
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5247–5265
August 11-16, 2024 ©2024 Association for Computational Linguistics

Rethinking the Multimodal Correlation of Multimodal Sequential
Learning via Generalizable Attentional Results Alignment

Tao Jin1,2 Wang Lin1 Ye Wang1 Linjun Li1 Xize Cheng1 Zhou Zhao1,2†
1Zhejiang University

2Shanghai AI Laboratory
∗

Abstract

Transformer-based methods have gone main-
stream in multimodal sequential learning. The
intra and inter modality interactions are cap-
tured by the query-key associations of multi-
head attention. In this way, the calculated mul-
timodal contexts (attentional results) are ex-
pected to be relevant to the query modality.
However, in existing literature, the alignment
degree between different calculated attentional
results of the same query are under-explored.
Based on this concern, we propose a new con-
strained scheme called Multimodal Contextual
Contrast (MCC), which could align the mul-
tiple attentional results from both local and
global perspectives, making the information
capture more efficient. Concretely, the cal-
culated attentional results of different modal-
ities are mapped into a common feature space,
those attentional vectors with the same query
are considered as a positive group and the re-
maining sets are negative. From local per-
spective, we sample the negative groups for a
positive group by randomly changing the se-
quential step of one specific context and keep-
ing the other stay the same. From coarse
global perspective, we divide all the contex-
tual groups into two sets (i.e., aligned and
unaligned), making the total score of aligned
group relatively large. We extend the vectorial
inner product operation for more input and cal-
culate the aligned score for each multimodal
group. Considering that the computational
complexity scales exponentially to the number
of modalities, we adopt stochastic expectation
approximation (SEA) for the real process. The
extensive experimental results on several tasks
reveal the effectiveness of our contributions.

1 Introduction

Multimodal sequential learning, which aims to pro-
cess and understand the semantic information from
multiple modalities (e.g., vision, language, audio)

∗† denotes corresponding author.
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Figure 1: An example of calculated attentional results,
where the colours denote attention weights and we
present the text, visual, audio content of a speaker. The
text query is “rather”, the visual result (“shorter”) is not
aligned with audio result (“rather”).

with machine learning skills, has drawn increasing
attention recently. Many endeavors (Gabeur et al.,
2020; Pham et al., 2019; Zadeh et al., 2018a,b)
are devoted to the design of multimodal interac-
tive mode and effective individual representation
learning. Transformer-based multimodal interac-
tion methods (Gabeur et al., 2020; Tsai et al., 2019)
occupy the mainstream position in multimodal in-
teraction area. Compared with vanilla methods,
Transformer-based methods could achieve rela-
tively superior performances with deep stacked at-
tention blocks (Vaswani et al., 2017) and a suitable
number of training samples. Concretely, by treat-
ing one modality as query (e.g., text) and the other
modalities as keys (e.g., visual, audio), the mul-
timodal contextual sequences (attentional results)
can be obtained by query-key associated mecha-
nism. In this way, the calculated attentional results
are expected to be relevant to the query modal-
ity. However, the alignment degree between dif-
ferent calculated attentional results of the same
query are under-explored. Specifically, if we have
three modalities (i.e., text, visual, audio), we em-
ploy Transformer to correlate text-visual and text-
audio interaction respectively. As shown in Fig.
1, when the text query is “rather”, the attentional
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results (“shorter”) of text-visual pair has obvious
problems, while the audio localization (“rather”) is
correct. During training, the mistakes of query-key
association are inevitable. At this time, constrain-
ing the alignment of audio and visual attentional
results can polish the capture mistakes indirectly.

Motivated by the observations, in this paper, we
propose a new constrained strategy called Multi-
modal Contextual Contrast (MCC), which could
align multimodal attentional results from both lo-
cal and global perspectives, making the attentional
capture more efficient. Specifically, the multimodal
attentional results of different modalities are cal-
culated with multi-head attention first and then
mapped into a common feature space. The se-
quence lengths of the multimodal attentional results
are same as that of query modality, we denote the
multiple attentional sequences as ci ∈ Rta×d(i ∈
[n]), where d is the feature dimension and n is
the number of modalities. Those attentional vec-
tors with the same query (at the same sequential
step t ∈ [ta]) are considered as a positive group
and the remaining groups (at least one of the at-
tentional vectors is with different query) are neg-
ative. From the local perspective, we sample the
negative groups for a positive group by randomly
changing the sequential step of one specific context
vector and keeping the other stay the same. Totally,
the number of negative groups is n(ta − 1) for a
positive group. From the global perspective, we
divide all the groups into two sets (i.e., aligned
and unaligned), making the total score of aligned
groups relatively large. For the implementation
of contrastive constraints, we extend the vectorial
inner product operation for more input and com-
pute the aligned score for each multimodal group.
Considering that the computational complexity of
relevance scores scales exponentially to the num-
ber of modalities, we adopt stochastic expectation
approximation for the real process. We conduct
extensive experiments on three tasks, the experi-
mental results show that MCC could achieve com-
petitive results compared with the state-of-the-art
methods. To sum up, the contributions of our work
are four-folded:

• We propose a constrained strategy called Mul-
timodal Contextual Contrast (MCC) for mul-
timodal sequential learning, which conducts
contrastive constraints for the multiple calcu-
lated attentional results. To the best of our
knowledge, it is the first time to conduct con-

trastive scheme for the calculated attentional
results.

• We develop the contrastive mechanism from
both fine-grained local and coarse-grained
global perspectives, making the attentional
capture more accurate indirectly.

• Considering that the computational complex-
ity of relevance scores scales exponentially to
the number of modalities, we adopt stochastic
expectation approximation (SEA) for the real
process.

• We conduct extensive experiments on three
tasks, multimodal sentiment analysis (with
video, audio, text modalities), speaker traits
recognition (with video, audio, text modali-
ties), and video retrieval (with motion, scene,
OCR, audio, speech, face, appearance modal-
ities). The experimental results show that
MCC could achieve competitive results com-
pared with state-of-the-art methods.

