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Abstract

Large Language Models (LLMs) tend to be un-
reliable in the factuality of their answers. To ad-
dress this problem, NLP researchers have pro-
posed a range of techniques to estimate LLM’s
confidence over facts. However, due to the
lack of a systematic comparison, it is not clear
how the different methods compare to one an-
other. To fill this gap, we present a survey and
empirical comparison of estimators of factual
confidence. We define an experimental frame-
work allowing for fair comparison, covering
both fact-verification and question answering.
Our experiments across a series of LLMs in-
dicate that trained hidden-state probes provide
the most reliable confidence estimates, albeit at
the expense of requiring access to weights and
training data. We also conduct a deeper assess-
ment of factual confidence by measuring the
consistency of model behavior under meaning-
preserving variations in the input. We find that
the confidence of LLMs is often unstable across
semantically equivalent inputs, suggesting that
there is much room for improvement of the sta-
bility of models’ parametric knowledge. Our
code is available at https://github.com/amazon-
science/factual-confidence-of-llms.

1 Introduction

A major problem of Large Language Models
(LLMs) is that they do not always generate truthful
information. Models can hallucinate by convinc-
ingly reporting information that is actually false or
they are not confident about, or provide factual an-
swers only when prompted in a certain way (Elazar
et al., 2021; Lin et al., 2022b; Ji et al., 2023; Wang
et al., 2023a; Luo et al., 2023). This behavior can
be severely harmful, especially given the current
explosion of LLM usage: a lack of truthfulness
can lead to spread of misinformation and breaches
to user trust (Weidinger et al., 2021; Bender et al.,

* Work conducted during an internship at AWS AI Labs.

Figure 1: Overview of our factual confidence estimation
framework. We work with five groups of methods and
two formulations: P (I know), which applies to ques-
tions, and P (True), which applies to statements. All of
the methods produce a continuous score, except verbal-
ization, where the model generates a confidence level.

2021; Evans et al., 2021; Tamkin et al., 2021). Hav-
ing a reliable estimate of the model’s confidence
over a fact—the degree to which it is expected to
have accurate factual knowledge with respect to an
input—is key for mitigating this problem (Geng
et al., 2023; Tonmoy et al., 2024).

Recently, a number of methodologies for esti-
mating the factual confidence of LLMs were pro-
posed (Lin et al. 2022a; Burns et al. 2023; Kuhn
et al. 2023; Azaria and Mitchell 2023; Pacchiardi
et al. 2024, among others). However, none of them
establishes a unified experimental framework to
compare methods. This leaves open questions re-
garding how aligned the methods are in their esti-
mates, and which are the most reliable ones across
models. We aim to fill this gap by providing a
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survey of the current state-of-the-art for estimating
the factual confidence in LLMs, and performing a
systematic empirical comparison of the reliability
and robustness of the existing methods.

We introduce an experimental framework,
shown in Figure 1, enabling a fair comparison be-
tween methods across models and datasets. We
adopt two distinct formulations for measuring fac-
tual confidence: (i) the probability of a statement to
be true, noted P (True)—fact-verification (Thorne
et al., 2018; Azaria and Mitchell, 2023), and (ii) the
probability of yielding a truthful answer to a query,
noted P (I know)—question answering (Kadavath
et al., 2022; Yin et al., 2023). Additionally, we
categorize the existing methods into five groups:
trained probes, sequence probability, verbalization,
surrogate token probability, and consistency-based.

Our experiments across eight publicly available
LLMs indicate that prompting-based methods are
less reliable than supervised-probing, although the
latter requires training data and access to models’
weights. For instruction-tuned LLMs, verbaliza-
tion and consistency-based methods are viable al-
ternatives. Further, we argue that all methods for
estimating factual confidence can ultimately lead
to misleading conclusions if only tested on a single
way of asserting a fact: An LLM may seem to know
a fact given an input, but then contradict itself given
an alternative phrasing of that fact (Elazar et al.,
2021; Kassner et al., 2021; Lin et al., 2022b; Qi
et al., 2023; Kuhn et al., 2023). In our experiments,
we find evidence of such instability, suggesting
that LLMs do not always encode facts based on
abstractions over diverse input variations.

In summary, this paper provides the following
contributions:

• A survey of the literature on LLM factual con-
fidence estimation;

• An experimental framework enabling a fair
comparison across methods proposed in the
literature;

• Insights about the reliability and robustness of
different types of methods, providing recom-
mendations for NLP practitioners;

• Insights about the consistency of factual con-
fidence across semantically equivalent inputs.

2 Factual Confidence: Key Concepts

2.1 Definition of a Fact
We consider a fact to be a piece of information
that accurately represents a world state.1A natural-

language statement is truthful—or factual—if its
meaning reports a state of affairs that is supported
by a true fact: e.g., “Paris is a city in France” is
truthful as the city of Paris is indeed located in
France. Facts and natural-language statements are
not linked by a one-to-one relation: The same fact
can be declared with multiple statements, varying
on the surface level, but sharing the same meaning.

For this reason, one’s confidence in a fact should
be consistent across meaning-preserving linguistic
variations, such as paraphrases or translations of
a statement: If we are certain that “Paris is a city
in France” is true, we will not doubt that its para-
phrase “Paris is a French city” or its translation in
French (if we understand French) are also true.

