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Abstract

Document-level relation extraction aims to cat-
egorize the association between any two en-
tities within a document. We find that previ-
ous methods for document-level relation ex-
traction are ineffective in exploiting the full
potential of large amounts of training data with
varied noise levels. For example, in the ReDo-
cRED benchmark dataset, state-of-the-art meth-
ods trained on the large-scale, lower-quality,
distantly supervised training data generally do
not perform better than those trained solely
on the smaller, high-quality, human-annotated
training data. To unlock the full potential of
large-scale noisy training data for document-
level relation extraction, we propose TTM-RE, a
novel approach that integrates a trainable mem-
ory module, known as the Token Turing Ma-
chine, with a noisy-robust loss function that
accounts for the positive-unlabeled setting. Ex-
tensive experiments on ReDocRED, a bench-
mark dataset for document-level relation ex-
traction, reveal that TTM-RE achieves state-of-
the-art performance (with an absolute F1 score
improvement of over 3%). Ablation studies
further illustrate the superiority of TTM-RE in
other domains (the ChemDisGene dataset in
the biomedical domain) and under highly unla-
beled settings.

1 Introduction

Relation extraction aims to classify the relation-
ships between two specified entities into predefined
categories. This task is pivotal in natural language
processing, as it involves identifying and categoriz-
ing the connections between two entities (for exam-
ple, "Pacific Fair" and "Queensland" in Figure 1)
into predefined classes (for example, "located in"
in Figure 1). Its importance spans across various
downstream applications, encompassing question
answering (Veena et al., 2017), knowledge graph
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Pacific Fair1 is a major shopping centre in Broadbeach Waters on
the Gold Coast, Queensland1, Australia. It was Queensland2's
largest regional shopping centre until 2006. Pacific Fair2 was
developed by Hooker Retail Developments and opened in 1977 on
what was swampland with 96 specialty stores and two anchor
tenants.
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Figure 1: Differences between the generic document
relation extraction approach and TTM-RE for document-
level relation extraction. The memory module processes
the input entities and outputs to the relation classifier.
We investigate how adding the memory component af-
fects performance (such as different datasets and mem-
ory sizes).

construction (Distiawan et al., 2019), and the ex-
traction of general patterns (Han et al., 2020).

Previous work for relation extraction mainly fo-
cuses on sentence-level relations (Alt et al., 2020).
For example, Sainz et al. (2021) characterized each
relation class using a label verbalizer and addressed
the relation extraction task through a textual en-
tailment model, as well as other models such as
DeepStruct (Wang et al., 2022a). However, tech-
niques that are primarily designed and evaluated for
extracting relationships at the sentence level, face
challenges that limit their suitability for datasets
focused on document-level relation extraction such
as ReDocRED (Tan et al., 2022c).

These challenges include a large label imbalance
and a large number of possible combinations be-
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tween possible head and tail entity pairs in each
document, which is quadratic. Previous work has
generally addressed DocRE’s label imbalance with
custom loss functions and its quadratic entity com-
putation by minimizing document processing. Usu-
ally, a common processing step for the document
inspired by Zhou et al. (2021a) is used. Initially, a
pre-trained encoder processes the entire document
as a whole. Subsequently, indexing over the en-
tity mentions can be employed to retrieve the head
and tail entities for classification. Recent work has
mainly focused on novel loss functions (Tan et al.,
2022a; Wang et al., 2022b) or additional inputs
such as evidence (Ma et al., 2023).

However, less effort has been made in effectively
leveraging the large amount of the distantly labeled
data in ReDocRED and DocRED (Yao et al., 2019;
Tan et al., 2022c). Most work (Tan et al., 2022b;
Ma et al., 2023) use the distantly labeled dataset
for knowledge distillation–that is, a model is first
trained on the fully human annotated train data,
and then used to obtain output logits on the dis-
tantly supervised data. These logits, along with the
distant relation labels, are then used as guidance
in training a secondary student model. However,
previous work investigating fine-tuning on the dis-
tantly supervised dataset has failed to significantly
boost performance (as we show later in our results).
Previously, this could be explained by the lower
quality and the lack of human annotation on the
distantly supervised dataset. However, we assert
that this is due to an architectural limitation on the
prevailing framework.

Recently, numerous studies have highlighted the
advantages of incorporating memory in both com-
puter vision and NLP to acquire pertinent repre-
sentations from past data points that facilitate im-
proved classification performance. For instance,
Barraco et al. (2023) showcased the enhanced per-
formance of an encoder-decoder model for image
captioning by integrating memory of past observa-
tions into the attention mechanism. Additionally,
the integration of memory has been demonstrated
to enhance performance in knowledge-intensive
tasks such as long-form question answering and di-
alogue (Wu et al., 2022). More recently, Google’s
Token Turing Machine (TTM) (Ryoo et al., 2023)
has showcased state-of-the-art performance in real-
world long-sequential visual understanding using
an autoregressive Transformer model equipped
with memory.

Drawing from recent advancements in memory-

Pacific Fair1 is a major shopping
centre in Broadbeach Water on the Gold
Coast, Queensland1, Australia. It was
Queensland2’s largest regional shopping
centre until 2006. Pacific Fair2 was
developed by Hooker Retail Developments
and opened in 1977 on what was swampland
with 96 specialty stores and two anchor
tenants.

Figure 2: Sample document relation extraction docu-
ment from DocRED (Yao et al., 2019). Here, the head
entity is related to the tail entity by "P131: located
in the administrative territorial entity".

augmented models, we introduce TTM-RE, the in-
augural memory-augmented architecture designed
specifically for document-level relation extraction.
Through empirical evidence, we demonstrate that
this architecture enables notably enhanced fine-
tuning on extensive distantly labeled data from
empirical observations. Specifically, we show that
adding memory tokens from TTM (Ryoo et al.,
2023) empirically enhances downstream relation
classification by allowing reprocessing of head and
tail entities while jointly considering the learned
memory tokens in mind (see Figure 1).

1. We propose TTM-RE, the first memory-
augmented document-level relation extraction
model. By incorporating pseudo entities, it
significantly enhances downstream relation
classification performance on datasets such as
ReDocRED (+3 F1 score) and ChemDisGene
(+5 F1 score).