2 Related Work

Multimodal Interaction. Existing multimodal
interaction methods could be categorized into
Transformer-based and Non-Transformer-based
methods. As for the former, Zadeh et al. (2016b)
proposes to train the model on simply concate-
nated multimodal features for prediction. Poria
et al. (2017) correlates multiple modalities with
a context-dependent fusion method. Zadeh et al.
(2018b) explicitly accounts for both interactions
in a neural architecture and continuously models
them through time. As for the latter, Tsai et al.
(2019) proposes multimodal transformer to boost
the interactions between multiple modalities. LMF-
MulT (Sahay et al., 2020) combines the LMF and
MulT to process multimodal sequential informa-
tion, First LMF-MulT aligns different modalities
at sequential-step level, fusing different modalities.
The results are input to the Transformer module.
Li et al. (2022) proposes the modal-order-aware
network to integrate the three modalities in a cer-
tain order to distinguish the importance of different
modalities. Yang et al. (2023) conducts contrastive
feature decomposition from the sample level.

Contrastive Learning. According to the modal-
ity of data, existing methods can be divided
into two categories, i.e., single-modality based
and multi-modality based contrastive learning.
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Considering the single-modality based methods,
Wu et al. (2018) uses a memory bank which
stores previously-computed representations and
noise-contrastive estimation (NCE) (Gutmann and
Hyvärinen, 2010) to tackle the computational chal-
lenges imposed by the large number of instance
classes. MoCo (He et al., 2020) further improves
such a scheme by storing representations from a
momentum encoder in dynamic dictionary with a
queue. As for the multi-modality based methods
(Hager et al., 2023; Mustafa et al., 2022; Yang et al.,
2023), the common strategy is to explore the nat-
ural correspondences among different modalities
and use contrastive learning to learn representa-
tions by pushing modalities describing the same
scene closer, while pushing modalities of different
scenes apart. However, different from the existing
multimodal contrastive strategies, we consider the
problem from the view of attentional results and
their time steps, instead of input features.

3 Contrastive Contextual Alignment

In this section, we would introduce MCC with the
following scheme. First, we give simple illustration
of the definition and background of some symbols.
Second, we would introduce the local contrastive
alignments and global contrastive alignments in
detail (as shown in Fig. 2). Third, considering the
complexity, we adopt the theoretical approximation
for computation reduction. To be more intuitive, we
further provide the complexity analysis of vanilla
MCC and Improved MCC.

3.1 Multimodal Contextual Sequences

Suppose that there exists n modalities with sequen-
tial representation vi ∈ Rti×d, i ∈ [n], where ti
denotes the sequence length of i-th modality, d
denotes the feature dimension of all the modali-
ties. For convenience, we choose one modality
va ∈ Rta×d as “anchor (query)”. As we know,
there are two forms of interactions among differ-
ent modalities: modality-specific interactions and
cross-modal interactions. Considering the former
interactions, we treat the va as “key (value)”. Con-
sidering the latter interactions, we treat vi(i 6= a)
as “keys (values)”. In this paper, we employ the
mainstream Transformer structure for multimodal
sequential learning. Specifically, the modality-
specific and cross-modal interactions of va can be

expresses as follows:

ca = Self_ATT(va)

ci = Cross_ATT(va, vi)
(1)

where ca ∈ Rta×d denotes the modality-specific
attentional results and ci ∈ Rta×d denotes the
cross-modal attentional results. The only difference
between functions “Self_ATT” and “Cross_ATT”
is the key (value). To be more intuitive, we can
further rewrite these two functions as follows:

Self_ATT(va) =ATT(va, va, va)

Cross_ATT(va, vi) = ATT(va, vi, vi)
(2)

where “ATT” denotes the multi-head attention
mechanism (Vaswani et al., 2017) which is widely
used in computer vision/natural language process-
ing/multimodal analysis community. In the fol-
lowing sections, we merge the contexts ca and
ci(i 6= a) and employ ci ∈ Rta×d(i ∈ [n]) for
illustration. In practice, we implement multiple pro-
jection layers following the attentional sequences.
For convenience, we still utilize d to denote the
common feature dimension.

3.2 Local Contrastive Alignments
The basic of multi-head attention mechanism is the
inner-product operation for query-key similarity,
while most of the existing methods do not consider
the relevance of different contextual sequences of
the same query. For example, the context (atten-
tional) vectors corresponding to the t-th time step
(vta ∈ Rd) of query modality are cti ∈ Rd where
i ∈ [n]. According to the calculation rules of
inner-product operation, each cti would be related
to vta. However, the alignments between the con-
text vectors (cti, i ∈ [n]) are not strictly evaluated,
which may influence the attentional capture. In-
spired by the widely-studied contrastive learning
techniques, we divide the groups of context vec-
tors into positive sets and negative sets. Note each
context group contains n vectors correspond to n
random sequential steps of n modalities, thus, the
number of total groups is (ta)n. We facilitate the
contrasts from two perspectives: local alignments
and global alignments, which are complementary
to each other. In this section, we introduce the lo-
cal contrastive alignments in detail. Following the
illustration above, the context vectors of the same
query (at the same step) are relevant and treated
as positive (totally ta groups). The main challenge
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Figure 2: The overall framework of MCC, where different colors denote different modalities, k and q denote
key and query, the specific numbers denote the attentional results of the specific query vectors at corresponding
sequential steps. We divide the contextual groups into positive (top) and negative (bottom) sets for contrastive
learning. Further details are shown in Fig. 3, we show the difference of local and global contrastive constraints.

is to sample some negative groups. We start by
introducing the alignments for two contextual se-
quences and then employ the conclusion for the
generalization of more contextual sequences.

3.2.1 The Alignments for Two Contextual
Sequences

Suppose that there are two contextual sequences
c1 and c2 ∈ Rta×d. The primary objective of the
training is to maximize the alignment degree be-
tween the positive pairs (i.e., ct1 and ct2). Thus,
we first define the alignment function by using the
normalized inner product as:

A(ct1, c
t
2) =

〈ct1, ct2〉
||ct1||||ct2||

(3)

where 〈, 〉 denotes the inner product operation. The
range of function A() is [−1, 1]. We hope that
the scores of positive pairs are close to 1. How-
ever, merely optimizing the alignment of positive
pairs ignores the important positive-negative rela-
tion knowledge (Mikolov et al., 2013b). To make
the training process more informative, we reform
the overall objective in the contrastive learning
manner (Arora et al., 2019; Van den Oord et al.,
2018) with Noise Contrastive Estimation (NCE)
loss (Mnih and Teh, 2012; Mikolov et al., 2013b).
Specifically, we consider the fact that one context
vector is more related to the context vector with
the same query (at the same sequential step among
all the steps). Then, we can formulate the overall
NCE objective as follows:

Ll = −
ta∑

t=1

log
[ exp

(
A(ct1, c

t
2)
)

exp
(

A(ct1, c
t
2)
)
+ µ

]

µ =

ta∑

t′=1,t′ 6=t

(
exp

(
A(ct1, c

t′
2 )
)
+ exp

(
A(ct

′
1 , c

t
2)
))

(4)

where A(ct1, c
t
2) denotes the positive pair of

the query at t-th sequential step, A(ct1, c
t′
2 ) and

A(ct
′
1 , c

t
2) denote the negative pairs according to

the natural facts stated above. Such objective in Eq.
4 explicitly encourages the alignment of positive
pair while separates the negative pairs.