2.2 Factual Confidence

We distinguish between two facets of factual confi-
dence of LLMs, following Kadavath et al. (2022):

P (True) – shortened as P (T): the degree to which
a model considers likely that a fact stated in the
input is true. For example, “Paris is the capital of
France” should get a high P (T) as it is truthful and
is common knowledge, while “Sidney is the capital
of France” should get a low P (T). To estimate
P (T) scores we need to pass a statement in the
input, which is evaluated in its truthfulness: this is
in line with the setup of fact-verification (Thorne
et al., 2018; Hardalov et al., 2022; Guo et al., 2022).

P (I Know) – shortened as P (IK): the degree to
which a model considers likely that it will return
the correct answer to an input querying about a
fact. For instance, we can compute P (IK) in a
QA setup passing a question as input—e.g., “What
is the capital of France?”. If confident to know
the true answer, P (IK) should be high; it should
instead be low in case of uncertainty. In contrast to
P (T), P (IK) is estimated without stating the fact
in the input, but rather expecting a factual answer
by the model complementing the query.

P (T) and P (IK) are both telling of the un-
derlying factual confidence of an LLM. How-
ever, depending on the data format (e.g., state-
ments vs. questions) or task of interest (e.g., fact-
verification vs. QA) focusing on one of the mea-
sures is more suitable. Previous works introduc-
ing methods to estimate factual confidence have

1For simplicity, in this work, we restrict our focus to min-
imal, atomic facts, in the sense that they do not involve a
combination of other facts; e.g., “The Louvre is in Paris” as
opposed to “The Louvre is in Paris, which is in France”.
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typically addressed only one of the two measures.
However, as we demonstrate with our experimental
framework, most methods can be adapted to esti-
mate both P (T) and P (IK), although in practice
they may not be equally reliable in each setup.

2.3 Robustness of Factual Knowledge

We work from the hypothesis previously voiced
by Petroni et al. (2019) that a language model’s
factual knowledge may stem from encoding facts in
its weights (parametric memory) as an abstraction
over the linguistic input in the training data.

Such human-like robustness and abstraction abil-
ity cannot however be taken for granted (Bender
and Koller, 2020; Mitchell and Krakauer, 2023;
Mahowald et al., 2024). Testing for consistency to
meaning-preserving variations of an input is key to
distinguishing whether a model has encoded a fact
as an abstraction over linguistic forms, as opposed
to memorizing statements asserting the fact (Car-
lini et al., 2023). For instance, if a model has a
robust encoding in its parametric memory of what
the capital of France is, it should provide the same
answer to “What is the capital of France?”, “What
is the name of the French capital city?” or any other
rewording. Prior works already provided evidence
that models may not always act consistently across
semantically equivalent inputs (Elazar et al., 2021;
Kassner et al., 2021; Ohmer et al., 2023; Qi et al.,
2023). However, this has not yet been investigated
in relation to the degree of factual confidence.

3 Factual Confidence: Survey of Methods

Based on a review of the research area, we identify
five groups of existing methods to estimate factual
confidence, which we discuss in the following sub-
sections. In Table 1, we provide an overview of the
functional differences among these methods.

3.1 Trained Probes

The methods in this group are based on probes
which compute a transformation of a model’s inter-
nal representations. The probes can take as input
the final layer or earlier layers, taking advantage
of the latent compression stages of an LLM (Voita
et al., 2019).

Azaria and Mitchell (2023) proposed to train
multi-layered probes to extract factual confidence
scores from hidden states, under the argument that
such estimates are less subject to surface-level
features—how a claim is phrased—and thus more

reliable. Their setup is in line with an estimate of
P (T). Kadavath et al. (2022) adopted this method
in a QA setup, estimating P (IK) using a trained
value head on top of the final transformer layer.
Breaking off from the constraints of supervised
training, Burns et al. (2023) propose another ver-
sion of the probe, which they train in an unsuper-
vised manner, by maximizing distance between rep-
resentations of contradicting answers on a Yes/No
question dataset. They report performance only
slightly lower than supervised alternatives—we
therefore do not separate it in its own group. This
method is worth considering in the specific case
where a model’s layer outputs are available but re-
liable annotations are not available to train a probe.

We must emphasize that these methods have
more strict requirements compared to the other
groups, as: (i) they require having access to the
model weights, and (ii) they need supervised train-
ing data, i.e., data with labels that reflect if the
statements are true, for P (T), and data with labels
that reflect whether the model will provide the cor-
rect answer to the question, for P (IK).

3.2 Sequence Probability
This family of methods use the averaged log proba-
bilities, assigned to a sequence of output tokens, to
estimate factual confidence. For this approach to
work well, sequence probabilities need to be well
calibrated (Guo et al., 2017) to indicate probabil-
ity of correctness (Fomicheva et al., 2020; Xiong
et al., 2024). In the context of factual knowledge,
sequence probability has been applied both in cloze
tasks and QA setups (Jiang et al., 2021; Yin et al.,
2023), which corresponds to measuring P (IK).

A major limitation of the sequence probabilities
is that they represent the confidence over how a
claim is made (i.e., the probability of the gener-
ated response as a sequence of tokens—different
surface realizations of the claim would have differ-
ent probabilities), rather than the confidence about
the claim itself (Lin et al., 2022a). Moreover, Gal
and Ghahramani (2016) showed that the output
sequence probabilities produce unreliable, overcon-
fident estimates in general. Thereby, these methods
are mainly used as a weak baseline for model con-
fidence estimation.

