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Abstract

Recent work on dialogue-based collaborative
plan acquisition (CPA) has suggested that The-
ory of Mind (ToM) modelling can improve
missing knowledge prediction in settings with
asymmetric skill sets and knowledge. Although
ToM was claimed to be important for effec-
tive collaboration, its real impact on this novel
task remains under-explored. By representing
plans as graphs and exploiting task-specific
constraints we show that, as performance on
CPA nearly doubles when predicting one’s own
missing knowledge, the improvements due to
ToM modelling diminish. This phenomenon
persists even when evaluating existing baseline
methods. To better understand the relevance
of ToM for CPA, we report a principled perfor-
mance comparison of models with and without
ToM features. Results across different models
and ablations consistently suggest that features
learnt for ToM tasks are more likely to reflect
latent patterns in the data with no perceivable
link to ToM. This finding calls for a deeper
understanding of the role of ToM in CPA and
beyond, as well as new methods for modelling
and evaluating mental states in computational
collaborative agents.

1 Introduction

Dialogue-based human-AI collaboration is an in-
teraction in which humans and artificial intelligent
(AI) agents converse to achieve a shared goal or
task (Streeck et al., 2011). When humans collabo-
rate with each other, they rely on two main abilities:
Verbal communication and Theory of Mind (ToM),
i.e. the ability to infer one’s own and others’ mental
states (Premack and Woodruff, 1978). To succeed
in collaborating with humans, it is therefore imper-
ative for AI agents to possess similar capabilities
(Williams et al., 2022).

†Equal second-author contribution.
The project web page is accessible here.
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Figure 1: Collaborative plan acquisition in MindCraft
involves inferring one’s own and the partner’s missing
knowledge ( ) through situated dialogue, starting from
individual partial plans ( ) to achieve a shared goal.

Recent work on this topic has introduced collab-
orative plan acquisition (CPA) as a promising task
for evaluating collaborative abilities in agents (Bara
et al., 2023). Starting from asymmetric knowl-
edge and skill-sets of two collaborating agents, the
goal of CPA is to infer one’s own missing knowl-
edge (OMK) and the partner’s missing knowledge
(PMK) to achieve a shared goal by engaging in
a multi-round situated dialogue (see Figure 1).
To study CPA, the authors used MindCraft – a
multi-modal collaborative dialogue-based bench-
mark grounded in the sandbox game Minecraft
(Bara et al., 2021). They also proposed a sequence-
to-sequence CPA model that used visual observa-
tions, plan, and dialogue history as input. Their
empirical results showed a large difference in per-
formance between predicting OMK and PMK. Fur-
thermore, they found that while including a subset
of ToM features improved performance, using all
ToM features resulted in nearly the same perfor-
mance as using none.

In this work, we systematically analyse the limits
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of ToM modelling in dialogue-based collaborative
plan acquisition. We first propose to represent plans
as directed graphs, each represented by a node fea-
ture matrix, a connectivity matrix, and an edge fea-
ture matrix. This starkly contrasts previous works
(Bara et al., 2021, 2023) that represented plans as
lists consisting of materials and tools processed by
GRU (Cho et al., 2014). Our novel structured rep-
resentation allows us to elegantly frame CPA as a
link prediction task (Liben-Nowell and Kleinberg,
2007) and apply negative sampling constrained on
MindCraft plans’ structure for efficient training.
Our proposed representation not only doubles the
performance of predicting OMK compared to (Bara
et al., 2023) but also bridges the gap to predicting
PMK.

However, our evaluations show no significant
performance difference when using ToM features –
neither for our method nor for the baselines from
Bara et al. (2023). We thus conduct extensive anal-
yses using diagnostic probing, correlation analy-
sis, and ground-truth ToM labels as input. Results
across different models and ablations consistently
suggest that learned ToM features are less asso-
ciated with mental states and more aligned with
revealing latent patterns within the data.

In summary, the contributions of our work are
two-fold: (1) We propose a novel graph-based rep-
resentation of plans for CPA and show that apply-
ing graph learning methods simultaneously doubles
the performance of predicting OMK and closes the
gap to predicting PMK; (2) We report principled
analyses across different models and ablations that
suggest that learnt ToM features reflect latent pat-
terns in the data with no perceivable link to ToM.

2 Related Work

2.1 Dialogue-based Human-AI Collaboration

Collaborative dialogue systems are designed to
work with humans towards achieving a shared goal
(Rich et al., 2001; Bohus and Rudnicky, 2009;
Allen et al., 2002; Streeck et al., 2011). Early
works were based on scripts (Traum, 2017), em-
ployed planning (Papaioannou et al., 2018), or mod-
elled the dialogue as a collection of information
states (Larsson and Traum, 2000). More recent
work focused on neural sequence-to-sequence mod-
els to learn from dialogue corpora (Wen et al.,
2015; Dong et al., 2023). Neural approaches
have also been explored for collaborative dialogues
taking place when participants are working on

a shared artefact within a co-observed environ-
ment (Narayan-Chen et al., 2019; Kim et al., 2019;
Jayannavar et al., 2020; Bara et al., 2021, 2023).
Another line of work explored the role of Theory of
Mind (Premack and Woodruff, 1978) in dialogue-
based collaboration, focusing on simulated textual
environments (Qiu et al., 2022; Zhou et al., 2023),
or on human gameplay (Bara et al., 2023).

Our work focuses on the MindCraft environ-
ment (Bara et al., 2021, 2023) in which two agents
with asymmetric skill sets and knowledge converse
to achieve a shared goal in a Minecraft world.