2. We show that without any human-labeled data,
TTM-RE achieves impressive relation extraction
performance on unseen data (+9 F1 score). Fur-
thermore, in an extremely unsupervised scenario
(19% of training labels), TTM-RE outperforms
the previous SOTA by an impressive margin
(+12 F1 score).

3. We perform a thorough analysis of ablations
examining the performance of TTM-RE across
less/more frequent relation classes, assessing
the impact of memory size, layer size, and the
utilization of different base models.
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2 Related Work

2.1 Document-level Relation Extraction

Document-level relation extraction stands as a crit-
ical endeavor in natural language processing, given
that over 40.7% of relations necessitate the extrac-
tion of information spanning multiple sentences
and multiple entity mentions (Yao et al., 2019; Tan
et al., 2022c; Zhang et al., 2022a). In Figure 2,
we illustrate an instance of document-level rela-
tion extraction. Here, the objective is to discern
the relationship between a pair of entities ("Pacific
Fair" and "Queensland") within the provided doc-
ument. Each entity is referenced twice in the text
(indicated by superscripts).

Thus, a document with n entities will have
n(n− 1) possible relation predictions. Zhou et al.
(2021a) proposed ATLOP, which uses a single pass
to encode the document using Roberta-large and
indexing relevant entities in the token embeddings.
Many works (Tan et al., 2022a; Wang et al., 2022b;
Tan et al., 2022b) have proposed new loss func-
tions on top of a single encoder pass (usually added
on top of ATLOP (Zhou et al., 2021a)) to alle-
viate the combinatorial bottleneck and propose
loss functions to tackle the class-imbalance prob-
lem in document-level relation extraction. Zhou
et al. (2021a) introduced the ATLOP, which uses
Roberta-large as the encoder and adaptive thresh-
olding for the multilabel relation classification.
Tan et al. (2022a) introduced KD-DocRE, which
combines axial attention over the entity mentions
with adaptive focal loss and knowledge distilla-
tion. Wang et al. (2022b) introduced a loss that
considered a positive-unlabeled nature of the label
distribution. Ma et al. (2023) proposed using the ev-
idence labels along with the distantly supervised la-
bels to achieve the current SOTA. Like other works,
TTM-RE also utilizes this single-pass encoder ap-
proach, as it is elegant and efficient. However, we
introduce a new model component described in the
next section.

2.2 Memory-based Models in NLP

Memory-based models have begun to see rising
usage in the CV and image captioning areas. How-
ever, their usage in NLP has been surprisingly lim-
ited. Still, there are some interesting and relevant
work to our application. De Jong et al. (2021)
utilized ’mention memory’ to represent knowl-
edge—a table of dense vector representations of
each entity mention in the corpus, and demon-

strated good performance on multiple open-domain
tasks including claim verification, and entity-based
QA. Zhong et al. (2022) introduced a training ob-
jective that directly utilizes memory sets from local,
long-term, and external and showed reduced per-
plexity on WIKITEXT-103. Chen et al. (2022)
introduced a question-answer augmented encoder-
decoder model and pretraining strategy, demon-
strating improved performance on single-hop and
multi-hop QA datasets. Wu et al. (2022) learns keys
and values that represent questions and correspond-
ing answers respectively; at inference time, the
model would retrieve information from the mem-
ory using maximum inner product search.

Inspired by Token Turing Machines, TTM-RE’s
memory mechanism differs from these approaches
in that it does not necessitate learning relevant por-
tions of real text. It simply learns memory tokens
(dense embeddings). This is uniquely suited to
our application, as retrieving and reprocessing text
requires additional LLM encoder calls for each
entity-entity pair, which is quadratic in nature.

3 Methodology

We propose TTM-RE, a memory-augmented,
document-level relation extraction method. An il-
lustration of the overall framework of TTM-RE is
shown in Figure 3.

3.1 Problem Definition
In the task formulation, we examine a document D
that comprises M sentences (s1, s2, ..., sM ), N en-
tities (e1, e2, ..., eN ), and R relation classes. Given
this document D and a specified pair of entities (eh,
et), the goal is to forecast a set of positive relations
(r̂1, r̂2, ..., r̂p) between the entity pair based on the
information derived from the document. It’s impor-
tant to note that each entity may appear multiple
times within the document D and that each possi-
ble entity-entity pair needs to be considered (i.e. if
n entities, we need to consider R×N × (N − 1)
possible relations).

3.2 Token Turing Machines
The memory, denoted as M ∈ Rm×d, comprises a
collection of m tokens each with a dimensionality
of d. The input, consisting of n tokens represented
by I ∈ Rn×d, is combined with the memory M .
This concatenated input is then further processed
to generate an output denoted as O ∈ Rr×d, where
r represents the desired number of retrieved to-
kens. The outputs from this process, in conjunction
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Figure 3: Overall framework of TTM-RE. Given an example document and an expected relation distribution, we use
an LLM (Roberta-Large) to encode the input tokens in a single pass and consider head and tail entities by their
token representations, which are then fed into a memory module (in gray). The memory module then returns 2
memory-augmented versions of the head and tail entities for final relation classification.

with the preceding inputs and the current mem-
ory, constitute the output of the TTM. In our case,
I ∈ R2×d, O ∈ R2×d for the head and tail entities.

Token Turing Machines add support for external
memory in the form of tokens (Figure 3 Memory
Module). In Token Turing Machines (TTMs), the
interface between the processing unit and memory
are done purely in terms of “read” and “write” op-
erations. Note that in the original paper, the output
from the processing unit is “written” to the mem-
ory, but in our case, since we are not applying this
model sequentially, we can ignore this step and
focus solely on the reading portion.

Initializing Memory Tokens: We follow the
original implementation of TTM and initialize
memory tokens from scratch, with one major dif-
ference. While the original code initialized tokens
from zeros, we found that this led to a lack of gradi-
ent updates. Therefore, we initialize from a normal
distribution to allow for improved learning. Note
that we cannot simply use entity text embeddings
since the memory layer is after all processing steps
and only before the final classification layer. We
found this setup to work the best empirically, but
further research is needed on the placement of the
memory mechanism.