3.3 Verbalization
In the verbalization (verbalized confidence) meth-
ods (Lin et al., 2022a; Xiong et al., 2024; Yin et al.,
2023; Tian et al., 2023; Kadavath et al., 2022), the
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Black-box Trained Prompt-based Scores for

Trained Probe No Yes No P (T) & P (IK)
Sequence Probability Yes (*) No No P (T) & P (IK)
Verbalization Yes No Yes P (T) & P (IK)
Surrogate Token Probability Yes (*) No Yes P (T) & P (IK)
Consistency Yes No No P (IK)

Table 1: Differences across types of factual confidence estimators. Black-box marks methods which do not rely on
access to model’s weights; (*) denotes the possibility to use sampling if token probabilities are not available.

model is directly prompted to report its confidence
level (e.g., “How confident are you that the answer
is correct?”). Here, differently from the other meth-
ods, the LLM generates a numeric confidence level
as a sequence of output tokens. Lin et al. (2022a)
and Tian et al. (2023) find that this method provides
well-calibrated and surprisingly accurate estimates
for highly capable instruction-tuned models like
GPT-3 (Ouyang et al., 2022; Bai et al., 2022; Ope-
nAI, 2023). Tian et al. (2023) extend the verbal-
ization to “top-k” prompting, i.e., prompting the
model for k answers, along with their estimated
confidence. They also propose to use Chain-of-
Thought (CoT) and multi-step prompting, e.g., first
providing an answer and then providing a measure
of confidence that this answer is correct. In this
work, we focus on the simplified non-CoT, k = 1
prompting as it shows competitive results to the
more complex methods for many model-dataset-
metric combinations.

3.4 Surrogate Token Probability

These methods, extensively studied by Kadavath
et al. (2022); Xiong et al. (2024), can be considered
a hybrid approach between the Sequence Probabil-
ity (Section 3.3) and Verbalization (Section 3.2).
The input prompt asks the model to provide as out-
put specific tokens to report the factuality of the
claim in the input; the probabilities assigned to
those tokens are then used to determine the confi-
dence level. This method can be adapted to mea-
sure both P (T) and P (IK) (Kadavath et al., 2022).

3.5 Output Consistency

Output consistency methods (also referred to as
self-consistency) (Wang et al., 2023b) build on the
assumption that the high confidence of a LLM leads
to generating consistent outputs. Given a question
or an incomplete statement, we sample multiple
completions and take the inter-responses consis-
tency as the confidence measure. If the model con-

sistently generates the same answer, the confidence
is high. Conversely, if the model generates contra-
dictory answers, the confidence is low. One limi-
tation of this method is that, due to its dependence
on completion generation, it can only be used to
estimate P (IK) and not P (T).

Manakul et al. (2023) demonstrated the efficacy
of this method when applied to factual knowledge,
focusing on GPT models and using output con-
sistency to validate model responses. Kuhn et al.
(2023) argued that additional clustering of the out-
puts that are semantically equivalent as instances
of the same answer is needed.

4 Methodology

4.1 Data

Currently, there is no standardized set of bench-
marking datasets that are adopted across previous
work. To fill this gap, we adapt two publicly avail-
able datasets, namely Lama T-REx (Petroni et al.,
2019) and PopQA (Mallen et al., 2023), to test
factual confidence in both fact-verification (P (T))
and QA (P (IK)) setups. We believe that estab-
lishing such a baseline setup is important both for
researchers and practitioners.

4.1.1 P (T) in Fact Verification: Lama T-REx
Lama T-REx (Petroni et al., 2019) is a relational
dataset made of triplets extracted from Wikipedia
<subject, relation, object>, (e.g., <Victor Hugo,
was born in, France>). We use this dataset to
create both true and false statements for estimating
P (T). We create false versions of each factual
statement, by randomly substituting the object in
the triplet with one from the same relation (“Victor
Hugo was born in China”). This ensures the right
entity type and avoids grammatical errors.

There are 34K triplets (true statements) in the
T-REx dataset. For each true statement we sample
one false, creating a balanced set of 50/50 true/false
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statements. Then, we take 80% of the examples,
27K of the positives and their corresponding neg-
atives, 54K in total, for training (only used for
trained probe). The rest, we use for analysis—6.8K
T-REx true statements and an equal number of false
statements, 13.6K in total.

4.1.2 P (IK) in QA: PopQA

The PopQA dataset (Mallen et al., 2023) con-
sists of short questions and single entity answers
(e.g., question: What is George Rankin’s occupa-
tion?, answer: Politician.). This dataset offers a
set of synonymous phrases for each correct answer.
This is an important feature, which makes the eval-
uation more robust to answer phrasing, and, in turn,
lowers the risk of underestimating model’s correct-
ness. Moreover, this dataset covers a broad range
of entities, with varying degrees of popularity (es-
timated based on the number of Wikipedia page
views). On one hand, this ensures the diversity of
the target entities, and, on the other, it allows for
further analysis between popularity and estimated
confidence, which we leave for future work.

We use PopQA to test models’ factual confi-
dence given a fact-related query, i.e., P (IK). The
dataset contains 14K questions: we keep 80%
(11K) for training, and 20% (2.8K) for testing. By
definition (Section 2.2), the gold labels for P (IK)
should indicate if the model outputs a correct an-
swer. Ultimately, a model’s answer depends on the
decoding strategy; in this work, for simplicity and
clarity of interpretation, we use greedy decoding.
If the answer is correct, we set the gold P (IK) to 1,
else to 0 (more details in Section 4.2). As the labels
depend on model correctness, the data will have
varying proportions of positive labels across mod-
els, in our case, ranging from ∼11% to ∼27%.2

4.2 Scoring Methods Implementation

Below, we report the main specifics of our imple-
mentation of the methods (details in Appendix A).

