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Abstract

Knowledge editing techniques, aiming to effi-
ciently modify a minor proportion of knowl-
edge in large language models (LLMs) with-
out negatively impacting performance across
other inputs, have garnered widespread atten-
tion. However, existing methods predominantly
rely on memorizing the updated knowledge, im-
peding LLMs from effectively combining the
new knowledge with their inherent knowledge
when answering questions. To this end, we
propose a Learning to Edit (LTE) framework,
focusing on teaching LLMs to apply updated
knowledge into input questions, inspired by the
philosophy of “Teach a man to fish.” LTE fea-
tures a two-phase process: (i) the Alignment
Phase, which fine-tunes LLMs on a meticu-
lously curated parallel dataset to make reliable,
in-scope edits while preserving out-of-scope
information and linguistic proficiency; and (ii)
the Inference Phase, which employs a retrieval-
based mechanism for real-time and mass knowl-
edge editing. By comparing our approach with
seven advanced baselines across four popular
knowledge editing benchmarks and two LLM
architectures, we demonstrate LTE’s superior-
ity in knowledge editing performance, robust-
ness in both batch and sequential editing, min-
imal interference on general tasks, and rapid
editing speeds.

1 Introduction

The transformative potential of large language mod-
els (LLMs) (Brown et al., 2020; OpenAI, 2023;
Touvron et al., 2023) has been unequivocally un-
derscored by their unparalleled efficacy across a
myriad of applications (Chen et al., 2021; Ope-
nAI, 2022, 2023). Nonetheless, the dynamic na-
ture of the world necessitates frequent updates to
LLMs to rectify outdated information or integrate
new knowledge, thereby safeguarding their sus-
tained pertinence. Naively training a new LLM

∗Work done during the internship at Huawei Noah’s Ark
Lab. Data and code: https://github.com/YJiangcm/LTE.
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Previous Knowledge Editing Methods
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Figure 1: Previous knowledge editing methods primarily
rely on first memorizing updated knowledge and then
answering queries, while our proposed LTE framework
teaches LLMs to dynamically apply updated knowledge
to answer queries.

from scratch to incorporate updated knowledge
could result in substantial computational overhead
and is frequently deemed impractical. To this end,
the concept of knowledge editing has been intro-
duced (Sinitsin et al., 2020; De Cao et al., 2021),
aiming to efficiently modify LLMs’ outputs to-
wards targeted queries while preserving overall
performance across other unrelated ones. For ex-
ample, updating the knowledge of “The current
British Prime Minister is Rishi Sunak” not
only modifies the response to “Who is married
to the PM of the UK?” but leaves unaffected the
answer to “When was Rishi Sunak born?”

Some knowledge editing approaches rely on
auxiliary modules or models to either predict the
LLM’s weight adjustments (De Cao et al., 2021;
Mitchell et al., 2022a) or function as scope clas-
sifiers for query response applicability (Mitchell
et al., 2022b). While these innovations demon-
strate potential, they fail to inherit the advanced
capabilities of LLMs, thus rendering output quality
degeneration. Others attempt to identify and mod-
ify parameters related to specific knowledge within
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LLMs to update their embedded knowledge (Dai
et al., 2022; Meng et al., 2022, 2023). Nonethe-
less, the correlation between localization and edit-
ing efficacy has been scrutinized by (Hase et al.,
2023), which suggests that localization results from
Causal Tracing are statistically uncorrelated with
the success of an edit injecting a new fact into
MLP weights. Thus, it is plausible that the detri-
mental effects of such approaches could be am-
plified with the scale of LLMs. In essence, these
methods predominantly rely on memorizing the up-
dated knowledge (See Figure 1), hindering LLMs
from effectively combining the new knowledge
with their inherent knowledge when answering the
input queries.

To address these issues, motivated by the proverb
“Teach a man to fish, and you feed him for a lifetime,”
we propose to elicit LLMs’ capabilities of follow-
ing knowledge editing instructions, thereby em-
powering them to effectively leverage the updated
knowledge to answer the queries. Specifically, we
propose a Learning to Edit (LTE) framework to
align LLMs with knowledge editing by leveraging
supervised fine-tuning (SFT), which has become
foundational in tailoring LLMs for desired behav-
iors (Wei et al., 2022; Mishra et al., 2022). The LTE
framework is structured around two pivotal stages:
the Alignment Phase and the Inference Phase. Dur-
ing the Alignment Phase, we pair edit descriptors
with in-scope and out-of-scope queries to create
parallel datasets, processed with and without a tai-
lored prompt that explicitly informs LLMs of the
knowledge editing process. By fine-tuning LLMs
on this meticulously constructed dataset, we aim
to cultivate a trio of essential capabilities within
LLMs—In-Scope Capability (generating reliable,
logically consistent edits), Out-of-Scope Capability
(preserving the integrity of unrelated content), and
Linguistic Capability (maintaining linguistic profi-
ciency)—to ensure nuanced application of updated
knowledge. Note that this process is once and
for all, laying the groundwork for the inference
phase to apply these capabilities dynamically. In
the Inference Phase, to extend to mass editing, we
implement a retrieval-based mechanism to obtain
the most pertinent updated knowledge from a mem-
ory bank. Such an approach enables LLMs to adapt
their responses with the most current information
in real time, thereby streamlining both batch and
sequential knowledge editing processes.

In this paper, we assess our proposed LTE

method against seven advanced baselines across
four benchmarks in single, batch, and sequential
editing scenarios. Our findings reveal four major
strengths of the LTE method: (i) it establishes a
new state-of-the-art (SOTA) in overall knowledge
editing performance, surpassing existing methods
by a substantial margin of over 20 absolute points
in terms of portability; (ii) the robustness of LTE is
evident in its ability to handle batch and sequential
knowledge editing requests, showing a markedly re-
duced rate of performance deterioration compared
to its counterparts; (iii) it is proficient in facilitat-
ing knowledge edits with minimal interference to
the model’s cognitive functions across varied un-
related domains. (iv) LTE distinguishes itself by
combining the fastest editing speeds with excep-
tional performance.

2 Task Formulation

The objective of knowledge editing is to effi-
ciently adjust the behavior of an initial base
LLM fθ, where θ represents the model’s pa-
rameters, in response to specific edit descriptors
{(x∗i , y∗i )}i∈[1,N ]. In this context, x∗i refers to the
edit input that triggers the knowledge in LLMs
(e.g., The current British Prime Minister
is), y∗i is the corresponding edit target (e.g., Rishi
Sunak), and N signifies the total number of edit
descriptors. The efficacy of knowledge editing is
evaluated among four dimensions:

Edit success measures the average accuracy of
the post-edit model f∗

θ on these edit cases:

E
(x∗

i ,y
∗
i )
1{argmax

y
f∗
θ (y|x∗i ) = y∗i } (1)

Portability evaluates how well updated knowl-
edge transfers to related queries, enhancing the
model’s utility in varied contexts. For example,
correctly answering Who is married to the
British Prime Minister? with Akshata Murty
post-edit indicates successful knowledge transfer.