3.2.2 Generalization for More Contextual
Sequences

With the conclusion for two contextual sequences,
we discuss the condition of more contextual se-
quences. One simple idea is to treat the contextual
sequences as multiple two-sequence pairs and uti-
lize the existing conclusion of Eq. 4. However, this
way neglects the correlation among all the modali-
ties. Thus, we consider the contrastive constraints
from a more general perspective by jointly process-
ing all the contextual sequences. Based on one
specific positive group {cti ∈ Rd|i ∈ [n]} of the
same query at t-th sequential step, we try to change
some sequential steps of the attentional vectors and
analyze the relative correlation of all the records.
After the multiple replacements, we obtain two
conclusions.

We first define the relevance scores for the n-
vector sets based on those of two-vector pairs. The
detailed process is shown as follows:

A({cti|i ∈ [n]}) =
n∑

i=1

n∑

j=1,j<i

A(cti, c
t
j) (5)

Proposition 1: Suppose that we have the group
of contexts for the t-th sequential step cti ∈ Rd

where i ∈ [n]. When we randomly change the se-
quential step of one specific context, the obtained
new group has less relevance than the original posi-
tive group. Further, if we treat the score of positive
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n-vector group consisting of the scores of multi-
ple (n(n−1)2 ) positive two-vector pairs like Eq. 5,
the scores of negative n-vector groups (only chang-
ing one specific context) also contain the scores
of all the negative two-vector pairs. The detailed
analysis is in the appendix (Sec. B).

Proposition 2: Only changing the sequential
step for the query vector of one modality can be
considered as hard negative mining. Following
the nature of contrastive learning (Robinson et al.,
2020), to enhance the alignment of the positive set,
we can improve the difficulty of the negative set.
Based on a specific positive set, if we change the
step of one modality, the number of irrelevant two-
vector pairs increases by O(n). When we change
the steps of s modalities, the complexity is O(sn).

Based on the above observations, we create the
negative groups for the specific positive groups.
Concretely, we sample the negative groups with
only one different sequential step. Totally, the num-
ber of the negative groups is n(ta−1) for a specific
postive group. The local contrastive constraints can
be expressed as follows:

Ll = −
ta∑

t=1

log
[ exp

(
A({cti|i ∈ [n]})

)

exp
(

A({cti|i ∈ [n]})
)
+ µ

]

µ =
∑

∗
exp

(
A({ct

′
i
i |i ∈ [n]})

) (6)

where ∗ denotes the sampling condition of neg-
ative groups (i.e., only one of {t′i|i ∈ [n]} is not
equal to t, the others are equal to t). Although the
local contrastive constraints can align the multi-
modal contexts at a fine granularity, most of the
negative sets are discarded. Relying on this loss
function alone, we may obtain a locally optimal
solution. To solve this concern, we propose a com-
plementary contrastive constraint, which align the
context vectors from a coarse global perspective.

3.3 Global Contrastive Alignments

To make full use of the negative context (attentional
results) sets, we propose a complementary global
contrastive strategy. Specifically, we divide all the
context groups into two sets, one includes all the
positive groups and the other includes all the nega-
tive groups. From a coarse-grained perspective, the
scores of positive groups should be close to n(n−1)

2

and the scores of negative sets are less than n(n−1)
2 .

The optimization goal is to make the more relevant

set dominate, which fits our intuition. The formula
expression is shown as follows:

Lg =− log
[ ∑ta

t=1 exp
(

A({cti|i ∈ [n]})
)

∑ta
t=1 exp

(
A({cti|i ∈ [n]})

)
+ µ

]

µ =
∑

∗
exp

(
A({ct

′
i
i |i ∈ [n]})

) (7)

where ∗ denotes the sampling condition of nega-
tive groups (i.e., not all of {t′i|i ∈ [n]} are equal),
Lg denotes the global contrastive loss, which can
control the relative distributions of positive rele-
vance and negative relevance, to some extent.

3.4 Stochastic Expectation Approximation

When the number of modalities increases, the
computational complexity would become unex-
pectedly large. Partial complexity comes from
combinational summation operation for relevance
score. Inspired by the kernel approximation skills
(Kar and Karnick, 2012), we develop an efficient
method called Stochastic Expectation Approxima-
tion (SEA) to calculate the relevance score. Follow-
ing the assumptions above, the exp-based relevance
score of a context group is expressed as:

exp
( n∑

i=1

n∑

j=1,j<i

A(cti, c
t
j)
)

= exp
( n∑

i=1

n∑

j=1,j<i

〈 cti
||cti||

,
ctj
||ctj ||

〉)
(8)

The main challenges of the approximation are two-
folded: First, we should reduce the square-level
complexity. Second, we should consider the re-
construction of non-linear function exp(). The
Stochastic Expectation Approximation is the ex-
tension of binary kernel reconstruction, which can
be expressed as follows:

exp
( n∑

i=1

n∑

j=1,j<i

〈vi, vj〉
)
=

Ew∼N (0,Id)

[
n∏

k=1

exp

(
w>vk −

‖vk‖2
2

)] (9)

where we utilize vi to denote cti
||cti||

for convenience.
E and N (0, Id) denote expectation operation of
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different random features w and the sampling dis-
tribution of w, respectively. The detailed deriva-
tions can be found in the appendix (Sec. C).
Note that we also provide an analysis of the trade-
off between the sampling number (computational
complexity) and performance in the appendix Eq.
18 and Sec. D.