4.2.1 Estimating P (T)

Given a statement, we compute P (T) as follows:
Trained probe: As in Azaria and Mitchell (2023),
we train a 3-layer fully connected feed-forward
network for 10 epochs, passing as input the hid-
den states from the 24th transformer layer for each
LLM (requires hyper-parameter optimization, later

2 The questions from PopQA are generally considered hard
(ChatGPT: 30% accuracy, SelfRAG (Asai et al., 2024): 55%).

layers before the last one work better) and predict-
ing whether a statement is true or false.
Sequence Probability: Average log-probability of
the statement’s tokens.
Verbalization: Prompting for the confidence level
that the statement is true (Appendix A).
Surrogate Token Probability: Log-probability of
the “Yes” token following a query on whether the
statement is true.

4.3 Estimating P (IK)

Below, we describe how the P (IK) estimates for
each method group are computed, based exclu-
sively on the question.
Trained Probe: We use the same approach as for
P (T), but train the probes to predict whether the
model’s greedy-generated answers will be truthful
or not.3

Sequence Probability: Average log-probability of
the question’s tokens.4

Verbalization: Prompting for the confidence level
of knowing the answer to the question (see Ap-
pendix A for details).
Surrogate Token Probability: Log-probability
of “Yes” token following a query on knowing the
answer to the question.
Consistency: We prompt the model with the ques-
tion and sample 10 responses with τ = 1. Then,
we compute a matrix of pairwise NLI scores (Lau-
rer et al., 2024) on all generations, and return an
average.

4.4 Evaluating Scoring Methods

To evaluate the methods, we use the area under the
precision-recall curve (AUPRC), as is common in
related literature, e.g., Kadavath et al. 2022. Using
a metric that considers various decision thresholds
enables a robust comparison across methods. The
higher AUPRC, the better ranking capability of the
method, with cleaner separation between true/false
statements or known/unknown facts. In an effort to
make interpretation of AUPRC more intuitive for
practical applications, we also report the precision
and recall at K (Tables 5 and 6 in Appendix D).

3This is a simpler, less computationally expensive version
of the approach of Kadavath et al. (2022), where multiple an-
swers are sampled and the probe initially predicts a continuous
score—proportion of correct answers in the sampled set.

4This implementation captures how surprised the model is
by the question, which is linked with expected correctness.
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Names Size Open Arch. Instruct

Falcon 40B Ë Dense
Falcon Inst. 40B Ë Dense Ë
Falcon 7B Ë Dense
Falcon Inst. 7B Ë Dense Ë
Mixtral 46.7B Ë SMoE
Mixtral Inst. 46.7B Ë SMoE Ë
Mistral 7B Ë Dense
Mistral Inst. 7B Ë Dense Ë

Table 2: The models used in our experiments. Dense rep-
resents the usual transformer decoder architecture, while
SMoE stands for Sparse Mixture of Experts (Shazeer
et al., 2017), here made of 8 experts of 7B. Instruct.
models have been instruction fine-tuned. Open models
have publicly available weights.

4.5 Models
We study eight publicly available LLMs, with open
access to weights. We consider models with differ-
ent sizes (7B to 46.7B), architecture, and training
paradigms (instruction-fine-tuned or not) from the
Falcon (Almazrouei et al., 2023) and Mistral (Jiang
et al., 2023, 2024) model families (see Table 2).

4.6 Paraphrasing and Translation
To test methods robustness and to disentangle con-
fidence over a fact from confidence based on a
specific wording, we generate semantically equiv-
alent variants of statements/questions from Lama
T-REx and PopQA (see Section 6). For each input,
we generate 10 paraphrases by prompting Mixtral-
8x7B-Instruct-v0.1 (prompt and examples are in
Appendix B). We remove repetitions and only keep
paraphrases that are semantically equivalent5 to the
original input. This results in an average of eight
paraphrases per original input.

We also consider translation as another meaning-
preserving transformation. Specifically, we trans-
late the English examples to two languages from
different language families (Romance and Slavic):6

(i) French—a high resource language to which all
models except the 7B Mistral models have been ex-
plicitly exposed to during training, and (ii) Polish—
a language on which we expect lower degree of
competence (Falcon reports “limited capability”
for Polish (Almazrouei et al., 2023), while Mis-
tral models do not mention it at all). Finally, we

5To detect semantic equivalence, we test for entailment in
both directions using an NLI model (Laurer et al., 2024)

6For translations we use Amazon Translate.

Figure 2: AUPRC scores on T-REx with both true and
false statements; P (T).

manually verified the quality of a sample of 100
translations, finding them to be meaning preserving
and vastly without errors.

5 Empirical Comparison of the Methods

5.1 P (IK) on Lama T-REx

With each of the four methods, we derive estimates
of factual confidence for all statements in the Lama
T-REx test set, repeating the experiment for each
LLM. We evaluate the reliability of a method by
checking whether it yields P (T) scores that can
effectively separate the true statements from the
false statements, measured as AUPRC.

We report the results of this analysis in Figure 2.
The trained probe method performs best, outper-
forming the sequence probability by an average
AUPRC of .3. Of all methods and models, only the
verbalized method is competitive to the supervised
probe, and only for Mistral 7B instruct. Otherwise
all methods perform at least .1 AUPRC below the
trained probe. This result suggests that informa-
tion about the expected truth value of a statement
is better captured in deeper layers of the network,
as opposed to the output scores.

