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Abstract

Knowledge graphs (KGs) play a pivotal role in
knowledge-intensive tasks across specialized
domains, where the acquisition of precise and
dependable knowledge is crucial. However, ex-
isting KG construction methods heavily rely
on human intervention to attain qualified KGs,
which severely hinders the practical applicabil-
ity in real-world scenarios. To address this chal-
lenge, we propose a general KG construction
framework, named SAC-KG, to exploit large
language models (LLMs) as Skilled Automatic
Constructors for domain Knowledge Graph.
SAC-KG effectively involves LLMs as domain
experts to generate specialized and precise
multi-level KGs. Specifically, SAC-KG con-
sists of three components: Generator, Verifier,
and Pruner. For a given entity, Generator pro-
duces its relations and tails from raw domain
corpora, to construct a specialized single-level
KG. Verifier and Pruner then work together to
ensure precision by correcting generation er-
rors and determining whether newly produced
tails require further iteration for the next-level
KG. Experiments demonstrate that SAC-KG
automatically constructs a domain KG at the
scale of over one million nodes and achieves
a precision of 89.32%, leading to a superior
performance with over 20% increase in preci-
sion rate compared to existing state-of-the-art
methods for the KG construction task.

1 Introduction

Knowledge graphs (KGs) are a collection of fac-
tual triples, which represent human knowledge in
a structured way, i.e., (head entity, relation, tail en-
tity). In recent years, KGs have been successfully
applied in various domains, including medical sci-
ence (Santos et al., 2022), biology (Zhang et al.,
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2022), and social networks (Qiu et al., 2018). How-
ever, constructing domain KG requires extensive
expert knowledge and human intervention, which
severely restricts the practical implementation of
domain KG construction.

To address this challenge, extensive research ef-
forts have been devoted to the KG construction
task (Angeli et al., 2015; Etzioni et al., 2008a).
Canonical KG construction methods mainly fo-
cus on learning logical rules based on seman-
tic patterns. Rule-based methods extract subject-
predicate-object triples by utilizing lexical and se-
mantic role labels (Zhan and Zhao, 2020). Recently,
some large language models (LLMs)-based meth-
ods have emerged as a new trend and achieved supe-
rior performances than rule-based methods (Wang
et al., 2021; Han et al., 2023). LLM-based meth-
ods extract triples from raw corpora by harnessing
the prior knowledge stored within the LLM. Exten-
sive works demonstrate that LLM-based methods
are more creative (Swanson et al., 2021) and more
human-understandable (Chefer et al., 2021).

Albeit with multiple benefits of the LLM-based
methods, they confront two significant challenges
that severely hinder their performance and deploy-
ment. First, there is contextual noise in input. Ex-
isting LLM-based methods extract triples directly
from the raw context. The raw context includes a
substantial amount of domain-irrelevant informa-
tion, which may potentially distract the LLM and
consequently degrade its performance (Shi et al.,
2023; Kumar et al., 2021). Second, there is knowl-
edge hallucination in output. Knowledge halluci-
nation is that the LLM may generate content that
is nonsensical or unfaithful to the provided source
content (Zhang et al., 2023; Ji et al., 2023).

Regarding the domain KG construction, the
LLM might generate certain irrelevant or incorrect
triples due to the contextual noise and knowledge
hallucination. Moreover, these incorrect triples
may further propagate their errors to the next itera-
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Input：
Text: “Rice, a monocot, is normally grown as an annual plant, although in tropical areas it can survive as a perennial and can 
produce a ratoon crop for up to 30 years. Rice cultivation is well-suited to countries and regions with low labor costs and high
rainfall, as it is labor-intensive to cultivate and requires ample water. However, rice can be grown practically anywhere, even on a 
steep hill or mountain area with the use of water-controlling terrace systems. Although its parent species are native to Asia and 
certain parts of Africa, centuries of trade and exportation have made it commonplace in many cultures worldwide. Production and 
consumption of rice is estimated to have been responsible for 4% of global greenhouse gas emissions in 2010.”
Instruction：Please extract all triples related to Rice from the above text. The triples must have Rice as the head entity and be 
output strictly in triple format.
Examples:
-[Rice | main producing country | China]
-[Rice | main producing country | India]
-[Rice | distribution area | tropical and subtropical regions of Asia and Africa]
-[Rice | alias | millet]
-[Rice | Latin scientific name | Oryzasativa]

Output: 
-[Rice | type | monocot]
-[Rice | growth habit | annual plant]
-[Rice | growth habit | perennial (in tropical areas)]
-[Rice | ability | produce ratoon crop for up to 30 years]
-[Rice | well-suited to countries and regions with low labor costs and high rainfall]
-[Rice | cultivation requirements | labor-intensive]
-[Rice | cultivation requirements | ample water]
-[Rice | cultivation adaptability | can be grown practically anywhere]
……

Domain 
corpora

Open 
knowledge

[growing] 
[growing] 
[growing]
[pruned]

[growing]
[pruned]
[pruned]

……

[correct] 
[correct] 
[correct] 
[correct] 

[Format error] 
[correct] 
[correct] 
[correct]

…… 

PrunerVerifier

Generator

LLM

Figure 1: An example of input and output of the SAC-KG framework. Specifically, the input component consists
of three segments: text, instruction, and examples. The text segment retrieves the most relevant corpora from a
domain-specific corpora for a given entity. The instruction segment provides instructions to an LLM to generate
corresponding triples. The example segment retrieves template triples from an open-source encyclopedia KG. The
output includes generated correct triples and an indicator of “growing” or “pruned” by pruner.

tion, which significantly influences the credibility
of the constructed domain KG.