3.5 Complexity Analysis

In this section, we detailedly analyze the alignment
complexity before and after the approximation. We
divide the analysis into two parts, global contrastive
alignments and local contrastive alignments. The
total complexity of the global contrastive align-
ments is exponential O(n2(ta)

n), the square com-
plexity O(n2) arises from the combinational ad-
dition operations and the exponential complexity
O((ta)

n) arises from a large number of context
sets. We argue that the SEA approximation can re-
duce the square complexity to a linear level O(n).
Specifically, the relevance score of a set can be cal-
culated with continuous multiplication operation
according to the Eq. 9. As for the exponential part,
we calculate the sum of all the relevance scores like∑

i

∑
j

∑
k aibjck = (

∑
i ai)(

∑
j bj)(

∑
k ck)

(from exponentialO((ta)
n) to linearO(nta)). The

detailed analysis is shown in the appendix (Sec.
E). Therefore, the complexity with approximation
changes from O(n2(ta)

n) to O(n2ta).
The total complexity of the local contrastive

alignments is O(n3(ta)
2), where the square term

O(n2) also arises from the combinational addition
operation, the term O(n(ta)

2) arises from the num-
ber of negative sets in the local contrastive con-
straints. This term can be easily reduced to O(nta)
with vanilla summation for multiple sequential
steps. Thus, the complexity is also O(n2ta). With
the SEA approximation, the total computational
complexity changes from O(n3(ta)

2) to O(n2ta).

3.6 Training

We evaluate MCC on three tasks, including mul-
timodal sentiment analysis, speaker traits recog-
nition, and video retrieval. MCC is treated as an
auxiliary constraint for these tasks. Suppose that
Lt denotes the loss of the original task, the final
optimization goal can be expressed as follows:

L = Lt + λ1Ll + λ2Lg (10)

where Lt can be MAE loss (Liu et al., 2018) for
multimodal sentiment analysis and contrastive loss

(Gabeur et al., 2020) for video retrieval.

4 Experiments

4.1 Datasets

We evaluate the performance of MCC on three
challenging tasks, including multimodal sentiment
analysis, multimodal speaker traits recognition, and
multimodal video retrieval.

CMU-MOSI(Zadeh et al., 2016a): The goal
of multimodal sentiment analysis is to identify a
speaker’s sentiment based on the speaker’s dis-
play of verbal and nonverbal behaviors. There
are a total of 2199 data points (opinion utterances)
within CMU-MOSI datasets. The dataset has real-
valued sentiment intensity annotations in the range
[−3,+3]. It is considered a challenging dataset due
to speaker diversity (1 video per distinct speaker),
topic variations and low-resource setup.

POM(Pérez-Rosas et al., 2013): The dataset
contains 963 movie review videos, it is designed
for speaker traits recognition based on communica-
tive behavior of a speaker. There are 16 different
speaker traits in total. Each video is annotated for
various personality and speaker traits.

MSR-VTT(Xu et al., 2016): MSR-VTT is com-
posed of 10k videos. Each video is 10 to 30s long,
and is paired with 20 natural sentences describing it.
We report results on the train/test splits introduced
in (Gabeur et al., 2020) that uses 9000 videos for
training and 1000 for testing.

4.2 Experiments for Sentiment Analysis and
Speaker Traits Recognition

Data Preprocessing: We extract three modalities
for CMU-MOSI and POM, including textual (Pen-
nington et al., 2014), visual (iMotions, 2017), and
audio modalities (Degottex et al., 2014).

Experimental Details: Transformer-based mul-
timodal interaction methods have gone mainstream
in recent years. With the flexible multi-head atten-
tion mechanism, the self-modal interactions and
cross-modal interactions can be implemented eas-
ily. We implement MCC based on Transformer-
based backbone and make comparisons with exist-
ing methods. Our Transformer backbone named
SC-Transformer (The detailed structure is shown
in Appendix Fig. 6) is similar to MulT (Tsai et al.,
2019) (Appendix Fig. 5), MulT is a commonly-
used baseline that first introduces Transformer
structure into the multimodal sequential learning.
However, MulT separately processes the intra (self)

5252



Table 1: The experimental results on CMU-MOSI, where we use five metrics, including binary accuracy (BA), F1
score, Pearson Correlation Coefficient (Corr), Multi-class accuracy (MA), and Mean-absolute Error (MAE). For
BA, F1, Corr, and MA, higher value is better, as for MAE, lower is better.

Model \ Metric BA F1 MAE Corr MA
LMF (Liu et al., 2018) 76.4 75.7 0.912 0.668 32.8
MTGAT (Yang et al., 2021) 81.9 81.7 0.881 0.709 39.1
MulT (Tsai et al., 2019) 83.0 82.8 0.870 0.698 40.0
LMF-MulT (Sahay et al., 2020) 82.8 82.7 0.868 0.705 40.0
HGraph (Lin et al., 2022) 81.7 81.8 0.885 0.702 38.7
AMOA (Li et al., 2022) 82.3 82.1 0.881 0.685 38.4
ConFEDE (Yang et al., 2023) 81.5 81.7 0.883 0.694 39.1
SC-Trans. 83.0 82.8 0.874 0.698 39.5
MCC 83.6 83.5 0.863 0.717 40.7

Table 2: MCC achieves superior performances over baseline models in POM dataset. MA(5,7) denotes multi-class
accuracy for (5,7) classes. All the results of 16 traits are shown in the appendix (Sec. F).

Model \ Trait
Con Pas Voi Dom Cre Viv Exp Ent
MA7 MA7 MA7 MA7 MA7 MA7 MA7 MA7

LMF (Tsai et al., 2019) 35.9 35.9 34.8 39.6 34.5 35.9 37.8 36.5
MTGAT (Yang et al., 2021) 35.9 35.5 36.5 39.6 34.5 36.9 40.5 37.9
MulT (Tsai et al., 2019) 34.5 34.5 36.5 38.9 37.4 36.9 37.9 39.4
LMF-MulT (Sahay et al., 2020) 34.5 35.5 36.5 39.6 37.4 36.9 37.8 39.4
HGraph (Lin et al., 2022) 35.9 34.5 36.5 38.9 34.5 36.9 37.9 38.9
AMOA (Li et al., 2022) 35.9 34.5 37.4 38.9 37.0 35.9 37.9 38.9
ConFEDE (Yang et al., 2023) 34.5 35.5 37.4 41.9 34.5 36.9 36.0 37.9
SC-Trans. 34.5 34.5 34.8 39.6 37.0 38.7 37.9 38.9
MCC 39.4 36.9 37.4 44.3 37.9 41.4 40.9 40.4

and inter (cross) interactions in tandem, which does
not fit in with the precondition of MCC (i.e., in par-
allel). Thus, we simply add a self-attention module
in the cross-modal interaction block, making the
self and cross attention parallel. The hyperparame-
ters include Adam learning rate 0.001, the structure
of projection network (where the hidden size is 40,
the size of common space is 16, the number of ran-
dom features is 64). λ1 and λ2 are set to 0.1 and
0.01. The temperature for contrastive learning is
set to 0.2. We conduct the experiments on RTX
3080Ti GPUs.

