to im-
prove clustering performance. Specifically, the pos-
itive sample set Pi for sample xi from two aspects:
(1) samples sharing the same ground-truth labels or
pseudo labels and (2) k-nearest neighboring sam-
ples using dot product as a distance metric.

Pi = {j | zj ∈ k-NN(zi) ∨ yj = yi} (6)

where yi is respectively grand-truth label for la-
beled sample and yot for unlabeled sample in Dsel.
Different from (Zhang et al., 2022) which conducts
contrastive learning within a mini-batch, we mine
neighbor samples from the entire dataset and utilize
self-supervision signals in addition.

Lcon = − 1

|Pi|
log

∑
j∈Pi

exp(z⊤
i zj)∑n

k=1 exp(z⊤
i zk)

(7)

Dataset | Cknown | | Cnovel | | Dtrain | | Dtest |
BANKING 19 58 9,003 3,080

StackOverflow 5 15 18,000 1,000
CLINC 37 113 18,000 2,250

Table 1: Statistics of our datasets.

We also involve a conventional consistency regu-
larization term Lreg for improved semi-supervised
training, please refer to Appendix A.2 for more
details. The overall training loss is given by,

Lall = Lcls + Lcon + Lreg (8)

4 Experiment

4.1 Datasets
We first evaluate our method on four bench-
mark intent datasets. Banking (Casanueva et al.,
2020) is a fine-grained imbalanced intent classifi-
cation dataset collected from banking dialogues.
StackOverflow (Xu et al., 2015) is a large-scale
question classification dataset collected from on-
line queries. CLINC (Larson et al., 2019) is an
intent classification dataset from multiple domains.
For each dataset, we randomly select 25% of the
classes as Cknown, while the remaining classes are
treated as Cnovel. Detailed statistics of datasets are
summarized in Table 1.

4.2 Baselines
We compare our method with various new intent
discovery baselines, including CDAC+ (Lin et al.,
2020), DeepAligned (Zhang et al., 2021), MTP-
CLNN (Zhang et al., 2022), and UNISD (Zhang
et al., 2023a). We also include comparisons with
constrained clustering and novel class discovery
methods: KCL (Hsu et al., 2018a), MCL (Hsu
et al., 2018b), GCD (Vaze et al., 2022), and DTC
(Han et al., 2019). For clustering and novel class
discovery methods used for computer vision tasks,
we adapt them for our task by leveraging the BERT
backbone. For performances of baselines, we di-
rectly adopt reported results from receptive papers
or UNISD. For a fair comparison, we remove the
use of the extern dataset in MTP-CLNN.

4.3 Evaluation Metrics
Following (Zhang et al., 2021, 2023a), We employ
three commonly used metrics, namely Normalized
Mutual Information (NMI), Adjusted Rand Index
(ARI), and Accuracy (ACC), to evaluate the quality
of the clustering results. To calculate accuracy, we
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Method BANKING StackOverflow CLINC

NMI ARI ACC NMI ARI ACC NMI ARI ACC
KCL 53.85 20.07 28.79 35.47 16.80 32.88 67.98 24.30 29.40
MCL 49.46 15.51 24.53 29.44 14.99 31.50 62.79 18.21 28.52
DTC 56.05 20.19 32.91 33.38 16.45 30.32 79.35 41.92 56.90
GCD 59.74 26.04 38.50 35.77 20.12 36.74 83.70 52.23 64.82

CDAC+ 67.65 34.88 48.79 74.33 39.44 74.30 84.68 50.02 66.24
DeepAligned 69.85 37.16 49.67 53.97 36.46 53.96 88.97 64.63 74.07
MTP-CLNN 80.04 52.91 65.06 76.85 57.62 77.54 93.17 76.20 83.26

DWGF 79.04 51.17 61.40 73.68 56.59 75.00 93.65 78.38 84.44
UNISD 81.94 56.53 65.85 75.87 65.93 77.92 94.17 77.95 83.12

GeoID (ours) 82.54 57.92 68.75 77.62 66.35 81.80 94.37 81.24 88.13

Table 2: Performance on testing sets of different benchmarks. The labled sample ratio is set to 10%. Average results
over 3 runs are reported. For each dataset, the best results are marked in bold.

utilize the Hungarian algorithm (Kuhn, 2010) to
derive the optimal assignments between clustering
classes and ground-truth classes.

