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Abstract

In response to the escalating demand for digital
human representations, progress has been made
in the generation of realistic human gestures
from given speeches. Despite the remarkable
achievements of recent research, the generation
process frequently includes unintended, mean-
ingless, or non-realistic gestures. To address
this challenge, we propose a gesture transla-
tion paradigm, GesTran, which leverages large
language models (LLMs) to deepen the under-
standing of the connection between speech and
gesture and sequentially generates human ges-
tures by interpreting gestures as a unique form
of body language. The primary stage of the pro-
posed framework employs a transformer-based
auto-encoder network to encode human ges-
tures into discrete symbols. Following this, the
subsequent stage utilizes a pre-trained LLM
to decipher the relationship between speech
and gesture, translating the speech into ges-
ture by interpreting the gesture as unique lan-
guage tokens within the LLM. Our method has
demonstrated state-of-the-art performance im-
provement through extensive and impartial ex-
periments conducted on public TED and TED-
Expressive datasets.

1 Introduction

The synthesis of human motions and gestures
that correspond with concurrent speech, a pro-
cess known as Co-Speech gesture generation,
is instrumental in conveying messages during
human communication and augmenting self-
expression (Kucherenko et al., 2021). Therefore,
generating realistic and controllable gesture mo-
tions that are both plausible and synchronous with
the corresponding speech input can significantly
bolster the acceptance of social robots by human
users (Cassell et al., 1999; Wagner et al., 2014).
This holds substantial promise for various appli-
cations, including but not limited to, education,
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training, and medical contexts. Additionally, the
potential for this pursuit extends to the develop-
ment of digital humans in emerging virtual envi-
ronments, non-player game characters, robotic as-
sistants (Salem et al., 2012, 2011), and embodied
artificial intelligence.

In practical scenarios, a single speech input
could correspond to a variety of gestures or mo-
tions. For example, a speech input corresponding
to a beat motion could be performed using the left
hand, right hand, or both hands; all these variations
are plausible and would be considered appropri-
ate by human users(Yan et al., 2022b; Xu et al.,
2023). However, prior methodologies (Ao et al.,
2022; Li et al., 2021a) often frame co-speech ges-
ture generation as a regression problem, resulting in
a model that is more likely to learn an average of all
plausible gestures rather than distinct ones, thereby
generating excessively smoothed and unrealistic av-
erage gestures. Consequently, these methods tend
to yield more restrained gesture motions, which
are less engaging from a human perception stand-
point. It remains unclear how existing methods
could capture such one-to-many variability. Fur-
thermore, such methods tend to exhibit instability
in practical applications and are susceptible to re-
gression towards nonstandard poses beyond the
gesture subspace, such as freezing or meaningless
swaying(Yan et al., 2024, 2022a).

A primary inherent issue contributing to the
aforementioned problems is that previous methods
fail to adequately model the semantic relation be-
tween speech and gesture, specifically, their diverse
temporal correspondence. To enable the generative
model to more comprehensively understand and
encapsulate this relationship, we propose treating
the gesture as a distinct form of body language that
can be seamlessly translated into and out of speech.
Recent research suggests that large language mod-
els (LLMs) (Touvron et al., 2023; Radford et al.,
2018, 2019) can process multimodal inputs, such as
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images and videos, through a lightweight adapter.
Consequently, we anticipate that LLMs, with a
suitable adapter, can also comprehend gesture se-
quences. The integration of gesture and speech
(audio and its corresponding text) data, encoded
within a unified vocabulary, makes the relationship
between motion and language more discernible.
This would enable the gesture generator, which is
fine-tuned from LLMs, to produce gestures with
diverse patterns and flexible sequences.