Compared Baselines: We mainly compare
MCC with the baseline methods that utilize the
same features (i.e. Glove, FACET, COVAREP) for
fairness. We reproduce the experimental results
that do not be conducted on CMU-MOSI and POM
by ourselves.

Experimental Results: The results are shown
in Table 1. We can find that MCC consistently
gains the best performance across all the baseline
methods. We provide a detailed analysis for such
observations. MTGAT, which develops graph con-
volutional networks to capture the multimodal in-
teractions, performs worse than MCC as it pays
more attention to the complexity reduction. As
for the tensor based multimodal fusion methods,
LMF neglects the fine-grained temporal interaction
which includes rich structured information for mul-
timodal modeling. Further, MCC outperforms SC-
Transformer, LMF-MulT, HGraph, AMOA, Con-
FEDE with a better overall performance. In general,
the best performances of MCC are attribute to the
local fine-grained contrastive constraints and the
complementary global coarse-grained contrastive
constraints which make the attention capture more
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Table 3: Ablation study on CMU-MOSI dataset.

Model \ Metric BA F1 MAE Corr MA
SC-Trans. 83.0 82.8 0.874 0.698 39.5
w/o. Global 82.6 82.8 0.867 0.705 40.1
w/o. Local 83.0 82.8 0.870 0.704 39.8
w/o. SEA 83.4 83.3 0.865 0.718 40.5
MCC 83.6 83.5 0.863 0.717 40.7

Table 4: Ablation study on POM dataset.

Metric \ Module SC-Trans. w/o. Global w/o. Local w/o. SEA Ours
MA (average) 42.0 43.5 42.7 44.2 44.3

Table 5: Complexity of different variants on CMU-MOSI, we only consider the FLOPs of specific modules.

Metric \ Module Local Local (SEA) Global Global (SEA)
FLOPs 2.3× 105 3.8× 104 1.5× 106 1.0× 104

accurate1. Table 2 shows the experimental results
of different methods on speaker traits recognition
dataset, POM, where we report the multi-class ac-
curacy of all the traits. A similar observation is
found from the table, MCC achieves competitive
performances compared with all the baseline meth-
ods on most of the traits. Particularly, the perfor-
mance of MCC increases the average multi-class
accuracy from 42.0 to 44.3 compared to the best
counterparts. Further, the improvement on POM
is larger than CMU-MOSI. At first, we think the
reason is the size of dataset. However, when we try
the larger datasets like CMU-MOSEI (The results
are shown in section I of appendix), the improve-
ment is similar to CMU-MOSI. Thus, we think
the improvement of POM is caused by the multi-
task training mechanism, since we train 16 traits
together, which is different from CMU-MOSI.

Ablation Study: We set some control experi-
ments on CMU-MOSI and POM to verify the ef-
fectiveness of MCC and the results are shown in
Tables 3, 4, and 5, where “w/o. Global” denotes
the model without global contrastive constraints,
“w/o. Local” denotes the model without local con-
trastive constraints, “w/o. SEA” denotes the model
without SEA approximation. We could observe
that “w/o. SEA” performs similarly to MCC, since
the approximation mechanism mainly focus on the
reduction of computational complexity. Besides,
MCC and “w/o. SEA” perform much better than
“w/o. Global” and “w/o. Local”, since the proposed
global and local contrastive constraints are com-

1Due to the space limit, we put the attention visualization
results in the appendix (Sec. G).

plementary to each other, only one of them can
not lead to large improvement. We evaluate the
stability of SEA approximation and the results are
shown in the appendix (Sec. D). We could find that,
when the number of random features is big enough,
MCC achieves competitive performances of MA
close to “w/o. SEA”. We also provide some visual-
ization results to show the effectiveness of modality
alignments in the appendix (Sec. G). We mainly
compare the results of SC-Transformer and MCC.
Each word in the sentence can more accurately at-
tend to the visual and audio modalities when using
contrastive alignment constraints1.

4.3 Experiments for Multimodal Retrieval

For evaluating the scalability of MCC, we conduct
experiments on MSR-VTT with 7 modalities and
larger size. Please refer to appendix (Sec. H).

5 Conclusion

In this paper, we propose a generalizable con-
strained scheme for multimodal sequential learning,
which could align attentional sequences from both
local and global perspectives. Concretely, the mul-
timodal contexts at the same sequential step are
considered as a positive set and the remaining sets
are negative. We adopt additional random feature
mechanism to approximate the real process, reduc-
ing the complexity. We conduct extensive experi-
ments on several traditional tasks, the experimental
results reveal the effectiveness of our contributions.
In the future, we would focus on how to sample
negative groups more effectively and simulate the
constrained process without approximation error.
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Limitations and Future Work

We conclude the limitations of MCC as follows:
(1) Although we adopt SEA to approximate the
contrastive learning process to reduce the complex-
ity, the approximation error always exists. In the
future, we would try to devise a more effective un-
biased estimation. The goal of unbiased estimation
is to make the approximation value close to the
real value, avoiding the influence to performance.
We think that it need more complicated theoreti-
cal derivations to achieve the goal. For examples,
borrowing the ideas of effective linear Transformer
may be a good direction (Kitaev et al., 2020; Wang
et al., 2020). (2) MCC can only be used for sequen-
tial input, thus, if the features are not sequential,
MCC cannot generalize to. (3) the complexity is
related to the sequence length of input, thus, MCC
is not compatible with extremely long-sequence
input.

In the future, we would focus on how to sample
negative groups more effectively and simulate the
constrained process without approximation error.
(1), Specifically, during the local constraints, we
only sample the negative groups where only one
time step changes, thus, many negative groups with
more changes are wasted. We decide to study more
theoretical derivations to make full use of the neg-
ative groups. (2), As for the approximation error,
it is equivalent to unbiased estimation, The goal of
unbiased estimation is to make the approximation
value close to the real value, avoiding the influence
to performance. We think that it need more com-
plicated theoretical derivations to achieve the goal.
For examples, borrowing the ideas of effective lin-
ear Transformer may be a good direction (Kitaev
et al., 2020; Wang et al., 2020).