4.4 Implementation Details

We use the pre-trained bert-base-uncased BERT
model from (Wolf et al., 2019) as our backbone. In
the pre-training phase, we employ the same settings
following (Zhang et al., 2022). Regarding model
optimization, We employ AdamW optimizer (Wolf
et al., 2019) with a warm-up schedule and 0.01
weight decay. The learning rate is set to 1e−4 for
all benchmark datasets. For Sinkhorn-Knopp, we
set hyperparameters following (Fini et al., 2021)
that ϵ = 0.05 and run for 3 iterations. For mining
k-nearest neighbors, we set k = 64 for BANK-
ING and CLINC, k = 256 for StackOverflow.
For pseudo-labeling, we set R of high-confidence
selection as 30%, 10% in begin respectively for
Cknown, Cnovel and linearly increases to 80% in
70 epochs. Additionally, to enhance training ef-
ficiency with the BERT backbone, we freeze all
transformer layer parameters except the last layer
following (Lin et al., 2020). Following most of the
baselines, we run cluster-based evaluation when
testing. Details of consistency regularization can
be found in Appendix A.2. Although we involved
several hyperparameters, most of them followed
the default settings, which had minimal impact on
the experiments.

4.5 Main Results

Table 2 shows the main experimental results on the
BANKING, StackOverflow, and CLINC datasets.
Our method consistently outperforms all competing

Method NMI ARI ACC

GeoID 82.54 57.92 68.75
w/o Optimal Transport 79.48 53.42 65.21

w/o Clustering 81.34 55.92 66.10
w/o ETF 78.85 51.24 63.59

Table 3: Ablation study on BANKING dataset. The
known class ratio and labeled ratio are respectively set
to 0.25 and 0.1.

methods by a considerable margin on all metrics
across various datasets. Specifically, without an
extern dataset in pre-training, our method achieves
improvements on three benchmark datasets with
+2.90%, +3.88%, and +3.69% compared with
best baselines. Moreover, in the scenario where the
CLINC dataset is utilized as an external dataset,
our model can maintain advantages on the Banking
and StackOverflow respectively and details of this
experiment are shown in Appendix B.1.

4.6 Discussion

Ablation Study. To further analyze the contribu-
tions of different components in our method, we
conduct three ablation studies here. First, to ana-
lyze the effect of our dual pseudo-labeling strategy,
we separately removed the optimal transport and
clustering components during the pseudo-labeling
process. Then we exclude the use of the ETF struc-
ture by replacing the ETF structure with a linear
classification head while keeping the form of cross-
entropy loss unchanged. These experiments are all
conducted on the BANKING dataset to evaluate
their effectiveness. As shown in Table 3, removing
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(a) (b) (c) (d)

Figure 3: Analysis on Neural Collapse phenomenon. Figure 3(a)-3(c) is the visualization of pair-wise cosine
similarity. We calculate the cosine similarity on class means (a) replacing the ETF structure with a linear classification
head and (b) using offline simplex ETF structure. Figure 3(c) is the cosine similarity on vertices of an ETF structure,
representing the ideal scenario corresponding to the optimal distribution of features. The darker the color, the higher
the cosine similarity between the corresponding two categories. Figure 3(d) is the quantitative result about the
maximal separation character of NC and the red horizontal line corresponds to the optimal case − 1

L−1 .

Figure 4: Comparisons on BANKING with varying
known class ratios ranging from 0.25 to 0.75.

these components respectively brings negative ef-
fects of−3.54%,−2.65%,−5.16% on accuracy,
indicating that all these modules are beneficial to
NID task. More details of the ablation study can
be found in Appendix B.2.