2.2 Computational Theory of Mind

With recent advances in AI, an increasing number
of works studied means to equip models with The-
ory of Mind capabilities based on deep learning ap-
proaches (Rabinowitz et al., 2018; Bara et al., 2021;
Gandhi et al., 2021; Zhou et al., 2023; Liu et al.,
2023; Bortoletto et al., 2024), partially observable
Markov decision processes (Doshi et al., 2010;
Han and Gmytrasiewicz, 2018) or via Bayesian
approaches (Baker et al., 2009; Lee et al., 2019;
Buehler and Weisswange, 2020; Fan et al., 2021).
Within these, one line of work focused on infer-
ring beliefs, actions, or instructions solely as an
observer of agent behaviour (Rabinowitz et al.,
2018; Grant et al., 2017; Duan et al., 2022). An
emerging second line of work explored ToM from
the perspective of interacting agents (Wang et al.,
2021; Qiu et al., 2022; Bara et al., 2023), high-
lighting the significance of ToM in collaborative
tasks. Bara et al. (2023) claimed that integrating
ToM features improves collaborative plan acquisi-
tion (CPA). However, the limits and failure cases
of ToM-enabled agents are poorly understood, par-
ticularly whether they really model mental states or
exploit dataset biases. This work aims to address
these concerns and assess ToM modelling on CPA.

3 Problem Formulation

MindCraft (Bara et al., 2021) was introduced as
a multi-modal benchmark for studying ToM mod-
elling within collaborative tasks. It involves two
players collaborating through dialogue in a 3D
block world to craft a target material by manipulat-
ing blocks using specific tools (see Figure 3, left).
Players initially receive a partial plan as an incom-
plete directed AND-graph and a tool allowing each
to interact with a set of specific blocks. Endowed
with complementary knowledge and skill sets, play-
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Figure 2: Models’ architecture for Theory of Mind (ToM) modelling and collaborative plan acquisition (CPA).
Following (Bara et al., 2021, 2023), we train one model for each ToM task (Status, Knowledge, Intention) and
CPA task (Own Missing Knowledge, Partner’s Missing Knowledge) and freeze the BERT weights during training
(indicated by ) for a fair comparison with the baseline.

ers must communicate via the in-game chat to craft
the target material and reason about each other’s
mental states. The ToM tasks introduced by Bara
et al. (2021) are specifically designed to capture
mental state information pertinent to collaboration.
During gameplay, players are presented with pop-
up questions every 75 seconds, each paired by type:

1. Task Status: Predict if one of the two players has
created a specific material. For instance, Player
1 is asked: “Has your partner created
GOLD_BLOCK so far?” and Player 2 is asked:
“Have you crafted GOLD_BLOCK yet?” Pos-
sible answers are YES, NO, or MAYBE.

2. Player Knowledge: Predict whether players
know how to craft a material or if they believe
their partner knows. For example, Player 1 is
asked: “Do you think the other player
knows how to make BLUE_WOOL?” and Player
2 is asked: “Do you know how to make
BLUE_WOOL?” Possible answers are YES, NO, or
MAYBE.

3. Player Intention: Predict which material a
player is making at the current time step. For ex-
ample, Player 1 is asked: “What do you think
the other player is making right now?”
and Player 2 is asked: “What are you making
right now?”. Possible answers are the different
types of blocks in the game or NOT_SURE.

In this work, we focus on a recent extension
of MindCraft by Bara et al. (2023) in which they
proposed collaborative plan acquisition (CPA) and

explored the role of ToM modelling in predicting
players’ missing knowledge while executing the
crafting tasks. CPA is formulated as follows:

Definition 1 Consider a joint plan as a directed
AND-graph P = (V,E), where the nodes V denote
(sub-)goal materials, and edges E denote temporal
constraints between the sub-goals. In a collabo-
rative plan acquisition problem, two agents i and
j start with partial plans Pi = (V,Ei), Ei ⊆ E,
and Pj = (V,Ej), Ej ⊆ E. Given a sequence of
visual observations Ot

i and a joint dialogue history
Dt at time t, agent i has to infer their own missing
knowledge Ēi = E\Ei and the partner j’s missing
knowledge Ēj = E \ Ej .

ToM and CPA tasks are closely related but funda-
mentally different: ToM tasks focus on exploring
players’ beliefs about the game state and their part-
ner’s mental states, while CPA tasks involve pre-
dicting missing information from players’ partial
plans. Additional details are in §A.1 and §A.2.

4 Method

4.1 Baseline
As a baseline we used the model proposed by Bara
et al. (2023) that embeds dialogue utterances using
a frozen pre-trained BERT model (Devlin et al.,
2019) and represents each utterance by the features
obtained from processing the corresponding [CLS]
token using linear layers with tanh activation. A
CNN and GRU were used to process the video
frames and partial plans, respectively. During train-
ing, a model was first trained for each of the three

4858



OneHot(    )

OneHot(    )OneHot(    )

OneHot(    )

OneHot(    )

OneHot(    )
OneHot(    ) ...

Valid Candidates Invalid Candidates

...
Start

End

Figure 3: Left: Example of a plan graph. Nodes represent materials, edges connect each material to the requisite
components for its synthesis, and edge features denote the tool needed to interact with a material. Right: Our
candidate sampling strategy for predicting OMK: Valid candidate start-nodes must have an out-degree smaller than
four whereas candidate end-nodes must have an in-degree less than or equal to one.

ToM tasks of §3 as classification tasks, requiring
them to predict players’ answers. Afterwards, two
separate models were trained on OMK and PMK by
feeding the concatenation of the input modalities
and the learnt ToM features into an LSTM (Hochre-
iter and Schmidhuber, 1997) followed by an MLP
that outputs softmax scores for each possible miss-
ing link.

4.2 GNN-based Missing Knowledge
Prediction

Representing Plans as Graphs. We propose a
modification to the method by (Bara et al., 2023)
that includes representing plans as graph objects
and using a GNN-based encoder-decoder together
with candidate sampling to predict missing edges
(see Figure 2). More specifically, as shown in Fig-
ure 3, nodes represent materials, edges connect
each material to the prerequisite components for its
synthesis, and edge features denote the specific tool
needed to interact with the material. This structured
representation allows us to more naturally represent
the dependencies between materials and informa-
tion about the tools involved in the crafting process.
Most importantly, it allows us to elegantly frame
CPA as a link prediction task.

