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Abstract

Large Language Models (LLMs) show strong
instruction understanding ability across multi-
ple languages. However, they are easily biased
towards English in instruction tuning, and gen-
erate English responses even given non-English
instructions. In this paper, we investigate the
language inconsistent generation problem in
monolingual instruction tuning. We find that
instruction tuning in English increases the mod-
els’ preference for English responses. It at-
taches higher probabilities to English responses
than to responses in the same language as the
instruction. Based on the findings, we alleviate
the language inconsistent generation problem
by counteracting the model preference for En-
glish responses in both the training and infer-
ence stages. Specifically, we propose Pseudo-
Inconsistent Penalization (PIP) which prevents
the model from generating English responses
when given non-English language prompts dur-
ing training, and Prior Enhanced Decoding
(PED) which improves the language-consistent
prior by leveraging the untuned base language
model. Experimental results show that our two
methods significantly improve the language
consistency of the model without requiring any
multilingual data1.

1 Introduction

Large Language Models (LLMs) have received
increasing research attention for their convinc-
ing language understanding and generation abil-
ities (Brown et al., 2020; Openai, 2022; OpenAI,
2023; Touvron et al., 2023a,b). They also demon-
strate intrinsic capabilities of multilingual under-
standing (Armengol-Estapé et al., 2022; Yuan et al.,
2023) and cross-task generalization after instruc-
tion tuning (Ouyang et al., 2022). However, it

∗Work done during an internship at MSRA.
†Corresponding author.

1https://github.com/zhangliang-04/Respond_in_
my_language

5

To improve your time management
skills, follow these steps:…

如何提高我的时间管理技能？用中文回答。
(How to improve my time management skill? 
Answer in Chinese.)

你说什么？
（What are you saying?）

Improving your time management skills
can help you be more productive…

Wie kann ich meine Fähigkeiten im
Zeitmanagement verbessern?

Antwort in meiner Sprache!
（Respond in my language!）

Llama2-Chat-7B

Llama2-Chat-7B

Chinese User

Chinese User

German User

German User

(How to improve my time management skill?)

Figure 1: Llama2-Chat-7B fails to respond to the user
in the consistent language.

is observed that LLMs tend to generate in the
wrong language after monolingual instruction tun-
ing (Hu et al., 2023). As shown in Figure 1,
Llama2-Chat, which is an instruction-tuned model
of Llama2 (Touvron et al., 2023b) in English, strug-
gles to generate responses in the same/consistent
language with the user instruction. To make LLMs
follow multilingual instructions, many works (Li
et al., 2023b; Chen et al., 2023c,b; Ranaldi and
Pucci, 2023; Lai et al., 2023) have attempted to
perform instruction tuning over multiple languages.
Despite their achievements, these approaches can
be costly to implement, since they involve col-
lecting multilingual instruction-tuning data and re-
training the models over larger datasets (Chen et al.,
2023b).

However, as shown in Figure 1, the model retains
a notable degree of multilingual understanding
even after monolingual instruction tuning, which
suggests that the model should have the potential
to follow multilingual instructions. Therefore, in-
stead of leveraging multilingual resources for fine-
tuning, we focus on resolving the problem of lan-
guage inconsistency in response generation caused
by monolingual instruction tuning, thus enabling
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the model to follow multilingual instructions.
To this end, we delve into the process of En-

glish instruction tuning, and find that this monolin-
gual training process increases the model’s prior
probability of English responses. As a result, the
model tends to assign a higher probability to En-
glish responses regardless of the instruction lan-
guage. Based on this observation, we propose
two distinct methods, adopted during the train-
ing or inference stage respectively, to control the
model’s preference for English responses. Specif-
ically, we propose an auxiliary training objective
Pseudo-Inconsistent Penalization (PIP) that penal-
izes the model from generating English responses
for pseudo-inconsistent instructions. In the infer-
ence stage, we propose Prior Enhanced Decoding
(PED) that increases the language consistent prob-
ability from the untuned base model. We evaluate
the proposed methods across multilingual instruc-
tion following, language understanding and ma-
chine translation. Experimental results show that
our proposed methods significantly increase the
rate of generating language-consistent responses
without hurting the ability of language understand-
ing and machine translation.

The main contributions of this work include:

• We analyze the language inconsistency prob-
lem in response generation by large language
models after they are instruction-tuned.