In this paper, we propose a new LLM-driven
co-speech gesture translation method, namely Ges-
Tran, which emulates the procedure of bilingual
translation in humans and has the capability to
comprehend and translate human gestures that are
concomitantly associated with speech and its cor-
responding text. In order to equip GesTran with
the capability to comprehend and generate gestures
akin to humans, an initial step involves training a
gesture-specific Vector Quantized Variational Au-
toencoder (VQ-VAE) (Van Den Oord et al., 2017)
model. The objective of this step is to compile a
"gesture lexicon" (Chiu et al., 2015), analogous to
a natural language vocabulary, which subsequently
allows for the conversion of unprocessed gesture
data into a series of gesture tokens. These tokens
are subsequently processed by a pre-trained lan-
guage model, which has been trained to understand
the inherent grammar and syntax of the gesture
language, as well as its correlation with the corre-
sponding audio and text of human speeches. To
efficiently amalgamate speech and gesture, we fine-
tune the pre-trained language model on a multi-
modal co-speech gesture dataset, which is instru-
mental in learning the correlation and conversion
between speech and gesture. In this way, we can
easily translate the speech to desirable body lan-
guage, i.e., human gesture, in the unified LLM. Ex-
tensive experimental results demonstrate that Ges-
Tran attains a performance that surpasses current
benchmarks in the task of co-speech generation.

We summarize our contributions as follows:

• We present a novel gesture translation frame-
work, GesTran, for co-speech gesture gen-
eration by incorporating a pre-trained LLM.
Regarding human gesture as a specific body
language, our method can better comprehend
the correlation between speech and gesture
and effectively translate them in the unified
pre-trained LLM.

• By leveraging the strong language genera-

tion and zero-shot transfer abilities of pre-
trained language models, our gesture genera-
tion model can synthesize diverse human ges-
tures and have better generalization ability.

• The proposed GesTran consistently outper-
forms state-of-the-art co-speech gesture gen-
eration methods across benchmark datasets
and metrics.

2 Related Work

Co-speech Gesture Generation. The synthe-
sis of co-speech gestures holds significant im-
portance across various applications. Conven-
tional approaches (Cassell et al., 1994; Huang and
Mutlu, 2012) typically employ rule-based pipelines,
wherein linguistic experts define speech-gesture
pairs and refine transitions between different mo-
tions. Additionally, motion-matching-based mod-
els (Yang et al., 2023; Büttner and Clavet, 2015),
if appropriately designed, exhibit greater effective-
ness compared to neural network-based counter-
parts. Moreover, researchers are delving into com-
prehending the influence of input modalities, inves-
tigating the relationships between co-speech ges-
tures and speech audio, text transcripts, speaking
styles, and speaker identity (Yoon et al., 2020).
Previous studies aim to augment model capacity
through a range of architectural choices, includ-
ing Convolutional Neural Networks (CNN) (Xu
et al., 2023; Ao et al., 2022), Recurrent Neural
Networks (RNN) (Yoon et al., 2019), Transformer
models (Pang et al., 2023), Generative Adversarial
Networks (GANs) (Yoon et al., 2020; Liu et al.,
2022), and Diffusion models (Zhu et al., 2023; Zhi
et al., 2023; Ao et al., 2023).

Large Language Model. Large-scale language
models (LLMs) (Touvron et al., 2023; Du et al.,
2021; Team et al., 2023; Minaee et al., 2024), facil-
itated by extensive datasets and large model sizes,
have showcased remarkable comprehension and
generation capabilities, significantly advancing the
field of natural language processing. BERT (Devlin
et al., 2018), for instance, pre-trains deep bidirec-
tional language representations capable of support-
ing downstream tasks. T5 (Raffel et al., 2020) intro-
duced a unified framework that transforms all text-
based language tasks into a text-to-text format. Re-
cent studies have demonstrated that fine-tuning pre-
trained models using input-output pairs comprising
instructions and corresponding responses can fur-
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Figure 1: The overall framework of our gesture translator.

ther enhance their performance. FLAN (Chung
et al., 2022) introduces an instruction-tuning tech-
nique that outperforms non-tuned models on un-
seen tasks. LLaMA (Touvron et al., 2023)is a
collection of open-source and efficient foundation
large language models ranging from 7B to 65B
parameters. Moreover, the emergence of multi-
modal models, which process text along with other
modalities such as images, audio, and videos, has
garnered considerable attention. Despite the suc-
cess of language models in various vision-language
tasks, the development of multi-modal language
models capable of interpreting human gestures re-
mains relatively limited.