Theory of Mind Modelling. We modified the
ToM modelling architecture of Bara et al. (2021)
with two key changes: Replacing the GRU plan
encoder with GATv2 layers (Brody et al., 2022)
and average graph pooling, and substituting the
LSTM with a single-block Transformer (Vaswani
et al., 2017). The rest of the architecture remains
unchanged for a fair comparison.

Missing Knowledge Prediction. By represent-
ing plans as graphs we can perform missing knowl-

edge prediction by applying negative sampling
– a common technique used for graph comple-
tion (Yang et al., 2015; Schlichtkrull et al., 2018).
A GNN encoder g first maps each node vi ∈ V to
a real-valued vector zi = g(vi) ∈ Rd. We then add
Ω negative edges to the original graph. In conven-
tional link prediction, negative edges are sampled
randomly starting from the complete graph, and
the goal is to classify edges as true or fake. In
contrast, our approach begins with an incomplete
graph and the task is to predict missing edges. Ran-
domly selecting negative edges poses the risk of
missing the edges we aim to predict. Our improved
approach uses the plan structural constraints of
MindCraft to narrow down the pool of all possi-
ble V 2\E{i,j} edges to a set of valid candidates Ω
(see Figure 3, right). Specifically, valid candidate
start-nodes must have an out-degree smaller than
four whereas candidate end-nodes must have an in-
degree less than or equal to one. We also exclude
the starting set of game materials from the candi-
date end-nodes. We call this technique candidate
sampling.

Afterwards, a decoder classifies edges as pos-
itive or negative by relying on the node embed-
dings. In particular, we learn a scoring function
s : Rd × Rd → R using a linear layer f that takes
as input the concatenation of the two node embed-
dings corresponding to the candidate edge, and the
output c of the sequence model, that serves as a
context: s(vi, vj) = ŷij = f(zi⊕zj⊕c), where ⊕
denotes the concatenation operator. In contrast to
(Bara et al., 2023) who used an LSTM to process
the sequential data, we used a single Transformer
block. Finally, we optimise with the binary cross-
entropy loss function L, which maximises the like-
lihood of positive edges while minimising that of
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Status

Modalities Bara et al. (2023) Ours Human

M 47.7± 0.6 59.9± 0.7 67.0
D+M 45.5± 2.3 59.1± 0.6 67.0
D+V+M 45.2± 1.8 58.9± 0.8 67.0
V+M 47.3± 0.7 59.6± 0.4 67.0

Knowledge

Modalities Bara et al. (2023) Ours Human

M 51.5± 1.1 57.9± 0.2 58.0
D+M 50.0± 1.5 57.2± 1.5 58.0
D+V+M 50.2± 1.1 57.5± 1.7 58.0
V+M 50.5± 1.6 57.6± 1.8 58.0

Intention

Modalities Bara et al. (2023) Ours Human

M 9.1± 0.2 11.7± 2.2 46.0
D+M 8.7± 2.1 11.1± 1.8 46.0
D+V+M 10.5± 2.3 12.1± 2.4 46.0
V+M 9.0± 0.3 13.4± 1.9 46.0

Table 1: Performance comparison on the three ToM
tasks using different combinations of modalities: dia-
logue moves (M), dialogue (D), and video frames (V).
We report the F1 scores obtained by the baseline (Bara
et al., 2023), our model, and humans.

sampled negative edges:

L = −
∑

(i,j)∈E
log(σ(ŷij))−

∑

(i,k)∈Ω
log(1−σ(ŷik))

where σ indicates the sigmoid function. Additional
details about the model’s architecture and training
are provided in §A.3.

5 Experiments

5.1 Theory of Mind Modelling
We first report the performance of our model on
the three ToM tasks introduced in Section 3. As
summarised in Table 1, our model outperforms
the baseline1 on all three tasks, underlining the
efficiency of the proposed GNN-based approach.
Notably, as highlighted in green in Table 1, our
model manages to even match human performance
in the Knowledge task. However, performance on
the other two tasks is still far from a human level,
especially on Intention. This might be attributed
to the fact that, unlike Knowledge that does not
require temporal modelling and could be solved by

1Despite training the baseline model (Bara et al., 2023)
using the official code, its performance slightly deviated from
the original paper, and discussions with the authors did not
yield clarity. See §A.4 for further details and comparisons.

using plan information, both Status and Intention
require accurate temporal modelling, which has to
be kept coherent across the different input modali-
ties. As can also be seen from the table, ablations
of different input modalities have little impact on
the final performance of our model and the baseline
for all ToM tasks.

5.2 Collaborative Plan Acquisition (CPA)

Subsequently, we evaluate our model on the CPA
task following Bara et al. (2023). We always use
dialogue moves as input since they were shown to
have a positive impact on performance. As can be
seen from Table 2, our model consistently achieves
overall F1 scores of over 56.6 thereby significantly
outperforming the baseline of Bara et al. (2023) in
all evaluation settings.

Own Missing Knowledge (OMK). We first anal-
yse the task of predicting one’s own missing knowl-
edge. As can be seen in Table 2, our model man-
ages to double the performance of the baseline2

by consistently achieving F1 scores of over 57%.
In stark contrast to the baseline, which performs
best when using only ToM features extracted from
Intention, our model’s best performance is obtained
by additionally incorporating features extracted
from Knowledge. The benefit of these features on
CPA is expected and intuitively makes sense since
Knowledge was the ToM task for which our models
achieved human-level performance (see Table 1).

Partner’s Missing Knowledge (PMK). Second,
we evaluate the task of predicting the partner’s miss-
ing knowledge. In contrast to prior work (Bara
et al., 2023), our evaluations reveal a significantly
reduced performance gap between predicting the
different types of missing knowledge (OMK vs
PMK) as can be seen in the second part of Table 2.
As highlighted in blue , this can be attributed to
our proposed candidate sampling approach that,
contrarily to naive sampling, effectively narrowed
down the pool of valid candidate edges for one’s
own missing knowledge to a similar order of mag-
nitude as that of the partner’s. The difference in
performance compared to the baseline is likely due
to the choice of cost function used for training.

