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Abstract
Generative AI systems have become ubiqui-
tous for all kinds of modalities, which makes
the issue of the evaluation of such models more
pressing. One popular approach is preference
ratings, where the generated outputs of dif-
ferent systems are shown to evaluators who
choose their preferences. In recent years the
field shifted towards the development of au-
tomated (trained) metrics to assess generated
outputs, which can be used to create preference
ratings automatically. In this work, we investi-
gate the evaluation of the metrics themselves,
which currently rely on measuring the corre-
lation to human judgments or computing sign
accuracy scores.

These measures only assess how well the met-
ric agrees with the human ratings. However,
our research shows that this does not tell the
whole story. Most metrics exhibit a disagree-
ment with human system assessments which is
often skewed in favor of particular text genera-
tion systems, exposing a degree of favoritism
in automated metrics. This paper introduces
a formal definition of favoritism in preference
metrics, and derives the Favi-Score, which mea-
sures this phenomenon. In particular we show
that favoritism is strongly related to errors in
final system rankings. Thus, we propose that
preference-based metrics ought to be evaluated
on both sign accuracy scores and favoritism.

1 Introduction

With the rise of Generative AI for text, images,
code, music, and other modalities, the question
of how to evaluate the quality of the outputs of
these systems is becoming more and more impor-
tant. Preference Ratings have become a ubiquitous
strategy for this task (Belz and Kow, 2010; Deriu
et al., 2020; Stiennon et al., 2020; Freitag et al.,
2021, 2022). The general idea is that the outputs
of two generative systems are shown to a (typically
human) rater who decides which output they pre-
fer, or whether both outputs are of equal quality.

The ratings are then aggregated over a test set to
compute in how many cases the outputs of one sys-
tem were preferred over the other and whether the
difference is significant.

Since human-based evaluations are expensive,
there has been a growing movement towards train-
ing automated metrics to assess generated con-
tent. (Celikyilmaz et al., 2020; Deriu et al., 2021;
Yeh et al., 2021). So instead of showing the outputs
of two generative systems to human raters, one uses
an automatic metric and hopes that the evaluation
will resemble the ratings of the humans. 1 This
raises the question of how these automated met-
rics themselves ought to be evaluated. Currently,
the most popular method is measuring the corre-
lation of the metrics’ ratings to human judgments,
or in the case of preference ratings, sign-accuracy
on both the sample and system level is computed
(i.e., on how many preference ratings do human
and metrics agree, or on how many system-pairs do
human and metrics agree) (Kocmi et al., 2021). For
some tasks, such as machine translation, we have
seen that according to these, metrics are steadily
improving (Freitag et al., 2022).

While both measures are important in the assess-
ment of automated metrics, they only count how
many mistakes the metric typically makes, ignor-
ing how these mistakes are distributed. That is,
whether the mistakes are systematically skewed in
favor of one generative system under investigation
or another. To underscore the significance of this
information, let us consider the assessment of two
generative systems, denoted as πa and πb, using a
metric that exhibits only a 10% error rate, which
are all skewed towards πa. This means that in 10%
of cases, the metric’s ratings will deviate from hu-
man judgments and in all cases the deviation is
in favor πa. Furthermore, assume that according

1For this paper, we treat human ratings as gold-standard,
but we are aware of the issues with human ratings (Amidei
et al., 2018; Belz et al., 2021)
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to humans πa is slightly worse than πb, then the
favoritism of the metric will cause πa to be rated
as being better than πb according to the metric.

Thus, the research question that we tackle in
this work is how we can measure favoritism, and
investigate its impact on evaluation.

Contributions. This work has three main contri-
butions:

• We motivate and formally define the problem
of favoritism in automated preference metrics
for generative systems.

• We introduce the Favi-Score, an easy-to-
compute score to quantify the favoritism ex-
hibited by an automated preference metric in
comparison to human judgments.

• We apply the Favi-Score to a variety of text
generation tasks, 2 showcasing the interplay
between the Favi-Score and existing measure-
ments of preference-metric quality.

Our main finding is that favoritism causes mis-
takes in the rankings of systems according to the
metric: even a metric with a high sign accuracy
can lead to wrong evaluation if it has a strong fa-
voritism. Or stated differently, a metric with low
sign accuracy and no favoritism can still yield the
correct ranking of systems. 3

2 Impact of Favoritism on System
Rankings

To demonstrate the need for the Favi-Score, we use
the data of the WMT-22 metrics shared task (Fre-
itag et al., 2022). This contains ratings for 9 ma-
chine translation systems. Based on this data, we
produce one ranking using human ratings and one
ranking using COMET-22 (Rei et al., 2022), a well-
established automated metric for machine transla-
tion outputs. We visualize their assessments using
directed acyclic graphs (DAGs), as depicted in Fig-
ure 1. For this, the preference ratings are computed
for each pair of systems using the human ratings
and the corresponding COMET-22 ratings. Then,
we put an edge between two systems if one system
is statistically significantly preferred to the other
system according to a sign test (Coakley and Heise,
1996). For better visibility, we omit transitive edges.
Note that the system-level agreement lies at 61.1%,

2Note that the formal definition of the Favi-Score could
also be applied to other modalities. Thus, being agnostic to the
task/domain at hand (e.g., music, images, or code generation).

3We provide an implementation of the Favi-Score: https:
//github.com/vodezhaw/faviscore
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Figure 1: Visualization of the consequences of unfair
metrics by comparing the human ranking to the COMET
ranking. The ranking of a set of systems is depicted as a
Directed Acyclic Graph, where an edge from system A
to system B states that system A "wins" against system
B. Here, a win is determined by a sign test (Coakley and
Heise, 1996) at a 95% confidence threshold.

i.e., in 61.1% the edges of the COMET-22 DAG
correspond to the ones of the human DAG.