3 Method

Inspired by MotionGPT (Zhang et al., 2024; Jiang
et al., 2023; Ribeiro-Gomes et al., 2024), we in-
troduce LLMs into the task of co-speech gesture
generation. Capitalizing on the exceptional abil-
ity of LLMs to comprehend and translate multilin-
gual data, we propose a co-speech gesture transla-
tor (GesTran) governed by multimodal conditions,
namely speeches (audio and corresponding text)
and human gestures captured in video frames. We
intend to frame human gestures as a particular form
of body language, thereby enabling the Large Lan-
guage Model to translate desired human gestures in
accordance with corresponding prompts and con-
trol conditions. The overall framework of our Ges-
Tran is shown in Figure 1. Specifically, we first
quantize raw gesture data into discrete tokens using
VQ-VAE (Van Den Oord et al., 2017).

3.1 Gesture-wise Token Quantization
To effectively conceptualize gesture as a language,
thereby facilitating the integration and translation
of gesture and speech, we pre-train a human gesture
tokenizer. This is accomplished by utilizing the
Vector Quantized Variational Autoencoders (VQ-
VAE) architecture, which enables the attainment
of discrete representations of gesture data with dis-
crete tokens. Our gesture-wise tokenizer consists
of a gesture encoder E and gesture decoder D.

Specifically, given a gesture sequence X =
[x1,x2, · · · ,xT ], where T is the number of frames,
our gesture-wise tokenizer aims to recover the ges-
ture sequence with a learnable codebook C =
{ck}Nk=1 ⊂ Rd containing N codes, each of di-
mension d. With the gesture encoder E, the latent
feature V = [ν1,ν2, · · · ,νT ] can be computed as
V = E(X). We can train the gesture-wise to-
kenizer by the combination of the reconstruction
loss, the embedding loss, and the commitment loss
as follows:

Lr = ||D(E(xi))− xi||2︸ ︷︷ ︸
reconstruction loss

+ ||sg[E(xi)]− ν̂i||22︸ ︷︷ ︸
embedding loss

+ β ||E(xi)− sg[ν̂i]||22︸ ︷︷ ︸
committing loss

.

(1)
Here, for the i-th latent feature νi, the estimated
embedding ν̂i can be found by searching the near-
est embedding in the codebook C through the quan-
tization process Q(·):

ν̂i = Q(xi) := arg
ck∈C

min ∥νi − ck∥2. (2)

Based on the estimation latent representation V̂ =
[ν̂1, ν̂2, · · · , ν̂T ], the reconstructed human gesture
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can be produced by the decoder D(·), i.e., X̃ =
D(V̂ ).

3.2 Gesture-aware Translation

With the utilization of our learned gesture-
wise tokenizer, a gesture sequence denoted as
X = [x1,x2, · · · ,xT ] can be mapped into a se-
quence of gesture tokens, represented as V̂ =
[ν̂1, ν̂2, · · · , ν̂T ]. This interpretation facilitates
the joint representation and translation with audio
and text embeddings of speech in LLMs. Specif-
ically, we first represent the motion sequence
X = [x1,x2, · · · ,xT ] to a sequence of indices
I = {</sog>} ∪ {si}Ti=1 ∪ {</eog>} with si =
[1, 2, · · · , T ]. Note that the special </sog> and
</eog> tokens are added to indicate the start and
stop of the gesture. By projecting I back to their
corresponding codebook entries, we can recon-
struct the gesture through decoding ν̂i = csi with
the learned gesture decoder D(·).

In a bid to ingeniously frame the speech-to-
gesture autoregressive prediction as a comprehensi-
ble language translation paradigm, we establish
a bridge between gesture and speech. This al-
lows LLMs to comprehend human gesture con-
cepts by fine-tuning the pre-trained LLMs with the
widely utilized and efficient Low-Rank Adaptation
(LoRA) (Hu et al., 2021). Specifically, we unify
the audio and text of the speech and human ges-
tures within a single LLM. For the audio data of
the speech, we incorporate an adapter to extract the
sequence of audio embeddings, denoted as A. Si-
multaneously, the text embeddings, represented as
T , can be directly derived through the LLM. Treat-
ing the audio and text embeddings of the speech
as the source language, we aim to translate them
into a diverse and meaningful target body language,
namely human gesture, on a frame-by-frame basis.