• We propose solutions to alleviate this prob-
lem from both training and inference per-
spectives. Neither method requires additional
multilingual-instruction following data.

• We validate the effectiveness of our proposed
methods from multiple aspects including in-
struction following, language understanding,
and machine translation.

2 Related Works

Multilingual Instruction Tuning Many works
try to extend the English capabilities of large lan-
guage models to other languages through mul-
tilingual instruction tuning (Chen et al., 2023c;
Li et al., 2023b; Chen et al., 2023b). Early ef-
forts focused on collecting and constructing mul-
tilingual instruction-following data. For instance,
Phoenix (Chen et al., 2023c) gathers existing mul-
tilingual assets from various sources (Dom and
Steven, 2023; Peng et al., 2023). Bactrian-X (Li
et al., 2023b) obtain multilingual responses by

providing ChatGPT (Openai, 2022) with machine-
translated instructions. Chen et al. (2023b) explore
multilingual instruction tuning under a budget-
constraint scenario. Okapi (Lai et al., 2023) in-
troduces RLHF (Ouyang et al., 2022) in multilin-
gual instruction tuning to align with human pref-
erence. Later studies attempt to introduce addi-
tional training objectives to enhance the multilin-
gual alignment in LLMs. X-LLM (Ranaldi and
Pucci, 2023) and x-CrossLlama (Zhu et al., 2023)
construct translation-based instructions with par-
allel corpora (Goyal et al., 2022; Schwenk et al.,
2021). Li et al. (2023a) enhance multilingual corre-
spondence through multilingual contrastive learn-
ing. PLUG (Zhang et al., 2023) employs English
as a pivot language to improve multilingual instruc-
tion following. These works require multilingual
data to achieve multilingual instruction following.
In contrast, we focus on addressing the language
inconsistency in monolingual instruction tuning,
and can enable multilingual instruction-following
without the need for multilingual data.

Off-target Problem A closely related topic to
language inconsistency is the off-target problem,
where multilingual machine translation models gen-
erate translations in the wrong language, disregard-
ing the control signal (Ha et al., 2016; Gu et al.,
2019; Aharoni et al., 2019; Rios et al., 2020; Zhang
et al., 2020; Wu et al., 2021; Yang et al., 2021).
Researches have been conducted to explain and
solve the off-target problem. For instance, Gu et al.
(2019) consider that the model learns spurious cor-
relations between the control signal and decoded
sentences. Chen et al. (2023a) suggest that the off-
target problem stems from the encoder’s failure to
capture discriminative control signal and alleviate
it by separating shared tokens across languages.
Zan et al. (2023) impose unlikelihood sampling
on constructed off-target samples to prevent the
model from generating in the wrong languages.
Sennrich et al. (2023) use contrastive decoding (Li
et al., 2023c) to alleviate hallucination and off-
target problems in machine translation. The key
difference between language inconsistency and the
off-target problem is that language inconsistency
refers to the model’s failure to maintain the lan-
guage of the input instruction without explicit spec-
ification. We focus on generating responses in con-
sistent language without specifically identifying
them in this paper.

4178



1 2 3 4 5
Epoch

0.4

0.5

0.6

0.7

0.8

0.9
La

ng
ua

ge
 C

on
sis

te
nt

 R
at

e

fr
es
de
sv
zh

Figure 2: The language consistent rate of other lan-
guages during instruction tuning on English Alpaca.
Base model: Llama2-7B.

Zero-shot Cross-lingual Generation Zero-shot
cross-lingual generation is another related topic to
our study that concentrates on knowledge transfer-
ring across languages in generation tasks. It has
been widely observed that zero-shot cross-lingual
generation encounters challenges due to language
inconsistent generation (Xue et al., 2021; Maurya
et al., 2021; Vu et al., 2022; Pfeiffer et al., 2023;
Li and Murray, 2023; Chirkova et al., 2023). Re-
search efforts have been made to address the issue.
For example, Maurya et al. (2021) and Vu et al.
(2022) attribute this issue as catastrophic forget-
ting and alleviate it by freezing model components
and parameter-efficient prompt tuning (Lester et al.,
2021). Li and Murray (2023) find that monolingual
training encourages the encoder to learn language-
invariant representations which are detrimental to
cross-lingual generation. They suggest that incor-
porating an auxiliary language can help regularize
the model and mitigate this issue. Chirkova et al.
(2023) conducts experimental studies and suggests
that a reduced learning rate can be beneficial for
cross-lingual generation. These studies are con-
ducted based on encoder-decoder models such as
mT5 (Xue et al., 2021) and NLLB (Team et al.,
2022), lacking analysis of the current mainstream
decoder-only large language models (Brown et al.,
2020; Touvron et al., 2023a,b). In addition, their
evaluation tasks contain only short multilingual sen-
tences such as multilingual QA and summarization.
In contrast, we focus on multilingual instruction fol-
lowing under the zero-shot setting, which presents
a greater challenge in generating consistent and
long-form text in multiple languages.