Broader Impact

MCC has some real-world applications. First,
MCC is plug-and-play and can enhance the align-
ment of different modalities when conducting mul-
timodal interaction. In fact, many scenarios need
the multimodal interaction, like the E-commerce
live interaction and short video interaction. Second,
MCC can check whether the different modalities

are aligned (For example, MCC can be used for
detecting fake titles of the videos when the titles
not correspond to the videos).
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A The Detailed Structure of
SC-Transformer

To implement MCC, we employ the variant SC-
Transformer of MulT. The main difference between
these two structure is the usage of self-attention in
the cross-modal interaction stage. The compari-
son is shown in Figs. 5 and 6. In detail, “A→B”
denotes multi-head attention mechanism (Vaswani
et al., 2017) where B is the query and A denotes
key and value.

B The Proof of Proposition 1

Proposition 1: Suppose that we have the group of
contexts for the t-th sequential step cti ∈ Rd where
i ∈ [n]. When we randomly change the sequential
step of one specific context, the obtained new group
has less relevance than the original positive group.
Further, if we treat the score of positive n-vector
group consists of the scores of multiple (n(n−1)2 )
positive two-vector pairs, the scores of negative
n-vector groups (only changing one specific con-
text) also contain the scores of all the negative two-
vector pairs.

Proof 1: The fact in the first three lines is ob-
vious. Thus, we mainly prove the proposition in
the last three lines. We list the negative two-vector
pairs obtained by the two methods, simultaneously.
Concretely, we select one sequential step t. First,
we separately calculate the scores of negative two-
vector pairs of n(n−1)

2 positive two-vector pairs.
We could obtain the following equation:

G =

n∑

i=1

n∑

j=1,j<i

ta∑

t′=1,t′ 6=t

(A(cti, c
t′
j ) +A(ct

′
i , c

t
j))

(11)

where {i, j} denotes one modality pair and there
are 2(ta − 1) negative two-vector pairs for each
{i, j} modality pair. Second, we list the neg-
ative two-vector pairs in the negative n-vector
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Figure 3: The visual illustration of local and global contrative constraints. The top part denotes local mechanism,
where we only change the sequential step of one modality to create negative objects. The bottom part denotes
global mechanism, where we divide all the groups into two sets, positive and negative.

groups and we only change the sequential step
of one specific context. Suppose we change the
sequential step of k-th modality, the relevance
scores of new groups are A({ct

′
i
i |i ∈ [n]}) =

∑n
i

∑n
j=1,j<iA(c

t′i
i , c

t′j
j ) , where t′i = t for i ∈

[n], i 6= k and t′k 6= t. During the process, mul-
tiple negative two-vector pairs appear and can be
expressed as:

g′ =
n∑

i=1,i 6=k

ta∑

t′k=1, 6=t

A(cti, c
t′k
k ) (12)

We can obtain corresponding negative two-
vector pairs by changing the sequential steps of
other modalities. The total set can be expressed as:

G′ =
n∑

k=1

n∑

i=1,i 6=k

ta∑

t′k=1, 6=t

A(cti, c
t′k
k ) (13)

We can easily find that sets G and G′ are equal.
Each element in G can also be found in G′, vice
versa. Thus, the proposition is proved.

C The Derivations of Eq. 9 of Main
Paper

exp(

n∑

i=1

n∑

j=1,<i

〈vi, vj〉)

= exp(
‖v1 + ...+ vn‖2

2
) ·

n∏

i=1

exp(−‖vi‖
2

2
)

(14)

Next, let w ∈ Rd. We use the fact that:

(2π)−d/2
∫

exp
(
−‖w − c‖22/2

)
dw = 1 (15)

for any c ∈ Rd and derive:

exp(
‖v1 + ...vn‖2

2
) = (2π)−d/2 exp(

‖v1 + ...vn‖2
2

)·

·
∫

exp(
−‖w − (v1 + ...vn)‖2

2
)dw

= (2π)−d/2
∫

exp(−‖w‖
2

2
+w>(v1+...vn)

−‖v1+...vn‖
2

2
+
‖v1 + ...vn‖2

2
)dw

= (2π)−d/2
∫

exp(−‖w‖
2

2
+ w>(v1 + ...vn))dw

= (2π)−d/2
∫
exp(

−‖w‖2
2

)·
n∏

i=1

exp(w>vi)dw

= Ew∼N (0,Id)[

n∏

i=1

exp(w>v1)]

(16)
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That completes the proof. We then provide the
estimation error of the approximation. Suppose
that the number of random features is H ,

Figure 4: The evaluation of random features.

exp(

n∑

i=1

n∑

j=1,<i

〈vi, vj〉)

= exp

(
−‖v1‖

2 + ...+ ‖vn‖2
2

)
·

· Ew∼N (0,1d)

[
exp

(
w>z

)]

(17)

where z = v1 + v2 + ... + vn, based on the fact
Ew∼N (0,Id)

[
exp

(
w>z

)]
= exp

(
‖z‖2
2

)
, then we

can obtain:

MSE(expH(
n∑

i=1

n∑

j=1,<i

〈vi, vj〉))

=
1

H
exp (−β)Var

(
exp

(
w>z

))

=
1

H
exp(−β)(E[exp(2w>z)]−(E[exp(w>z)])2)

=
1

H
exp (−β)

(
exp

(
2‖z‖2

)
−exp

(
z4
))

=
1

H
exp (−β) exp

(
‖z‖2

) (
exp

(
‖z‖2

)
−1
)

=
1

H
γ exp(

n∑

i=1

n∑

j=1,<i

〈vi, vj〉)2
(
1− 1

γ

)

β = ‖v1‖2+‖v2‖2...+ ‖vn‖2

γ = exp
(
‖z‖2

)

(18)
where H denotes the number of random features.
It is obvious that improving H can help reduce the
approximation error.