Statistical Tests. Although our model attained
improved results on CPA, especially in predicting
one’s own missing knowledge, it did so without

2In this case, the scores are higher than the ones reported
in (Bara et al., 2023).
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ToM Features Overall OMK PMK

Status Knowledge Intention Bara et al. (2023) Ours Bara et al. (2023) Ours (NS) Ours Bara et al. (2023) Ours

46.6± 1.6 56.9± 0.6 27.7± 2.3 23.7± 2.5 57.6± 0.8 65.4± 0.2 56.2± 0.3
✓ 46.7± 2.0 57.3± 0.6 26.1± 2.5 26.6± 2.4 58.0± 0.8 67.2± 1.2 56.5± 0.3

✓ 47.4± 1.7 57.0± 1.4 28.0± 1.8 24.7± 2.6 58.4± 0.5 66.8± 1.5 55.5± 1.9
✓ 47.2± 1.9 57.2± 0.5 28.0± 2.6 26.0± 1.2 57.9± 0.7 66.3± 0.8 56.5± 0.3

✓ ✓ 47.6± 1.5 56.6± 1.4 28.4± 1.4 25.2± 0.3 57.7± 0.5 66.8± 1.5 55.5± 1.9
✓ ✓ 47.6± 1.7 57.5± 0.6 28.4± 1.8 27.2± 1.3 58.4± 0.8 66.8± 1.5 56.5± 0.3

✓ ✓ 47.2± 1.7 57.5± 0.6 27.6± 1.9 27.7± 0.7 58.5± 0.8 66.8± 1.5 56.4± 0.1
✓ ✓ ✓ 47.4± 1.8 56.7± 0.7 27.9± 2.0 26.6± 2.9 57.1± 1.9 66.8± 1.5 56.6± 0.2

Table 2: Performance comparison on CPA when training with learnt ToM features. We report the overall F1 scores
as well those for own (OMK) and partner (PMK) missing knowledge prediction. NS = Naive Sampling.

ToM Task ToM OMK PMK Random

Status 60.6 51.6 49.5 46.7
Knowledge 50.9 49.8 50.8 45.1
Intention 10.2 14.1 13.0 9.3

Table 3: F1 scores on ToM tasks for logistic regression
models trained using ToM features, CPA features and
random noise. OWM and PMK indicate features com-
ing from our model trained, without ToM features as
input, on one’s own and partner’s missing knowledge
prediction, respectively.

relying much on the learned ToM features. This
can be seen from the results of the different ab-
lated versions of Table 2. To study the effect of
ToM features on CPA performance, we performed
paired t-tests between our model trained without
ToM features and versions of our model trained
with different sets of ToM features. We can see that
the ToM features did not result in any statistically
significant performance difference on CPA since
all tests resulted in p > 0.05. Notably, performing
the significance testing on the baseline model of
(Bara et al., 2023) yielded the same behaviour, i.e.
p > 0.05 across all model versions. Therefore, we
challenge the utility of the ToM features in CPA
by posing the question of whether these features
represent actual information about mental states
or reflect latent patterns in the data. We empiri-
cally answer this by performing various principled
experiments ranging from diagnostic probing to
correlation analysis over substituting ToM features
with ground-truth labels.

5.3 Probing for Theory of Mind

Motivated by our results, we formulate the follow-
ing research question: Does ToM modelling as pro-
posed by Bara et al. (2023) actually capture mental
state information? To answer this question, we con-
ducted extensive analyses to study the impact of

ToM modelling on CPA from different angles.

5.3.1 Diagnostic Probing

The ToM features used in CPA are obtained by
learning the different tasks of Section 3. As a re-
sult, we expect such features to exclusively hold
some information about the mental state that other
models, when trained on different tasks than ToM,
simply lack. To validate this intuitive hypothe-
sis, we used diagnostic probing (Alain and Ben-
gio, 2017; Adi et al., 2017; Conneau et al., 2018;
Hupkes et al., 2018) and trained a simple logistic
regression (LR) model to perform the three ToM
classification tasks. We trained the LR model with
different inputs in each experiment and tested its
performance on the ToM tasks using the test split.
More specifically, we considered four different in-
put scenarios: the vanilla ToM features used in the
previous experiments, the hidden representations
of the transformer from models predicting OMK
and PMK (output of the green model in Figure 2),
and finally random noise. As seen in Table 3, a LR
model trained on ToM features can perform rea-
sonably well on the three tasks, especially Status.
However, when trained with missing knowledge
features, i.e. features completely optimised in the
absence of ToM, the LR model achieves compa-
rable performance in Knowledge and even better
performance in Intention.

These findings open up two possible scenarios:
(1) The learnt ToM features are more likely to rep-
resent latent patterns in the data with no perceivable
link to ToM; (2) ToM capabilities spontaneously
emerge from training models on CPA.

5.3.2 Correlation Analysis

In this experiment, we explored whether improve-
ments in CPA tasks correlate with the performance
of models on ToM tasks, which are then used to
extract ToM features. Intuitively, if the ToM fea-
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Figure 4: Correlation between F1 scores in the ToM tasks and the difference between F1 scores on OMK (top)
and PMK (bottom) obtained by our model trained with and without ToM features as input. The red dotted line
represents a linear fit. The red dotted circle indicates game sessions for which performance on CPA improved even
if the F1 score on ToM task is zero.

tures truly benefit the model, we anticipate a strong
positive correlation between the performance on
the individual task ToM tasks and that of CPA. To
validate this, we chose the best-performing model
for each ToM feature in CPA and calculated the per-
formance difference relative to the model without
any ToM features (refer to Table 2). Next, we calcu-
lated the Pearson correlation coefficient to measure
the relationship between this difference in perfor-
mance and the F1 score on ToM tasks. Results
for both OMK and PMK are reported in Figure 4.
Given that r < 0.3 and p ≫ 0.05 in all cases, we
can conclude that there is no correlation between
the performance on ToM tasks and improvements
on CPA. It is worth noting that for some cases, CPA
improved even if the F1 score on ToM was zero
(highlighted with red dotted circles in Figure 4).