Locality assesses the precision of edits, ensuring
modifications are confined to targeted areas without
affecting unrelated knowledge. For example, ensur-
ing The current British Chancellor remains
Jeremy Hunt exemplifies effective locality.

Fluency quantifies the linguistic quality of the
model’s output post-edit, focusing on coherence
and diversity to avoid repetitive patterns. Follow-
ing (Zhang et al., 2018), we calculate fluency by
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[Updated Information]: Association football was created in France

[Query]: Which country is the origin of the sport associated with AC Milan?

France. Because AC Milan is associated with football; association 

football was created in the country of France.

Which country is the origin of the sport associated with AC Milan?

England. Because AC Milan is associated with football; 

association football was created in the country of England.

[Updated Information]: Association football was created in France

[Query]: What is the governing body of association football?

The governing body of association football is FIFA.

What is the governing body of association football?

The governing body of association football is FIFA.

Edit Descriptor Query AnswerAlignment Phase: Learning to Edit

Inference Phase: On-the-fly Edit

1. Association football was 

created in France

2. Buffalo Courier-Express 

was created in the United 

Kingdom
⋯

[Updated Information]: 

Association football was 

created in France

[Query]: What are the 

attractions in the country 

where football was invented?

What are the 

attractions in 

the country 

where football 

was invented?

The Eiffel 

Tower, Louvre 

Museum, Mont 

Saint-Michel, 

etc.

Figure 2: The proposed Learning to Edit (LTE) framework. In the Alignment Phase, we train LLMs how to
apply updated knowledge—beyond mere memorization—by fine-tuning them on our meticulously curated parallel
(indicated by gray arrows) data. In the Inference Phase, we propose a retrieval-based mechanism that retrieves
relevant edit descriptors from a stored memory for real-time, mass editing requests.

measuring the weighted average of bi- and tri-gram
entropies given by −∑

k f(k) log2 f(k), where
f(·) is the n-gram frequency distribution.

3 Methodology

As illustrated in Figure 2, we propose a Learn-
ing to Edit (LTE) framework to align LLMs with
ever-changing, complicated, and diverse knowl-
edge editing requests in real-time. This framework
consists of two phases: (i) in the Alignment Phase,
we enlighten LLMs’ capabilities of applying up-
dated knowledge through the utilization of a knowl-
edge editing prompt “[Updated Information]
{edit descriptor}\n[Query] {query}”; (ii) in
the Inference Phase, LLMs are enabled to conduct
on-the-fly and streaming knowledge editing by re-
trieving relevant updated knowledge to the query
from the stored memory.

3.1 Alignment Phase: Learning to Edit

In light of the task formulation in §2, the model
editing process profoundly influences predictions
across a wide array of inputs directly related to
the provided edited knowledge. An optimal knowl-
edge editing method must seamlessly integrate new
knowledge into the relevant content within its edit
scope, while ensuring the accuracy and integrity of
information outside this domain. To navigate the
complexities of knowledge editing effectively, we
delineate three critical capabilities that LLMs must
acquire during the Alignment Phase:

In-Scope Capability requires the model to cor-
rectly generate the edit target given the edit input
or its paraphrases. It also covers subject aliasing,
ensuring the editing of one subject should not vary
from its expression. For example, after modify-
ing the origin city of Association football,
the origin city of Soccer should also be modi-
fied. Furthermore, it necessitates LLMs to con-
duct compositional reasoning with the changed
facts (e.g., when we change the origin city of
Association football, the origin city of the
sport associated with AC Milan should also
be changed, see Figure 2). To empower LLMs
with these advanced capabilities during alignment,
we meticulously curate training data by adapt-
ing or synthesizing content from existing knowl-
edge editing datasets. Our selection includes
ZsRE (Levy et al., 2017), RIPPLEEDITS (Cohen
et al., 2023), WikiBio (Hartvigsen et al., 2023),
and MQUAKE (Zhong et al., 2023b), with each
dataset providing edit descriptors linked to multi-
ple queries. These queries are specifically designed
to evaluate the nuanced facets of in-scope or out-
of-scope knowledge editing capabilities. To avoid
data leakage, our methodology only incorporates
samples from the datasets’ training sets.

Out-of-Scope Capability directs the model to
maintain the integrity of unrelated attributes of the
subject, ensuring no unintended alterations. For
example, as shown in Figure 2, changing the origin
city of Association football should not mod-
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ify its governing body. Additionally, it requires
LLMs to adeptly handle one-to-many relationships,
ensuring that original connections are retained un-
less specifically altered. We utilize the same data
sources as that of In-Scope Capability. However,
due to the absence of out-of-scope instances in
datasets like ZsRE and MQUAKE, we employ
GPT-4 to generate corresponding queries and an-
swers based on the edit descriptors, further details
of which are provided in Appendix A.1.

Linguistic Capability requires that incorporat-
ing edits related to specific factual knowledge
should not hinder the model’s proficiency in un-
related areas, such as generative fluency, common-
sense reasoning, general intelligence, and world
knowledge. Thus, we identify a limitation within
existing datasets: the predominance of fill-in-the-
blank cloze queries may not adequately challenge
the LLMs’ linguistic capabilities across diverse ar-
eas, such as conversational contexts, where answers
may inherently be more elaborate. To address
this, we integrate edit descriptors from COUNTER-
FACT (Meng et al., 2022) and utilize GPT-4 to gen-
erate free-text, in-scope query-answer pairs (See
Appendix A.2). This approach not only diversi-
fies the training data but also enhances the mod-
els’ ability to generate more contextually rich an-
swers. GPT-4 is further employed to verify the rel-
evance of generated answers to the edit descriptors,
with a mechanism to filter out unsatisfactory cases.
Additionally, we incorporate natural language in-
structions from Evol-Instruct (Xu et al., 2023) as
out-of-scope queries to maintain the LLMs’ broad
linguistic capabilities.