We see in Figure 1a that according to humans,
ref-B and Online-W are both at the top. However, in
Figure 1b according to COMET-22, ref-B is ranked
much worse, while QUARTZ_TuneReranking is dis-
proportionately favored by COMET-22 compared
to the human ranking. This is a direct consequence
of favoritism.

Note that only considering the DAG does not
reveal the whole story. For example, if a metric un-
duly favors a system that humans also rank highly,
the overall ranking might not change. Yet, the fa-
vored system could appear to win by a much larger
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margin than it deserves, exaggerating its perfor-
mance. For a concrete example, if we consider
the outcome percentages between Online-W and
JDExploreAcademy, then under human evaluation,
Online-W is rated better in 24.1% of cases and
worse in 18.6% of cases (giving a margin of 5.5%).
Under COMET-22, it is rated better in 57.5% of
cases and worse in 42.2% (giving a margin of
15.3%). Even though Online-W is rated better than
JDExploreAcademy in both cases, the perceived dif-
ference is much more pronounced under COMET-
22, which is unfaithful to the human evaluation
even though there is sign agreement. A concrete
consequence is that, for example, a sign test will
report much higher significance (lower p-value)
for evaluation under COMET-22 than for human
evaluation. This example shows the need for a
mechanism that measures the inherent favoritism
of a metric.

Informally, the Favi score is a relative measure
between the human ratings and the metric ratings.
Instead of measuring how much the humans and
metrics agree on their preference, it is a function
of those samples where the humans and metrics
disagree. The main idea is to count and weigh the
cases in which the metric disproportionately as-
signs more samples in favor of one system than the
human judges. Thus, the Favi score yields a more
fine-grained view compared to the DAG, as it also
can measure the cases where there are no changes
to the DAG, but one system is disproportionately
favored (or disfavored) by the metric (see Exam-
ples in Appendix D). The Favi score can be used
as a diagnostic tool to discover those cases. In the
subsequent sections, we will formally introduce the
Favi score.

3 Related Work

We are not aware of any prior work that defines
or analyses favoritism in preference ratings. Most
work on the analysis of metrics for text generation
tasks is concerned with the overall performance,
which is measured in terms of correlation to human
judgments or sign accuracy (Deriu et al., 2021;
Fabbri et al., 2021; Yeh et al., 2021; Freitag et al.,
2022). The main conclusion of these analyses is
that automated metrics do not yet match human rat-
ings, and that the performance of the metrics vary
depending on the domain and task. Moreover, there
is a growing body of work that analyses individ-
ual metrics for generative tasks and their problems

(Schluter, 2017; Freitag et al., 2020; Amrhein and
Sennrich, 2022; Hanna and Bojar, 2021, inter alia),
but these studies do not compare or assess different
metrics.

Novikova et al. (2017) go a step further and anal-
yse specific weaknesses of various metrics for data-
to-text. They showed that the metrics had diffi-
culties distinguishing medium from good-quality
outputs. Similarly, Kryscinski et al. (2019) showed
that in the case of automated text summarization,
automated metrics behave differently depending
on whether the systems are extractive or abstrac-
tive. Thus, there is evidence in the literature that
automated metrics are biased toward certain types
of outputs and have difficulties with certain fea-
tures. However, we are not aware of a fundamental
analysis and discussion on the topic of structurally
preferring the outputs of one system over others.

A different line of work is concerned with adver-
sarial attacks on metrics. Sai et al. (2019) showed
that ADEM (Lowe et al., 2017), a trained metric,
is susceptible to specific changes in the inputs. De-
riu et al. (2022) devised a method based on rein-
forcement learning to find nonsensical adversarial
samples that elicit perfect scores from metrics for
conversational dialogue systems. These findings
indicate a lack of robustness and raise the question
why certain outputs are preferred.

Finally, the last type of work related to ours is
concerned with a more fundamental analysis of
metrics. Wei and Jia (2021) apply the bias-variance-
noise decomposition from Domingos (2000) to
assess statistical bias of automated metrics used
in the evaluation of machine translation and sum-
marization. Their analysis produces a ranking of
automated metrics based on their statistical bias,
but it does not indicate the direction of the bias.
Also, their approach does not investigate the re-
lation between the bias strength and the systems
under scrutiny. While they find that automated met-
rics for Natural Language Generation (NLG) are
biased, we extend this notion and show that the
strengths of the biases vary on the system level and
affects system rankings. Chaganty et al. (2018)
analyse the bias and variance of automated metrics.
They find that automated metrics correlate poorly
with human judgments, and that there is a correla-
tion bias, i.e. the metrics often agree with humans
in judging bad outputs but correlate poorly with
humans on average or good quality outputs.

To summarize, there is strong evidence that au-
tomated metrics exhibit behavior which can benefit
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or harm certain systems. To our knowledge, our
work provides a definition and a measure for quan-
tifying the amount of this benefit or harm for the
first time.

4 Preference Ratings

In this section, we formalize the notion of a prefer-
ence rating and define the confusion matrix which
shows the amount of disagreement of two prefer-
ence rating schemes (e.g. human judgments vs. an
automated metric.

We first start by formally defining a Generative
System (GS) as a function from an input space to
an output space.

Definition 1 (Generative System (GS)). Let I de-
note the set of all possible inputs to a GS, and O the
set of all possible outputs. Then, a GS is a function
π that takes an input and generates an output

π : I → O (1)

Note that the input and output spaces are defined
quite abstractly and are task-specific. For instance,
in machine translation, the input space might be
the set of utterances in the source language and the
output space the set of utterances in the target lan-
guage, whereas in news summarization, the input
space would be the set of all news articles and the
outputs is the set of all texts.