Given the source language pair {A,T } and pre-
vious i− 1 predicted indices [s1, s2, · · · , si−1], the
LLM is enforced to translate the subsequent gesture
index si. The final translation output of LLM, de-
noted as Ṽ , constitutes a series of generated gesture
tokens, which can be decoded to human gesture us-
ing our learned gesture-wise tokenizer. Analogous
to the majority of language models, we employ
cross-entropy loss, which constrains the similarity
between estimated and ground-truth tokens, to fine-
tune LLMs using LoRA, which can be represented
as

Lt = CE(Ṽ, Ṽ∗), (3)

where Ṽ∗ is the gesture tokens of ground-truth ges-
tures calculated by Eq.(2) and Ṽ is the translated
gesture tokens by the LLM.

3.3 Zero-shot Generalized Extension Analysis

Present co-speech generation methodologies lack
the capacity to directly synthesize corresponding
gestures in response to speeches encapsulating un-
seen sentences. This poses a significant challenge
in practical applications as it is implausible to guar-
antee that the speech requiring translation has been
previously exposed to our model during its training
phase.

LLMs have also proven to be instrumental in
advancing zero-shot learning. LLMs are trained
on a vast corpus of text from the internet, learn-
ing a wealth of linguistic patterns, facts about the
world, and to some extent, reasoning abilities. This
extensive training enables LLMs to leverage their
learned knowledge when presented with new tasks,
making them highly versatile tools for zero-shot
learning. It’s not explicitly trained on the specific
task, but it uses its general understanding of lan-
guage and world knowledge to generate a meaning-
ful response. The development and application of
LLMs in zero-shot learning continue to be an active
area of research, with potential impacts across vari-
ous fields, including natural language processing,
computer vision, and more. Due to the superior
zero-shot generalization ability of the LLM, our
method can also deal with unseen speeches and
well translate them into diverse gestures.

4 Experiments

4.1 Co-Speech Gesture Datasets

TED Gesture: Serving as a significant dataset
for gesture generation research, the TED Gesture
dataset (Yoon et al., 2019, 2020) comprises 1,766
TED videos featuring different narrators discussing
various topics. The data processing methodology
from previous works is adopted (Yoon et al., 2020;
Liu et al., 2022), where poses are resampled at 15
FPS, and frame segments of length 34 are obtained
with a stride of 10.

TED Expressive: In contrast to TED Gesture,
which includes poses with only 10 upper body
key points without detailed finger movements, the
TED Expressive dataset (Liu et al., 2022) goes
further by capturing expressive finger and body
movements. The state-of-the-art 3D pose estimator,
ExPose (Choutas et al., 2020), is employed to fully
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TED Gesture TED Expressive

Methods FGD ↓ BC ↑ Diversity ↑ FGD ↓ BC ↑ Diversity ↑
Ground Truth 0 0.698 108.525 0 0.703 178.827
Gesture VQ-VAE 0.205 0.698 108.501 0.190 0.728 184.595

Attention Seq2Seq (Yoon et al., 2019) 18.154 0.196 82.776 54.920 0.152 122.693
Speech2Gesture (Ginosar et al., 2019) 19.254 0.668 93.802 54.650 0.679 142.489
Joint Embedding (Ahuja and Morency, 2019) 22.083 0.200 90.138 64.555 0.130 120.627
Trimodal (Yoon et al., 2020) 3.729 0.667 101.247 12.613 0.563 154.088
HA2G (Liu et al., 2022) 3.072 0.672 104.322 5.306 0.641 173.899
DiffGesture (Zhu et al., 2023) 1.506 0.699 106.722 2.600 0.718 182.757

GesTran (Ours) 1.087 0.697 108.190 1.836 0.720 182.295

Table 1: The Quantitative Results on TED Gesture and TED Expressive . We compare the proposed GesTran
against recent methods and ground truth. For FGD, the lower, the better; for other metrics, the higher, the better.

# Train # Test # New

TED Gesture 22662 7992 1240
TED Gesture Ext 14459 18209 9443
TED Express 24016 7586 901
TED Express Ext 16826 16780 8091

Table 2: The statistics of speech word distribution.

capture pose information in the data. Consequently,
TED Expressive annotates the 3D coordinates of
43 keypoints, including 13 upper body joints and
30 finger joints.