Therefore, in this paper, we seek to answer the
question: Can we propose a general KG construc-
tion framework that is automatic, specialized, and
precise? With this consideration, we delve explic-
itly into the two significant challenges and propose
a novel approach, namely SAC-KG, which involves
the LLM as domain experts and constructs domain
KGs by an entity-induced tree search algorithm
automatically and iteratively. SAC-KG is a novel
automatic KG construction framework and effec-
tively addresses the issues mentioned above within
LLM-based methods. Specifically, SAC-KG com-
prises three components:

(i) Generator applies a domain corpora retriever
to retrieve the most relevant specialized con-
text from raw domain corpora and an open
knowledge retriever to retrieve the most rele-
vant triples from an open-source encyclopedic
KG, DBpedia, (Xu et al., 2017) for a given
entity. Both of them are combined as input
to the LLM. Generator can eliminate domain-
irrelevant information and generate a special-
ized single-level entity-induced KG.

(ii) Verifier applies an error detection process to
detect and output error types by employing
rule criteria in RuleHub, a repository compris-

ing over 7000 criteria mined from open KGs
(Ahmadi et al., 2020) and an error correction
process by reprompting the LLM correspond-
ing to the detected error types. Verifier al-
leviates the propagation of error triples and
promotes the precision of current-level KG.

(iii) Pruner employs a T5 model (Roberts et al.,
2019) finetuned on DBpedia, an open-source
encyclopedic KG (Xu et al., 2017), as a bi-
nary classifier. Pruner takes tail entities of
each generated triple as input and determines
whether the tail entities need the next-level
generation. Pruner decides the generating di-
rection, which further improves the precision
of constructing the next-level KG.

SAC-KG is a general framework for KG construc-
tion with great automation, specialization, and pre-
cision. Experiments demonstrate that SAC-KG
automatically constructs a domain KG at a scale
of over one million nodes and achieves a precision
of 89.32% and significantly outperforms existing
state-of-the-art methods for the KG construction
task, achieving over 20% in precision metric.

2 Related Works
Open Information Extraction. Open information
extraction (OIE) facilitates domain-independent
discovery of relational facts from large corpora
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Figure 2: An overview of SAC-KG. SAC-KG organically integrates Generator, Verifier, and Pruner into a unified
framework to construct the domain KG automatically. Specifically, for a given entity, SAC-KG iteratively generates
a single-level entity-induced knowledge graph (KG). For each iteration, the set of entities designated as “growing”
(see green entities in Pruner) forms the input for the next-level generation process to the Generator.

(Zhou et al., 2022). TextRunner (Etzioni et al.,
2008b) is the first OIE model, which merges tuples
with identical entities and normalizes relationships
based on predefined rules. Following TextRun-
ner, Stanford OIE (Angeli et al., 2015), a popu-
lar method for extracting general knowledge from
texts, proposes an effective and novel approach to
open information extraction, utilizing a classifier
to extract self-contained clauses and natural logic
inference to determine specific arguments. OIE6
proposes (Kolluru et al., 2020) a novel iterative
grid labeling architecture to further improve the
extraction quality. More recently, some methods
employ LLMs to generate triples directly from in-
put context (Wang et al., 2020; Cohen et al., 2023).
Deepex (Wang et al., 2021) leverages the attention
matrix of a finetuned pretrained language model
to extract triples. PIVE (Han et al., 2023) prompts
the LLM and complements additional triples iter-
atively. However, existing LLM-based methods
suffer from both contextual noise and knowledge
hallucination to generate high-qualified triples.

In-context Learning. In-context learning (ICL),
where LLMs make predictions only based on con-
texts with a few examples, has become a new
paradigm for natural language processing (Liu
et al., 2021). With the scaling of both model
size and training corpora size (Brown et al., 2020),
LLMs demonstrate the ability of learning from a
few prompts that contain some training examples
(Dong et al., 2022a; Kojima et al., 2022). Different
from supervised learning requiring a training stage
that uses backward gradients to update model pa-
rameters, ICL does not need parameter update and
directly performs predictions. ICL aims to learn
from analogy, which directly LLMs to make pre-
dictions (Dong et al., 2022b) with these examples.

By concatenating both context and prompt, LLMs
learn patterns hidden in examples and perform well
on downstream tasks (Kojima et al., 2022).

3 Method
We develop a general framework, named SAC-
KG, to exploit LLMs (see Appendix A for related
works) as skilled automatic constructors for do-
main KGs. Given domain corpora, the overall task
is to extract triples with automation, precision, and
controllability. SAC-KG organically integrates gen-
erator, verifier, and pruner in a unified framework
to perform KG construction. An overview of SAC-
KG is shown in Figure 2.

3.1 Generator

For a specified entity, which is typically a domain
name or a randomly selected set of nouns within
that domain, Generator employs a domain corpora
retriever to retrieve the most relevant context from
raw domain corpora and an open knowledge re-
triever to retrieve the most relevant triples from an
open-source encyclopedic KG, DBpedia (Xu et al.,
2017). Generator adopts in-context learning, ren-
dering it parameter-free, unsupervised, and fully
automatic. Retrievers also contribute to ensuring
the quality of generated triples.

3.1.1 Domain corpora Retriever
LLMs are frequently constrained by substantial
knowledge hallucinations, where the contents pro-
duced by LLMs often diverge from factual knowl-
edge (Dziri et al., 2022; Shuster et al., 2021). The
hallucinations may potentially impact the reliabil-
ity and practical applications of the constructed
domain KG. To facilitate accurate knowledge aug-
mentation for the LLM, we propose a domain cor-
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Table 1: Domain KG evaluation of precision, recall, and domain specificity metrics on the same domain corpora.