Reading from Memory: While the memory is
intended to encapsulate condensed information
deemed significant by the model, not all of this
data may be relevant. Additionally, redundancies

in the input, denoted as I , can arise due to informa-
tion already stored in our memory, M , or inherent
within the data itself. Selective reading where only
a smaller subset of tokens is considered should
encourage the model to create a memory reposi-
tory containing relevant information over the entire
relation classification task.

We summarize a token set I ∈ Rn×d by deriving
an importance weight vector, wi ∈ Rn, which we
utilize to compute a weighted aggregation across
the n tokens. Notably, each output token, indexed
as i ∈ 1, . . . , k, possesses its corresponding weight
wi, computed using a learnable function that takes
the input I itself, denoted as αi(I) : Rd → R. This
importance weighting function is implemented
through a Multi-Layer Perceptron (MLP) deter-
mined as wi = αi(I) = softmax(MLP(I)).

Subsequently, these weights facilitate a weighted
summation of the inputs. Let V be a generic
list of input tokens we wish to analyze. For our
specific case, it is the concatenation of both the
memory tokens M and the input tokens I . I.e.
V = [M∥I]. Let us obtain encoded token zi =
wi · V = αi(V ) · V , where each token zi effec-
tively condenses all tokens from the complete set
V , guided by the dynamic weighting wi = αi(V ).
As the model learns to summarize p tokens into r
tokens, it generates a matrix W = [w1, · · · , wr]
comprising importance weights relative to the mem-
ory tokens. Also, to allow the model to read from
a location, take advantage of memory token posi-
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tion, and distinguish them from input tokens, there
is a learnable positional embedding (Dosovitskiy
et al., 2020) before each read module. All of this is
captured in a memory reading function defined as:
Z = Read(M , I) = Sr([M ||I]). Where [M ||I]
is the concatenated memory M and input I , and
Sr(·) : R(|I|+|M |)×d → Rr×d. In our application,
we set r = 2 to learn memory augmented head
eh′ ∈ Rd and tail et′ ∈ Rd entities for the head and
tail entity relation classification problem.

3.3 Processing of Head and Tail Entities
After retrieving our memory-augmented head S1

and tail S2 entities, we use the group bilinear ap-
proach as specified in Zhou et al. (2021b); Tang
et al. (2019) to reduce the number of parame-
ters to enable more efficient learning. Each en-
tity is split into k sections of dimension d/k,
eh′ = [e1h|| . . . ||ekh′ ], et′ = [e1t′ || . . . ||ekt′ ]

p(r|eh′ , et′)s = σ

(
k∑

i=1

eih′Bieit′

)

Bi ∈ Rd/k×d/k denotes bilinear layers, and the
sum of the products represents the grouped bilinear
layer. This reduces parameters from d2 → d2/k
and enables much better performance empirically.

Furthermore, the final output is a prediction vec-
tor of dimension R+1 (number of all relations + 1
to learn the threshold value), as we adopt the adap-
tive thresholding approach implemented by Zhou
et al. (2021b), which most other recent Document
RE work as done as well (Ma et al., 2023; Tan et al.,
2022a).

3.4 Noise-Robust Loss Function (SSR-PU)
There exists a large number of false negatives in the
labeled relation triples. Gao et al. (2023) demon-
strated difficulty in learning to ignore the false neg-
atives for zero-shot prompting, revealing the dif-
ficulty of prompting LLMs for document relation
extraction. To address this problem, we adopt Pos-
itive Unlabeled (PU) learning with the prior shift
for each class as in Wang et al. (2022b) (Plessis
et al., 2015; du Plessis et al., 2014).

Ordinary PU learning assumes that the over-
all distribution is the same as the distribution of
the unlabeled data, which may not be true in our
case. To address this problem, PU learning under
the prior shift of training data needs to be consid-
ered (Charoenphakdee and Sugiyama, 2019). For
each class, assume that the original prior πi =

Table 1: Statistics of the Re-DocRED dataset (Train,
Dev, and Test are fully reprocessed from DocRED for
improved accuracy and completeness). In total, there
are 96 relations. The distantly supervised dataset is
the same as in DocRED and is created with no human
supervision.

Statistics Distant Train Dev Test
# Docs 101,873 3,053 500 500

Avg. # Entities 19.29 19.4 19.4 19.6
Avg. # Labeled Triples 14.79 28.1 34.6 34.9

Avg. # Sentences 8.13 7.9 8.2 7.9

p(yi = +1). Let πlabeled,i = p(si = +1) and
(1−πlabeled,i) = (1− p(si = +1)) = p(si = −1)
where si = +1 or si = −1 mean that the i-th class
is labeled or unlabeled, respectively.

The conditional probability of a positive sample
under unlabeled data is:

πu,i = p(yi = 1 | si = −1)

=
πi − πlabeled,i
1− πlabeled,i

The non-negative risk estimator under class prior
shift of training data is obtained as follows (Kiryo
et al., 2017; Wang et al., 2022b):

R̂S−PU(f) =

K∑

i=1

(
πi
nPi

nPi∑

j=1

ℓ(fi(x
Pi
j ),+1)

+ max(0, [
1

nUi

1− πi
1− πu,i

nUi∑

j=1

ℓ(fi(x
Ui
j ),−1)

− 1

nPi

πu,i − πu,iπi
1− πu,i

nPi∑

j=1

ℓ(fi(x
Pi
j ),−1)]))

where πi = p(yi = +1) denotes probability of pos-
itive prior for relation class i. nPi are the number
of positive and nUi are the unlabelled samples of
class i, respectively. ℓ is a convex loss function,
and fi(·) is a score function that predicts class i.
xPi
j and xUi

j denotes that the j-th sample of class
i is positive and unlabeled as class i respectively.
Please see Appendix F for more details.