5.3.3 Incorporating ToM Ground-Truth

In our final experiment, we aim to assess the utility
of mental state information in CPA by answering
the question: To what extent do models gain from
including ground-truth information about mental
states? We replicate our experiments from Sec-
tion 5.2 to explore this. However, instead of the
learnt ToM features, we feed models with a one-
hot encoding of the corresponding ToM question-
answer pair. This encoding process follows the

same methodology employed by Bara et al. (2021).
As can be seen from a comparison of Table 4 and
Table 2, the baseline and our model trained with
ground-truth mental state information consistently
under-perform those trained with learnt ToM fea-
tures on OMK and PMK, respectively. The re-
maining results are generally on par. Furthermore,
upon comparing the initial row in Table 4 with the
subsequent rows, we note that incorporating ToM
ground-truth yields similar scores to those achieved
without, except for the baseline in PMK. This un-
derscores a significant limitation of the ToM task
representation: the collected ground-truth mental
states are not beneficial for CPA. This finding, in
conjunction with our diagnostic probing analysis,
suggests that models trained to infer mental states
may be learning information more closely associ-
ated with other correlations in the data, rather than
representing the mental states.

6 Limits and Future Directions for
Neural Theory of Mind

A key insight of our work is that current approaches
for CPA, rather than learning ToM, seem to merely
exploit latent correlations in the data that have little
to do with mental states. This is highlighted by the
lack of impact of the proposed ToM features on
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ToM Labels OMK PMK

Status Knowledge Intention Bara et al. (2023) Ours Bara et al. (2023) Ours

26.3± 1.9 58.2± 0.3 60.9± 3.2 51.5± 4.7
✓ 26.8± 1.6 58.5± 0.6 66.0± 1.9 51.5± 4.7

✓ 26.8± 1.6 58.3± 0.2 66.0± 1.9 51.5± 4.7
✓ 26.8± 1.6 58.2± 0.3 66.0± 1.9 52.2± 3.4

✓ ✓ 26.6± 1.2 58.3± 0.2 66.0± 1.9 51.5± 4.7
✓ ✓ 27.0± 1.4 58.4± 0.2 66.0± 1.9 51.5± 4.7

✓ ✓ 26.9± 1.6 58.6± 0.5 66.0± 1.9 51.0± 4.2
✓ ✓ ✓ 26.6± 1.1 58.5± 1.3 66.0± 1.9 51.5± 4.7

Table 4: Performance comparison on CPA when training with ground-truth ToM labels. We report F1 scores for
own (OMK) and partner (PMK) missing knowledge prediction.

CPA, as shown in Table 2 and Table 4. This finding
is surprising and worrisome at the same time and
calls for a fundamental re-assessment of how to
equip computational agents with ToM capabilities
and how to evaluate them. Despite research on this
topic still being in its infancy, the problem of cor-
rectly learning neural ToM has recently been put
more and more under scrutiny (Sap et al., 2022;
Aru et al., 2023). Our results underline in a directly
observable way that the acquisition of comprehen-
sive ToM capabilities cannot be reduced to merely
passing a specific, narrow set of tasks. The main
rationale for this conclusion is that we still do not
have a task for which possessing ToM capabilities
is both a necessary and sufficient prerequisite for its
resolution. Current ToM benchmarks rely on tasks
that seem to intuitively require ToM to be solved.
However, these tasks can often be solved by just
exploiting shortcuts within the data (Le et al., 2019;
Aru et al., 2023; Bortoletto et al., 2024). As a re-
sult, we posit that directly optimising an agent
or system for ToM may not represent an effec-
tive approach for progress.

Instead, recent work proposed the use of open-
ended environments to study ToM with the aim
of observing whether these capabilities emerge
through interactions with other agents (Aru et al.,
2023). Minecraft represents a good candidate envi-
ronment for multi-agent collaboration in an open
world. However, the way Bara et al. (2021, 2023)
frame MindCraft is still limited to specific tasks
and requires extensive data collection efforts. One
possible solution could be to transform MindCraft
into a reinforcement learning environment with a
focus on less constrained collaborative tasks. While
Bara et al. (2021, 2023) suggest modelling ToM

as a supervised learning task, the way humans ac-
quire ToM is more nuanced and largely unsuper-
vised (Ruffman, 2023). We believe that the devel-
opment of open-ended environments combined
with learning ToM capabilities in an unsuper-
vised, human-like manner is a more promising
direction for future research.

ToM capabilities are deeply linked to language
acquisition (Tomasello, 2005). In the context of
dialogue-based collaboration, another interesting
future direction could be to learn ToM from gen-
eration instead of classification (Liu et al., 2023).
Current approaches could be further improved by
building a more general and robust world model,
e.g., by leveraging a pre-trained language or video-
language model as a more general prior. Finally,
in addition to developing suitable environments
and learning algorithms, effective and interpretable
methods to evaluate whether agents have truly
learned ToM will be crucial. We see three exciting
directions in this regard: probing (Niven and Kao,
2019), mechanistic interpretability (Wang et al.,
2023), and concept learning (Oguntola et al., 2021;
Chen et al., 2020). The work of Oguntola et al.
serves as an inspiring example, where agents learn
human-interpretable concepts that represent beliefs
about other agents in a simple multi-agent rein-
forcement learning setting.

7 Conclusion

In this work, we demonstrated that applying task-
specific constraints to plan graphs reduces signif-
icantly the performance gap between predicting
OMK and PMK in MindCraft. At the same time,
improvements from ToM modelling diminish, rais-
ing concerns about current approaches. Our ex-
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periments and analyses consistently suggest that
current ToM modelling approaches learn features
that likely reflect latent patterns in the data, with
no perceivable link to ToM. This finding calls for
a deeper understanding of the role of ToM in CPA
and beyond, as well as for new methods to model
and evaluate mental states in collaborative agents.