To further reduce the variance of the estimator,
we entangle different random weights w1, . . . , wH

to be exactly orthogonal. This can be done while
maintaining unbiasedness whenever isotropic dis-
tributions N (0, Id) are used by standard Gram-
Schmidt renormalization procedure (Choroman-
ski et al., 2017). ORFs is a well-known method
and can be applied to reduce the variance of soft-
max/Gaussian kernel estimators for any dimension-
ality d rather than just asymptotically for large
enough d and leads to the first exponentially small
bounds on large deviations probabilities that are
strictly smaller than for non-orthogonal methods.
The ORF mechanism requires H ≤ d, if H > d,
ORFs still can be used locally within each d × d
block.

D Ablation Study of the Number of
Random Features

According to Eq. 18, the approximation error is
related to the sampling number, increasing the sam-
pling number can reduce the error.

The ablation results are shown in Fig. 4. The red
line denotes the method without SEA approxima-
tion, the complexity is O(105) as shown in Table 5,
while MCC with much lower complexity O(104)
(smaller sampling number) can achieve similar or
better results than the model without SEA, which
also means the approximation error is small.
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Figure 5: The structures of MulT (Tsai et al., 2019). “A→B” denotes multi-head attention mechanism (Vaswani
et al., 2017) where B is the query and A denotes key and value.

E Illustration of Complexity Analysis

We detailedly analyze the alignment complex-
ity before and after the approximation. The to-
tal complexity of the global contrastive align-
ments is O(n2(ta)

n), the square complexity O(n2)
arises from the combinational addition operations
and the exponential complexity O((ta)

n) arises
from the large number of context sets. We ar-
gue that the SEA approximation can reduce the
square complexity to a linear level O(n). Specif-
ically, the relevance score of a set can be cal-
culated with continuous multiplication operation
according to the Eq. 9 (main paper). As for
the exponential part, we calculate the sum of all
the relevance scores like

∑
i

∑
j

∑
k aibjck =

(
∑

i ai)(
∑

j bj)(
∑

k ck). Therefore, the complex-
ity with approximation becomes O(n2ta).

According to Eq. 9 (main paper), we can obtain
the following equation:

exp(A({cti|i ∈ [n]})) = Mean(
n∏

i=1

(cti)
′) (19)

where (cti)
′ denotes the transformation of cti with

Eq. 9 (main paper) and Mean() denotes the mean
operation for the elements in the vector. Therefore,
the sum of the scores of all the n-vector group is as

follows:

ta∑

t′1=1

ta∑

t′2=1

...

ta∑

t′n=1

exp(A({ct
′
i
i |i ∈ [n]}))

=

ta∑

t′1=1

ta∑

t′2=1

...

ta∑

t′n=1

Mean(
n∏

i=1

(c
t′i
i )
′)

= Mean(
ta∑

t′1=1

ta∑

t′2=1

...

ta∑

t′n=1

n∏

i=1

(c
t′i
i )
′)

= Mean(
n∏

i=1

(

ta∑

t′i

(c
t′i
i )
′))

(20)

Therefore, we change the complexity from
O(n2(ta)

n) to O(n2ta).

F The Complete Results of POM

We shown the results of all the 16 traits in Table 6.

G Attention Visualization

We also provide the visualization results in Fig. 7
and Fig. 8, which show that MCC can help the
multimodal interaction occurs between the more
related segments of different modalities. We take
the word “fighting” as an example, MCC can ac-
curately locate the word in the corresponding po-
sitions of visual and audio modalities, while SC-
Transformer can not.

5260



Conv1D

Positional 
Embedding

Conv1D Conv1D

Language Vision Audio

L L

V L

A L

Concatenation

L L

Transformer Transformer

V V

L V

A V

V V

Transformer

A A

L A

A A

V A

Prediction

Figure 6: The structures of SC-Transformer. “A→B” denotes multi-head attention mechanism (Vaswani et al.,
2017) where B is the query and A denotes key and value.

H Experiments for Multimodal Video
Retrieval

Data Preprocessing: we follow (Gabeur et al.,
2020)and use multiple pre-trained models for ex-
tracting features. Concretely, we utilize follow-
ing 7 experts: Motion embeddings are extracted
from S3D (Xie et al., 2018) trained on the kinet-
ics dataset. Scene embeddings are extracted with
DenseNet-161 (Huang et al., 2017) trained on the
Place365 dataset (Zhou et al., 2017). OCR em-
beddings are encoded with a word2vec embed-
ding. Audio embeddings are obtained with a VG-
Gish model, trained on the YouTube-8m dataset.
Speech features are extracted using the Google
Cloud speech API, to extract word tokens from
the audio stream, which are then encoded via pre-
trained word2vec (Mikolov et al., 2013a) embed-
dings. Face features are extracted by ResNet-50
(He et al., 2016) trained on the VGGFace2 dataset.
Appearance features are extracted by SENet-154
(Hu et al., 2018) trained on ImageNet.

Experimental Details: We implement MCC
based on the Transformer based backbone and
make comparisons with existing methods. We uti-
lize MMT as backbone. We implement MCC by
normalizing the attention weights along the sequen-
tial steps of corresponding modalities in parallel.
The hyperparameters of MCC include Adam learn-
ing rate 5× 10−5, which we decay by a multiplica-
tive factor 0.95 every 1000 optimization steps, the

structure of projection network (where the hidden
size is 512, the size of common space is 64, the
number of random features is 512). λ1 and λ2 are
set to 0.1 and 0.01. The temperature for contrastive
learning is set to 0.2. We conduct all the experi-
ments on RTX 3080Ti GPUs (10GB).

Compared Baselines: For fairness, we mainly
compare MCC with the baseline methods CE, Dual
Enc, FIT, CLIPBERT, CERT, MMT that do not
utilize large-scale pre-training with HowTo100M
(Miech et al., 2019) dataset.

Experimental Results: We report the evalua-
tion results of MCC and the competing text-video
retrieval methods on MSR-VTT (Table 7). Our
MCC performs constantly better than other base-
lines (Dual Enc, FIT, CLIPBERT, CERT, Con-
FEDE, MMT). Specifically, the R@5 score of
MCC can reach 56.4% and 57.8% of text-to-video
and video-to-text tasks, making the relative im-
provement over the best competitor by 1.2% and
1.6%. As expected, MCC utilizing both global and
local contrastive constraints exhibits better perfor-
mance than that only using the indirect alignments
of attention mechanism.