TED Gesture Ext & TED Expressive Ext:
In order to better verify the zero-shot generaliza-
tion ability of the model, we re-separate the train-
ing/testing split for the TED Gesture dataset and
TED Expressive in a different way. We first count
the frequency of different words and filter out parts
of low-frequency words to form a testing split. Af-
ter this operation, many words in the testing split
have never appeared in the training split. This zero-
shot way of segmenting the dataset can better de-
scribe the situations that occur in reality, and can
also better verify the generalization of our model.
Detailed dataset details are provided in Table 2.

4.2 Experimental Settings

Comparison Methods: Our method is compared
against recent state-of-the-art techniques on two
benchmark datasets. 1) Attention Seq2Seq (Yoon
et al., 2019) elaborates on the attention mechanism
for generating pose sequences from speech text.
2) Speech2Gesture (Ginosar et al., 2019) utilizes
spectrums of speech audio segments as input, gen-
erating speech gestures adversarially. 3) Joint Em-
bedding (Ahuja and Morency, 2019) maps text
and motion to a shared embedding space, generat-

ing outputs from motion description text. 4) Tri-
modal (Yoon et al., 2020) serves as a robust base-
line learning from text, audio, and speaker identity
to generate gestures, outperforming prior methods
significantly. 5) HA2G (Liu et al., 2022) introduces
a hierarchical audio learner capturing information
across different semantic granularities. 6) DiffGes-
ture (Zhu et al., 2023) introduces a novel diffusion
audio-gesture transformer with a diffusion gesture
stabilizer to eliminate temporal inconsistency.

Implementation Details. For a fair compari-
son, we maintained consistency in our experimen-
tal setup with that of previous methods. For all
the methods in both datasets, we set N = 34 and
M = 4 to get N -frame pose sequences where the
first M frames are used for reference, termed as
initial poses. Following (Yoon et al., 2020), to
eliminate the effect of the joint lengths and root
motion, we represent the joints’ positions using di-
rectional vectors normalized to the unit vectors and
train the model to learn the directional vectors. We
use standard transformer blocks for gesture Ges-
ture VQ-VAE. The size of the codebook is set to
length, groups, and dims. It is set to 1024, 2, and
512 for both datasets. We use an Adam optimizer,
and the learning rate is 0.0001. All experiments are
produced on two NVIDIA A6000 GPUs.

4.3 Evaluation Metrics

In accordance with previously established method-
ologies, we employ three distinct metrics: Fréchet
Gesture Distance (FGD), Beat Consistency Score
(BC), and Diversity.

Fréchet Gesture Distance (FGD). FGD is em-
ployed to quantify the divergence between the dis-
tribution of synthesized gesture and the actual data
distribution. As delineated by (Yoon et al., 2020),
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TED Gesture Ext TED Expressive Ext

Methods FGD ↓ BC ↑ Diversity ↑ FGD ↓ BC ↑ Diversity ↑
Ground Truth 0 0.695 107.214 0 0.711 184.641
Gesture VQ-VAE 0.186 0.695 107.188 0.174 0.727 188.548

Attention Seq2Seq (Yoon et al., 2019) 19.989 0.196 80.542 75.341 0.145 120.142
Speech2Gesture (Ginosar et al., 2019) 21.603 0.654 87.067 74.227 0.615 145.623
Joint Embedding (Ahuja and Morency, 2019) 26.771 0.213 81.561 79.523 0.149 118.324
Trimodal (Yoon et al., 2020) 8.374 0.653 101.667 18.744 0.510 148.624
HA2G (Liu et al., 2022) 5.595 0.660 103.303 6.85 0.621 169.352
DiffGesture (Zhu et al., 2023) 2.902 0.681 106.738 4.491 0.697 171.639

GesTran (Ours) 1.874 0.692 107.207 2.854 0.714 183.188

Table 3: The Quantitative Results on TED Gesture Ext and TED Expressive Ext. We compare the proposed GesTran
against recent methods and ground truth.