Backbone Model Number of recalls Precision Domain Specificity
Rule-based OpenIE 6 (2020) 1.94 42.05 31.96
Rule-based Stanford OIE (2023) 2.12 45.94 31.24
Bert DeepEx (2021) 1.64 48.28 34.76
ChatGPT PIVE (2023) 5.08 64.48 51.58
Qwen 7B SAC-KGQwen 3.85 69.89 57.90
Llama2 7B SAC-KGLlama2−7B 2.73 54.39 40.59
Llama2 13B SAC-KGLlama2−13B 4.15 69.40 65.13
ChatGPT SAC-KGChatGPT 8.09 89.32 81.25

pora retriever. For a given entity, it initially seg-
ments the domain corpora into sentences and then
ranks the relevant sentences based on the frequency
of occurrence of that entity. Then, these sentences
are concatenated into a text list. Finally, we rank
them in descending order of relevance to the given
entity, and concatenate them into a fixed-length text
as input to the LLM.

3.1.2 Open KG Retriever
When the input consists solely of domain-specific
corpora and straightforward instructions, the output
generated by large language models is often chal-
lenging to control and may even exhibit incorrect
triple formats. To address this issue, we propose
an open KG retriever, which adopts the in-context
learning (Shin et al., 2022) and retrieves the most
related triples associated with the entity from DB-
pedia (Xu et al., 2017) as examples. These exam-
ples encourage the model to generate content in the
correct format, which enhances the controllability.
We present our retrieval strategy as follows:

(i) For entities presented in the open-source KG,
we provide related triples wherein the entity
serves as the head entity, offering up to 10
cases as examples.

(ii) For entities not presented in the open-source
KG, we tokenize them and retrieve the most
related set of triples. For instance, given
the entity “micropropagation”, if it is not
found within the open-source KG, it will be
tokenized into two subentities, “micro” and
“propagation”, to perform a subsequent re-
trieval from the open KG again.

(iii) For entities that remain unmatched even after
tokenization, we randomly select ten triples in
the KG as prompts.

We then concatenate the related context, the
triple prompts, and corresponding instructions as
input to the LLM and obtain the extracted triples
as output for the generator.

3.2 Verifier

While the generator contributes to enhancing the
output quality of the LLM, errors in generated
triples still exist. To further enhance the qual-
ity of the final generated domain KG, we intro-
duce verifier, which is responsible for identifying
and filtering out erroneous triples generated by the
LLM. Verifier is rule-based and parameter-free, en-
abling efficient execute error detection and correc-
tion. Specifically, the verifier consists of two steps:
error detection step and error correction step.

For error correction, we use existing criteria
mined from open KGs within RuleHub (Ahmadi
et al., 2020) to identify errors and output error types.
The workflow is as follows.

(i) Quantity check. If the number of triples is
less than the threshold (default is 3), it will be
categorized as “Quantity insufficient”.

(ii) Format Check. If the triple does not conform
to the example format, it will be categorized as
“Format error”. If head entity does not match
the predefined entity, it will be categorized
as “Head entity error". If head entity and tail
entity are identical, it will be categorized as
“Contradiction between head and tail".

(iii) Conflict Check. Verifier conducts compre-
hensive conflict detection for each triple in
RuleHub (Ahmadi et al., 2020). For instance,
ensuring that a person’s birth time precedes
their time of death and a person’s age is not a
negative number.

We sequentially conduct quantity, format, and
conflict check for generated triples and output in-
formation about the error types.

For error correction, we first determine the error
type using the error detection step and offer corre-
sponding prompts. Then, we reprompt the LLM to
regenerate a corrected output. For instance, if the
error type is “format error”, we prompt the model
with: “Please generate it again strictly according
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Table 2: Ablation study for SAC-KG in the first three-level constructed KG. Each iteration implies generating an
additional layer of the KG. The symbol “-” denotes that in iteration 1, pruner has not been applied before.

Iteration rounds Model Number of recalls Precision Domain Specificity

Iteration 1

SAC-KGw/o prompt 10.15 80.64 74.19
SAC-KGw/o text 11.27 81.48 71.80
SAC-KGw/o verifier 13.05 76.47 69.88
SAC-KGw/o pruner - - -
SAC-KG 13.50 88.81 80.50

Iteration 2

SAC-KGw/o prompt 4.13 77.35 71.16
SAC-KGw/o text 7.52 63.24 52.23
SAC-KGw/o verifier 8.43 77.06 70.41
SAC-KGw/o pruner 2.30 73.33 70.42
SAC-KG 9.94 84.61 76.27

Iteration 3

SAC-KGw/o prompt 3.22 61.53 56.61
SAC-KGw/o text 5.84 38.41 31.59
SAC-KGw/o verifier 4.83 58.53 52.29
SAC-KGw/o pruner 1.32 44.82 39.65
SAC-KG 6.63 76.74 68.60

to the format requirements, paying attention to the
format of the example triples.” Details of error
types and according prompts are in Appendix B.

3.3 Pruner

After passing through the verifier, we obtain all the
correct triples for this level, and then proceed to
generate the next-level triples.

However, not all triples need the next-level gen-
eration. For instance, the triple “(rice, optimal
growth temperature, 20-25 degrees Celsius)” is a
correct triple, while its tail entity “20-25 degrees
Celsius” does not need to be further generated as
the head entity for the next-level triple generation.

Therefore, to enhance the controllability of the
constructed KG, we propose pruner, a T5 binary
classifier model finetuned on an open-source KG,
DBpedia. Its input consists of the tail entities
from each correct triple. Its output is “growing” or
“pruned”, indicating whether the entity should pro-
ceed to generate the next-level KG or cease further
generation. Specifically, we input the text of enti-
ties to T5 and it generates “growing” or “pruned” as
output. To train the pruner, we gather training data
from DBpedia and select a subset of head entities
to represent the “growing” category. We also gather
an equivalent subset of tail entities, excluding those
that overlap with the head entity list, to constitute
the “pruned” category. We then use these entities
text as input and the corresponding labels “growing”
or “pruned” as output targets during fine-tuning.