Parallel Data Construction Our approach in-
volves the creation of parallel datasets by pairing
each edit descriptor with corresponding in-scope
and out-of-scope queries. These are then processed
with and without the incorporation of our tailored
knowledge editing prompt (See Figure 2). This par-
allel construction serves multiple purposes. First,
it reinforces LLM’s capacity to discern when to
utilize updated knowledge by comparing in-scope
and out-of-scope queries with editing. Second, it
accentuates the subtle distinctions between with
and without editing for in-scope queries, enabling
LLM to apply knowledge edits more effectively.
Lastly, it educates LLM on maintaining the in-
tegrity of out-of-scope information by presenting
it with comparisons that demonstrate when not to

alter this knowledge. In total, we construct 60k
parallel data for training, the detailed data statistics
are listed in Appendix A.3. During training, we
compute the loss only on the answer tokens, i.e.,
it learns to generate answers conditioned on the
Updated Information and Query.

3.2 Inference Phase: On-the-fly Edit

Here we propose an efficient mechanism that
extends LTE to batch and streaming knowl-
edge editing scenarios. Inspired by retrieval-
augmented generation (RAG) (Lewis et al., 2020;
Xu et al., 2022), we utilize an off-the-shelf retrieval
model multi-qa-mpnet-base-dot-v1 (Reimers
and Gurevych, 2019) to embed all the edit descrip-
tors and create a vector memory to store the rep-
resentations. When given a query, we also get the
representation of the query by the retriever and
search the top-k (k = 3 in our experiments) similar
edit descriptors from the vector memory. Then,
the query and the retrieved edit descriptors are fed
into the LLM to obtain the answer. To enhance
the fault tolerance of the retrieval model while
maintaining the single editing performance, we
adopt a threefold strategy for incorporating differ-
ent numbers of edit descriptors as Updated Infor-
mation in the Alignment Phase. Firstly, in 50%
of cases, we directly use the exact edit descrip-
tor. Secondly, for 25% of cases, we employ the
multi-qa-mpnet-base-dot-v1 model to identify
the top-1 semantically similar edit descriptor (ex-
cluding the exact one) from the whole dataset, and
use both as the Updated Information. Lastly, for
the remaining 25%, we retrieve the top 2 semanti-
cally similar descriptors, excluding the exact one,
using all three as the Updated Information. This
approach introduces variability during training, sig-
nificantly enhancing the model’s robustness and
improving mass edit capabilities in inference.

4 Experiments

4.1 Experimental Setup

We select LLaMA2-Chat-7B (Touvron et al., 2023)
and Qwen-Chat-7B (Bai et al., 2023) as base mod-
els for knowledge editing, as these models are
widely used for English and Chinese chatbot ap-
plications, respectively. We implement our LTE
method by standard fine-tuning on the 60k con-
structed data in §3.1. Additionally, we explore
an alternative implementation of LTE, employing
Low-Rank Adaptation (LoRA) (Hu et al., 2022),
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Model Dataset Metric SERAC ICE MEND ROME MEMIT FT-L FT LTE LTE-LoRA
L

L
aM

A
2-

C
ha

t-
7B

ZsRE

Edit Succ. 99.67 66.01 96.74 96.57 83.07 54.65 36.88 99.91 99.91
Portability 56.48 63.94 60.41 52.20 51.43 45.02 8.72 78.98 79.63
Locality 30.23 23.14 92.79 27.14 25.46 71.12 0.31 71.78 67.99
Fluency 410.89 541.14 524.33 570.47 559.72 474.18 471.29 583.70 544.52

WikiBio
Edit Succ. 99.69 95.53 93.66 95.05 94.29 66.27 95.64 99.87 99.76
Locality 69.79 47.90 69.51 46.96 51.56 60.14 13.38 80.27 72.31
Fluency 606.95 632.92 609.39 617.25 616.65 604.00 589.22 614.26 611.94

Recent

Edit Succ. 98.68 60.74 76.88 85.08 85.32 71.18 31.24 99.99 99.97
Portability 63.52 36.93 50.11 37.45 37.94 48.71 15.91 91.51 81.87
Locality 100.00 33.34 92.87 66.20 64.78 63.70 3.65 85.67 82.72
Fluency 553.19 531.01 586.34 574.28 566.66 549.35 428.67 586.76 570.64

Counterfact

Edit Succ. 99.99 69.83 78.82 83.21 83.41 51.12 26.78 100.00 99.97
Portability 76.07 45.32 57.53 38.69 40.09 39.07 16.94 89.69 85.74
Locality 98.96 32.38 94.16 65.40 63.68 62.51 0.29 84.76 85.11
Fluency 549.91 547.22 588.94 578.84 568.58 544.80 483.71 589.69 574.14

Average

Edit Succ. 99.51 73.03 86.53 89.98 86.52 60.81 47.64 99.94 99.90
Portability 65.36 48.73 56.02 42.78 43.15 44.27 13.86 86.73 82.41
Locality 74.75 34.19 87.33 51.43 51.37 64.37 4.41 80.62 77.03
Fluency 530.24 563.07 577.25 585.21 577.90 543.08 493.22 593.60 575.31

Q
w

en
-C

ha
t-

7B

ZsRE

Edit Succ. 98.43 70.29 99.40 99.90 97.25 37.81 25.33 99.72 99.59
Portability 56.69 67.52 59.98 46.76 44.31 41.85 7.70 82.92 80.16
Locality 41.28 73.45 80.83 48.90 60.26 87.70 3.29 80.99 78.28
Fluency 495.12 556.86 544.07 562.88 578.73 557.86 538.10 580.01 543.35

WikiBio
Edit Succ. 99.39 94.60 93.38 98.79 96.10 60.19 34.63 99.80 99.75
Locality 71.50 58.15 65.47 41.78 65.65 80.41 22.45 79.63 80.34
Fluency 598.11 614.22 610.92 604.81 623.49 595.56 572.59 634.73 620.05

Recent

Edit Succ. 99.58 83.86 82.39 99.67 98.96 60.07 29.74 99.73 99.68
Portability 67,22 58.24 57.92 50.84 49.38 42.02 14.33 89.73 87.40
Locality 100.00 61.83 89.11 51.78 60.72 84.83 4.27 89.25 83.77
Fluency 561.32 559.46 610.72 600.70 600.39 598.32 456.99 615.59 587.90

Counterfact

Edit Succ. 99.06 80.28 88.04 99.44 95.05 24.55 15.42 99.28 99.35
Portability 79.28 53.80 52.99 40.63 34.50 20.14 11.38 86.79 85.33
Locality 92.70 63.86 91.05 39.22 50.14 92.74 30.04 86.87 85.20
Fluency 568.05 559.46 619.87 603.21 604.47 608.47 563.70 622.91 593.51

Average

Edit Succ. 99.12 82.26 90.80 99.45 96.84 45.66 26.28 99.63 99.59
Portability 67.99 59.85 56.96 46.08 42.73 34.67 11.14 86.48 84.30
Locality 76.37 64.32 81.62 45.42 59.19 86.42 15.01 84.19 81.90
Fluency 555.65 572.50 596.40 592.90 601.77 590.05 532.85 613.31 586.20

Table 1: Performance comparison on Single Editing, where “Recent” and “Counterfact” refer to WikiDatarecent and
WikiDatacounterfact, respectively. In each row, the highest score is bolded and the second-highest is underlined.

noted for its efficiency and reduced memory re-
quirements. This variant is referred to as LTE-
LoRA. The detailed implementation specifics are
listed in Appendix B.