8 Limitations

We identify two main limitations of our work. First,
our strategy of selecting candidate edges for own
missing knowledge prediction is specific to the
structure of the task as presented by Bara et al.
(2021). While we recognise the task-specific na-
ture of our strategy, it is crucial to note that Bara
et al. (2023) also leverages task-specific constraints
by assuming that the partner’s missing knowledge
is present in one’s own. However, our approach
can still be used in other settings without the as-
sumption that one’s own missing knowledge cov-
ers that of the partner. Crucially, our approach
does not challenge or undermine the fundamental
conclusions drawn about modelling and evaluating
ToM. Neither does it serve as the cause for the di-
minishing improvements on CPA observed when
including ToM features.

Second, our current analysis is limited to the
MindCraft dataset. To the best of our knowledge,
it is the only environment that studies the role of
ToM in CPA making it the natural candidate for
our analysis. However, our work lays the basis of
a systematic study of ToM in CPA in general and
can also inform future work targeting new environ-
ments or datasets.

9 Ethical Impact

Our work is foundational, far away from particular
applications or any potential societal impact. How-
ever, it is important to keep in mind that claims
about modelling and predicting mental states po-
tentially have huge ethical impact. Caution is im-
perative when dealing with sensitive aspects of in-
dividuals’ inner experiences and emotions. Mis-
handling such information could lead to privacy
breaches, potential stigmatisation, or the misuse
of personal data. Additionally, there is a risk of
reinforcing biases or misinterpreting complex psy-
chological nuances, which may have unintended
consequences on individuals’ well-being. Lastly,
resonating with our findings, the use of models that
predict mental states by merely exploiting heuris-

tics and spurious patterns in the data rather than
genuinely modelling Theory of Mind introduces
significant ethical challenges. Therefore, ethical
considerations and responsible practices are cru-
cial to ensure a respectful and appropriate use of
technology in this domain.
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A Appendix

A.1 MindCraft
MindCraft (Bara et al., 2021) is an interactive envi-
ronment based on Minecraft in which the objective
of each game is to create a randomly generated
goal material. Some starting materials are already
present in the environment, and the others are cre-
ated by the players by:

• Mining: hit a specific block with a tool to
create a new block. This allows to generate
infinite new blocks of a certain type and move
them around.

• Combining: fuse two materials to obtain a
new one.

Players are free to navigate in the environment,
move blocks around and chat. Being the field of
view first-person, players have partial observability
of the environment.

Players possess asymmetric knowledge and skill
sets, where each player is provided with a partial
plan (such as a partial knowledge graph or recipe)
along with a specific tool to interact with certain
blocks. Their knowledge and skills are comple-
mentary: Player 1’s plan contains the information
missing in Player 2’s plan, and vice versa. Like-
wise, Player 1 can interact with blocks that Player
2 cannot, and vice versa. This inherent asymmetry
encourages communication between players and
the need to reason about each other’s mental states.

Bara et al. (2021) introduced three ToM question
answering tasks that are specifically designed to
capture mental state information that is pertinent
to collaboration. Players are presented with three
questions, each paired by type: if one player is
asked about their partner’s beliefs, the other player
is presented with the same question regarding their
own beliefs (with respect to the same question):

1. Task Status: Predict if a specific material
has been created by one of the two players.
For example, if Player 1 is asked: Has the
other player made GOLD_BLOCK until now?,
then Player 2 is asked: Have you created
GOLD_BLOCK until now?. Possible answers
are YES, NO, or MAYBE. This task probes players’
belief of the game state.

2. Player Knowledge: Predict whether a player
knows how to create a specific material or if
they believe their partner knows. For example,

if Player 1 is asked: Do you think the other
player knows how to make BLUE_WOOL?,
then Player 2 is asked: Do you know how to
make BLUE_WOOL?. Possible answers are YES,
NO, or MAYBE. This task probes players’ belief of
their and their partner’s current knowledge.

3. Player Intention: Predict which material a
player is making at the current time step. For ex-
ample, if Player 1 is asked: What do you think
the other player is making right now?,
then Player 2 is asked: What are you making
right now?. Possible answers are the different
types of block in the game or NOT_SURE.

Mental state annotations are collected using pe-
riodic pop-ups that interrupt the game every 75
seconds.

Computational models are trained and evaluated
by predicting the answer to the ToM tasks from
a player’s perspective, given a history of observa-
tions, the chat dialogue, the perceived actions in the
shared environment, and the partial plan. Models
are trained to minimise the cross entropy loss. They
output c logits, with c being the number of possible
classes: three for Status and Knowledge, and 22
for Intention (21 possible materials + NOT_SURE).
Models’ final prediction is obtained by taking the
argmax of the logits.

A.1.1 Data Modalities
The MindCraft dataset comprises various modali-
ties, including first-person video streams for each
player, chat dialogue and corresponding dialogue
moves, and players’ plans. Bara et al. (2021) es-
tablished a timestep of ∆t = 1 second, ensuring
that each timestep has an associated video frame.
However, not all timesteps include dialogue utter-
ances or questions, as players do not necessarily
exchange messages every second and questions
pop-up every 75 seconds. The players’ plan is
static and known from the beginning of the game.
The models generate predictions at timestep t, coin-
ciding with when questions are posed to the players.
These predictions rely on the player’s plan, video
stream, and dialogue history (if available) up to
time t.