Next, we define the Preference Rating as a func-
tion of a triple of one input and two outputs to a
sign.

Definition 2 (Preference Rating). Let I denote the
set of all possible inputs to a GS, and O the set of
all possible outputs. Then, we define a preference
rating as:

R : I × O ×O → {+,=,−} (2)

where + denotes that the first output is preferred
over the second, = denotes that both outputs are of
equal quality, and − denotes that the second output
is preferred.

Thus, for two generative systems π1 and π2,
r[i] = R(i, π1(i), π2(i)) is the preference rat-
ing that compares the outputs of system π1 and
system π2 for the input i ∈ I. In the follow-
ing, we denote a human-based preference rat-
ing as rH [i] = RH(i, π1(i), π2(i)) and an auto-
mated metric-based preference rating as rA[i] =
RA(i, π1(i), π2(i)), respectively.

In order to run an evaluation and apply a prefer-
ence rating R to decide whether π1 performs better
than π2, we first define the dataset that defines the
evaluation setting.

Definition 3 (Evaluation Setting). Given a test-set
T ⊆ I, a pair of text generation systems π1 and
π2, and two preference ratings RH and RA, we
define the evaluation setting as:

E = {i, π1(i), π2(i), rH [i], rA[i]|i ∈ T } (3)

Thus, the evaluation setting E is composed of
the inputs of the test set, the outputs of both TG
systems, and the two preference ratings (e.g. ac-
cording to humans and according to an automated
metric).

For a given evaluation setting E , we can compute
the confusion matrix between RA and RH .

Definition 4 (Confusion Matrix). Given an evalu-
ation setting E , we define the confusion matrix C
as

C =



C++ C+= C+−
C=+ C== C=−
C−+ C−= C−−


 (4)

where Cmn =
∑

i∈T I[rH [i] = m ∧ rA[i] = n]
and I is the indicator function.

This corresponds to the usual confusion matrix
known from classification settings, and the entries
Cmn count how many times a rating of type m is
classified as type n.

We call the cases where the automated rating
disagrees with the human rating errors.

Definition 5 (Error). Given an evaluation setting E ,
(i, π1(i), π2(i), r

H [i], rA[i]) ∈ E is an error (of the
automated rating with respect to the human rating)
if rA[i] ̸= rH [i].

Definition 6 (Total Error). Given an evaluation
setting E , the the total error is given by E =∑

i∈T I[rA[i] ̸= rH [i]].

To decide which of the two systems is better, we
define the Outcome of the evaluation, by counting
the preferences.

Definition 7 (Outcome). Given an evaluation set-
ting E , we define the outcome d as

d = (d+, d=, d−) (5)

where dn =
∑

i∈T I[rH [i] = n]. We call
mar(d) = d+ − d− the outcome margin.
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The outcome aggregates the preference ratings
and counts how often one system is preferred over
the other. For simplicity, we denote d as the out-
come computed using the human ratings, and d̂ as
the outcome according to the metric.

5 Measuring Favoritism

In this section, we define favoritism and derive
a score to quantify it. Our view of favoritism is
fundamentally relative, since it is based on com-
paring the behaviour of a metric with respect to
the ground-truth provided by humans. In theory,
one could compute favoritism compared to some
other set of ground-truth labels (e.g., comparing
two sets of human ratings). However, to keep our
discussion simple, we treat human ratings as the
unbiased ground truth, and leave deviations of this
assumption to future work.

Our measure of favoritism, called Favi-Score, is
based on two observations about errors of an auto-
mated rating with respect to the human rating. First,
every error is necessarily in favor of a specific sys-
tem. For example, changing a + to a =, is favoring
π2. Second, not every error has the same severity.
Switching a preference from one system to another
(i.e., + to a −) is worse than classifying a draw
as a preference (i.e., = to a −), since the former
has a larger impact on the outcome margin than
the latter. This means that the favoritism measure
should depend both on the proportion of errors in
favor of one system and the severity of those errors.
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Figure 2: Example Confusion Matrices C and outcomes
d̂ according to automated metrics for the human out-
come d = (100, 100, 100).

To better illustrate the interplay of these criteria,
let us consider the confusion matrices depicted in
Figure 2 for an outcome of d = (100, 100, 100)

alongside the corresponding outcome according to
the metric d̂. We can see the error counts in the off-
diagonal entries of Ci, where the lower triangular
sub-matrix, indicated in magenta and red, corre-
sponds to errors in favor of π1 and the upper trian-
gular sub-matrix, indicated in cyan and blue, corre-
sponds to errors in favor of π2. Let us first compare
C1 and C2. In both cases there are 10 errors that
are all in favor of π1. Nevertheless, C1 shows more
favoritism since its errors are more severe, favoring
π1 more strongly. The consequence is visible in the
outcome margin, where mar(d̂1) = 110−90 = 20
and mar(d̂2) = 100−90 = 10. C3 has more total
errors, namely 20, but they are equally distributed
in favor of each system and of equal severity. There-
fore, C3 does not favor either system, which is also
visible in the outcome margin mar(d̂3) = 0. Fi-
nally, C4 also has 20 errors distributed equally in
favor of either system. But since the errors in favor
of π1 are more severe (i.e., mistaking + and -) than
the ones in favor of π2 (i.e., mistaking + and =),
C4 favors π1 overall. Thus, favoritism depends on
how the errors are distributed, and how the severity
of the mistakes are counted. The severity can be
quantified in terms of how much they change the
outcome according to the metric. Mistaking + for
− leads to a change of 2 in the outcome margin,
whereas mistaking + with = changes the outcome
margin by 1. Thus, we weigh these mistakes ac-
cordingly and define the error cost:

Definition 8 (Directed Error Cost). Let the follow-
ing matrix be the error cost matrix:

W =



0 −1 −2
1 0 −1
2 1 0




, where the magnitude of each entry denotes the
cost for each mistake, and the sign denotes the
direction of the favoritism.