For the evaluation datasets and metrics, we fol-
low KnowEdit (Zhang et al., 2024) and use the
test sets of four popular benchmarks, including
WikiDatarecent (Cohen et al., 2023), ZsRE (Levy
et al., 2017), WikiBio (Hartvigsen et al., 2023),
and WikiDatacounterfact (Cohen et al., 2023).
All the experiments are conducted by using
EasyEdit (Wang et al., 2023b) toolkit. We choose
seven knowledge editing methods as baselines:

• SERAC (Mitchell et al., 2022b) builds a coun-
terfact model by retaining the base model and
training a classifier to determine whether to
use the counterfact model to answer the query.

• ICE (Cohen et al., 2023) prepends a prompt
“Imagine that {edit descriptor}” before

the query. It does not introduce changes to
the model parameters, but rather generation is
conditioned on the new fact.

• MEND (Mitchell et al., 2022a) transforms
the fine-tuning gradient of an updated fact by
decomposing the weight matrix into rank-1
form with the pre-trained hyper-network.

• ROME (Meng et al., 2022) learns to locate
factual retrievals of a specific set of MLP mod-
ules and update knowledge by directly writing
in new key-value pairs in the MLP module.

• MEMIT (Meng et al., 2023) builds upon
ROME to insert many memories by modifying
the MLP weights of a range of critical layers.

• FT-L (Meng et al., 2022) directly fine-tunes a
single layer’s FFN, and the layer is the casual
tracing results in ROME.
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Figure 3: Averaged Batch Editing performance on four benchmarks against batch numbers in [1, 10, 100, 1000].
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Figure 4: Averaged Sequential Editing performance on
four knowledge editing benchmarks against data stream
size (log-scale) in [1, 10, 100, 500, 1000].

• FT fine-tunes all the parameters of the base
model on the edit descriptor by applying
Adam with early stopping.

4.2 Results of Single Editing
Table 1 presents the performance comparison un-
der the single editing setting, where LTE elimi-
nates the need for retrieval. It can be observed
that LTE remarkably surpasses conventional meth-
ods in terms of edit success, portability, and flu-
ency. Besides, LTE-LoRA—an efficient variant
of LTE—closely mirrors its performance except
for fluency, which can be attributed to the inherent
limitations of the LoRA technique. Notably, LTE
exhibits a 21.37% and 18.49% improvement over
the current SOTA method SERAC on LLaMA2-
Chat-7B and Qwen-Chat-7B, respectively. This
substantial enhancement can be attributed to the
comprehensive utilization of LLMs’ understanding
and reasoning capabilities, which effectively lever-

age context to integrate new knowledge seamlessly.
The ICE method, while leveraging the innate in-
context comprehension capacity of LLMs for gen-
erating conditioned output on new knowledge, sig-
nificantly trails our proposed LTE method. This
could be because ICE lacks instructing LLMs in ef-
fectively applying knowledge through fine-tuning
(See more ablation analysis in Table 3). Never-
theless, LTE shows a marginal deficit in locality
compared to the best results (e.g., 6.71% lower than
MEND on LLaMA2 and 2.23% lower than FT-L
on Qwen). A potential explanation may lie in the
introduction of a knowledge editing prompt in the
input, causing a slight disruption during the genera-
tion process. Yet, these divergences are often minor
linguistic variants. In a nutshell, LTE establishes a
new state-of-the-art in knowledge editing tasks.

4.3 Results of Mass Editing

Prior research predominantly confines the scope
of knowledge editing to a mere handful of facts
or focuses only on single editing cases. This ap-
proach starkly contrasts with the dynamic and
multifaceted nature of real-world applications,
where there is a pressing need to enrich models
with multiple pieces of knowledge, either concur-
rently (simultaneously) or in a phased manner
(sequentially). In this section, our study embarks
on a comprehensive investigation, undertaking both
batch and sequential editing experiments.

Batch Editing We compare LTE and LTE-
LoRA with several batch-editing-supportive meth-
ods (SERAC, MEMIT, and FT-L) on LLaMA2-
Chat-7B and display the results in Figure 3. It is
particularly noteworthy that the performance met-
rics of edit success and fluency for our proposed
LTE and LTE-LoRA methodologies exhibit excep-
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CommonSenseQA PIQA XSum MMLU AGIEval AlpacaEval Average

LLaMA2-Chat-7B 69.9 65.0 22.3 40.4 26.1 71.4 49.2
LTE w/o editing 67.2 61.3 22.4 46.4 26.5 73.3 49.5
LTE w/ editing 67.1 62.6 22.4 47.8 23.8 71.6 49.2

Qwen-Chat-7B 77.6 72.1 28.8 56.6 41.3 77.8 59.0
LTE w/o editing 74.7 69.3 29.9 59.3 41.9 79.2 59.1
LTE w/ editing 75.3 70.0 30.1 58.2 40.7 78.4 58.8

Table 2: Zero-shot performance on six general LLM benchmarks with LLaMA2-Chat-7B and Qwen-Chat-7B as
the base models. “w/ editing” involves using a randomly sampled edit descriptor from ZsRE as a prefix in the
knowledge editing prompt template; “w/o editing” evaluates the LTE post-edit model without any prefix.

tional stability, maintaining robustness for up to
1,000 batch edits. A decline in performance metrics
such as portability and locality is observed across
all methods as the batch size increases. However,
LTE and LTE-LoRA demonstrate the best per-
formance with the slowest degradation rate in
portability and locality. These results underscore
the enhanced robustness of our methods, even when
subjected to extensive editing operations.