A.1.2 Dataset Statistics
Bara et al. (2021) report that the original Mind-
Craft dataset includes 100 games, with an average
of 20.5 dialogue exchanges per game, for a total of
2091 exchanges. Games last between 1 minute and
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22 seconds to 27 minutes and 26 seconds, with the
average game lasting 7 minutes and 23 seconds. A
total of 12 hours, 18 minutes, and 33 seconds of
in-game interaction was recorded. Between 5 and
10 objects are used in a game, and between 7 and
11 steps are necessary in each game to achieve the
goal. The dataset is randomly partitioned into 60%
for training, 20% for validation, and 20% for test-
ing, with the condition to keep similar distributions
of game lengths.

A.2 Collaborative Plan Acquisition

Bara et al. (2023) extended MindCraft by collecting
60 additional game sessions and defined an addi-
tional task: collaborative plan acquisition (CPA).
In CPA a model has to predict, from a player’s
perspective, its own missing knowledge (OMK)
and the other player’s missing knowledge (PMK).
CPA was introduced to explore the role of ToM
modelling in predicting players’ missing knowl-
edge while executing the crafting tasks. CPA is
formulated as follows:

Definition 1 Consider a joint plan as a directed
AND-graph P = (V,E), where the nodes V denote
(sub-)goal materials, and edges E denote temporal
constraints between the sub-goals. In a collabo-
rative plan acquisition problem, two agents i and
j start with partial plans Pi = (V,Ei), Ei ⊆ E,
and Pj = (V,Ej), Ej ⊆ E. Given a sequence of
visual observations Ot

i and a joint dialogue history
Dt at time t, agent i has to infer their own missing
knowledge Ēi = E\Ei and the partner j’s missing
knowledge Ēj = E \ Ej .

Predictions for OMK and PMK are made at t =
T , where T is the final timestep of the game.

While intrinsically linked, ToM and CPA tasks
exhibit a fundamental distinction: ToM tasks di-
rectly explore players’ beliefs regarding the game
state and their partner’s mental states, whereas
CPA tasks involve predicting the absent informa-
tion from players’ partial plans. In ToM tasks, the
ground truth is based on players’ beliefs, which
may be true or false, whereas in CPA tasks, the
ground truth is formally determined by Ēi = E\Ei

for OMK and Ēj = E \ Ej for PMK. Bara et al.
(2023) discuss the partial overlap between Task
Knowledge and PMK, highlighting their difference:
Task Knowledge probes whether a single piece of
knowledge is known by the partner, while PMK
involves predicting whether the partner shares each
piece of the player’s knowledge.

A.2.1 Data Modalities
CPA is conducted in the MindCraft environment,
therefore the data modalities utilised mirror those
in the ToM tasks: first-person video streams for
each player, chat dialogue along with correspond-
ing dialogue moves, and the players’ plans. In
addition to the aforementioned modalities, models
for CPA receive ToM features extracted from the
sequence-to-sequence model trained on the ToM
tasks discussed in §A.1. These ToM features are
tensor representations of dimension 1024 that are
incorporated into the model’s input. A timestep
of ∆t = 1 second is maintained. In contrast to
the ToM tasks, CPA models generate predictions at
timestep t = T , i.e., at the end of each game.

A.2.2 Formalising ToM Tasks
Based on the formalism introduced for CPA, we
can formalise the ToM tasks as follows:

1. Task Status: Predict if a specific material Vk ∈
V has been created by one of the two players.

2. Player Knowledge: Predict whether a player
knows how to create a specific material Vk, i.e.,

{enVk
}n>1

?∈ Ei

or if they believe their partner knows, i.e.

{enVk
}n>1

?∈ Ej ,

with eVk
∈ E being an edge with end-node Vk

and n being the number of materials needed to
craft Vk.

3. Player Intention: Predict which material Vk ∈
V a player is making at the current time step t.

A.3 Technical Details
A.3.1 GNN Plan Encoder
We propose a modification to the method by Bara
et al. (2023) that includes representing plans as
graph objects and using a GNN-based encoder-
decoder together with candidate sampling to pre-
dict missing knowledge, i.e., missing edges (see
Figure 2).

In the encoding phase, given a graph, we com-
pute the node embeddings using GATv2 convo-
lutions (Brody et al., 2022). The node features
(one-hot encoding of materials) are first projected
using a single linear layer with hidden dimension
128, followed by GELU activation and dropout.
The same procedure is applied to edge features
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Status

Modalities Bara et al. (2023) Ours Human

M 56.0± 0.8 59.9± 0.7 67.0
D+M 54.6± 1.1 59.1± 0.6 67.0
D+V+M 59.3± 1.0 58.9± 0.8 67.0
V+M 59.3± 1.7 59.6± 0.4 67.0

Knowledge

Modalities Bara et al. (2023) Ours Human

M 54.7± 2.5 57.9± 0.2 58.0
D+M 56.2± 1.9 57.2± 1.5 58.0
D+V+M 57.6± 1.0 57.5± 1.7 58.0
V+M 56.4± 2.5 57.6± 1.8 58.0

Intention

Modalities Bara et al. (2023) Ours Human

M 14.9± 0.2 11.7± 2.2 46.0
D+M 12.1± 1.0 11.1± 1.8 46.0
D+V+M 13.5± 0.6 12.1± 2.4 46.0
V+M 13.8± 1.7 13.4± 1.9 46.0

Table 5: Performance comparison on the three ToM
tasks using different combinations of modalities: dia-
logue moves (M), dialogue (D), and video frames (V).
F1 scores for the baseline are reported from the original
paper (Bara et al., 2023) rather than from our execution
of the official code.

(one-hot encoding of tools). Then the first GATv2
convolution is applied, which has hidden dimen-
sion 128, four heads, GELU activation and dropout.
The final node embeddings are generated by a sec-
ond GATv2 convolution with output dimension 128
and one head.

In the decoding phase, we evaluate potential
missing edges by scoring them against the rele-
vant node embeddings and the context vector. This
involves combining the two node embeddings as-
sociated with the edge and the context vector, then
passing the resulting concatenation through a linear
layer with an output dimension of one. The output
logits are subsequently fed into a sigmoid function
with a threshold of 0.5 to determine whether the
edge exists or not.