I More Experiments on Other Datasets

I.1 CMU-MOSEI

The CMU-MOSEI dataset (Zadeh et al., 2018c)
is the next generation of CMU-MOSI. Compared
with CMU-MOSI, it has much larger training sam-
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Table 6: MCC achieves superior performances over baseline models in POM dataset (multimodal personality traits
recognition). MA(5,7) denotes multi-class accuracy for (5,7) classes.

Model \ Trait
Con Pas Voi Dom Cre Viv Exp Ent
MA7 MA7 MA7 MA7 MA7 MA7 MA7 MA7

LMF (Tsai et al., 2019) 35.9 35.9 34.8 39.6 34.5 35.9 37.8 36.5
MTGAT (Yang et al., 2021) 35.9 35.5 36.5 39.6 34.5 36.9 40.5 37.9
MulT (Tsai et al., 2019) 34.5 34.5 36.5 38.9 37.4 36.9 37.9 39.4
LMF-MulT (Sahay et al., 2020) 34.5 35.5 36.5 39.6 37.4 36.9 37.8 39.4
HGraph (Lin et al., 2022) 35.9 34.5 36.5 38.9 34.5 36.9 37.9 38.9
AMOA (Li et al., 2022) 35.9 34.5 37.4 38.9 37.0 35.9 37.9 38.9
ConFEDE (Yang et al., 2023) 34.5 35.5 37.4 41.9 34.5 36.9 36.0 37.9
SC-Trans. 34.5 34.5 34.8 39.6 37.0 38.7 37.9 38.9
MCC 39.4 36.9 37.4 44.3 37.9 41.4 40.9 40.4

Model \ Trait
Res Tru Rel Out Tho Ner Per Hum

MA5 MA5 MA5 MA5 MA5 MA5 MA7 MA5
LMF (Tsai et al., 2019) 35.5 54.2 53.2 44.8 42.7 43.5 34.9 45.8
MTGAT (Yang et al., 2021) 36.9 55.7 54.2 44.8 46.0 44.8 37.8 43.5
MulT (Tsai et al., 2019) 41.4 60.6 54.2 43.3 49.3 46.3 33.5 43.3
LMF-MulT (Sahay et al., 2020) 41.4 57.1 54.2 44.8 47.3 46.3 37.8 43.5
HGraph (Lin et al., 2022) 38.4 55.7 54.2 46.8 47.3 44.8 34.9 45.8
AMOA (Li et al., 2022) 39.6 60.6 53.2 46.8 46.5 46.3 37.8 45.8
ConFEDE (Yang et al., 2023) 38.4 57.1 53.2 46.8 47.3 47.8 34.0 47.3
SC-Trans. 39.6 59.5 55.2 47.4 46.5 47.0 34.9 44.8
MCC 41.9 61.6 51.2 50.7 45.8 48.3 46.3 49.8

ples and more variations in speakers and video
topics. Specifically, CMU-MOSEI contains 23453
manually annotated utterance-level video segments
from 1000 distinct speakers and 250 different top-
ics.

The experimental details of CMU-MOSEI are
similar to CMU-MOSI. We obtain the results in
Table 8. MCC still outperform all the compared
methods with a better overall performance.

I.2 LSMDC
LSMDC contains 118081 short video clips (about
45s) extracted from 202 movies. Each clip is an-
notated with a caption, extracted from either the
movie script or the audio description. The test set
is composed of 1000 videos, from movies not pre-
sented in the training set.

The experimental details of LSMDC are similar
to MSR-VTT. We obtain the results in Table 9.
MCC still outperform all the compared methods
with a better overall performance.
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Table 7: Retrieval performances on the MSR-VTT, where we employ R@K and MdR as metrics.

Model \Metric
Text −→ Video Video −→ Text

R@1↑ R@5↑ R@10↑ MdR↓ R@1↑ R@5↑ R@10↑ MdR↓
Dual Enc (Dong et al., 2021) 23.0 50.6 62.5 5 25.1 52.1 64.6 5
FIT (Bain et al., 2021) 15.2 - 54.4 9 - - - -
CLIPBERT (Lei et al., 2021) 22.0 46.8 59.9 6 - - - -
MMT (Gabeur et al., 2020) 24.6 54.0 67.1 4 24.4 56.0 67.8 4
CRET (Ji et al., 2022) 23.9 50.8 63.4 5 - - - -
ConFEDE (Yang et al., 2023) 24.5 55.2 67.5 4 24.5 56.2 67.5 4
MCC 25.4 56.4 69.1 3 25.5 57.8 68.3 3

Table 8: The experimental results on CMU-MOSEI, where we use five metrics, including binary accuracy (BA),
F1 score, Pearson Correlation Coefficient (Corr), Multi-class accuracy (MA), and Mean-absolute Error (MAE).
For BA, F1, Corr, and MA, higher value is better, as for MAE, lower is better.

Model \ Metric BA F1 MAE Corr MA
LMF (Liu et al., 2018) 80.5 80.3 0.632 0.668 48.2
MTGAT (Yang et al., 2021) 81.8 81.6 0.609 0.689 50.8
MulT (Tsai et al., 2019) 82.5 82.3 0.580 0.703 51.8
HGraph (Lin et al., 2022) 81.7 81.8 0.885 0.702 38.7
ConFEDE (Yang et al., 2023) 81.4 81.3 0.604 0.692 50.3
SC-Trans. 82.2 82.1 0.585 0.705 52.0
MCC 83.2 83.1 0.570 0.714 52.9

Table 9: Retrieval performances on the LSMDC, where we employ R@K and MdR as metrics.

Model \Metric
Text −→ Video Video −→ Text

R@1↑ R@5↑ R@10↑ MdR↓ R@1↑ R@5↑ R@10↑ MdR↓
MMT (Gabeur et al., 2020) 13.2 29.2 38.8 21 12.1 29.3 37.9 22.5
CRET (Ji et al., 2022) 10.0 24.9 33.4 34 - - - -
ConFEDE (Yang et al., 2023) 13.5 29.6 39.2 21 12.3 29.7 38.5 22
MCC 14.4 30.8 40.4 20 12.9 30.8 39.7 21
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f aɪ tɪŋ

əʊ ðə f   

a. SC-Transformer

b. MCC

Figure 7: A visualization example of multimodal interaction, where we provide the attention weights of cross-
modal interaction. For the specfic word “fighting”, MCC can localize a more accurate phonetic alphabet and
corresponding mouth shapes.
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a. SC-Transformer

b. MCC

Figure 8: Another example.
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