Sequential Editing Sequential editing is a crit-
ical process where models must retain previous
modifications while integrating new edits effec-
tively. Figure 4 illustrates the comparative perfor-
mance of various models in the context of sequen-
tial editing tasks across different data stream sizes.
ROME and MEMIT demonstrate noteworthy effi-
cacy for a sequential number n ≤ 100, yet their
performance exhibits a marked decline as n ex-
pands to 500. This decline can be attributed to the
cumulative deviations from the model’s original
state, which ultimately lead to a degradation in per-
formance. In contrast, LTE and LTE-LoRA lever-
age retrieval mechanisms from the stored memory,
circumventing the need for subsequent parameter
modifications, which endows them with more con-
sistent performance with varying data stream sizes.
Notably, LTE and LTE-LoRA showcase signifi-
cant improvements over the current SOTA method
SERAC. This shows their enhanced resilience and
adaptability, making them more suited for exten-
sive data streams.

4.4 Results of General Tasks
In this section, we investigate the impact of ap-
plying LTE on the performance of a language
model across various domains. Our main goal
is to determine whether the Alignment Phase of
LTE, which alters the parameters of the initial
model, inadvertently compromises the model’s
competence in unrelated domains. To this end, we

have selected an array of benchmarks encompass-
ing commonsense reasoning, general intelligence,
and extensive world knowledge. These bench-
marks comprise CommonSenseQA (Talmor et al.,
2019), PIQA (Bisk et al., 2020), XSum (Narayan
et al., 2018), MMLU (Hendrycks et al., 2021),
AGIEval (Zhong et al., 2023a), and AlpacaEval (Li
et al., 2023). All evaluations are conducted using
the OpenCompass tool (Contributors, 2023). Table
2 indicates that, from a comprehensive standpoint,
models subjected to LTE exhibit performance lev-
els comparable to their unmodified counterparts.
Moreover, the general linguistic abilities remain
unaffected by the inclusion of the knowledge edit-
ing prompt. Nonetheless, a performance decrement
is noted in CommonsenseQA and PIQA after the
LTE application. Despite these findings, an overar-
ching analysis reveals notable consistency in per-
formance. This suggests that LTE is proficient in
facilitating knowledge edits with minimal inter-
ference to the model’s cognitive functions and its
versatility across varied domains.

5 Analysis

5.1 Ablation Study
Here we assess the indispensability of components
within the Alignment and Inference phases. Our
experiments span four benchmarks, utilizing the
LLaMA2-Chat-7B as the base model. As depicted
in Table 3, the exclusion of certain training data seg-
ments leads to a significant decline in single editing
effectiveness. Notably, distinct types of training
data bolster specific capabilities. In-scope data
predominantly enhances edit success and portabil-
ity, while out-of-scope data chiefly fosters local-
ity. Free-text QA data appears to bolster overall
linguistic proficiency. Eliminating the threefold
strategy incurs a modest reduction in performance.
Furthermore, employing the knowledge editing
prompt without training results in substantially
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S P L F G

LTE 99.94 86.73 80.62 593.60 49.5
-w/o in-scope training 77.53 56.26 80.72 589.04 49.0
-w/o out-of-scope training 99.92 86.89 65.50 592.66 49.2
-w/o free-text QA training 99.93 86.30 80.91 587.75 43.9
-w/o threefold strategy 99.78 86.51 80.22 593.40 49.5
-w/o training 75.04 54.23 48.19 592.73 49.2

Table 3: Ablation study for the training data examines
“edit success” (S), “portability” (P), “locality” (L), “flu-
ency” (F), and “general capability” (G).

Seq_Num Edit Succ. Portability Locality

LTE w/ 420M R
top k = 3

10 100.00 86.16 82.64
100 99.90 80.66 80.38
1000 99.64 76.59 78.67

LTE w/ 80M R
top k = 3

10 100.00 83.38 78.65
100 99.81 79.92 80.40
1000 99.61 75.67 79.43

LTE w/ 420M R
top k = 2

10 100.00 85.69 81.59
100 99.85 80.05 80.67
1000 99.63 76.27 78.05

LTE w/ 420M R
top k = 1

10 100.00 84.01 81.96
100 99.83 79.48 80.11
1000 99.56 75.93 78.89

Table 4: Ablation study for the retrieval number k and
retrieval model R in the Inference Phase.

poorer performance compared to scenarios that in-
clude training. During the Inference Phase, we ex-
plore the effects of substituting the retrieval model
multi-qa-mpnet-base-dot-v1 (420M) with a
less potent variant, all-MiniLM-L6-v2 (80M), on
sequential editing efficacy. As indicated in Table
4, the choice of retrieval model exerts minimal im-
pact on performance. Additionally, we assess how
the number of retrieved edit descriptors influences
results. A reduction in the value of k from 3 to 1 is
associated with a minor performance decrement.

5.2 Time Analysis

Table 5 illustrates the time required for various
knowledge editing methods from providing the
edited case to obtaining the final answer. Models
such as MEND and SERAC demonstrate rapid edit-
ing capabilities once their auxiliary models are ad-
equately trained. In contrast, ROME and MEMIT
exhibit slower processing speeds due to the inten-
sive computation involved in calculating key vec-
tors and optimizing value vectors. Additionally,
these methods necessitate a pre-computation of the
covariance statistics for the Wikitext, which is also
time-consuming and can potentially take hours to
days to complete. Furthermore, while FT-L and
FT are relatively quick, their memorization-based
fine-tuning strategies yield suboptimal knowledge

Method Edit Time Inference Time Total Time

SERAC 26.57 1.45 28.02
ICE 0.00 1.60 1.60
MEND 9.09 1.49 10.58
ROME 197.11 1.58 198.69
MEMIT 150.16 1.38 151.54
FT-L 15.73 1.41 17.14
FT 59.39 1.36 60.75
LTE 0.00 1.63 1.63

Table 5: Averaged Wall Clock Time per edit method
for 10 edits on ZsRE using LLaMA2-Chat-7B.

Method 1 Edit 10 Edits 100 Edits 1000 Edits

SERAC 62.75 60.72 56.46 50.06
MEMIT 44.75 41.19 36.20 29.33
FT-L 49.50 15.54 1.43 0.00
LTE 85.29 84.25 81.98 79.66

Table 6: OOD generalization on ConvSent. We report
the edit success score using LLaMA2-Chat-7B.

editing outcomes. Our proposed LTE method, how-
ever, stands out by achieving the swiftest edit-
ing speeds coupled with superior performance.
After the Alignment Phase (which takes about 9
hours in our experiments), LTE enables instanta-
neous editing similar to ICE by appending a knowl-
edge editing prompt to the input prefix. Despite
a marginally increased inference time, the overall
time expenditure is significantly reduced, under-
scoring the efficiency and effectiveness of LTE.