Finally, leveraging domain corpora, we can pro-
duce a single-level KG for the input entity, which
will subsequently be incorporated into a new level
of generated KG. Hence, SAC-KG generates mul-
tiple triples with the entity and proceed to iterate,
creating a KG subtree rooted in head entities of
the generated triples. This process resembles the
incremental growth of a tree layer by layer, akin to
retrieving and accessing domain knowledge from
shallow to deep. Furthermore, SAC-KG is an un-
supervised approach that can be applied to any
domain with significant volumes of unstructured
text corpora, without the need for labeled data.

4 Experiments
We design experiments to evaluate the effectiveness
of the proposed SAC-KG and provide more insights
of the constructed domain KG. With this desiderata,
we divide the experiments into five parts:

(i) To evaluate the effectiveness of SAC-KG, we
compare SAC-KG with existing state-of-the-
art methods for domain KG construction task.

(ii) To offer a more comprehensive evaluation of
constructed KG, we conduct agreement evalu-
ation between GPT4 and humans.

(iii) To provide more insight into SAC-KG, we
conduct the ablation study of each component.

(iv) To analyze the constructed KG, we conduct
case study of the constructed domain KG.

(v) To further demonstrate the effectiveness of
SAC-KG, we evaluate SAC-KG on existing
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Table 3: Case study results for different categories. For entities in the categories, we evaluate their single-level KGs
and report the mean results.

Entity category Model Number of recalls Precision Domain Specificity

Rice variety

OpenIE 6 (2020) 1.90 31.65 24.05
Stanford OIE (2023) 2.33 39.28 26.71
DeepEx (2021) 3.04 60.37 43.47
PIVE (2023) 2.57 54.48 43.58
SAC-KGChatGPT 13.11 84.28 76.88

Rice expert

OpenIE 6 (2020) 7.75 50.40 38.30
Stanford OIE (2023) 4.25 43.03 29.26
DeepEx (2021) 1.50 47.36 34.01
PIVE (2023) 2.00 55.17 44.14
SAC-KGChatGPT 3.88 93.33 84.43

open-source OIE benchmarks.

4.1 Datasets and Experiment Setup
We initially collect raw textual data from special-
ized books, web pages, and genealogical data to
the rice domain. In total, we collect 70 specialized
books, 1522 web pages, and 24000 genealogical
records related to rice (see Appendix H for details).
These domain corpora exhibit varying degrees of
structural diversity and different levels of textual
quality, which can also effectively emulate the con-
ditions encountered in the majority of original cor-
pora within other domains.

We retrieve domain entities as root node from
the open-source KG and obtain their domain texts
from domain corpora. We retrieve up to 500 tokens
of domain text for each node. We then compare the
extraction of triples based on the same input text
by different baselines. We assess performance by
using the following metrics.
Precision: To assess precision, we conduct eval-
uations through both manual and automatic man-
ners, with the latter being more scalable in nature.
Following Vicuna (Zheng et al., 2023), we em-
ploy GPT-4 (OpenAI, 2023) as an automatic judge.
Specifically, we take extracted triples with their cor-
responding text as input to the GPT-4 for assessing
the correctness of each triple.
Recall: Estimating recall is infeasible due to the in-
ability to access the ground truth triples for each do-
main text. Therefore, we report the average count
of verified triples for each domain text. That is,
we report recall without providing the denominator.
We refer to this metric by the number of recalls.
As in (Vo and Bagheri, 2016; Kolluru et al., 2020),
this metric aligns with the real-world scenarios,
where it is impractical to obtain the entire set of

accurate facts. Consequently, the convention is to
report only the count of generated facts. This met-
ric serves as an indicator of the effective extraction
and utilization of domain corpora.
Domain Specificity: We aim to generate triples
that are correct, domain-related, and distinct from
those triples in the open-source encyclopedic KG.
Specifically, inspired by the survey (Wang et al.,
2023), we aim to ensure the construction of a large-
scale domain KG with higher domain expertise. To
this end, we introduce a domain-specific metric
that quantifies the proportion of generated triples
meeting three criteria: correctness, domain-related,
and not presented in the open-source encyclopedic
KG. This metric is computed as |set of generated
domain-related and correct triples − set of triples
in the open-source KG| / |set of generated triples|,
where “−” denotes the set difference operation, and
“||” represents the cardinality of a set. The primary
objective of domain specificity is encouraging the
LLM to extract knowledge not solely reliant on
the open-source KG but also capable of summariz-
ing and condensing domain knowledge from the
domain corpora.

For the parameter set up of generator, we set
temperature value of the LLM as 0.1 and a maxi-
mum sequence length of 2000 tokens. For pruner,
we use the low-rank adaptation (Hu et al., 2021)
to efficiently finetune a T5 (Roberts et al., 2019)
model. We train the model with 2 epochs and use
batch size of 64. We set the learning rate as 0.001.
More details can be found in Appendix E.

4.2 Main Results

We employ four baseline models for our study,
namely OpenIE 6 (Kolluru et al., 2020), Stanford
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Figure 3: Visualization results of rice expert case of OIE6, PIVE, and SAC-KG. Entities marked in green denote the
correct triples and entities marked in yellow denote the wrong triples.

Table 4: Statistical indicators of GPT4 evaluation and
human evaluation.