4 Experimental Settings

4.1 Datasets

ReDocRED To evaluate our methodology, we
primarily use ReDocRED (Tan et al., 2022c), an
open-access, document-level relation extraction
dataset that improves upon the popular DocRED
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Table 2: Statistics of the ChemDisGene dataset. In total,
there are 14 relations. The distantly supervised training
is created with no human supervision.

Statistics Train (Distant) Test

# Docs 76942 523
Avg # Entities 7.5 10

Avg # Labeled Triples 2.1 7.2

dataset (Yao et al., 2019) by resolving incomplete-
ness, addressing logical inconsistencies, and cor-
recting coreferential errors. Table 1 shows the
amount of training data available for all data splits
as well as the average number of entities. Note that
we primarily use the Dev set of ReDocRED for our
experiments for computational practicality.

ChemDisGene ChemDisGene (Zhang et al.,
2022a) is a biomedical multi-label document RE
dataset. Entity mentions were obtained using Pub-
Tator Central (Wei et al., 2019), and the relation-
ships are based on the Comparative Toxicoge-
nomics Database (Davis et al., 2021). Table 2
shows the stats for the data. It comprises 523 ab-
stracts meticulously curated by a team of biolo-
gists. Our training uses the larger distantly super-
vised training set, while evaluation is conducted
using the fully expert-labeled test set. The aver-
age number of relations per document in the test
set across both datasets significantly exceeds the
average number of relations per document in the
training set. This indicates the incomplete labeling
phenomenon in the training set with a large number
of false negatives, much like DocRED, before the
updated ReDocRED.

4.2 Baselines

For ReDocRED, we compared baselines ranging
from fully supervised to distantly supervised. We
will compare three settings, all evaluated on the
same human-annotated test and development set.
All models were chosen using the best scores on
the dev set.

1. Human Annotated Only: Denotes training
only on the 3053 training dataset

2. Distantly Supervised Only: Denotes training
only on the 101,873 distant dataset per DocRED,
as ReDocRED does not revise this dataset.

3. Human Annotated + Distantly Supervised:
Combines these two datasets.

Baseline models do this in a variety of different
ways, with some using knowledge distillation (i.e.
teacher training on human-annotated, student train-
ing from teacher output on distantly supervised). In
TTM-RE, we fine-tune on distantly supervised train-
ing data via the regular loss, freeze the memory
tokens, and then fine-tune on the training set.

For fully supervised (Human Annotation Only
setting), we compare against ATLOP (Zhou et al.,
2021b), DREEAM (Ma et al., 2023), KD-DocRE
(Tan et al., 2022b), and SSR-PU (Wang et al.,
2022b). For the distantly supervised setting, we
only compare against SSR-PU, as it is shown to
be better than ATLOP. Furthermore, DREAM and
KD-DocRE both primarily use knowledge distil-
lation to achieve their improvements over ATLOP,
only using the distantly supervised data to create
the teacher logits to supervise the student model.
Therefore, we believe that our "fine-tuning on
both the distantly and fully supervised training
data" would not maintain the spirit of the base-
line method. Finally, since the main focus of many
of the previous baselines combines distantly super-
vised work with human annotations, we also eval-
uate all models on the combined human+distantly
supervised datasets.

For ChemDisGene, we compared against base-
lines BRAN (Verga et al., 2018), PubmedBert (Gu
et al., 2021), PubmedBert + BRAN (Zhang et al.,
2022b), ATLOP, and Wang et al. (2022b) with
(Positive-negative, positive-unlabelled, and the fi-
nal SSR-PU variants).

In our experiments, we use precision, recall, and
F1 scores as the evaluation metrics for the perfor-
mance comparison. All standard deviations were
calculated with 5 runs with different random seeds.
More details about these evaluation metrics can be
found in Appendix B.

5 Results

Main Results Table 3 shows the main results of
our experiments. We see here that the Human An-
notated Only dataset performs on the same level as
the current SOTA results, DREEAM and SSR-PU.
However, we see that on the 2 other settings, Dis-
tantly Supervised and the combined Human + Dis-
tantly Supervised, TTM-RE outperforms other meth-
ods by a significant margin, when considering the
standard deviation (+9 F1 and +3 F1 respectively).
This implies that our model is much more effective
with larger-scale training data even with noise in it,
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Table 3: We compare all results against strong document relation extraction baselines: DREEAM (Ma et al., 2023),
ATLOP (Zhou et al., 2021b), KD-DocRE (Tan et al., 2022a), and SSR-PU (Wang et al., 2022b). Bold denotes best
performance or within 1 standard deviation.

Dev Test
Model F1 Ign F1 Precision Recall F1 Ign F1 Precision Recall

Original (Human Annotation Only)

DREEAM 79.42±0.18 78.36±0.19 74.74±0.64 85.15±0.25 80.20±0.45 78.56±0.39 75.74±0.65 83.89±0.61

ATLOP 76.15±0.23 75.88±0.23 69.62±0.81 84.26±0.97 77.81±0.71 76.13±0.28 67.76±0.23 85.35±0.62

KD-DocRE 77.88±0.42 77.12±0.49 85.16±0.58 71.30±0.79 78.28±0.72 77.60±0.25 89.76±0.14 69.40±0.03

SSR-PU 78.58±0.11 78.08±0.14 75.59±0.27 86.89±0.51 80.18±0.31 78.61±0.46 69.43±0.43 90.50±0.53

TTM-RE 78.13±0.12 78.05±0.17 83.28±0.29 76.28±0.61 79.95±0.13 78.20±0.34 85.81±0.55 76.68±0.22

Distant Only

ATLOP 40.42±0.61 32.14±0.41 31.11±0.66 60.30±0.81 53.42±0.73 51.14±0.66 51.11±0.69 55.95±0.91

SSR-PU 39.35±0.46 35.04±0.38 23.35±0.27 72.63±0.47 54.46±0.48 53.26±0.20 48.02±0.34 62.89±0.42

TTM-RE PU 41.83±0.24 48.83±0.43 39.79±0.54 74.32±0.34 57.48±0.36 54.63±0.32 44.56±0.20 81.71±0.45

TTM-RE 42.21±0.15 39.79±0.37 27.68±0.12 81.70±0.19 63.00±0.29 61.55±0.41 67.56±0.24 59.02±0.30

Human + Distant

DREEAM 79.29±0.23 78.89±0.33 74.61±0.24 85.15±0.30 81.67±0.35 78.95±0.31 75.72±0.35 84.88±0.42

ATLOP 75.87±0.53 74.83±0.16 70.81±0.73 80.67±0.92 77.31±0.65 75.72±0.22 69.92±0.26 84.10±0.55

KD-DocRE 78.62±0.56 77.15±0.31 80.89±0.24 73.02±0.26 80.62±0.45 80.32±0.42 83.58±0.21 75.06±0.32