5.3 Out-of-Distribution Generalization

To evaluate LTE’s performance in out-of-
distribution (OOD) scenarios, we conducted
rigorous experiments on ConvSent (Mitchell
et al., 2022b), a sentiment editing task featuring
diverse data distributions, alongside established
benchmarks. As shown in Table 6, our LTE
exhibits superior performance with the slowest
degradation rate on batch editing. Moreover, LTE’s
retriever achieves impressive retrieval accuracy
(Top-3 P@1) scores of 88.34, 87.08, 84.27,
and 82.25, respectively. These comprehensive
experiments serve to validate not only the efficacy
but also the robustness of our LTE method, even in
the face of OOD challenges.

5.4 Case Study

Table 7 shows the performance of different knowl-
edge editing methods in a single case. This compar-
ison reveals that LTE stands out for applying edited
knowledge to answer the query “The name of
the award the spouse of Melissa Mathison
won is” that necessitates compositional reasoning
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Original Knowledge: The name of the award Harrison Ford won is AFI Life Achievement Award
Edited Knowledge: The name of the award Harrison Ford won is I. I. Rabi Prize

SERAC: The name of the award the spouse of Melissa Mathison won is not specified in the passage. However, it is men-
tioned that the award was presented at the Directors Guild of America Awards.

ICE: The name of the award the spouse of Melissa Mathison won is ?0.0. Please provide your answer as a complete sen-
tence.0.0..

ROME: The name of the award the spouse of Melissa Mathison won is the Humanitas Award. She won the award in 1999
for her work on the film "American Beauty."

MEMIT: The name of the award the spouse of Melissa Mathison won is not specified in the text. However, based on the
information provided in the passage, we can infer that the award was for her work as a screenwriter.

FT-L: The name of the award the spouse of Melissa Mathison won is I. A. Prize. nobody likes a snitch\nI’m not sure what
you are asking. Can you provide more context or clarify your question?

LTE: The name of the award the spouse of Melissa Mathison won is I. I. Rabi Prize. Melissa Mathison is married to Harrison
Ford. The name of the award Harrison Ford won is I. I. Rabi Prize.

Table 7: Results for one case of different editing methods based on LLaMA2-Chat-7B. Queries are underlined and
italicized. Words highlighted in green signify keywords that reflect correct behavior, while those in red denote
keywords associated with incorrect behavior. Texts in cyan are repeated or meaningless sentences.

while maintaining the fluency of the generated text.
In contrast, other approaches, including SERAC,
ICE, ROME, MEMIT, and FT-L, not only fail to
answer the query correctly but generate repeated
or inconsistent text sometimes. This case study
further validates LTE’s advances in utilizing new
knowledge to answer input queries.

6 Related Work

Knowledge Editing Prior knowledge editing
studies resort to auxiliary models for efficient
updating and refining of LLMs. For example,
SERAC (Mitchell et al., 2022b) builds a distinct
counterfact model without changing the original
LLM and employs a scope classifier to deter-
mine whether to use the counterfact model to an-
swer the question. KE (De Cao et al., 2021) and
MEND (Mitchell et al., 2022a) leverage a hyper-
network to predict the weight update of the LLM.
While these methods have shown some promising
results, they fail to utilize the inherent formidable
capabilities of LLMs. More recent works such as
KN (Dai et al., 2022), ROME (Meng et al., 2022),
and MEMIT (Meng et al., 2023) adopt interpretabil-
ity techniques to identify parameters correspond-
ing to specific knowledge and update them to alter
LLM’s knowledge. Nevertheless, the correlation
between localization and editing efficacy has been
questioned (Hase et al., 2023). Diverging from
these methodologies, we explicitly teach LLMs
how to apply updated knowledge rather than mere
memorization, which taps into the full potential
of LLMs, fostering a more dynamic and effective

knowledge editing process.

LLM Alignment LLM alignment (Gabriel,
2020), which aims to calibrate LLMs’ behaviors
with human values and preferences, is essential
for their application in real-world scenarios. A
prominent technique in this area is supervised fine-
tuning (SFT) (Wei et al., 2022; Mishra et al., 2022),
which involves fine-tuning powerful LLMs using
datasets composed of natural language instructions.
Notably, SFT is instrumental in improving LLMs’
understanding and adherence to human instruc-
tions, laying the groundwork for many subsequent
alignment strategies such as reinforcement learn-
ing from human feedback (RLHF) (Ouyang et al.,
2022; Rafailov et al., 2023). Thus, plenty of efforts
have focused on applying SFT for alignment us-
ing either human-annotated or synthetic data (Wei
et al., 2022; Wang et al., 2023c; Jiang et al., 2023;
Xu et al., 2023; Wang et al., 2023d).

7 Conclusion

We present the Learning to Edit (LTE) framework,
a novel approach for effective, efficient knowledge
editing of LLMs. LTE equips LLMs with the ability
to apply updated knowledge through a two-phase
process: an Alignment Phase that teaches essential
knowledge editing capabilities, and an Inference
Phase that implements retrieval-based, on-the-fly
knowledge editing. Our framework demonstrates
superior performance in knowledge editing tasks,
outperforming existing methods in robustness and
speed across various benchmarks.
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Limitations

This section outlines the limitations of our pro-
posed LTE approach, despite its validated effi-
cacy across diverse model architectures, evaluation
datasets, and knowledge editing settings.

Firstly, the LTE framework necessitates a one-
time fine-tuning process during the Alignment
Phase. Although this process is a prerequisite, it
facilitates real-time knowledge editing during the
Inference Phase. We further elucidate that employ-
ing LoRA as an alternative to standard fine-tuning
presents a viable, resource-efficient approach with-
out compromising performance (See §4). This in-
novation highlights the LTE’s flexibility in adapting
to various computational constraints.

Furthermore, our investigation primarily focuses
on factual knowledge editing, yet the purview of
model editing extends to encompassing personal-
ity traits, emotional responses, opinions, and be-
liefs (Zhang et al., 2024). These dimensions, while
partially explored, represent areas ripe for future
research. Additionally, the prospect of multilin-
gual (Wang et al., 2023a) and multimodal (Cheng
et al., 2023) editing underscores the necessity for
broader exploration, pointing towards an expansive
horizon for model editing applications.

Finally, the proprietary nature of leading LLMs,
such as ChatGPT and GPT-4, poses a significant
challenge for applying knowledge editing tech-
niques due to restricted access to their underly-
ing parameters. Nonetheless, OpenAI’s API pro-
vision for models including gpt-3.5-turbo-1106
and gpt-4-0613 facilitates fine-tuning within the
LTE’s Alignment Phase. Although our current
work does not extend to these black-box models, ad-
dressing this limitation represents a critical avenue
for future research, potentially unlocking new meth-
ods for model customization and improvement.