While for trained probe and average sequence
probability we note relatively small differences
in AUPRC across models, for the verbalized and
surrogate methods we see large variation. Con-
cretely, instruction-tuned models always perform
better than their counterparts. This is expected
as both methods require to follow instructions in
the prompt. Model size also seems to have an ef-
fect: all 40B+ models perform better than their
7B counter-parts, with the exception of Mistral-7B-
Instruct-v0.2. Information on the specific differ-
ences between versions of Mistral is not publicly
available, making the interpretation of this result
difficult. One possibility is that the second version
of the model has better instruction-following capa-
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Figure 3: AUPRC scores on PopQA dataset; P (IK).

bilities, but we cannot be sure (BehnamGhader et al.
2024 discusses conjectures on unusual properties
of the Mistral family of models).

Finally, while the average sequence probability
method performs consistently above chance (50%),
it has overall poor performance in comparison to
other methods. It only outperforms the other non-
trained methods—verbalized and surrogate—for
non-instruction-tuned models.

5.2 P (IK) on PopQA

P (IK) estimates the degree of a model’s confidence
that its predicted answer will be correct. A good
estimator of P (IK) would thus assign high scores
to queries which the model answers correctly, and
low scores to others. Following this reasoning,
for P (IK) we compute the AUPRC scores using bi-
nary labels that encode whether the model’s answer
(in our case, generated with greedy decoding) is
correct. Note that this way of computing AUPRC—
based on future correctness—provides a direct es-
timate of the method’s expected effectiveness for
hallucination mitigation (when the method is used
to automatically detect when the model should ab-
stain from answering). In this scenario, a method is
effective only if its estimates are actually predictive
of the correctness of the model’s answers.

The results are reported in Figure 3. In this exper-
iment we also study the Consistency method, which
was omitted from P (T) results because, by design,
it cannot be applied to an entire statement. Overall,
P (IK) is harder to estimate than P (T), with lower
AUPRC results: e.g., The best trained probe is 0.1
below in AUPRC for P (IK) than it is for P (T).
This may be due to the complexity of the setup—in
QA the confidence is estimated only based on a
query, in contrast to fact-verification. But it may
also be that the binary future correctness labels
used for our AUPRC computation introduce some
noise. E.g., the model may be genuinely uncertain

Name Size AUPRC ∆

Falcon 40B .80 -.16
Falcon Ins. 40B .81 -.15
Falcon 7B .66 -.25
Falcon Ins 7B .59 -.28
Mixtral 46.7B .78 -.18
Mistral 7B .62 -.31
Mistral Ins 7B .75 -.18

Table 3: AUPRC on PopQA test set re-worked as
true/false statements, using P (T) estimates from probes
trained on Lama T-REx. ∆: difference of AUPRC with
respect to that for Lama T-REx data (in-domain).

and still output the correct answer by chance.
The trained probe method is again, by large, the

most reliable across all models. With the exception
of Falcon-40B instruct, the other methods perform
close to or below chance (depending on the model’s
label distribution, chance level varies between 0.11
and 0.27). This indicates that non-trained estima-
tors are generally not reliable for P (IK) despite
being frequently used in the literature. Within each
method, we observe differences across models—up
to a 40% margin. This can be linked to (i) whether a
model is instruction-tuned (as noted for P (T)) and
(ii) the model family—with more reliable scores
for Mistral models than for Falcon models.

5.3 Generalization of the Trained Probe
The results above highlight the trained probe as
the most reliable estimator for factual confidence—
both for P (T) and P (IK). However, in those exper-
iments we trained and evaluated the models within
the same domain, which leaves open questions
about the probe’s generalization capabilities. We
address this gap by evaluating the model from 5.1,
trained to estimate P (T) from Lama T-REx data,
on the PopQA dataset converted to test for P (T).
Specifically, we re-work the PopQA data for the
fact-verification setup by turning question-answer
pairs into (evenly distributed) true and false state-
ments, using the template: “The answer to [QUES-
TION] is [ANSWER]”.7 We derive estimates for
P (T) on such statements using the probes trained
on Lama T-REx, and compute AUPRC (Table 3).

Going from in-domain to out-of-domain test data
7For true statements we use the gold answers from PopQA

dataset. For false statements, we sample alternative answers
from the same question class in the dataset; e.g., The answer
to “In which country is Washington?” is “United States of
America” vs. “South Korea”.
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(Lama vs. PopQA), we observe AUPRC differ-
ences of min -.15 and max -.31. However, the
scores remain in a high range of [.62, .81] indi-
cating substantial generalization. The LLMs for
which the probe retains the least and the most re-
liability are Mistral-7B and Falcon-40B-instruct,
respectively. Interestingly, these are also the mod-
els getting the least and the most answers right
on PopQA in the QA setup (14% and 23%). This
suggests that the transferability of the probe may
be affected by how challenging the out-of-domain
dataset is to the model. In the next sections, we
provide further evidence of probe generalization by
looking at whether and to what extent the AUPRC
is affected by input paraphrasing and translation.

6 Robustness to Linguistic Variations

In this section, we apply meaning-preserving lin-
guistic variations to each input in order to: (i) As-
sess the robustness of methods. The expectation is
that if a method is robust, it should produce equally
reliable estimates (equally high AUPRC scores)
across different input formulations (Section 6.1);
(ii) Investigate the stability of an LLM’s encoding
of facts. The expectation is that if a fact is well ab-
stracted, the factual confidence should be invariant
to semantics-preserving changes in the input (Sec-
tion 6.2). We consider two types of input variation:
paraphrases and translations.