A.3.2 Transformer
We use a single-block Transformer (Vaswani et al.,
2017) with output dimension 1024 as sequence-to-
sequence model. The input consists of concate-
nated features from various modalities, such as
video, dialogue, plan graph, and dialogue moves
(and ToM features in the case of CPA), as depicted
in Figure 2. Our Transformer incorporates posi-
tional encoding (Vaswani et al., 2017) and utilises

a causal attention mask to ensure that each token at-
tends only to previous tokens during self-attention
computation. We utilise eight attention heads to
compute attention scores over the concatenated in-
put features, including ToM features for CPA tasks.
This ensures that the model attends to ToM features.
Following the baseline models (Bara et al., 2021,
2023), our models utilise zero-padding when an
input modality is absent.

A.3.3 Training

Models are trained using PyTorch (Paszke et al.,
2019) with 1, 42 and 123 as random seeds.
All models were trained on a single GPU card,
taking approximately 60 minutes for the base-
lines (17,946,302 parameters) and our models
(9,222,100 parameters) on ToM. For CPA, train-
ing takes approximately 60 minutes for the base-
lines (33,698,691 parameters) and 20 minutes for
our models (13,364,641 parameters). For the base-
lines (Bara et al., 2023), we used default parame-
ters reported in the code. For our models, we used
the Adam optimiser (Kingma and Ba, 2015) with
β1 = 0.9, β2 = 0.99, ϵ = 10−8, and a learning rate
of η = 1 ·10−4. We did not perform any exhaustive
hyper-parameter tuning but just tried a set of reason-
able values: {1 · 10−5, 5 · 10−4, 1 · 10−4, 5 · 10−4}.

A.4 Comparison to Bara et al. (2023)

Although we trained the baseline of (Bara et al.,
2023) using the official code3 with default hyper-
parameters, its performance slightly deviated from
the original paper. We contacted the authors ask-
ing for clarifications and details that are not docu-
mented in the paper/code. Discussions with them
did not yield a clear answer, and they were unable
to provide their model files. Therefore, in Table 1
and Table 2 we provided results obtained from our
runs, reproducible by using our code provided as
supplementary material. In the interest of complete-
ness, we include a comparison between our results
and those reported by Bara et al. (2023) in Table 5
for ToM tasks and in Table 6 for CPA tasks. On
the ToM tasks, the scores achieved by our model
are generally on par with those reported by Bara
et al. (2021). On CPA, our model still outperforms
the baseline of Bara et al. (2023) that, based on
the originally reported scores, on average performs
slightly worse in some tasks (see Table 6, Overall).

3https://github.com/sled-group/
collab-plan-acquisition
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ToM Features Overall OMK PMK

Status Knowledge Intention Bara et al. (2023) Ours Bara et al. (2023) Ours Bara et al. (2023) Ours

44.1± 0.6 56.9± 0.6 16.7± 0.1 57.6± 0.8 71.4± 1.0 56.2± 0.3
✓ 45.9± 1.5 57.3± 0.6 20.4± 1.4 58.0± 0.8 71.3± 1.6 56.5± 0.3

✓ 47.2± 1.1 57.0± 1.4 20.1± 1.4 58.4± 0.5 74.3± 0.7 55.5± 1.9
✓ 47.4± 1.4 57.2± 0.5 19.8± 1.7 57.9± 0.7 75.0± 1.0 56.5± 0.3

✓ ✓ 47.0± 1.4 56.6± 1.4 20.9± 1.2 57.7± 0.5 73.1± 1.5 55.5± 1.9
✓ ✓ 45.9± 1.2 57.5± 0.6 19.8± 0.8 58.4± 0.8 71.9± 1.5 56.5± 0.3

✓ ✓ 46.9± 1.5 57.5± 0.6 20.3± 1.8 58.5± 0.8 73.4± 1.2 56.4± 0.1
✓ ✓ ✓ 45.5± 0.3 56.7± 0.7 17.4± 0.1 57.1± 1.9 73.5± 0.5 56.6± 0.2

Table 6: Performance comparison on CPA when training with learnt ToM features. F1 scores for the baseline are
reported from the original paper (Bara et al., 2023) rather than from our execution of the official code.
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Figure 5: Chat from a game in which our ToM model
cannot solve the Player Intention ToM task. In the same
game, integrating the corresponding ToM features into
the CPA model enhances the performance on PMK.

It is important to node that our main contribu-
tions remain unaffected by this mismatch: First,
our improvement on OMK stands, both if we com-
pare our baseline results and those reported in Bara
et al. (2023). Notably, our results for the baselines
(∼ 0.28) are higher than the ones in the original
paper (∼ 0.21). Second, our analyses are not con-
tingent on absolute results but rather on the rela-
tionship with the ToM tasks.

A.4.1 Qualitative Example

Figure 5 shows the chat from a game in which
our ToM model cannot solve the Player Intention
ToM task. However, on the same game, integrat-
ing the corresponding ToM features into the CPA
model enhances the performance on the PMK task
by approximately 10 points. This particular game

instance is highlighted by the dotted red circle in
the rightmost plot of Figure 4. We speculate the
ToM model’s struggle with the Player Intention
task may arise from the initial game part where
players’ beliefs are misaligned, which could result
in a false belief (cf. Figure 5). Despite this, the
CPA model still benefits from the inclusion of ToM
features, suggesting that ToM models may actually
be learning information that is more closely associ-
ated with other correlations in the data, rather than
representing the mental states.

A.5 Tools
We performed our data analysis using NumPy (Har-
ris et al., 2020), Pandas (pandas development
team, 2020; McKinney, 2010), and SciPy (Virta-
nen et al., 2020). Figures were made using Mat-
plotlib (Hunter, 2007).

A.6 Infrastructure
We ran our experiments on a server running Ubuntu
22.04, equipped with NVIDIA Tesla V100-SXM2
GPUs with 32GB of memory and Intel Xeon Plat-
inum 8260 CPUs.
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