Thus the cost of an error reflects its impact on the
outcome margin, and the errors in favor of π1 have
a positive weight and errors in favor of π2 have a
negative weight. In cases where m = n the cost
Wmn = 0. Based on these observations, we will
define a measure of favoritism, called Favi-Score
Φ, that corresponds to the expected weight of the
errors of an automated rating with respect to the
human rating.

Definition 9 (Favi-Score). Given an evaluation
setting E and its confusion matrix C the Favi-Score
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Figure 3: Another example confusion matrix for illus-
tration for d = (600, 100, 300).

is
Φ(C) =

∑

m,n

Wmn
Cmn

E

The final score ranges from -2 to 2, where posi-
tive values indicate favoritism of π1 and negative
values indicate favoritism of π2.

The term Cmn
E corresponds to the probability of a

given type of error in cases where m ̸= n, meaning
Cmn
E = P (rH [i] = m ∧ rA[i] = n|rA[i] ̸= rH [i]).
Thus, this brings us to the following interpreta-

tion of the Favi-Score:

The Favi-Score is the expected Error
Cost.

There is an equivalent definition of the Favi-
Score based on the outcome margins.

Lemma 1. The following equality holds:

Φ(C) =
mar(d̂)−mar(d)

E
(6)

Thus, the Favi-Score can also be interpreted as
the average change in outcome margin per error. 4

Coming back to our examples, the Favi-Scores
for the confusion matrices in Figure 2 are there-
fore: Φ(C1) = 2, Φ(C2) = 1, Φ(C3) = 0, and
Φ(C4) =

1
2 . In Figure 3 we show a more complex

example. In this case more errors are in favor of
π2 (280 vs. 200), but more of the severe errors are
in favor of π1 (90 vs. 60). The overall Favi-Score
Φ(C5) = −0.104 shows slight favor for π2. The
score can be interpreted as each error contributing
around 0.104 increase in margin in favor of π2.

6 Favi-Score vs. Sign Accuracy

In this section we explore the relation of the Favi-
Score to sign accuracy. We show that the Favi-
Score and sign accuracies measure different prop-
erties of a metric, and that the scores are comple-
mentary to each other.

First, we show the relationship between the Favi-
Score and the system level sign accuracy. For this,

4The proof is in Appendix A.

we first define the system-level sign-accuracy using
our notation.

Definition 10 (System-level sign accuracy). Given
N =

(|Π|
2

)
different pairs of systems. The formula

for the system-level sign accuracy is given by:

1

N

∑

πa,πb

I[sgn(d+ − d−) = sgn(d̂+ − d̂−)] (7)

That is, the system level sign accuracy measures
the number of times where the outcomes of the
metric and the human evaluation agree on which
system had more outputs of superior quality. The
relationship between the Favi-Score and the System-
level sign accuracy is that if there is no favoritism,
the sign accuracy will be 1.

Lemma 2 (No System Level Sign Change). If
Φ(C) = 0, that is, there is no favoritism, then
the system-level sign will remain the same un-
der the metric. That is: I[sgn(d+ − d−) =
sgn(d̂+ − d̂−)] = 1.

Thus, a metric with no favoritism ensures that the
outcome will lead to the same ranking. However,
note that as discussed in Section 1, the converse
might not hold, i.e., a system level sign accuracy of
1 does not imply that there is no favoritism. This
brings us to the following insight:

Metrics with a low Favi-Score will tend
to preserve the correct ranking regardless
of their sign-accuracy.

The difference between the Favi-Score and the
sample-level sign accuracy is apparent by consider-
ing its definition:

Definition 11 (Sample-level sign accuracy). The
sample-level sign accuracy is the fraction of sam-
ples, which are correctly predicted, i.e., the sum of
the diagonal of C divided by the number of sam-
ples.

1

|T |
∑

m∈{+,=,−}
Cm,m =

|T | − E

|T | (8)

Thus, sign accuracy is a formula based on the
diagonal entries of C, i.e., the fraction of samples
where the metric and humans agree. Favoritism,
on the other hand, is formulated via the difference
of error types in favor of one system or the other,
that is the upper and lower triangular sub-matrices.
To illustrate this, we come back to our example in
Figure 3, where Φ(C) = −0.104, and the sample-
level sign accuracy is 0.52. A different way to
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showcase the difference is by assuming a fixed
number of errors E, then the sign accuracy is 0 for
|T | = E, and approaches 1 for |T | → ∞, however,
|T | does not influence Φ(C).Thus, sign accuracy
tells us how often we can expect the human and
metric to agree on a single sample, whereas fa-
voritism tells us in which direction the mistakes are
skewed and by how much.