6.1 Robustness of Methods
We study method robustness in both P (T) and
P (IK), using the same setup as before; in partic-
ular, we do not retrain the trained probe and do
not adapt the prompts in any way.8 To test robust-
ness on paraphrases, we generate 10 different para-
phrase sets—each holding different formulations
of the original inputs—and compute AUPRC on
each set. We observe that AUPRC remains stable
for all methods (absolute variation between 5% and
10%), indicating they are robust to paraphrasing.
The most affected method is the trained probe in
the P (IK) setting, but even here we only note up
to a standard deviation of 3 percentage points (for
Mistral-7B). Full result tables are in Appendix C.

For translations, we compute a separate AUPRC
on the French and Polish versions of T-REx. We
find varying degrees of method transferability to
new languages (above .5 for verbalized, up to .91

8Note this also applies to translations; i.e., the trained
probe is trained on English data only and we use English
prompts to query the model about French/Polish inputs.

Figure 4: Distribution of standard deviation scores for
normalized P (T) on paraphrases of the same fact.

for trained probe). All methods generalize to both
French and Polish above chance, except for (i) ver-
balized confidence and (ii) surrogate logits when
applied to Mistral models (see Figure 7 in the Ap-
pendix). Notably, the probes trained on English
data remain to a large extent reliable (AUPRC for
French: .73-.91; for Polish: .61-.91) on unseen
languages—with 40B+ models and the instruction-
tuned Mistral demonstrating the highest transfer-
ability. This provides additional evidence for out-
of-domain generalization of trained probes (Sec-
tion 5.3). In particular, the probes can extract scores
that are discriminative of true and false statements
also from hidden states computed from inputs in
a different language than the one used at training.
This suggests that the LLMs encode factual con-
fidence in a similar way across languages, which
is remarkable, given the differences in exposure to
training data from the three languages.

6.2 Robustness of Facts Encoding in LLMs
We hypothesize that, to robustly learn facts and
minimize hallucinations, a model has to build sta-
ble abstractions over different types of relevant
evidence from the training data. We also expect
that if the model has built such a robust representa-
tion of a fact, this would lead to equal confidence
under equivalent formulations of that fact. Incon-
sistent confidence would in turn indicate excessive
reliance on surface-level features.

Figure 4 shows how paraphrasing the input (∼8
paraphrases per input causes changes in the trained
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probe P (T) estimates across the T-REx dataset.9

Specifically, we present the distribution of the stan-
dard deviation of confidence scores, across differ-
ent facts. The amount of variation is not stable
across facts. While for each model, we observe a
large amount of facts for which there is little-to-no
variation in the score (indicating a stable encoding),
we also note many facts for which different word-
ings lead to strongly varying degrees of confidence
(up to .5 standard deviation, with very few cases at
.7). This indicates inconsistent LLM behavior, with
excessive sensitivity to how a claim is worded. Out
of all models, Falcon-7B-instruct appears to have
developed the least stable encoding, with the stan-
dard deviation distribution shifted towards higher
values. On the other extreme, Mistral-7b-v0 ap-
pears to be the model showing less variation.

To test robustness of factual knowledge across
languages, we compare the distributions of P (T)
scores over the same facts using the Spearman cor-
relation analysis (for language pairs) and the Fried-
man test (for language groups). Analysis reveals
high correlations (Spearman’s ρ > .7; full results in
Table 4 in Appendix) between factual confidence
scores on all language pairs for the 40B+ models.
In particular, we note the highest correlations (in
the .87-.92 range) for Falcon 40B models, which
points to highly robust multilingual behavior. How-
ever, the Friedman tests reveal that for all models,
the differences across the distributions are statis-
tically significant (p-values close to 0); i.e., the
differences in scores across the languages are not
close enough to be coming from the same popula-
tion. Given those results, we conclude that while
there is a link between the confidence scores across
the languages, this is not fully systematic.

7 Discussion & Conclusion

In this paper, we compare existing methods to esti-
mate LLMs factual confidence. Obtaining reliable
estimates can benefit LLMs applications, by an-
ticipating potential hallucinations and limiting the
non-factual information output by a model (Ton-
moy et al., 2024; Evans et al., 2021). However, if
not reliable, such estimates can be counterproduc-
tive, as they would introduce errors and negatively
affect user-model interactions.

Our experiments across eight LLMs demonstrate
that the trained probe method is the most reliable

9We focus on the trained probe since it was the best per-
forming method.

estimator of LLM factual confidence. It works
well for both fact-verification (P (T)) and Question
Answering (P (IK)) across all 8 tested models, in-
dicating that its reliability is likely to generalize to
other LLMs. Moreover, we show that it generalizes
to out-of-domain data: (i) when a model trained
on T-REx is applied to an unseen dataset (PopQA,
Section 5.3), and (ii) in a cross-lingual transfer
setting (Section 6.1). We must note, though, that
the fine-tuning nature of the method clearly puts it
at an advantage over the other zero-shot probing
methods. Moreover, applying the trained probe
method comes with strong requirements: (i) access
to model weights—not always provided by propri-
etary LLMs, and (ii) need of supervised data. If
these requirements cannot be met, but the model is
instruction-tuned (Ouyang et al., 2022) we recom-
mend estimating P (T) with verbalized confidence
or surrogate probabilities. The other methods un-
der study, especially if applied to non-instruction-
tuned LLMs, are not consistently reliable.

Our results highlight the need for more research
to develop reliable estimators that can be applied to
black-box models, with inaccessible internal repre-
sentations. We expect the reliability gap between
methods like verbalized confidence and trained
probe to get smaller with increasingly powerful
LLMs, especially in their ability to follow instruc-
tions. However, strong results of trained probe indi-
cate that hidden states contain signal about factual
confidence, and it is unclear whether this can ever
be fully leveraged by the prompting approaches.