Analysis on Neural Collapse. Considering the
features of simplex ETF struct in Eq.(1), we
can summarize the characteristics of the NC phe-
nomenon from two perspectives: (1) uniform dis-
tribution on hypersphere (equiangularity) and (2)
cluster centers are maximally separated. To further
investigate the impact of NC on feature distribution,
we visualize the cosine similarity between cluster
centers that intuitively demonstrate the equiangu-
larity of NC, and the results are shown in Figure
3(a)-3(c). To quantitatively analyze the second
character of NC phenomenon, we calculate the av-
erage value Avgl ̸=l′ (cos(ĉl, ĉl

′
)), where ĉl is the

means of features from class 1 ≤ l ≤ L. For the
maximal separation character of NC, the optimal
pair-wise angle − 1

L−1 is derived from Eq.(1). The
trends of this metric on the BANKING dataset with
different methods are shown in Figure 3(d). Ac-
cording to the visualization and quantitative results

shown in Figure 3, we have demonstrated that the
distribution of features in GeoID can closely ap-
proximates the ideal scenario of the neural collapse
phenomenon (NC).

Analysis on Representation Learning. To inves-
tigate the effectiveness of our method in geometry-
aware representation learning, we visualize the
representation learned by GeoID and two strong
baselines on StackOverflow using t-SNE (Van der
Maaten and Hinton, 2008) in Figure 5. It can be
shown that MTP-CLNN and DWGF produce in-
tertwined cluster centers. In contrast, our method
is demonstrated to effectively avoid representation
collapse and learn clearly separable clusters. These
results demonstrate that GeoID is indeed able to
learn optimal geometry distributions for NID.

Influence of Known Class Ratio. Here we fur-
ther evaluate the performance of our method on
the BANKING dataset with different known class
ratios from 0.25 to 0.75. As shown in Figure 4, our
method consistently outperforms other baselines
under varying known class ratios.

Unknown Number of Novel Classes. The num-
ber of all intents is an important hyperparameter
in the NID task. The previous experiments were
conducted based on the assumption that we already
knew the number of novel classes which is often
impractical in real-world applications. Now some
methods to estimate class number have been pro-
posed, such as (Han et al., 2019; Zhang et al., 2021).
These methods can reliably maintain the error ratio
below 10%, for example, methods in (Zhang et al.,
2021) can estimate L in BANKING to be 71. So we
conducted simulations on the BANKING dataset
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(a) MTP-CLNN (b) DWGF (c) GeoID

Figure 5: T-SNE visualization of the representation distribution on StackOverflow. Different colors indicate the
corresponding category of intents.

(a) ACC (b) NMI

Figure 6: Comparison result of ACC and NMI under
different estimated number of labels. The black vertical
line denotes the result under DeepAligned’s estimation.

using different prediction results of L to observe
the impact of class number on model performance.
In Figure 6, we show the performance variation of
GeoID across different total numbers of predicted
intent categories L. It can be observed that GeoID
exhibits overall robustness across different total
numbers of predicted intent categories.

Discussion of LLM. Recently, there have been
explorations (Zhang et al., 2023b; Song et al., 2023)
of applying large language models to the task of
New Intent Discovery. In this section, we further
investigate the feasibility of collaboration between
LLMs and GeoID. Especially, we use GeoID to
select corpora close to centers. This allows LLMs
to perform in-context learning and subsequently
perform direct clustering tasks. We design prompts
following (Song et al., 2023) to implement two
baselines ChatGPT-ZSD and ChatGPT-FSD for
comparison. The results in Table 4 demonstrate that
the supplement of novel class samples significantly
improves the clustering performance of LLMs, par-
ticularly in balancing the performance gap between
known classes and novel classes. Additionally, due
to the limitations of LLMs in unsupervised cluster-

Method BANKING

Known class Novel class All Class

ChatGPT-ZSD 52.72 51.24 51.99
ChatGPT-FSD 65.81 50.03 57.92

ChatGPT-GeoID 67.29 67.55 67.42

Table 4: Performance comparison of LLMs in differ-
ent application forms. About ChatGPT-ZSD, we di-
rectly provide unlabeled samples to LLMs to cluster. In
ChatGPT-FSD, we provide LLMs with labeled samples
as prior knowledge.

ing performance on corpora, their performance still
falls short of fine-tuning SLMs. One may design
other LLMs-based techniques specifically for clus-
tering tasks for improved performance on NID. But,
it is beyond the scope of our paper. More details
and discussion can be found in appendix A.5.