SSR-PU 80.09±0.74 78.26±0.30 74.51±0.25 84.83±0.30 80.52±0.43 78.84±0.31 74.24±0.44 87.96±0.51

TTM-RE PU 77.10±0.61 76.85±0.41 73.39±0.15 80.94±0.23 79.24±0.34 80.99±0.24 78.90±0.50 80.49±0.28

TTM-RE 83.56±0.42 83.01±0.35 88.09±0.31 81.78±0.27 84.01±0.21 83.11±0.37 86.03±0.34 82.09±0.27

such as the distantly supervised training datasets.
This intuitively makes sense since the memory to-
kens are initialized from scratch, and would benefit
much more from larger-scale training data. Further
research should seek to improve the initialization
of the memory tokens, which could lead to faster
training and further performance gains.

Finally, we observe that other baselines do not
generally improve significantly even after train-
ing with distantly supervised and human-annotated
data, which could be caused by architectural lim-
its. Notably, this implies that TTM-RE’s memory
module adds processing capability that is actually
significantly useful (Section 5 shows us an example
where adding more parameters does not help).

ChemDisGene Results Table 4 shows that
TTM-RE does indeed translate to other domains be-
yond the general task, with a 5 F1 point improve-
ment over the best baseline. We observe TTM-RE
performs well on the human-annotated training
data. This is presumably because ChemDisGene
has a larger dataset for training, so the memory to-
kens can be learned more effectively and, therefore
it does not negatively affect performance as com-
pared to the ReDocRED fully supervised setting.

Classifying Frequent/Infrequent Labels Previ-
ous work has shown that adding a memory com-

Table 4: F1 on ChemDisGene test dataset (all relation-
ships). The models shown with ∗ are taken from Wang
et al. (2022b) accordingly. Standard deviations are
shown with 5 random seed runs. Note that all base-
line results are from Wang et al. (2022b) and Zhang
et al. (2022b).

Model F1 Precision Recall

BRAN∗ 32.5 41.8 26.6
PubmedBert∗ 42.1 64.3 31.3

BRAN* 43.8 70.9 31.6

ATLOP∗ 42.73±0.36 76.17±0.54 29.7±0.36

PN 44.25±0.24 73.46±0.95 31.67±0.16

PU 44.6±0.70 46.56±1.17 42.8±0.35

SSR-PU 48.56±0.23 54.27±0.40 43.93±0.32

TTM-RE 53.59±0.27 53.83±0.85 53.34±0.15

ponent yields better performance on long-tailed or
imbalanced class classification problems. We do
generally see this phenomenon in Table 5, as the
difference is around 4 F1 and 4.5 F1 on the top
10 labels and the rest of the data. This difference
is slightly more pronounced in the top 5, as we
see a difference of 3.5 F1 and 5.5 F1 respectively.
This indicates that baseline models perform slightly
worse on the infrequent classes, whereas TTM-RE’s
memory component can help alleviate this perfor-
mance drop.
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Table 5: Performance comparison of Top-K most com-
mon labels on the test dataset of ReDocRED. All but
Top-K indicates the remainder of the 96−K labels.

Model F1 Ign F1 Precision Recall

Top 10 Labels

ATLOP* 62.12±0.50 58.53±0.62 50.70±0.61 80.19±0.45

SSR-PU 64.28±0.31 60.87±0.68 53.41±0.35 80.72±0.43

SSR-PU+TTM 68.21±0.20 64.52±0.43 57.94±0.53 86.40±0.34

All but Top 10 Labels

ATLOP* 39.47±0.59 37.42±0.34 27.34±0.72 70.97±0.60

SSR-PU 39.37±0.41 37.39±0.45 27.62±0.62 68.51±0.47

SSR-PU+TTM 44.04±0.41 40.97±0.49 32.01±0.69 76.07±0.69

Top 5 Labels

ATLOP* 55.79±0.42 51.34±0.29 42.41±0.56 81.48±0.32

SSR-PU 58.32±0.32 54.01±0.36 45.04±0.79 82.69±0.43

SSR-PU+TTM 62.03±0.71 56.68±0.28 48.78±0.69 87.77±0.35

All but Top 5 Labels

ATLOP* 47.60±0.47 45.63±0.60 35.63±0.47 71.69±0.45

SSR-PU 47.35±0.54 45.46±0.37 35.99±0.54 69.20±0.50

SSR-PU+TTM 53.02±0.53 49.97±0.31 41.17±0.56 76.97±0.40

Table 6: Extremely unlabeled scenario (with less than
19% of the original training labels as proposed by Wang
et al. (2022b)). Standard deviations are shown with 5
random seed runs.

Model F1 Ign F1 Precision Recall
Human Annotation Only

ATLOP 18.17±0.66 18.14±0.33 91.67±3.39 11.16±1.38
SSR-PU 52.78±0.46 51.53±0.41 46.12±0.57 61.69±0.78
TTM-RE 52.60±0.42 51.30±0.43 43.97±0.66 65.45±0.58

Human Annotation + Distantly Supervised
ATLOP 19.16±0.23 19.01±0.46 96.36±0.41 8.51±0.29
SSR-PU 54.34±0.21 54.12±0.50 87.40±0.61 39.43±1.01
TTM-RE 66.47±0.18 66.04±0.46 81.40±0.85 56.17±0.94

Extremely Unlabeled Setting Wang et al.
(2022b) introduced an "extremely unlabeled" sce-
nario, that reduced the training labels to a mere
19% of the original labels. We also evaluate our
model on the extremely unlabeled setting (19%) of
the original training triples in ReDocRED (Wang
et al., 2022b) (Table 6). We again see that TTM-RE
does not work better than baselines on fully super-
vised, yet increases to 12 F1 points over the best
baseline when allowed to train on distantly super-
vised data. We hypothesize that this is due to the
better learning of the infrequent classes as shown
in Table 5.