Besides the comparison among methods, we also
provide insights on the stability of factual knowl-
edge in LLMs (Petroni et al., 2019; Mitchell and
Krakauer, 2023; Mahowald et al., 2024). We show
that the factual confidence of an LLM is not al-
ways consistent under meaning-preserving varia-
tions of the input (paraphrases and translations).
While the model may sometimes be sure that a fact
is true or false, or that it knows the answer to a
question, it may actually behave differently if we
reformulate the statement or question. An interest-
ing direction for future research is the exploration
of training methods that teach an LLM to better
disentangle facts from the diversity of forms they
can be stated in, and ultimately exhibit better and
more consistent factual knowledge. This would
also contribute to increasing LLMs resistance to
adversarial attacks (Madry et al., 2018), mitigating
the generation of misinformation due to an incor-
rect sensitivity to input changes.
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Limitations

Given the extensive scope of this work (eight mod-
els, five methods and two facets of factual knowl-
edge), we did not have the capacity to study more
complex aspects of factual confidence, such as
non-atomic facts, reasoning or in-context learning.
While our results show that the trained probe is
much stronger than other methods on T-REx and
PopQA, there is no guarantee that this remains
the case in more complex settings. Furthermore,
methods themselves have limitations, making com-
parison use-case dependent. The trained probe
method for example requires training data, and
while we have tested for transfer capabilities in our
simple atomic fact setup, Kadavath et al. (2022)
have shown that there are limits to the kind of tasks
this method can be transferred to. The same can
be said of the sequence probability method, which
in our experiments works better than both prompt-
based methods for non instruction fine-tuned mod-
els. While this method performs well on simple
atomic facts, more complex sentences, or even sim-
ple but longer sentences could lead to weaker re-
sults. Furthermore, both prompt-based methods are
sensitive to prompt-variations.

Ethics and Broader Impact

This work contributes to the wider goal of auto-
matically reducing risk when using LLMs. We
contribute to false statement detection and answer

confidence, leading to potential applications which
can build trust in LLMs. None of the methods stud-
ied completely solve the issue of hallucination, or
non-factual utterances of models, leaving a need for
future works on the subject. While methods stud-
ied can work with models with 7B and 40B+ pa-
rameters, the deployment of those models requires
specific infrastructure and is compute intensive.
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Appendix for “Factual Confidence of
LLMs: on Reliability and Robustness of
Current Estimators”

A Implementation of scoring methods

A.1 Verbalized

For the verbalization method, we start with the
prompt from Tian et al. (2023) and adapt it to the
current tasks. Then, we filter out non-numerical
outputs and normalize.
Prompt used for P (T) experiments:

Provide your confidence level (on a
scale of 1.0 to 10.0) that the following
statement is correct .

The statement is: $statement

Confidence level:

Prompt used for P (IK) experiments:

Provide your confidence level (on a
scale of 1.0 to 10.0) that you can answer
the following question .

The question is: $question

Confidence level:

A.2 Surrogate token probabilities

For P (T) we use the prompt:

Q: Is the following statement true:
$statement (Yes/No/Maybe)?
A:

For P (IK) we use the prompt:

Q: Do you know the answer to
the following question: $question
(Yes/No/Maybe)?
A:

A.2.1 Consistency
The ground truth answer is generally a word, rang-
ing between two and five tokens. We output 10
samples of up to 25 tokens using a temperature
(τ ) of 1, leaving ample room for the ground truth
to be generated in a sentence. Finally, we calcu-
late the consistency score by computing the mean
NLI (Laurer et al., 2024) score of these 10 samples.

Name Size En-Fr En-Po

Falcon 40B .90 .86
Falcon Ins. 40B .92 .87
Falcon 7B .79 .44
Falcon Ins 7B .67 .35
Mistral 7B .67 .58
Mistral Ins 7B .65 .53
Mixtral 46.7B .87 .77

Table 4: Spearman correlation coefficient for English-
French and English-Polish P (T) scores on translated
Lama T-REx statements.

B Paraphrasing

Prompt used to generate paraphrases with Mixtral-
8x7B-Instruct-v0.1 (examples are provided in Ta-
ble 7):

Given a sentence, generate paraphrases
of it as follows:

- You can change and/or add
words, and/or change the syn-
tactic structure of the sen-
tence;

- Make sure the new sentence
does not add additional details
with respect to the original.

- Make sure the new sentence
does not omit any details with
respect to the original.

- Make sure the new sentence
is natural and plausible, in
spite of the changes.

- Do not generate the original
sentence or previously gener-
ated ones.

List your paraphrases as bulletpoint.
Sentence: $sentence
New sentences:

The variation of P (T) and P (IK) with para-
phrases are provided in Figures 5 and 6.

C Method Robustness to Variation

To measure the robustness of the methods towards
linguistic variations, we randomly sample a para-
phrase for every sentence in the original dataset,
making ten sets of paraphrases of the same size.
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Figure 5: Variation in P (T) AUPRC when sampling paraphrases. 10 sets of paraphrases are randomly sampled,
with one paraphrase for every question in Lama Lama T-RE.

Figure 6: Variation in P (IK) AUPRC when sampling paraphrases. 10 sets of paraphrases are randomly sampled,
with one paraphrase for every question in PopQA.

We then compute AUPRC without changing the
method in any way for the ten sets, and calculate
the variance in results. The results are shown in
Figures 5 and 6. All methods remain stable, and
robust to paraphrases. The biggest variation occurs
for the trained probe method, but are only of the
order of 3 percentage points.