Methods GT Seq2Seq. Speech2Gesture Joint. Trimodal HA2G DiffGesture GesTran(Ours)

Naturalness 4.35 1.32 1.56 2.73 3.22 3.51 3.72 4.23
Smoothness 4.11 3.37 2.61 3.14 3.27 3.59 3.71 3.98
Synchrony 4.23 2.17 1.82 3.19 3.28 3.54 3.87 4.11

Table 4: User Study Results. The ratings of motion naturalness, smoothness, and synchrony are 1-5, with 5 being
the best.

the FGD is conceptualized through the develop-
ment of an auto-encoder for the gesture sequence,
designed to abstract the attributes of authentic ges-
ture sequences, denoted as X , in addition to the
characteristics of the artificially generated gesture
sequences, referred to as X̂ .

FGD(X, X̂) = ∥µr − µg∥2

+Tr(Σr +Σg − 2(ΣrΣg)
1/2),

(4)

where µr and Σr are the first and the second mo-
ments of the latent feature distribution of the real
gestures X , and µg and Σg are the first and the
second moments of the latent feature distribution
of the generated gestures X̂ .

Beat Consistency Score (BC). Proposed in (Li
et al., 2021b, 2022), BC measures motion-audio
beat correlation.

BC =
1

n

n∑

i=1

exp(−
min∀tyj∈By ∥txi − tyj∥2

2σ2
), (5)

where txi is the i-th audio beats, By = {tyi } is the
set of the kinematic beats, and σ is a parameter to
normalize sequences, set to 0.1 empirically.

Diversity. This metric evaluates the variations
among generated gestures (Lee et al., 2019). In
detail, we randomly pick 500 generated samples
and compute the mean absolute error between the
features and the shuffled features.

4.4 Evaluation Results

Quantitative Results. We conducted a compre-
hensive comparison between our proposed method
and all baseline approaches, evaluating their perfor-
mance across three metrics on both TED Gesture
and TED Expressive datasets. The results, pre-
sented in Table 1, highlight that our GestureGPT
attains state-of-the-art performance across most
metrics on both datasets, particularly showcasing a
substantial superiority over existing methods in the
case of TED Expressive.

To substantiate the robustness and generaliza-
tion capability of our proposed technique, supple-
mentary evaluations were executed on two distinct
datasets, namely, TED Gesture Ext and TED Ex-
pressive Ext. Empirical findings reveal a notable
deterioration in the performance of alternate meth-
ods when confronted with a substantial influx of
samples in the test set that were absent during the
training phase, while our methodology consistently
maintains superior performance. This observation
underscores the efficacy of the LLMs enhance-
ment in fortifying the generalization aptitude of our
method, rendering it markedly superior to its coun-
terparts. Furthermore, it underscores our method’s
capacity to effectively retain and exploit the in-
herent knowledge encapsulated within the LLMs,
thereby facilitating the generation of accurate and
vivid gestures.

Qualitative Results. The qualitative results are
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TED Gesture Ext TED Expressive Ext

Parameter Pretrained FGD ↓ BC ↑ Diversity ↑ FGD ↓ BC ↑ Diversity ↑
LLaMA-7B ✔ 1.874 0.692 107.207 2.854 0.714 183.188
LLaMA-7B ✖ 19.254 0.668 93.802 54.650 0.679 142.489
LLaMA-13B ✔ 1.803 0.694 108.957 2.771 0.706 185.431
LLaMA-13B ✖ 27.425 0.612 108.345 84.452 0.609 120.652

Table 5: Evaluation of different pre-trained LLaMA on TED Gesture Ext and TED Expressive Ext datasets.

illustrated in Figure 2. We can see that the results of
GesTran are the most similar to GT. We also visual-
ized in Figure 3 under some words with clear refer-
ence to the gesture. In the top of Figure 3, when the
speaker says "five minutes", the gesture generated
by GesTran is really consistent with the semantics.
Gestran can understand the correct semantics and
generate the corresponding gesture, which shows
that GesTran indeed extracts the knowledge in the
LLM to generate vivid gestures.