Precision Recall F1 score Cohen’s Kappa coefficient

0.906 0.951 0.928 0.613

OIE (Angeli et al., 2015), DeepEx (Wang et al.,
2021), and PIVE (Han et al., 2023). OpenIE 6 and
Stanford OIE represent state-of-the-art methods
for rule-based triple extraction, with the Stanford
OIE method being based on the updated version
released in September 2023. DeepEx is a represen-
tative approach that combines Bert (Devlin et al.,
2018) with rule-based techniques for triple extrac-
tion, while PIVE directly utilizes ChatGPT (Ope-
nAI, 2020) to construct KGs.

To comprehensively evaluate the performance of
our approach, we utilize multiple LLMs as back-
bones. We mainly use ChatGPT (OpenAI, 2020),
which is widely recognized for its superior per-
formance and serves as the foundation for many
research endeavors. Furthermore, to demonstrate
the effectiveness of our method on models with
smaller parameter sizes, we also select Qwen 7B,
Llama2 7B, and Llama2 13B (Bai et al., 2023; Tou-
vron et al., 2023) as our backbones.

As shown in Table 1, SAC-KG outperforms pre-
vious methods in KG construction consistently.
Rule-based approaches like OIE6 and Stanford
OIE, which extract triples through lexical and se-
mantic role labels, exhibit poor performance for
precision and domain specificity metrics. We also
observe that rule-based approaches tend to extract
uninformative triples, leading to a falsely inflated
recall rate (see Section 4.5 for details). DeepEx and
PIVE, which utilise LMs as backbones, show some
improvement but still also perform suboptimally.
When utilizing the ChatGPT as the backbone, we
achieve an precision rate of 89.32% and domain
specificity of 81.25%. This further demonstrates
the effectiveness of our approach in the direct con-
struction of KGs from open domain corpora.

4.3 Agreement Evaluation
We use GPT-4 for automatic and efficient evalua-
tion. To demonstrate the validity of this approach,
we conduct a human evaluation. Specifically, we
engage 20 volunteers, comprising 5 PhDs, 7 PhD
candidates, and 8 master students with KGs and
rice backgrounds. We make evaluation question-
naires, each with 100 “text-triple list" pairs (in-
put texts from the model and corresponding output
triple lists). Volunteers assess triple correctness and
error reasons (e.g., text inconsistency, formatting,
or others) when marking a triple as incorrect.

We provide key statistical indicators for more
trustworthy results. We use human evaluation re-
sults as the ground truth for precision, recall, F1
score, and average precision. As shown in Table
4, the results indicate a close alignment between
GPT4 evaluation and human evaluation. With a
precision value of 0.906, GPT4 identifies most pos-
itive samples. The recall value of 0.951 shows that
it can capture most true positives. The F1 score of
0.928 also shows the solidity of GPT4 evaluation.
Moreover, Cohen’s Kappa coefficient above 0.6
suggests a medium to high consistency between
GPT4 evaluation and human evaluation. Overall,
these statistics demonstrate the effectiveness and
dependability of GPT4 evaluation. More details of
GPT and human evaluation are in Appendix C.

4.4 Ablation Study
To further investigate the contribution of each com-
ponent within SAC-KG to the KG construction,
we conduct a series of ablation experiments on
the entire framework. We compute these met-
rics in each iteration to obtain a fine-grained re-
sult. Specifically, we denote SAC-KG without the
open KG retriever as SAC-KGw/o prompt, SAC-
KG without the domain corpora retriever as SAC-
KGw/o text, SAC-KG without the verifier as SAC-
KGw/o verifier, and SAC-KG without the pruner
as SAC-KGw/o pruner, respectively.
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Table 5: F1 score and AUC results on OIE2016, WEB, NYT, and PENN datasets.

Model OIE2016 WEB NYT PENN
F1 AUC F1 AUC F1 AUC F1 AUC

OpenIE 6 (2020) 55.3 61.1 61.1 64.9 30.7 55.2 54.2 63.1
Stanford OIE (2023) 59.3 65.1 63.3 69.3 31.1 56.9 56.8 67.1
DeepEx (2021) 72.6 58.6 91.2 82.4 85.5 72.5 88.5 81.5
PIVE (2023) 70.4 71.1 89.8 86.0 83.5 77.9 86.0 81.2
SAC-KGChatGPT 74.7 73.2 96.6 95.7 88.8 87.3 91.1 90.1

As shown in Table 2, the absence of any com-
ponent within SAC-KG results in a performance
degradation of the entire framework. Notably, the
pruner and the open KG retriever have a more pro-
nounced impact on the performance of SAC-KG.
These two components control generating direction
and adding examples, respectively. This implies
the importance of enhancing controllability in the
KG construction process.

4.5 Case Study
We conduct a case study on the KGs constructed by
SAC-KG and the baselines. Specifically, we select
rice varieties and rice experts as two cases to ana-
lyze the distinctions between different constructed
KGs. More cases are in Appendix F. As illustrated
in Table 3, each iteration of SAC-KG demonstrates
favorable results in terms of precision and domain
specificity. While in rice expert case, rule-based
approaches achieve higher recall rates but exhibit
suboptimal precision and domain specificity. This
may be attributed to the heightened sensitivity to
personal name entities of rule-based methods (Kol-
luru et al., 2020). However, their precision and
domain specificity do not demonstrate satisfactory
performance. On the contrary, SAC-KG exhibits
higher precision and domain specificity in this case,
albeit with lower recall rates.

We visualize three single-level KGs in the rice
expert case to gain a further insight. As Figure 3
shows, the rule-based approaches (OIE6) tend to
generate redundant triples simply through lexical
and syntactical analysis. These triples often contain
limited specific information. PIVE extracts more
informative triples, while it is still affected by irrel-
evant textual noise and extracted incorrect triples
such as “(Gurdev Singh Khush, achievement, ex-
ponential population growth)”. SAC-KG, while
extracting a reduced number of triples, produces
triples that possess a higher degree of human in-
terpretability and domain information. Therefore,
improving recall rates in specific cases of SAC-

KG to increase the utilization of domain corpora
information will be a focus of our future research.