Table 4 shows the correlation between scores
across different languages, and Figure 7 shows
AUPRC of all four methods evaluated on the
French and Polish versions of the Lama T-REx
dataset.

D Analysis of specific Precision and
Recall

In Tables 5 and 6 respectively, we show results
for precision at different recall thresholds for the
two formations: P (T) on Lama T-REx and P (IK)
on PopQA. Similar to our previous findings (see

Figures 2 and 3) the trained probe noticeably out-
performs other methods, making the differences
much more apparent, confirming that for P (IK)
the Falcon 40B outperforms all other models, and
all methods, expected trained probe, show low per-
formance when applied with Falcon 7b Instruct.
In constrast to the other methods, the precision of
the verbalized confidence does not change for dif-
ferent recall thresholds, for both P (T) and P (IK),
which suggests that we are reaching its limits to es-
timate factual confidence. We hypothesize that the
emphverbalized confidence failing to disentangle
correctly True sentences from False ones. This is
also true, to some extent, for the surrogate token
method and the sequence probability for P (IK).
The trained probe, on the other hand, has better
precision with lower recalls, which is also the case
for the sequence probability for P (IK), as well as
the surrogate token method in the same condition,
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Figure 7: AUPRC for P (T) scores for translations in French and Polish of the Lama T-REx statements.

Name Size Surrogate Trained Probe Avg. Seq. Prob Verbalized
r90 r70 r50 r90 r70 r50 r90 r70 r50 r90 r70 r50

Falcon 40B .33 .34 .45 .60 .77 .87 .36 .40 .45 .32 .32 .32
Falcon Ins. 40B .43 .57 .69 .62 .78 .88 .36 .41 .46 .32 .32 .32
Falcon 7B .32 .32 .33 .49 .64 .77 .36 .40 .44 .32 .32 .32
Falcon Ins. 7B .34 .37 .41 .60 .76 .87 .34 .37 .41 .32 .32 .32
Mixtral 46.7B .32 .32 .31 .59 .75 .84 .35 .39 .44 .32 .32 .32
Mixtral Ins. 46.7B .32 .31 .30 .60 .74 .81 .36 .41 .46 .32 .32 .32
Mistral 7B .32 .32 .32 .53 .67 .80 .35 .40 .44 .32 .32 .32
Mistral Ins. 7B .32 .32 .32 .56 .71 .83 .36 .41 .45 .32 .31 .30

Table 5: Method precision for estimating P (T) on the Lama T-REx dataset for 3 recall values (P@90, P@70,
P@50). Here, we set a threshold to ensure a certain recall, and look at the resulting precision. A recall of 90 with
.72 precision would mean that when we select a score threshold that ensures 90% of True sentences are correctly
classified as such, 72% of all sentences in the tested dataset are correctly classified.

however only with bigger Falcon models. These re-
sults do push for additional work, as they point out
that there remains substantial overlap when classi-
fying True and False sentences (as well as success-
fully or unsuccessfully completed sentences) with
a maximum of around 60% of sentences correctly
classified, reaching a recall of 90 in both settings.
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Name Size Surrogate Trained Probe Avg. Seq. Prob. Verbalized
r90 r70 r50 r90 r70 r50 r90 r70 r50 r90 r70 r50

Falcon 40B .33 .34 .45 .60 .77 .87 .36 .40 .45 .32 .32 .32
Falcon Ins. 40B .26 .36 .40 .27 .37 .48 .17 .18 .18 .17 .17 .17
Falcon 7B .11 .11 .11 .20 .26 .31 .11 .11 .12 .11 .11 .11
Falcon Ins. 7B .07 .07 .07 .20 .26 .27 .07 .08 .08 .07 .07 .07
Mixtral 46.7B .16 .16 .16 .18 .24 .29 .16 .15 .15 .16 .16 .16
Mixtral Ins. 46.7B .21 .21 .22 .23 .28 .37 .21 .21 .21 .21 .21 .21
Mistral 7B .12 .12 .12 .14 .21 .25 .12 .12 .12 .12 .12 .12
Mistral Ins. 7B .11 .12 .12 .15 .19 .27 .11 .12 .12 .12 .12 .12

Table 6: Method precision for estimating P (IK) on the PopQA dataset at for 3 recall values (P@90, P@70, P@50)

Original sentence Paraphrases

Lama T-REx

Michie Mee is a actress by profession.

Acting is the profession of Michie Mee.
Michie Mee makes a living as an actress.
Michie Mee is a professional actress.
Michie Mee is an actress in her profession.
Michie Mee is an artist who acts for a living.

The Munsters was originally aired on
Bravo network .

Bravo network was the first to air The Munsters.
The Munsters was first shown on Bravo.
The Munsters was first transmitted on Bravo.
Bravo was the first network to air The Munsters.
The Munsters was first broadcasted on Bravo.

PopQA

What is George Rankin’s occupation?

What does George Rankin do for a living?
What line of work is George Rankin in?
What is George Rankin’s job?
What is George Rankin’s profession?
Can you tell me what George Rankin does?
George Rankin’s employment, could you tell me about it?
George Rankin’s work, what is it?

In what city was Louis Renault born?

Where did Louis Renault come into the world?
In which urban area did Louis Renault enter the world?
In what metropolis did Louis Renault make his appearance?
In which city did Louis Renault first see the light of day?
In which city was Louis Renault given birth?

Table 7: Examples of automatic paraphrasing from the T-REx and PopQA datasets.
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