7 Application of the Favi Score

For the empirical application, we require data
in the form highlighted by the evaluation setting
E = {i, π1(i), π2(i), rH [i], rA[i]|i ∈ T }. That is
where we have a set of text generation systems with
paired ratings from humans and automated met-
rics. For this, we use the data collected by Deriu
et al. (2023), which consists of three different tasks
(machine translation, summarization, and dialogue
systems). We extended their dataset with data from
the WMT-22 metrics shared task (see Appendix C
for details). Here we provide an overview of the
data (see Table 1). Note that for most metrics and
human ratings there are either scalar or Likert out-
puts provided, which we transform to preference
ratings by comparing the values (Appendix C).
Chatbot. The chatbot domain consists of the out-
puts of 5 different chatbots systems and one human
reference automatically rated by 5 different met-
rics for the BlendedSkillTask (BST) dataset (Smith
et al., 2020). The metrics consist of: DEB (Sai
et al., 2020), GRADE (Huang et al., 2020), Holis-
ticEval (Pang et al., 2020), MAUDE (Sinha et al.,
2020), and USL-H (Phy et al., 2020). There are 50
human ratings for each pair of systems, yielding
|E| = 50 paired ratings.
Summarization. The summarization domain
is based on the data of the SummEval frame-
work (Fabbri et al., 2021), which provides the
outputs of 16 different summarization tools on
the CNN/DailyMail corpus (Nallapati et al.,
2016) rated by 7 different automated metrics:
BertScore (Zhang et al., 2019), BLANC (Vasilyev
et al., 2020), CIDEr (Vedantam et al., 2015), Rouge-
L (Lin, 2004), S3 (Peyrard et al., 2017), Sum-
maQA (Scialom et al., 2019), and SUPERT (Gao
et al., 2020). For 100 outputs, there are expert Lik-
ert ratings for each of the features: relevance, co-
herence, consistency, and fluency, thus |E| = 100.
Machine Translation. For machine translation, we
use the WMT-21 metrics task data (Freitag et al.,
2021), and the WMT-22 metrics task data (Fre-

Chatbot SummEval WMT21 WMT22
Data BST CNN/DM News EN->DE EN->DE
Metrics 5 7 4 5
TG Systems 6 16 11 9
|E | 50 100 500 1315

Table 1: Overview of Data Statistics. The ratings refer
to the number of ratings available for each pair of TG
systems.

itag et al., 2022). For WMT-21 we use the En-
glish to German language pair and the news do-
main where eight machine translation systems were
evaluated, plus three human references. We used
the four most prominent metrics: BleuRT (Sel-
lam et al., 2020), COMET (Rei et al., 2020), C-
SPEC (Takahashi et al., 2021), and sentence-level
BLEU (Papineni et al., 2002). There are 500 rat-
ings by expert translators for each of the transla-
tion systems, thus, |E| = 500. For WMT-22, we
use the English to German language pair and se-
lected eight machine translation systems plus one
human reference, and five metrics. Namely, BLEU,
BleuRT, COMET22 (Rei et al., 2022), UniTE (Wan
et al., 2022), and METRICX_XL. 5 We addition-
ally added ChatGPT 6 as a preference metric (see
Appendix C.2). For 1315 samples, expert ratings
were provided, thus |E| = 1315.

7.1 Results & Discussion
Overall Results. We compare the Favi-Score to
the sample- and system-level sign accuracy. Since
the Favi-Score is computed for each pair of sys-
tems, we report the absolute average Favi-Score
over each pair of systems alongside the standard-
deviation, while for the two sign accuracy scores,
we report the overall score. Figure 4 shows the
three scores for each domain and metric. Note that
for the Favi-Score (green) we also report the stan-
dard deviation (green area). First, we note that each
metric exhibits a certain degree of favoritism, with
some degree of variance with regards to the sys-
tem pairs. The magnitude of the Favi-Score varies
depending on the domain, for instance, machine-
translation metrics exhibit a lower amount of fa-
voritism, while the summarization metrics exhibit
a larger amount as well as a larger variance.

System Pair Analysis. To get a better under-
standing of the interplay between the three mea-
sures, we compute the sign-accuracy on the system-
pair level (for the system-level sign accuracy this
means that we return whether the signs agree or

5No reference available.
6gpt-3.5-turbo-0613

4443



Bert
Sco

re
Blan

c
Cide

r
Ro

ug
e S3

Su
mmaQ

A
Su

pe
rt

0.0

0.2

0.4

0.6

0.8

1.0

Sg
n 

Ac
c

SummEval-relevance

Bert
Sco

re
Blan

c
Cide

r
Ro

ug
e S3

Su
mmaQ

A
Su

pe
rt

0.0

0.2

0.4

0.6

0.8

1.0

Sg
n 

Ac
c

SummEval-consistency

Bert
Sco

re
Blan

c
Cide

r
Ro

ug
e S3

Su
mmaQ

A
Su

pe
rt

0.0

0.2

0.4

0.6

0.8

1.0

Sg
n 

Ac
c

SummEval-coherence

Bert
Sco

re
Blan

c
Cide

r
Ro

ug
e S3

Su
mmaQ

A
Su

pe
rt

0.0

0.2

0.4

0.6

0.8

1.0

Sg
n 

Ac
c

SummEval-fluency

de
b

gra
de

ho
list

ic
mau

de usl
0.0

0.2

0.4

0.6

0.8

1.0

Sg
n 

Ac
c

Dialog

C-SP
EC

COMET
Bleu

RT
BLEU

0.0

0.2

0.4

0.6

0.8

1.0

Sg
n 

Ac
c

WMT21

BLEU

BLEU
RT

COMET-
22

UniT
E

metr
icx

_xl
g

cha
tgp

t
0.0

0.2

0.4

0.6

0.8

1.0

Sg
n 

Ac
c

WMT22

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fa
vi

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fa
vi

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fa
vi

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fa
vi

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fa
vi

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fa
vi

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fa
vi

Sample Lvl Acc System Lvl Acc Favi-Score

Figure 4: Visualization of the sample-level sign accuracy (orange), system-level sign accuracy (blue), and the
average favi-score with a standard deviation (green).
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Figure 5: The relationship between the Favi-score and
both types of sign accuracy. In the upper plot, the box-
plot show the distribution of absolute Favi-scores for the
cases where the System Level sign agrees for a pair (1)
and for the cases where it disagrees (0). The lower plot
scatters the Favi-scores vs. the sample level accuracy,
where the color showcases the system-level accuracy.