Memory Token Size In Figure 4, we generally
see an improvement in model performance (F1,
Precision, and Ign F1) when increasing the READ
module as well as the memory token size of the
Token Turing Machine. While we halted at 4 layers
and 200 tokens due to computational constraints,
this trend is promising as it suggests that there
are potential performance improvements awaiting
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Figure 4: Left Figure: Effect of the size of the number
of layers in the memory encoder. More layers imply
a more powerful memory module. Right Figure: Ef-
fect of the number of memory tokens (Memory Size)
available to be used in TTM-RE on the test dataset of
ReDocRED.
Table 7: Comparison of RoBERTa-large vs the more
recent DeBERTaV3-large on the test dataset of ReDo-
cRED.

Model F1 Ign F1 Precision Recall
Human Annotation Only (RoBERTa-large)

SSR-PU 80.18±0.31 78.61±0.46 69.43±0.43 90.50±0.53
TTM-RE 79.95±0.13 78.20±0.34 85.81±0.55 76.68±0.22

Human Annotation Only (DeBERTaV3-large)
SSR-PU 78.73±0.25 77.05±0.12 74.25±0.16 83.79±0.10
TTM-RE 78.88±0.22 77.29±0.19 75.63±0.21 82.42±0.18

Human + Distant (RoBERTa-large)
SSR-PU 80.52±0.43 78.84±0.31 74.24±0.44 87.96±0.51
TTM-RE 84.01±0.21 83.11±0.37 86.03±0.34 82.09±0.27

Human + Distant (DeBERTaV3-large)
SSR-PU 79.65±0.27 78.34±0.23 82.65±0.27 78.49±0.19
TTM-RE 80.56±0.16 79.49±0.21 83.44±0.24 77.88±0.25

exploration in future endeavors, albeit requiring
increased computational resources.

Using DebertaV3 as the Base Model: Inter-
estingly, all baselines generally rely on Roberta-
large as the base model. We also explored using
DebertaV3-large, which is presented as a more re-
cent and powerful model due to its larger parameter
count and higher performance on the GLUE bench-
mark (improvements include disentangling atten-
tion, an enhanced decoding layer (He et al., 2020),
and Electra-style pretraining (He et al., 2021)).
However, from Table 7, we see that for document
RE, it surprisingly does not improve performance.
Because of this observation, the TTM-RE also uses
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Roberta-large. Additionally, this demonstrates a
case where naively adding parameters does not
help improve relation classification performance,
whereas adding the memory mechanism does.

6 Discussion

Analysis of Memory Module The Token Turing
Machine (TTM) memory module performs best
with a large training set. This leads to an important
question: what other applications could provide
such extensive training data? While it is true that
TTM benefits from a large dataset, potential appli-
cations include any field within NLP or computer
vision. Moreover, these datasets do not necessar-
ily need to be human-annotated. For instance, the
DocRED dataset was distantly supervised using
Wikipedia and spaCy for NER and relation linking
via Wikidata. Similar methods can be employed
to create datasets for specific tasks. TTM-RE has
demonstrated improved performance with these dis-
tantly supervised datasets compared to other base-
lines.

Dataset Size We hypothesize that performance
is correlated with the size of the dataset. Notably,
TTM-RE outperforms baselines in ChemDisGene
without finetuning on a related dataset. Given
that the human-annotated ReDocRED dataset con-
tains only 3,053 documents, compared to 101,873
for distantly supervised datasets and 76,942 for
ChemDisGene, the memory mechanism may re-
quire a certain amount of finetuning before it is
fully effective. This suggests further research is
needed to find more efficient ways to optimize the
memory mechanism. However, future work is re-
quired to fully investigate this phenomenon.

7 Conclusion

In this paper, we investigated TTM-RE, integrat-
ing TTMs relation classification and evaluated
our model on ReDocRED and ChemDisGene RE
datasets. To summarize our contributions, no pre-
vious work has explored memory in this distantly
supervised setting. As such, TTM-RE demonstrates
a completely new way of increasing performance
for the difficult task of document-level relation ex-
traction as opposed to previous work, which mainly
improved the loss function (Zhou et al., 2021a;
Wang et al., 2022b). For this work, we found
compelling results by performing ablations that
showed that adding (and increasing) the number
of memory tokens/layers helped performance over

baselines, compared to simply using larger models
like Deberta V3. Table 5 also demonstrates the
improvement in the less-represented labels as op-
posed to the top 10 labels (which comprise 62% of
the dataset). Additionally, we show that in Figure 4,
performance continues to improve as we add more
memory tokens.

We also observed that TTMs necessitate either
fine-tuning on a large distantly-labeled training
dataset or a significantly large human-annotated
training dataset (ChemDisGene) to optimize mem-
ory vector initialization. We believe that this work
lends itself to future work in this exciting area, and
we hope that our findings will pave the way for fu-
ture exploration of memory-augmented techniques
in large language models for information extraction
tasks.

Limitations

Although we investigated multiple different LLMs
and parameters and the type relation distribution
for relation prediction as well as addressing the
false positives, the performance we attained is still
limited compared to supervised methods on the
same task. Relation prediction still requires a large
amount of data, despite TTM-RE’s ability to use dis-
tantly supervised data. Future work should seek
to tackle this approach that combines labeled data
creation with SOTA document relation extraction
models for maximum efficiency on human annota-
tors.

Ethical Statement

Based on the methodology we have currently em-
ployed, we do not foresee any significant ethical
concerns. All the documents and models utilized
in our study were obtained from open-source do-
mains, ensuring a transparent and accessible source
of information. Additionally, TTM-RE is trained on
purely open-source document relation extraction
data, eliminating the risk of privacy leakage. Addi-
tionally, the task of relation extraction is a widely
recognized and well-studied problem across vari-
ous natural language processing applications.