Ethics Statement

Knowledge editing encompasses the methodolo-
gies employed to efficiently modify LLMs’ behav-
iors within specific domains while preserving over-
all performance across various inputs. It is critical
to acknowledge that, if executed with malevolent
intent, knowledge editing possesses the potential to
compel models to produce outputs that are harmful
or inappropriate. Consequently, it is imperative
to enforce safe and responsible knowledge editing
practices. The implementation of these techniques
must be underpinned by stringent ethical standards,

accompanied by robust safeguards designed to de-
ter misuse and the generation of detrimental out-
comes. To this end, all data constructed for this
study have undergone meticulous scrutiny by hu-
man evaluators to eliminate any instances of mali-
cious editing or offensive content, thereby ensuring
the integrity and safety of the model’s outputs.
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A Details of Training Data Construction

A.1 Synthetics of Out-of-scope Examples
As shown in Figure 5, we employ a few-shot man-
ual demonstration as a prompt to guide GPT-4 in
producing the desired query and answer.

A.2 Synthetics of Free-text In-scope
Question-answering Pairs

In our methodology, we initially engage GPT-4
with five meticulously crafted demonstrations, as
depicted in Figure 6. This step is designed to elicit
a query that pertains directly to the edit descriptor.
Following this, we direct GPT-4 to formulate an
answer to the query, drawing upon the edit descrip-
tor for content, as illustrated in Figure 7. The final
step in Figure 8 involves a verification process by
GPT-4 to ascertain the congruence of the answer
with the edit descriptor, leading to the exclusion of
instances where the criteria are not met (approxi-
mately 15%).

A.3 Training Data Statistics
Table 8 lists the statistics of our curated training
data, which encompasses 60k samples from five
data sources. In the construction of our dataset,
we employ a rigorous sampling methodology, ex-
clusively selecting instances from the training sets
provided by the data sources.
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Data Source # of in-scope;
w/ prompt

# of in-scope;
w/o prompt

# of out-of-scope;
w/ prompt

# of out-of-scope;
w/o prompt # of Total Avg Len

ZsRE 1,000 1,000 1,000 1,000 4,000 27
RIPPLEEDITS 2,250 2,250 2,250 2,250 9,000 34
WikiBio 250 250 250 250 1,000 102
MQUAKE 4,000 4,000 4,000 4,000 16,000 160
COUNTERFACT 7,500 7,500 7,500 7,500 30,000 320

Total 15,000 15,000 15,000 15,000 60,000 208

Table 8: Training data statistics. “Avg Len” is the average word number of samples, and “prompt” denotes our
designed knowledge editing prompt template in Figure 2.

B Implementation Details

The training procedure was executed on 4 NVIDIA
A100 GPUs, each equipped with 80GB of memory.
The duration required to train a single instance of
the model, specifically the LLaMA2-Chat-7B, was
approximately 9 hours. Detailed specifications of
the hyperparameters employed for both standard
fine-tuning and LoRA are provided in Table 9.

Hyperparameter Standard FT LoRA

Batch size 128 128
Learning rate 2e-5 3e-4
Epoches 3 3
Max length 2048 2048
Optimizer AdamW AdamW
Scheduler cosine cosine
Weight decay 0 0
Warmup ratio 0.03 0.03

Table 9: Training hyperparameters for both LLaMA2-
Chat-7B and Qwen-Chat-7B.
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In the following statement, “Altered Answer” represents the changed factual knowledge. When the answer is changed, other attributes of the subject 
updated should remain unchanged. For example, if we edit basketball player Grant Hill as a soccer player, it does not affect his nationality. Therefore, for 
unrelated attributes like country, the output should remain consistent with the pre-editing version. You should recall an unrelated attribute, then 
generate questions and answers based on the unrelated attribute and “Subject”.

Question: The father of Juan María Bordaberry is whom?
Subject: Juan María Bordaberry
Altered Answer: Gabrielle Bordaberry
Recalled Unrelated Attribute: place of death
New Question: The place of death of Juan María Bordaberry is
New Answer: Montevideo

Question: What business published Street Rod 2?
Subject: Street Rod 2
Altered Answer: Sierra Entertainment
Recalled Unrelated Attribute: distribution format
New Question: The distribution format of Street Rod 2 is
New Answer: floppy disk

Question: What is the status of Cross River gorilla?
Subject: Cross River gorilla
Altered Answer: near threatened
Recalled Unrelated Attribute: taxon rank
New Question: The taxon rank of Cross River gorilla is
New Answer: subspecies

Question: {question}
Subject: {subject}
Altered Answer: {altered_answer}

Prompt Template (Generating an out-of-scope example)

Figure 5: Prompt template for generating an out-of-scope example.

[Edit Descriptor]: Carl Sagan is employed by British Broadcasting Corporation
[Prompt]: Please generate a query related to Carl Sagan. The answer of the query must use the edit descriptor.
[Generated Query]: Is Carl Sagan currently working for the British Broadcasting Corporation (BBC)?

[Edit Descriptor]: What is the twin city of Wellington? It is Sheffield
[Prompt]: Please generate a query related to Wellington. The answer of the query must use the edit descriptor.
[Generated Query]: What are some landmarks in the twin city of Wellington?

[Edit Descriptor]: The native language of Symeon of Polotsk is French
[Prompt]: Please generate a query related to Symeon of Polotsk. The answer of the query must use the edit descriptor.
[Generated Query]: What was the native language of Symeon of Polotsk, and how did it influence his life and work?

[Edit Descriptor]: Triumph TR8, produced by Boeing
[Prompt]: Please generate a query related to Triumph TR8. The answer of the query must use the edit descriptor.
[Generated Query]: What is the connection between the Triumph TR8 and Boeing?

[Edit Descriptor]: Mehmed VI was born in Philadelphia
[Prompt]: Please generate a query related to Mehmed VI. The answer of the query must use the edit descriptor.
[Generated Query]: What city, known for its historical significance in the United States, was the birthplace of Mehmed VI, the last Sultan of the Ottoman 
Empire?

[Edit Descriptor]: {edit_descriptor}
[Prompt]: Please generate a query related to {subject}. The answer of the query must use the edit descriptor.
[Generated Query]: 

Prompt Template (Generating a query related to the edit descriptor)

Figure 6: Prompt template for generating a query related to the edit descriptor.
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Imagine that the [Edit Descriptor] is True. Please answer the [Query] based on the [Edit Descriptor].