5 Conclusion

In this paper, we propose a new method GeoID
which revisits new intent discovery from the per-
spective of geometric-aware representation learn-
ing. Inspired by the neural collapse phenomenon,
we use a fixed ETF structure to facilitate the learn-
ing of a feature distribution that aligns with the
predefined optimal structure. Additionally, we de-
sign a dual pseudo-labeling strategy using optimal
transport theory and semi-supervised clustering
to generate pseudo-labels respectively. This strat-
egy enhances the quality of pseudo-labels while
maintaining sample utilization. Experiments show
GeoID’s significant improvements over baselines.
We hope our work can inspire future research to fur-
ther improve the NID problem from the perspective
of geometry-aware representations.
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Limitations

To inspire future research, we summarize the lim-
itations of our method. Firstly, we do not design
a more accurate method for category estimation,
leaving ample scope for further enhancement. Sec-
ondly, we did not delve deeply into the collabo-
ration between large and small models on NID
tasks. Thirdly, we have conducted preliminary re-
search on basic intent classification tasks within
open-world scenarios, but there exist numerous
other intricate data formats (like continual learn-
ing) that merit further exploration.
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A More Details of Implement

A.1 Details of ETF Structure Initialization
We employ random initialization, a widely adopted
and effective methodology in recent neural collapse
research. As described in Eq.(1), we guarantee the
randomness of the initialization by using a random
rotation matrix U. The procedure involves only
two hyperparameters: intent number L and feature
dimension d. So there are no extra hyperparameters
in this process.

A.2 Details of Consistency Regularization
In practice, we use Random Token Replacement
(RTR) following (Zhang et al., 2022) as our data
augmentation strategy. We denote the augmented
view of x as x′. Then we employ the r-drop method
to obtain two representations, z′1 and z′2 for x′

through the backbone network. Finally, we cal-
culate the Kullback-Leibler divergence between z′1
and z′2 as Lreg.

A.3 Sinkhorn-Knopp Algorithm
Formally, we define a cost matrix M = exp(Pε ).
The Sinkhorn-Knopp algorithm is conducted by:

Q = M ⊙ (µ · υT ) (9)

where u ∈ RL and v ∈ Rb are scaling coefficients
vectors and are updated iteratively by,

µ← c./(Mυ),υ ← r./(M⊤µ) (10)

where ./ denotes element-wise division. In prac-
tice, we utilize a small iteration number of 3.

A.4 Details of Alignment in Clustering
Having gotten pseudo-label assignment ycluster

and class centers C = c1, c2, . . . , cL from semi-
supervised k-means. We obtain the optimal projec-
tion matrix M with Hungarian algorithm:

C = M ·E (11)

Then we get aligned pseudo labels:

yalign = M−1 · ycluster (12)

A.5 Details of LLMs Experiment
The main challenge of LLMs in NID task is the
absence of novel classes prior which seriously af-
fects the incontext learning of large models. To
solve this problem, we use GeoID to select corpora
close to the center to provide novel classes prior.

Figure 7: Accuracy comparison with different labeled
ratios on different dataset.

In practice, for each novel class, we select 10 %
samples nearest to the class center. We design the
prompt in the form of <Prior: labeled samples and
selected samples><Cluster Instruction><Response
Format><Dtest>.

B Additional Experimental Results

B.1 Pretraining with External Dataset

In the experimental section of the main text, to
ensure a fair comparison, we excluded the exter-
nal dataset used in the pretraining process of the
MTP-CLNN (Zhang et al., 2022). In this section,
we investigate the model’s performance, which in-
corporates CLINC as the external dataset during
the pretraining phase. The results shown in table 7
demonstrate that our method is equally capable of
benefiting from the external dataset and maintain-
ing a performance advantage on the benchmark.