However, it is crucial to acknowledge a minor
factor, namely the presence of potential hidden bi-
ases within the pre-trained language models used in
our analysis. These biases may stem from the data
on which the models were trained, which could
have inadvertently introduced implicit human bi-
ases. While our usage of these pre-trained language
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models enables us to identify relationships between
arbitrary entities, it is conceivable that biases may
emerge if one were to explore sensitive relation
classes and entities.

ChatGPT and Grammarly were used for parts
of the writing. In total, training took more than
75 hrs on NVIDIA RTX A6000 for pretraining
in total. The main roadblock was the distantly
supervised finetuning portion for all of the models,
due to the size of the dataset. Derivatives of data
accessed for research purposes should not be used
outside of research contexts. Code will be released
at https://github.com/chufangao/TTM-RE.
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A Parameter Settings

All models were run on an NVIDIA A6000 with 48
gigabytes of VRAM. Still, around 10 days were re-
quired to fully run the experiments. For particularly
expensive computations, like LogitsSR, only the
fastest model–UnifiedQA-large–could be feasibly
run.

All models were downloaded from Huggingface
(Wolf et al., 2019). We used the default setup of
the pre-trained models and did not do further fine-
tuning. All the step mentioned in the methodology
section works on the output of the pre-trained mod-
els.

Supervised results DREEEAM (Ma et al., 2023)
and KD-DocRE (Tan et al., 2022a) were taken from
the original source papers.

B Evaluation Metrics

To keep in tradition with existing document relation
extraction work, we report both F1 and Ign_F1 as
computed by the official metrics from ReDocRED.
F1 refers to micro-averaged F1 score that combines
precision P and recall R

F1 =
2PR

P +R

P =
length of correct (h,t,rel) preds

length of all (h,t,rel) preds

R =
length of correct (h,t,rel) preds

length of correct (h,t,rel)

Where (h,t,rel) denotes a tuple of the predicted
head, tail, and relation. Ign_F1 is computed sim-
ilarly to above but ignores the samples in the Do-
cRED’s distantly supervised training set. (Note
that we do not use any distantly labeled data).

C Ablation Tables

Tables 8 and 9 for Figure 4.

Table 8: Ablation regarding the number of layers in the
memory encoder. More layers imply a more powerful
memory module. Results are evaluated from the test
dataset of ReDocRED.

Num Layers F1 Ign F1 Precision Recall
1 83.56±0.19 82.58±0.19 85.05±0.25 82.11±0.20
2 83.58±0.36 82.64±0.19 85.64±0.15 81.61±0.16
3 83.96±0.15 82.46±0.28 85.26±0.23 81.66±0.28
4 84.01±0.23 83.11±0.20 86.03±0.18 82.09±0.30

Table 9: Effect of the size of the number of memory
tokens available to be used in TTM-RE on the test dataset
of ReDocRED.

Mem. Size F1 Ign F1 Precision Recall
10 83.20±0.23 82.24±0.16 85.31±0.12 81.18±0.13
50 83.52±0.21 82.59±0.14 85.65±0.31 81.50±0.17
100 83.67±0.19 82.82±0.22 87.01±0.24 80.57±0.20
200 84.01±0.17 83.11±0.20 86.03±0.19 82.09±0.13

D PCA Plots of Memory Tokens

Shown in Figure 5, we see that the token embed-
dings lie in a scattered space around the head en-
tities. This makes intuitive sense as the prototypi-
cal tokens should capture a diverse set of different
types of head tokens.
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Figure 5: Plot of PCA-transformed head entities along
with (200) memory entities. Tail entities are omitted
due to redundancy.

E Literature Review Continued

Pre-trained language models, such as BERT-based
architectures (Xu et al., 2021), have shown con-
siderable efficacy in document-level relation ex-
traction. BERT-based methodologies have inte-
grated approaches like hierarchical inference net-
works (Tang et al., 2020), enhanced co-reference
reasoning (Ye et al., 2020), and adaptive thresh-
olding. Furthermore, graphical neural networks
(GNNs) (Zeng et al., 2020) have been leveraged for
document-level relation extraction, employing tech-
niques such as feature learning on a coreference
graph (Sahu et al., 2019), edge-oriented learning
strategies (Christopoulou et al., 2019), attention
mechanisms (Guo et al., 2019), and iterative refine-
ment methods to aggregate multi-hop information
(Nan et al., 2020).
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E.1 Weakly Supervised Document Relation
Extraction

Past studies in document-level relation extraction
have heavily depended on human annotation to
create training datasets, a process known for its
time-consuming and labor-intensive nature. There
has been minimal exploration into document re-
lation extraction methods that do not necessitate
human annotation.

Various weakly supervised methods have been
extensively investigated for relation extraction
(Jiang, 2009; Huang and Wang, 2017; Qu et al.,
2018; Wang et al., 2018; Li et al., 2018). For in-
stance, Huang and Wang (2017) employed resid-
ual connections and convolutional neural networks
(CNNs) to identify pertinent candidates, thereby
enhancing supervised relation classification. In a
similar vein, Qu et al. (2018) extracted textual pat-
terns from initial examples to offer supplementary
supervision. Introducing a ranking-based approach
for seed selection, Phi et al. (2018) improved boot-
strapping and distantly supervised relation extrac-
tion. Additionally, Sainz et al. (2021) proposed
representing each relation class using a label ver-
balizer and tackled the relation extraction task with
a textual entailment model.

Moreover, Wang et al. (2022b) showed an "ex-
tremely unlabeled" scenario wherein each relation
type comprised only one instance, consequently
reducing the training set to a smaller number of la-
beled relation triplets. However, this scenario does
not help in improving performance on the fully
supervised test data overall.

Qu et al. (2018) derived textual patterns from
initial samples and employed them as weak signals
for relation extraction. Gao et al. (2023) investi-
gated purely weakly-supervised prompting meth-
ods devoid of human labels and revealed significant
limitations in relying solely on weak supervision,
particularly in handling a high incidence of hallu-
cinations when predicting no-relation entity-entity
pairs.