not). First, we investigate whether the system-level
sign accuracy correlates to the Favi-Score. In Fig-
ure 5a, we show the Favi-Scores depending on

JDEx
plo

reA
cad

em
y

M2M
10

0_1
.2B

-B4

Onlin
e-A

Onlin
e-B

Onlin
e-G

Onlin
e-W

Onlin
e-Y

QUART
Z_Tu

ne
Re

ran
kin

g
ref

B

0.4

0.2

0.0

0.2

0.4

Figure 6: Box Plot of the Favi-Scores for each System
for the COMET-22 metric.

whether the sign agrees on the system level (1)
or not (0). We observe that system-pairs where
the sign does not agree tend to have a larger Favi-
Score, which is expected according to Lemma 2.
In fact, there is a low-to-moderate inverse corre-
lation between the two scores of Spearman’s-ρ =
−0.25. The correlation of the Favi-Score to the
sample-level sign accuracy is depicted in Figure 5b,
which shows a small correlation ( Spearman’s-
ρ = −0.01). We note that very high sample-level
accuracies are associated with smaller Favi-Scores.

Return to Motivating Example. To return to
the motivating example from Section 2, we show-
case the Favi-Scores for each system (one-vs-all)
according to COMET-22 in Figure 6. That is we
computed the Favi-Score for each pair of systems,
and display for each system all Favi-Scores in terms
of a box-plot. COMET-22 strongly disfavors ref-B
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(i.e., the human reference), since the Favi-Score is
negative for ref-B, no matter the system we com-
pare against. This matches the DAG in Figure 1 in
which ref-B is ranked significantly lower than in
the human ranking. The M2M100 system is also
strongly disfavored. However, this is not visible
from the DAGs alone, where it is ranked last, both
according to COMET-22 and human judgements.
This is a case where the Favi-Score uncovers a
potentially undesired outcome that could go unno-
ticed otherwise, highlighting the utility of the Favi-
Score as a diagnostic tool. Finally, we observe a
strong favoritism with regards to the QUARTZ sys-
tem, which is ranked significantly higher according
to COMET-22. Thus, the Favi-Score is also useful
as a diagnostic tool and provides an explanation
for observed errors in system rankings. See Ap-
pendix D for more such examples.

The results of the application of the Favi-Score
to evaluate metrics shows that it measures a differ-
ent aspect of the metrics behaviour than the sign-
accuracy scores. Thus, we advocate the usage of
the Favi-Score alongside existing scores when a
novel metric for generative systems is developed.

8 Conclusion

We motivated and defined the Favi-Score, a simple-
to-implement and easy to interpret score, which
measures how much an automated preference met-
ric favors the outputs of a generative AI system.
Our investigations show that the Favi-Score differs
from the sign accuracy scores, and is to be used
complementary to them. The empirical applica-
tion of the Favi-Score to real-world setting reveals
that all metrics exhibit some degree of favoritism,
which needs to be accounted for when applying
these metrics, to better interpret results. We en-
vision that the Favi-Score is used as a diagnostic
tool to understand which systems are favored by a
metric.

Acknowledgments

This work was supported by the Swiss National Sci-
ence Foundation within the project "Unified Model
for Evaluation of Text Generation Systems (Uni-
Val)" [200020_219819].

Limitations

Relative Measure. Our definition of favoritism is
fundamentally relative, meaning we can only say

that some automated preference ratings display fa-
voritism with respect to a specific set of human
ratings.
Anchoring. This makes it crucial to prudently
select the reference ratings that are used for the
comparison. In this work, we treat human ratings
as the gold standard reference despite their limita-
tions (Amidei et al., 2018; Belz et al., 2021).
Comparisons. The Favi-Score is defined for a
given evaluation setting E , meaning for a fixed set
of automated ratings, human ratings, and system
pair. If we replace the the automated ratings, the
resulting new Favi-Score is directly comparable.
On the other hand, comparing the Favi-Score for
one system pair to another, even for the same auto-
mated metric, means we have to assume a degree
of consistency between reference ratings.
Alternative Definitions. Our definition of fa-
voritism is narrowly defined based on (perceived)
errors with respect to human ratings. In particular,
we do not consider the content of either the inputs
or outputs of various systems under test. Even
within our narrow framework, one could imagine
alternative definitions taking into account how a
change in outcome affects significance tests.
Robustness. Throughout this work, we consider
confusion matrices based on reasonably sized eval-
uation settings. For smaller settings the utility of
the Favi-Score can be limited. For example, if there
is only 1 error then the only possible values of the
Favi-Score are ±1 and ±2. This could potentially
be mitigated by a full probabilistic treatment of the
evaluation setting, which is outside the scope of
this work.
Diagnostic. While we are convinced that the Favi-
Score adds a useful diagnostic to a practitioner’s
toolbox, it does not provide any remedies. For
example, to lower the Favi-Score, one can try to
distribute errors more evenly, but it is not clear how
this should be achieved in a concrete case.
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A Proof of Equal Definition

Here, we prove Lemma 1, which states:

∑

m,n

Wmn
Cmn

E
=

mar(d̂)−mar(d)

E
(9)

We start the proof by expanding both sides of
the equation. We start with the left side. Let for
simplicity rHn = I[rH [i] = n]

Φ(C) =
∑

m,n

Wmn
Cmn

E

=
1

E

∑

m,n

Wmn ∗ Cmn

=
1

E

∑

i∈T

∑

m,n

WmnI[rH [i] = m ∧ rA[i] = n]

=
1

E

∑

i∈T

∑

m,n

WmnI[rH [i] = m]I[rA[i] = n]