User Study. To meticulously authenticate
the qualitative outcomes, a user study was con-
ducted, emphasizing the synthesized co-speech ges-
tures, and was steered in accordance with well-
established methods (Liu et al., 2022; Zhu et al.,
2023). This empirical investigation involved 28

respondents, an equal distribution of 14 males and
14 females, all within the demographic age bracket
of 18-25 years. Responsibilities assigned to the
participants included the adjudication of the qual-
ity and consistency of the generated movements, in
scenarios devoid of labels. A total of 30 cases were
procured for evaluation, of which 20 were dedi-
cated to TED-Expressive and the remaining 10 to
TED Gesture. Each case was represented through
eight videos, which were rendered in a randomized
sequence, inclusive of the ground truth. The mean
opinion scores rating protocol was utilized, obligat-
ing participants to assess three distinct facets of the
generated movements: Naturalness; Smoothness;
Synchrony between speech and generated gestures.
The outcomes, as delineated in Table 4, epitomize
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• • • • • • If you • • •, you have to give a five  minute impromptu speech on • • • • • • • •

• • • • • • handful of cells • • • • • • pretty far away from this so were going to • • • • • • • • •  

Figure 3: Visualization Results of Our GesTran on Two Benchmarks.

TED Gesture Ext TED Expressive Ext

LLM architecture FGD ↓ BC ↑ Diversity ↑ FGD ↓ BC ↑ Diversity ↑
LLaMA 7B (Touvron et al., 2023) 1.874 0.692 107.207 2.854 0.714 183.188
LLaMA 13B (Touvron et al., 2023) 1.803 0.694 108.957 2.771 0.706 185.431
T5 (Raffel et al., 2020) 2.386 0.681 105.08 3.550 0.689 177.199

Table 6: Evaluation of co-speech gesture generation using different backbone architectures.

ratings on a scale of 1 to 5, with 5 signifying an
optimal rating. The empirical evidence suggests
a predominant consensus among the participants
establishing that our methodology is capable of
delivering high-fidelity results.

4.5 Abtion Study

Effect of the numbers of model parameters. To
further explore the impact of LLM capabilities on
generated results, we conduct experiments using
the LLaMA model with different numbers of pa-
rameters. The results are shown in Table 5. We
can see that our method can achieve consistently
superior performance when using different LLMs.
Effect of the pre-training. Pre-trained LLMs can
provide robust priors about human motion from
texts. In this context, we experiment with base mod-
els pre-trained to varying degrees, i.e., LLaMA-7B,
LLaMA-13B, and LLaMA without pre-training.
For the un-pretrained LLaMA, we adopt LLaMA-
7B without loading the pre-trained weights. The
randomly initialized LLaMA is tuned by LoRA as
well, fixing weights during training. As shown in
Table 5, there exists a strong correlation between
the level of pre-training in LLMs and the perfor-
mance of our model. This highlights the significant
influence of gesture prior extracted from LLM.
Effect of different model architecture. In order to
explore the impact of different LLM architectures

on the results, we also conducted experiments with
T5 (Raffel et al., 2020) as the backbone. The exper-
imental results are shown in Table 6. We can see
that our method can achieve consistently superior
performance when using different LLMs.

5 Conclusion

In this paper, we introduce an innovative gesture
translation technique, termed GesTran, that capital-
izes on the capabilities of Large Language Models
(LLMs) to enhance the comprehension of the in-
tricate relationship between verbal and non-verbal
communication. This is accomplished by sequen-
tially generating human gestures, thereby interpret-
ing them as a distinct mode of body language. The
initial phase of the proposed architecture incorpo-
rates a transformer-based auto-encoder network
to transcribe human gestures into discrete sym-
bolic representations. Subsequently, the succeed-
ing phase exploits a pre-trained LLM, aiming to
decipher the interplay between speech and gesture.
This is achieved by transforming the verbal input
into corresponding gestures, thereby interpreting
the gestures as unique language tokens within the
LLM’s context. Through a series of rigorous ex-
periments, conducted on two universally acknowl-
edged datasets, consistent evidence of the supe-
rior performance of our proposed approach was
observed across almost all evaluative metrics. Con-
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sequently, this strongly corroborates the efficacy of
the method introduced in this study.

Limitations

Our methodology, having been trained solely on
English data, is currently limited to generating ges-
tures pertaining to English speakers and lacks the
capacity to adapt to a broader spectrum of lan-
guages.
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