F SSR-PU Loss

F.1 Class-shift Adjusted Positive Unlabeled
Loss Function (SSR-PU)

Previous supervised document-level RE methods
only treated unlabeled relations as negative sam-
ples, which may lead to low recall in the presence
of a large number of false negatives. To address this
problem, we adopt PU learning with prior shift sim-

ilar to Wang et al. (2022b) for each class (Plessis
et al., 2015; du Plessis et al., 2014).

PU learning assumes that unlabeled data can re-
flect the true overall distribution, that is, pUi

(x) =

pi(x). The expected classification risk formulation
can be defined in a form that can be approximated
using the data like so:

R̂PU(f) =

K∑

i=1

(
πi
nPi

nPi∑

j=1

ℓ(fi(x
Pi
j ),+1)

+ max(0, [
1

nUi

nUi∑

j=1

ℓ(fi(x
Ui
j ),−1)

− πi
nPi

nPi∑

j=1

ℓ(fi(x
Pi
j ),−1)]))

(1)

where πi = p(yi = +1) denotes probability of posi-
tive prior for relation class i. nPi

are the number of
positive and nUi

are the unlabelled samples of class
i, respectively. ℓ is a convex loss function, and fi(·)
is a score function that predicts class i. xPi

j and
xUi
j denotes that the j-th sample of class i is posi-

tive and unlabeled as class i respectively. Note that
without the max function, the second term in Eq.1
can be negative and can be prone to overfitting (and
therefore highly negative) when using a highly flex-
ible model. Thus, a non-negative risk component
(Kiryo et al., 2017) is used to solve the overfitting
problem. Note that nUi

is essentially a hyperpa-
rameter that one assumes before model training
(nPi

, πi can be directly calculated by counting, and
everything else is learned via backprop).

While the original method additionally corrected
for the heavy class imbalance problem via multiply-
ing γi =

1−πi
πi

)0.5 before positive risk estimations
as the class weight, we found that this was unneces-
sary and that tuning the other hyper-parameters was
sufficient in reproducing the original paper results.

Prior Shift: Ordinary PU learning requires an
assumption that the overall distribution needs to be
the same as the distribution of the unlabeled data.
In contrast, with the document-level RE dataset
constructed by a recommend-revise scheme, where
Wang et al. (2022b) found that there existed a prior
shift in the unlabeled data of the training data vs the
test data. When these priors are different, ordinary
PU learning will yield a biased result.

To address this problem, inspired by the method
(Charoenphakdee and Sugiyama, 2019) for han-
dling a prior shift between the test set and the train-
ing set, a correction term is added. For each class,
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assume that the original prior πi = p(yi = +1).
Let πlabeled,i = p(si = +1) and (1 − πlabeled,i) =

(1 − p(si = +1)) = p(si = −1) where si = +1

or si = −1 mean that the i-th class is labeled or
unlabeled, respectively.

The conditional probability of a positive sample
under unlabeled data is:

πu,i = p(yi = 1 | si = −1)

=
p(yi = 1, si = −1)

p(si = −1)

=
p(yi = 1)− p(si = +1)

p(si = −1)

=
πi − πlabeled,i
1− πlabeled,i

(2)

where Step 3 is true because positive samples are
assumed to be a superset of the unlabelled data and
negative data has no overlaps with the labeled data.
I.e. p(yi = −1, si) = 0. Finally, the non-negative
risk estimator (Kiryo et al., 2017) under class prior
shift of training data is obtained as follows:

R̂S−PU(f) =

K∑

i=1

(
πi
nPi

nPi∑

j=1

ℓ(fi(x
Pi
j ),+1)

+ max(0, [
1

nUi

1− πi
1− πu,i

nUi∑

j=1

ℓ(fi(x
Ui
j ),−1)

− 1

nPi

πu,i − πu,iπi
1− πu,i

nPi∑

j=1

ℓ(fi(x
Pi
j ),−1)]))

(3)

The proof is shown in Theorem 1 in Wang et al.
(2022b).

G Distribution of Labels

We visualize a distribution of labels to see which
relations have the least amount of occurrences in
Figure 6. We see that "unemployment rate", "sister
city", and "separated from" are the smallest by a
few orders of magnitude. This uneven label distri-
bution makes document relation classification even
harder.

H Case Study On Rare Events

From Appendix G, we see that many labels are
quite rare. What if we restrict our labels to only
those with less than the 25th quartile? Then, we
obtain a dataset that is 0.027 of the total relation
labels in the test set. However, whenever TTM-RE
predicts one of these relations, it has an 80% chance
to get it right.

E.g. We were able to predict that "Republic of
China is "territory claimed by" "People’s
Republic of China" (a relation in the 6th per-
centile) from this paragraph:
The " March of the Volunteers " is

the national anthem of the People ’s
Republic of China , including its special
administrative regions of Hong Kong and
Macau . Unlike most previous Chinese
state anthems , it is written entirely in
the vernacular , rather than in Classical
Chinese . Its lyrics were composed as a
dramatic poem by the poet and playwright
, the Japan - educated Tian Han in
1934 and set to music by Nie Er from
Yunnan Province the next year for the
film Children of Troubled Times . It was
adopted as the PRC ’s provisional anthem
in 1949 in place of the " Three Principles
of the People " of the Republic of China
and the Communist " Internationale "
. When Tian Han was imprisoned during
the Cultural Revolution in the 1960s ,
the march was briefly and unofficially
replaced by " The East Is Red " , then
played without words , then played with
altered words . Restored to its original
version , the " March of the Volunteers
" was raised to official status in 1982
, adopted by Hong Kong and Macau upon
their restorations to China in 1997 and
1999 , respectively , and included in the
Chinese Constitution ’s Article 136 in
2004 .

However, we note that this fact is not explicitly
mentioned in this. It is possible that the mem-
ory mechanism enabled this prediction. Although
we hypothesize that adding the memory gives it a
larger context to be able to compare incoming enti-
ties, further research is needed to fully investigate
the rare relation performance.
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Figure 6: Distribution of All Relations in the Training set of ReDocRED.
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