4.6 Results on OIE benchmarks
To further demonstrate the effectiveness and gen-
erality of our SAC-KG, we conduct experiments
on open-source benchmarks for traditional OIE
tasks. Following the setting and the evaluation
method of DeepEx (Wang et al., 2021), we evaluate
the OIE2016 (Stanovsky and Dagan, 2016), NYT,
WEB (Mesquita et al., 2013), and PENN (Radford
et al., 2021) datasets and use traditional AUC and
F1 score as metrics. Details of the datasets are
summarized in Appendix G.

As shown in Table 5, SAC-KG also outperforms
existing state-of-the-art methods across traditional
OIE benchmarks, which demonstrate its effective-
ness and generalization. Specifically, SAC-KG out-
performs rule-based methods (OpenIE 6 and Stan-
ford OIE) by a large margin. And compared with
LLM-based methods (DeepEx and PIVE) SAC-KG
also attain the optimal results consistently, which
demonstrates the effectiveness and robustness of
SAC-KG. These results also show the effectiveness
of SAC-KG in the traditional OIE task.

5 Conclusion
In this paper, we propose a novel automatic do-
main KG construction framework named SAC-KG,
which effectively constructs KG directly from do-
main corpora. SAC-KG incorporates LLMs as
domain experts and iteratively employs an entity-
induced tree search algorithm for the construction
of a multi-level KG. Specifically, we propose Gen-
erator, Verifier, and Pruner to form a general KG
construction framework with automation, precision,
and controllability. SAC-KG constructs a domain
KG at the scale of over a million nodes with an
precision of 89.32%, achieving over 20% increase
in precision metric. This superior performance
of SAC-KG over existing state-of-the-art methods
demonstrates effectiveness of our SAC-KG.
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Limitations

While SAC-KG can construct domain-specific
KGs, it cannot inject or update the domain knowl-
edge into LLMs. Exploring low-cost methods to
inject domain knowledge into LLMs for the cre-
ation of a domain-specific LLMs will be the focus
of our future work. We will also focus on employ-
ing this approach as a means to explicitly interpret
the learned knowledge of LLMs.
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A More Related Works

Language Models. Language models includ-
ing GPT (Radford et al.), BERT (Devlin et al.,
2018), RoBERTa (Liu et al., 2019), and Megatron-
LM (Shoeybi et al., 2019) have led to a learn-
ing paradigm shift in natural language processing
(NLP). Models are first pre-trained on extensive
volumes of unlabeled text corpora with language
modeling objectives, and then fine-tuned on down-
stream tasks. Recently, large language models
(LLMs) including ChatGPT (OpenAI, 2020) and
PaLM (Chowdhery et al., 2022) have shown great
performance in both few-shot and even zero-shot
scenarios (Brown et al., 2020). To further enhance
the interpretability of these LLMs, some research
endeavors explain LLMs through attribution analy-
sis (Wang et al., 2022; Hanna et al., 2023; Gurnee
et al., 2023). Another line of work aims to retrieve
the knowledge explicitly from LLMs as the basis
for interpreting them, including the reasoning task
(Shi et al., 2023) and the QA task (Hao et al., 2023;
Dhingra et al., 2020; Guu et al., 2020).

B Details of Error Types and Prompts

Our approach involves performing error correction
based on the types of errors output by the error de-
tection module. To further enhance inference effi-
ciency, if the number of categorized triples exceeds
a predefined threshold (the default being 3), the ver-
ifier will amalgamate the corresponding prompts
from Table 6 with the original input to the LLMs
for regeneration. Conversely, if the number of cate-
gorized triples is below this threshold, the verifier
will directly eliminate the marked triples, obviating
the need for regeneration.

C More Details of Agreement Evaluation

We conduct a human evaluation by engaging sev-
eral doctoral candidates with expertise in rice re-
search. Specifically, we involve the validation
of each generated fact by manual examination of
highly reliable web sources such as Wikipedia to
verify the precision of each fact. Moreover, we
provide initial correct/incorrect triple examples for
guidance. We set a 5-second minimum evaluation
time per triple. For a 10-triple pair, volunteers need
spend 50 seconds before the next evaluation. We
also highlight entities and relations in text when
they appear in triples.

Following Vicuna(Zheng et al., 2023), we report
agreement evaluation to demonstrate the rational-

ity of our automatic evaluation. In Table 7, we
compare the results of different evaluation meth-
ods for the same generated KG, where ‘GPT-4’
denotes the automatic evaluation in our main text,
‘Author’ denotes the results of evaluation by the
authors, ‘Humen’ denotes the results of evaluation
by domain experts, and ‘Humen-M’ denotes the
majority judgment of humen. Moreover, we re-
port the agreement between two types of judges on
GPT-4, Author, Human, and Human-M in Table 8.
The agreement between two types of judges as the
probability of each type agreeing on questions, i.e.,
whether a given triple is correct or incorrect.

We engage volunteers with background related
to KGs and rice, because they possess basic domain
knowledge, which enables them to more accurately
assess the quality of the generated domain knowl-
edge graphs. Moreover, these volunteers come
from a variety of universities and research institu-
tions to enhance objectivity in evaluation.