=
1

E

∑

i∈T
[−rH+ rA= +−2rH+ rA− − rH= rA−

+ rH= rA+ + 2rH− rA+ + rH− rA=]

(10)
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Let us now expand the right side:

Φ(C) =
mar(d̂)−mar(d)

E

=
1

E
((d̂+ − d̂−)− (d+ − d−))

=
1

E
(
∑

i∈T
rA+ −

∑

i∈T
rA− −

∑

i∈T
rH+ +

∑

i∈T
rH− )

=
1

E

∑

i∈T
(rA+ − rA− − rH+ + rH− )

(11)

It is now apparent that we need to find an equiv-
alence of the terms inside the sum. That is:

− rH+ rA= +−2rH+ rA− − rH= rA−
+ rH= rA+ + 2rH− rA+ + rH− rA=

= rA+ − rA− − rH+ + rH−

(12)

We note that on the left hand side only at most
one term of the sum can be non-zero. On the right
hand side at most one term for the automated met-
ric can be 1 at the same time, and one for the human
rating. We complete the proof by simple enumera-
tion of all possible values of rAn and rHm .

rH+ rH= rH− rA+ rA= rA− LHS RHS
0 0 1 0 0 1 0 0
0 0 1 0 1 0 1 1
0 0 1 1 0 0 2 2
0 1 0 0 0 1 -1 -1
0 1 0 0 1 0 0 0
0 1 0 1 0 0 1 1
1 0 0 0 0 1 -2 -2
1 0 0 0 1 0 -1 -1
1 0 0 1 0 0 0 0

Thus, for all possible combinations of rAn and
rHm , both sides yield the same value, thus, showing
the equality of the two definitions.

B Proof of No System Level Sing Change

Here, we proof Lemma 2, i.e., that

Φ(C) = 0

=⇒ I[sgn(d+ − d−), sgn(d̂+ − d̂−)] = 1

(13)

The proof is a simple application of the alterna-
tive definition of the Favi-Score.

Φ(C) = 0

⇐⇒ mar(d̂)−mar(d)

E
= 0

⇐⇒ mar(d̂)−mar(d) = 0

⇐⇒ mar(d̂)−mar(d) = 0

⇐⇒ mar(d̂) = mar(d)

⇐⇒ d̂+ − d̂− = d+ − d−

=⇒ sgn(d̂+ − d̂−) = sgn(d+ − d−)

(14)

Note that the last line of the proof is an impli-
cation, which is not reversible. Thus if the sign of
both margins are equal, we cannot conclude that
there is no favoritism.

C Experimental Setup Details

C.1 Convert Scalar to Preference
Since most metrics return a scalar value, we need
to transform them into a preference rating. Simi-
larly, in many cases human ratings are available as
scalar or ordinal judgements for a single input and
output pair. In theses cases we assume that we have
paired ratings, meaning that we have system output
and rating for each test input and all systems. We
can then compare the individual scalar (or ordinal)
ratings to derive a preference rating, assuming that
higher values indicate higher quality.

Definition 12 (Scalar Metric). We call real val-
ued functions of inputs and outputs scalar metrics:
Ms : I × O → R.

A preference metric can be constructed from a
scalar metric as follows:
Definition 13. The derived preference metric M
of a given scalar metric Ms is defined as

M(i, o1, o2) =





+ Ms(i, o1) > Ms(i, o2)

= otherwise
− Ms(i, o1) < Ms(i, o2)

C.2 WMT-22 ChatGPT
Additionally to metrics participating in the WMT-
22 metrics shared task (Freitag et al., 2022), we
include ratings from GPT3.5-Turbo (0613) (Ope-
nAI, 2023) prompted as a preference metric (Wang
et al., 2024). We provided both a static system
prompt describing the rating task and a user prompt
for a concrete source sentence and pair of target
translations. We used the following system prompt:
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You act as an expert translator giving
detailed feedback about candidate trans-
lations provided by users. Consider in
particular the spelling, grammar, accu-
racy, and fluency of different translations.
Make sure you give detailed information
why one translation might be better than
another.

We used the following user prompt, where the
placeholders source, hyp_a, and hyp_b were re-
placed with a concrete source sentence and transla-
tions from systems π1 and π2:

Please give feedback for the following
translations:

Original Sentence: {source}

Candidate A: {hyp_a}

Candidate B: {hyp_b}

We used the function calling API (OpenAI, 2023)
to get a structured output rating and asked the
model to provide its preference (Candidate A, Can-
didate B, or No Preference), specific feedback for
each candidate translation, and an explanation for
its decision. For our evaluation, we discard the
feedback and explanation texts which were in-
cluded to elicit behavior analogous to chain of
thought (Wei et al., 2022) prompting. We note that
we received preference ratings that were uniquely
interpretable as one of the 3 options in almost all
cases. For 3 items, the model responded with an
empty string as preference rating, which we as-
signed as No Preference.

For our experiments, we assume that the ratings
are symmetric with respect to system order, mean-
ing that if we have already collected the ratings for
the pair (π1, π2), we invert the ratings (+ to − and
vice-versa) for the pair (π2, π1). We enumerated
systems in lexicographical order.

C.2.1 Symmetry of Preference Ratings
In the main text we treat the ratings from GPT3.5-
Turbo as symmetric. This is mainly to keep the
analysis simple. We note that according to Defi-
nition 13 the other preference metrics are already
symmetric.

We nevertheless also collected ratings for flipped
system pairs and noticed discrepancies. We show
the confusion matrix in Figure 7. The overall ac-
curacy is 69% and the intra-rater Krippendorff-
α (Krippendorff, 1970) is 0.249.

Figure 7: Confusion Matrix of reversed ratings with
respect to the original GPT3.5 Turbo ratings.