B.2 More Ablation Study

In this section, we conducted additional ablation
experiments regarding sample selection and con-
trastive learning. Regarding sample selection, we
design two different schemes: without filtering and
fixing the selection ratio as 50%. We also remove
Lcon during the training process to investigate the
effect of contrastive learning. As shown in Table
6, removing them consistently impairs the model’s
performance, indicating that these designs indeed
contribute to new intent discovery. We also add the
ablation experiments on regularization.

B.3 Influence of Labeled Ratio

In addition to the known class ratio, we also ana-
lyze the influence of label ratio in model training.
In the experiment, we vary the labeled ratio in the
range of 25%, 50%, 75%. As shown in Table 7,
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Method GeoID MTP-CLNN DWGF UNISD

Epoch Time 64.67s 68.62s 42.97s 68.92s

Table 5: Comparison of epoch time.

Method NMI ARI ACC

GeoID 82.54 57.92 68.75
w/o filtering 81.02 54.31 65.74

fixed selection ratio 79.93 55.92 66.48
w/o Lcon 76.53 53.42 64.72
w/o Lreg 81.29 56.14 68.02

Table 6: Additional ablation study on BANKING
dataset. The known class ratio and labeled ratio are
respectively set to 0.25 and 0.1.

our method achieves the best results with different
labeled sample ratios.

B.4 More Fine-grained Metrics
In this section, we further analyze both the known
class accuracy and unknown class accuracy to vali-
date the effectiveness of the model on novel intents.
As shown in Table 8, tt can be seen that the per-
formance improvement of our algorithm mainly
comes from the improved accuracy of novel intent
samples. This is precisely realized based on the op-
timal distribution of features we obtained through
the ETF structure.

B.5 Training Complexity
We compare the time required for the model to
complete one training epoch with other works. As
demonstrated in the table 5, GeoID is as fast as
current state-of-the-art NID algorithms.

C Overall Algorithm

We summarize the pseudo-code of our proposed
GeoID in Algorithm 1.

Algorithm 1: Pseudo-code of GeoID.
1 Input: Training dataset D, model f , filter ratio R,

num of intents L;
2 Initialize ETF strcuture E
3 for epoch = 1, 2, . . . , do
4 for xi ∈ D do
5 Induce representation zi = f(xi)

// optimal transport
6 pi = zi · E
7 qi = Sinkhorn(pi) as Eq.(3)
8 end

// high-confidence selection
9 Dsel = filter(q) as Eq.(4)

10 yot = argmax(qij) for xi ∈ Dsel

// cluster for pseudo-labeling

11 obtain ycluster with k-means clustering(z)
12 yalign = Hungarian(ycluster,E)
13 calculate Lcls with ETF structure as Eq.(5)

// overall training objectives
14 minimize loss Lall = Lcls + Lcon + Lreg

15 end
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Method BANKING StackOverflow

NMI ARI ACC NMI ARI ACC
DeepAligned 69.85 37.16 49.67 53.97 36.46 53.96

UNISD 81.94 56.53 65.85 75.87 65.93 77.92
MTP-CLNN (extern) 84.11 61.29 71.43 79.68 70.17 83.77

GeoID (extern) 84.24 62.71 74.38 80.69 71.04 84.90

Table 7: Performance on different benchmarks. The labeled sample ratio is set to 10% and the known class ratio is
set to 25%. Average results over 3 runs are reported. For each dataset, the best results are marked in bold.

Method BANKING StackOverflow CLINC

Known Novel Known Novel Known Novel
DeepAligned 69.60 45.44 76.13 54.67 89.10 70.59

DPN 80.93 48.60 85.29 81.07 92.97 77.54
GeoID (OURS) 82.67 78.42 92.37 84.66 95.12 92.78

Table 8: Known class accuracy and unknown class accuracy across different datasets. The known class ratio is set to
0.75 for fair comparison.
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