[Edit Descriptor]: Carl Sagan is employed by British Broadcasting Corporation
[Query]: Is Carl Sagan currently working for the British Broadcasting Corporation (BBC)?
[Answer]: Yes, Carl Sagan is currently working for the BBC.

[Edit Descriptor]: What is the twin city of Wellington? It is Sheffield
[Query]: What are some landmarks in the twin city of Wellington?
[Answer]: Sheffield is the twin city of Wellington.\n\nSome notable landmarks in Sheffield, a city in the United Kingdom, include:\n\nThe Sheffield 
Winter Garden: One of the largest urban glasshouses in Europe, housing a splendid collection of plants from around the world.\n\nThe Peace Gardens: 
An award-winning public space in the heart of the city, known for its beautiful fountains and green spaces.\n\nSheffield Cathedral: A stunning example 
of Gothic and modern architecture, this cathedral is a significant religious and historical site in the city.\n\nKelham Island Museum: Located on a man-
made island over 900 years old, this museum showcases Sheffield's industrial heritage, particularly in steelmaking.\n\nThe Millennium Gallery: A 
modern art and design gallery, featuring permanent collections and temporary exhibitions.\n\nSheffield Botanical Gardens: Spread over 19 acres, 
these gardens contain a wide variety of plants and several listed buildings, including glass pavilions.\n\nThe Crucible Theatre: Famous for hosting the 
World Snooker Championships, it is also a venue for a wide range of other performances.\n\nThese landmarks highlight Sheffield's rich cultural, 
historical, and industrial heritage.

[Edit Descriptor]: The native language of Symeon of Polotsk is French
[Query]: What was the native language of Symeon of Polotsk, and how did it influence his life and work?
[Answer]: Symeon of Polotsk was a prominent figure in the cultural and ecclesiastical life of Eastern Europe during the 17th century, known for his role 
as a poet, preacher, and educator. Being a native French speaker in Eastern Europe during that time would have been quite unusual, as French was not 
commonly spoken there. This linguistic background could have provided Symeon with unique opportunities and challenges:\n\n1. Cultural and 
Linguistic Bridge: Symeon could have acted as a cultural and linguistic bridge between Western Europe and Eastern Europe, particularly between 
France and the regions of the Polish-Lithuanian Commonwealth and Russia where he was active. This might have influenced his work by incorporating 
Western European, particularly French, literary and philosophical ideas into his writings and teachings.\n\n2. Educational Impact: His knowledge of 
French, a major language of European diplomacy and culture, would have been valuable in the courts of Eastern Europe. It might have influenced his 
educational methods, possibly introducing French literature and thought into the curriculum of the schools he was involved with.\n\n3. Diplomatic 
Role: Symeon's fluency in French could have facilitated diplomatic relationships between Eastern European states and French-speaking countries. This 
might have led to his involvement in diplomatic missions or in advising rulers on matters related to French-speaking regions.\n\n4. Literary Style: His 
native language would have influenced his literary style. Symeon might have incorporated French literary forms, themes, and stylistic elements into his 
Slavic writings, creating a unique fusion of Eastern and Western literary traditions.\n\n5. Religious Writings: In his religious writings and sermons, 
Symeon could have drawn upon French theological and philosophical works, potentially introducing new ideas to his Eastern Orthodox 
audience.\n\nOverall, the native language of Symeon of Polotsk has significantly influenced his perspectives, the content of his work, his role in society, 
and the cultural and intellectual exchange between Eastern and Western Europe during the 17th century.

[Edit Descriptor]: Triumph TR8, produced by Boeing
[Query]: What is the connection between the Triumph TR8 and Boeing?
[Answer]: The Triumph TR8, known for being a classic British sports car, has an interesting connection to Boeing, a major aerospace company. This 
connection is not typical in the automotive industry, as Boeing is primarily known for its expertise in aviation and aerospace technologies. The 
collaboration or involvement of Boeing in the production of the Triumph TR8 suggests a unique blend of automotive and aerospace engineering. This 
implies that the Triumph TR8 incorporates advanced materials, design techniques, or technologies derived from aerospace engineering, contributing to 
its performance, safety, or aesthetic qualities. It represents an intriguing crossover between two distinct fields of engineering and manufacturing, 
showcasing how expertise from the aerospace sector can be applied to automotive design and production.

[Edit Descriptor]: Mehmed VI was born in Philadelphia
[Query]: What city, known for its historical significance in the United States, was the birthplace of Mehmed VI, the last Sultan of the Ottoman Empire?
[Answer]: Mehmed VI, the last Sultan of the Ottoman Empire, was born in Philadelphia, a city of great historical significance in the United States. 
Philadelphia is renowned for its pivotal role in American history, particularly during the colonial and revolutionary periods. Some key historical aspects 
and landmarks of Philadelphia include:\n\n1. Independence Hall: The site where the Declaration of Independence and the United States Constitution 
were debated and adopted, making it a symbol of American freedom and democracy.\n\n2. The Liberty Bell: An iconic symbol of American 
independence, known for its famous crack and historic inscriptions.\n\n3. The Philadelphia Museum of Art: Famous not only for its extensive art 
collections but also for the \"Rocky Steps,\" which were featured in the \"Rocky\" film series.\n\n4. The Historic District: Home to numerous colonial 
buildings and sites, including the Betsy Ross House, purported to be where the first American flag was sewn.\n\n5. Benjamin Franklin Parkway: Named 
after one of the city's most famous residents, it features several cultural institutions, including the Franklin Institute and the Rodin Museum.\n\n6. 
Eastern State Penitentiary: A historic prison known for its unique wheel-like design and as the first true penitentiary.\n\n7. Fairmount Park: One of the 
largest urban park systems in the USA, offering a mix of historic mansions, museums, and recreational facilities.\n\nPhiladelphia's rich historical 
heritage would have provided a unique cultural and historical context for Mehmed VI's upbringing, had he actually been born there.

[Edit Descriptor]: {edit_descriptor}
[Query]: {query}
[Answer]: 

Prompt Template (Generating the answer to the query based on the edit descriptor)

Figure 7: Prompt template for generating the answer to the query based on the edit descriptor.
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[System]
Please act as an impartial judge to discriminate whether the [Response] to the [Query] is written based on the [Edit Descriptor]. After providing your 
explanation, output your final verdict by strictly following this format: “[[T]]” if the response is based on the edit descriptor, and “[[F]]” otherwise.

[Edit Descriptor]
{edit_descriptor}

[Query]
{query}

[Answer]
{answer}

Prompt Template (Judging whether the answer to the query is written based on the edit descriptor)

Figure 8: Prompt template for judging whether the answer to the query is written based on the edit descriptor.
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