D Examples of Favoritism Consequences

In this section, we show more examples of DAGs
with the system-wise Favi-Score box plots.

D.1 Dialogue

The DAG according to human ratings is depicted in
Figure 8a. The human reference is on the top row,
while DialoGPTLarge is rated as the worst system
according to the human ratings. According to the
DEB Metric (Sai et al., 2020), human responses
are rated much lower than according to the human
raters, while the PolyEncoder is rated better than
the SeekerDIal3B. This matches the Favi-Scores
depicted in Figure 8c, where the human reference
is clearly disfavored, and the PolyEncoder has an
overall positive Favi-Score. The DialoGPTLarge
is also favored by the DEB metric, however, it does
not have an impact on the new ranking. We also
note that PolyEncoder is rated as being better than
SeekerDial3B according to the metric, which is also
a consequence of favoritism, as SeekerDial3B is
heavily disfavored. In fact, the Favi-Score between
the two systems lies at 0.72 in favor of PolyEn-
coder.

In Figure 9, the analysis for the MAUDE (Sinha
et al., 2020) metric is depicted. MAUDE clearly
prefers the outputs of PolyEncoder, which is
also clear from the Favi-Score. Similar to DEB,
MAUDE also prefers the outputs of DialoGPT-
Large, however without changing the ranking.
MAUDE has no clear disfavor against the human
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Figure 8: Visualization of the consequences of unfair metrics by comparing the human ranking to the DEB ranking.
The ranking of a set of systems is depicted as a Directed Acyclic Graph, where an edge from system A to system B
states that system A "wins" against system B. Here, a win is determined by a sign test (Coakley and Heise, 1996) at
a 95% confidence threshold.
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Figure 9: Visualization of the consequences of unfair metrics by comparing the human ranking to the MAUDE
ranking. The ranking of a set of systems is depicted as a Directed Acyclic Graph, where an edge from system A to
system B states that system A "wins" against system B. Here, a win is determined by a sign test (Coakley and Heise,
1996) at a 95% confidence threshold.

references like the DEB metric. Also BL2_3B is fa-
vored compared to BL400distill with a Favi-Score
of 0.375 in favor.

D.2 Summarization

Figure 10 shows the analysis for BertScore (Zhang
et al., 2019) on the SummEval data for the Consis-
tency feature. The strongest favoritism is shown
towards M11 (a decoder focused on promoting
novelty), which is the worst according to the hu-
man ranking, but is in solid mid-field according
to the metric. While M20 (a GPT2 model) is
strongly disfavored by the metric. We also note
that BertScore has a high system-level sign accu-
racy (0.789), while having an exceptionally low
sample level accuracy (0.05). However, since the

Favi-Score is low as well (mean of 0.29), it show-
cases that the Favi-Score is more influential on the
final ranking than the sample level accuracy.

Figure 11 shows the analysis of the ROUGE
score. Overall, the ROUGE score has a slightly
higher sample-level accuracy (0.07) while having
a higher average Favi-Score (0.339), and a much
lower system level sign accuracy (0.633). We also
note that the favoritism is more pronounced in
the ROUGE score, again with M11 being strongly
favored. While M0 and M1 are both disfavored,
which also is apparent in the final ranking.

D.3 Machine Translation

In Figure 12 the analysis of ChatGPT as metric is
shown. ChatGPT has a high system-level accuracy
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Figure 10: Visualization of the consequences of unfair metrics by comparing the human ranking to the BertScore
ranking. The ranking of a set of systems is depicted as a Directed Acyclic Graph, where an edge from system A to
system B states that system A "wins" against system B. Here, a win is determined by a sign test (Coakley and Heise,
1996) at a 95% confidence threshold.

(0.852), and a relatively low Favi-Score (0.229),
as well as a low sample level accuracy (0.348).
Among the selected WMT-22 metrics, it has one of
the lower system-level accuracy scores, the high-
est sample-level accuracy score, and the highest
Favi-Score. Thus, highlighting the influence of
favoritism on the final ranking. Similar to other
metrics, it disfavors the human reference (ref-B).
It favors M2M100, however without chaining the
ranking. These are cases where most mistakes are
in favor of M2M100, however, the outcome margin
is too large for the errors to have an impact on the
ranking.

Figure 13 shows the analysis according to the
BLEU score. The BLEU score has the lowest sys-
tem level sign accuracy (0.7), and one of the higher
Favi-Scores (0.21), and sample-level sign accuracy
comparable to the other metrics (0.31). Again,
we observe that the human reference is rated very
poorly, with a high Favi-Score against it. Also
Online-W has a negative Favi-Score, which also
reflects its low position in the ranking according to
BLEU.
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Figure 11: Visualization of the consequences of unfair metrics by comparing the human ranking to the ROUGE
ranking. The ranking of a set of systems is depicted as a Directed Acyclic Graph, where an edge from system A to
system B states that system A "wins" against system B. Here, a win is determined by a sign test (Coakley and Heise,
1996) at a 95% confidence threshold.
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Figure 12: Visualization of the consequences of unfair metrics by comparing the human ranking to the ChatGPT
ranking. The ranking of a set of systems is depicted as a Directed Acyclic Graph, where an edge from system A to
system B states that system A "wins" against system B. Here, a win is determined by a sign test (Coakley and Heise,
1996) at a 95% confidence threshold.
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Figure 13: Visualization of the consequences of unfair metrics by comparing the human ranking to the BLEU
ranking. The ranking of a set of systems is depicted as a Directed Acyclic Graph, where an edge from system A to
system B states that system A "wins" against system B. Here, a win is determined by a sign test (Coakley and Heise,
1996) at a 95% confidence threshold.
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