D Visualization of Ablation Study

We further visualize the first three-level generated
KG of each ablated version of SAC-KG. As Fig-
ure 5 shows, the full version of SAC-KG exhibits
the overall best result, and the number of error
triples in each level do not exhibit significant dif-
ferences. This phenomenon reveals that error prop-
agation is not notable in the iterative generation of
the domain KG. On the contrary, SAC-KGw/o text

and SAC-KGw/o pruner exhibit error propagation,
which leads to a significant increase of error triples
generated in the third layer. SAC-KGw/o prompt

and SAC-KGw/o verifier only extract fewer triples,
which means the LLM suffers from summarizing
knowledge in domain corpora without examples
and error correction process. These results further
affirm that each component within the framework
contributes significantly to the construction.

E Details of Experiment Setup

We provide parameter settings for the mentioned
large language models. For all large language mod-
els, We set the temperature hyperparameter that
controls the output stability of LLMs as 0.1. The
lower the temperature setting, the more stable the
model output is. We set the max input length as
500 tokens, which represents the maximum token
length input to the model is 500 tokens per re-
sponse. We set the max length of retrieved text
as 2000, which represents the maximum length of
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Table 6: Details of the error types and according prompts

Error type Prompt
General conflict Please generate it again strictly according to the requirements.

Quantity too small
Please generate it again strictly according to the requirements,

and pay attention to generating sufficient triples.

Head entity error
Please generate it again strictly according to the requirements,

and note that the head entity must be xx

Format error
Please generate it again strictly according to the format requirements,

paying attention to the format of the example triples.
Contradiction between

head and tail
Please generate it again strictly according to the format and requirements,

and note that the head and tail entities are generally inconsistent.

head of Plant Breeding

head

…

USA

renowned 
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role
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…
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(a) Case study for Stanford OIE.
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(b) Case study for Deepex.
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(c) Case study for SAC-KG.

Figure 4: Visualization results of rice expert case of Stanford OIE, Deepex, and SAC-KG. Entities marked in green
denote the correct triples and entities marked in yellow denote the wrong triples.

Table 7: Different types of judges on GPT-4, Author,
Human, and Human-M.

Judge Number of recalls Precision Domain Specificity
GPT-4 8.09 89.32 88.31
Author 7.88 87.09 86.85
Human 7.80 86.15 85.96
Human-M 7.93 87.55 87.35

Table 8: Agreement between two types of judges on
GPT-4, Author, Human, and Human-M.

Judge GPT-4 Author Human Human-M
GPT-4 - 86.65 84.78 87.11
Author - - 82.67 89.69
Human - - - 92.97

Human-M - - - -

the domain corpus text returned by domain corpus
retriever is 2000 tokens. For pruner, we apply the
Low-Rank Adaptation (LORA) (Hu et al., 2021)
to efficiently finetune a T5 (Roberts et al., 2019)
model on the open-source KG. We train the model
with 2 epochs and use batch size of 64. We set
the learning rate as 0.001. Moreover, we randomly
sampled 120 domain-related entities from the open
source graph as root node input generator.

F More Case Study Results

We visualize the rice experts case results (men-
tioned in Section 4.5) of Stanford OIE and Deepex
in Figure 4. SAK-KG also performs better and
produces more precise and domain-aware triples.

We also present more case study results in Table
10. We also observe that in rice disease, rice pest
and rice variety cases, SAC-KG also outperforms
all mentioned baselines in all three metrics by a
large margin. This also demonstrates the effective-
ness of our SAC-KG.

We further visualize the three case study results
in Figure 6. Three single-level KGs generated by
SAC-KG in these three cases are also precise and
human understandable, which demonstrates the ef-
fectiveness of our method.

Table 9: Statistics of OIE benchmark datasets.

Dataset Domain #Sents #Triples

Train Dev Test

OIE2016 News, Wiki 3,200 5,078 1,673 1,730
WEB News, Web 500 - - 461
NYT News, Wiki 222 - - 150
PENN Mixed 100 - - 52
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(a) All correct triples extracted
from the full version of SAC-KG.

GPT-KG
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Error

(b) Triples generated by the full
version of SAC-KG.
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Correct
Error

(c) Triples generated by SAC-
KGw/o prompt.

GPT-KG w/o text
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(d) Triples generated by SAC-
KGw/o text.

GPT-KG w/o verifier

Correct
Error

(e) Triples generated by SAC-
KGw/o verifier .

(f) Triples generated by SAC-
KGw/o pruner .

Figure 5: Visualization of the first three-level constructed KG by full version and ablated versions of SAC-KG. The
radius of each concentric circles denotes levels of each generated levels. Nodes marked in blue denote the correct
triples and nodes marked in yellow denote the wrong triples.

G Details of OIE benchmarks

We assess the performance of open information ex-
traction (OIE) systems using benchmark datasets
that include OIE2016 (Stanovsky and Dagan,
2016), derived from Newswire and Wikipedia
through automatic conversion from QA-SRL (He
et al., 2015). Moreover, we also incorporate NYT,
WEB (Mesquita et al., 2013), and PENN (Radford
et al., 2021). A summary of the benchmark dataset
statistics is presented in Table 9.

H Scientific Artifacts

The data we collect in specialized domains is pub-
licly available and viewable online. The data own-
ers have indicated that the data can be used for
scientific research or have not indicated that the
data cannot be used for scientific research, and our
collection process is also in compliance with regu-
lations. Moreover, there is no unique identification
of individuals or offensive content in these data.

We provide details on collecting data. First, we
search on Google for relevant domain books using
the keyword "rice" and downloaded a total of 70
books. Second, we search for relevant web pages
on Google using the same keyword and gather text
from a total of 1522 pages. Third, we collect 24000

genealogical data from relevant rice genealogical
databases, which included information about each
type of rice and its parent data. Subsequently, we
perform simple data cleaning on this data, which
involved removing HTML tags, images, tables, and
special meaningless characters.

I More discussions on SAC-KG

I.1 Could the random return of a set of triples
in cases where no relevant triples are
retrieved potentially detrimentally affect
performance or accuracy?

A1: It does not detrimentally impact performance.
In experiments, we observe that the more relevant
the triple prompts, the stronger the prompting ef-
fect. In instances where relevant triples cannot be
retrieved, randomly returning a set of triples or
returning a fixed set (both perform equally) still
enhances performance compared to not returning
any triples.

I.2 If there are still incorrect triples after
passing through the verifier, does the
verifier fail to detect them?

A2: To enhance reasoning efficiency, the verifier
presently employs the rule-based techniques for
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Figure 6: Visualization results of rice disease, rice pest, and rice variety case study of SAC-KG. Entities marked in
green denote the correct triples.

format and conflict assessments, resorting to re-
prompting the LLM solely upon the detection of
errors. Furthermore, extensive empirical findings
reveal that the utilization of domain text and triple
prompts diminish the likelihood of encountering
factual inaccuracies (e.g., erroneous triples such
as “United States, Capital, New York”), with the
majority of errors being concentrated in format-
ting or conflicts. Nevertheless, it is worth noting
that future research could explore the possibility
of enabling the model to autonomously perform
verification, which would substantially increase the
computational cost of reasoning.

I.3 Are all the triples provided as input to the
pruner correct?

A3: Not necessarily all of them are correct. The
preceding verifier strives to ensure the correctness
of triples while maintaining high efficiency. How-
ever, the accuracy of triples does not significantly
impact the subsequent generation process, as the
quality of the tail entity primarily dictates the qual-
ity of the subsequent generation, irrespective of
triple correctness. Consequently, the objective of
the pruner is to eliminate low-quality tail entities.

I.4 Why is the pruner trained with DBpedia
able to yield favorable results in the
domain of rice?

A4: Indeed, this is intuitive because determining
whether an entity can function as a head entity does
not necessitate an extensive domain-specific knowl-
edge. It primarily involves learning the pattern
distinctions between head and tail entities. Addi-
tionally, DBpedia encompasses fundamental nouns
pertinent to the domain of rice. For instance, in the
case of tail entities such as “glutinous rice”, “rice
blast disease”, “33 acres”, “3-4 days of concen-
trated irrigation”, and “lack of nitrogen fertilizer”,

it is relatively straightforward to discern that those
entities marked in bold can be utilized as head en-
tities, implying their association with meaningful
individual objects.

I.5 Does the open-source KG incorporate
domain entities?

A5: As previously stated, open-source KGs like
DBpedia encompass fundamental nouns related to
the domain of rice. They encompass basic rice
varieties, rice-related diseases and pests, as well
as planting methods. Nevertheless, more special-
ized terminology may not be encompassed. Con-
sequently, one approach is to identify common
domain entities from the open-source knowledge
graph and employ them as a foundation for con-
structing the KG. Subsequently, SAC-KG can be
employed to guide the incremental extraction of
“specialized knowledge from the corpus, layer by
layer”.
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Table 10: More case study results for different categories. For entities in the categories, we evaluate their single-level
KGs and report the mean results.

Entity category Model Number of recalls Precision Domain Specificity

Rice variety

OpenIE 6 (2020) 1.90 31.65 24.05
Stanford OIE (2023) 2.33 39.28 26.71
DeepEx (2021) 3.04 60.37 43.47
PIVE (2023) 2.57 54.48 43.58
SAC-KGQwen 4.15 69.89 61.05
SAC-KGLlama2−7B 2.27 49.34 35.26
SAC-KGLlama2−13B 3.60 59.79 55.96
SAC-KGChatGPT 13.11 84.28 76.88

Rice disease

OpenIE 6 (2020) 2.77 41.66 31.67
Stanford OpenIE (2023) 3.44 57.40 39.03
DeepEx (2021) 1.66 45.45 35.45
PIVE (2023) 1.07 81.51 62.21
SAC-KGQwen 3.55 94.11 82.82
SAC-KGLLaMa−7B 1.56 63.64 47.27
SAC-KGLLaMa−13B 5.44 80.32 75.53
SAC-KGChatGPT 4.11 93.67 85.01

Rice pest

OpenIE 6 (2020) 1.26 62.26 47.32
Stanford OIE (2023) 2.11 64.70 44.00
DeepEx (2021) 2.91 68.62 49.41
PIVE (2023) 8.65 64.84 51.87
SAC-KGQwen 3.50 64.53 45.56
SAC-KGLlama2−7B 2.77 45.86 35.16
SAC-KGLlama2−13B 5.34 76.79 71.60
SAC-KGChatGPT 14.44 89.96 80.54

Rice pesticide

OpenIE 6 (2020) 1.90 48.83 37.11
Stanford OpenIE (2023) 2.09 60.52 41.15
DeepEx (2021) 2.5 45.45 32.72
PIVE (2023) 3.18 61.40 49.12
SAC-KGQwen 3.0 80.48 70.82
SAC-KGLLaMa−7B 2.64 54.72 42.26
SAC-KGLLaMa−13B 2.54 62.22 55.46
SAC-KGChatGPT 3.72 90.54 83.30

Rice expert

OpenIE 6 (2020) 7.75 50.40 38.30
Stanford OIE (2023) 4.25 43.03 29.26
DeepEx (2021) 1.50 47.36 34.01
PIVE (2023) 2.00 55.17 44.14
SAC-KGQwen 2.50 66.66 55.25
SAC-KGLlama2−7B 3.75 55.56 40.00
SAC-KGLlama2−13B 2.62 75.00 70.32
SAC-KGChatGPT 3.88 93.33 84.43
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