3 Method

3.1 Instruction tuning
Instruction tuning guides large language models
to follow human instructions in a supervised man-
ner (Ouyang et al., 2022). Formally, given an in-
struction following dataset D = {(Xi, Yi)}Ni=1, the
loss function of instruction tuning is as follows:

Lit = − 1

N

∑

i

logP (Yi|Xi; θ) (1)

where Xi, Yi refer to the instruction and response
respectively, and θ denotes the parameters of the
model, which is omitted by default for convenience
of expression. By minimizing Lit, the probabil-
ity of generating corresponding response P (Y |X)
gets higher than that of a mismatched response
P (Ỹ |X), and the model thus learns to generate a
proper response.

3.2 Language Consistency in Instruction
Tuning

Intuitively, we expect the generated responses
should be in the same language as the input in-
structions. For example, given an instruction X l

in a non-English language l, we expect the model
to generate the response Y l rather than Y en in En-
glish, though Y l and Y en are semantically similar.
However, we find that the language consistency
of other languages can be compromised during
English instruction tuning. As illustrated in Fig-
ure 2, the ratio of generating language-consistent
responses keeps decreasing during the English in-
struction tuning. It indicates that the model gradu-
ally loses the ability to generate responses in con-
sistent languages, which is not what we expect.

To understand why this could happen during En-
glish instruction tuning, we examine the process of
training from a Bayesian perspective. Supposing
the model is trained on English instruction tun-
ing dataset Den = {(Xen

i , Y en
i )}Ni=1. By mini-

mizing the loss in Equation (1), the model is op-
timized to generate an appropriate response and
increase P (Y en|Xen). According to the Bayesian
rule, P (Y en|Xen) can be formulated as:

P (Y en|Xen) =
P (Xen|Y en)P (Y en)

P (Xen)
(2)

From Equation (2), we can observe that the in-
crease of P (Y en|Xen) will potentially lead to the
increase of P (Y en), which is the prior probability
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Figure 3: The log probability of Alpaca responses
in different languages. Probability of English re-
sponses P (Y en|X l) (×) becomes greater than non-
English responses P (Y l|X l) (◦) during the instruction
tuning progresses. We aggregate the response level
probability by averaging on tokens: logP (Y |X) =
1
N

∑N
i logP (yi|X)

of generating English response Y en regardless of
the input instruction. Compared to Y en, Y l is not
encouraged since the model is not optimized on in-
struction data in language l. Thus, the increase
of P (Y en) could lead to P (Y en|X l) becoming
greater than P (Y l|X l). It means the model grants
more likelihood towards English responses even
given instructions in language l.

To verify this hypothesis, we plot the change
curve of P (Y en|X l) and P (Y l|X l) during the
training process. As illustrated in Figure 3,
the probability of language-inconsistent response
P (Y en|X l) keeps increasing as the instruction tun-
ing proceeds, and becomes greater than the prob-
ability of language-consistent response P (Y l|X l).
It suggests that the instruction tuning process in-
deed leads to encouraging the generation of English
responses for non-English instruction.

3.3 Proposed Methods
To address the above language inconsistency is-
sue, we need to make sure that the model favors
responding using the same language as the instruc-
tion, that is, to ensure P (Y l|X l) > P (Y en|X l).
To achieve this, we propose the Pseudo Inconsis-
tent Penalty (PIP) that penalizes P (Y en|X l) dur-
ing English instruction tuning, and Prior Enhanced
Decoding (PED) that increases P (Y l|X l) in the
inference phrase.

Pseudo Inconsistent Penalization (PIP) aims to
offset the preference for English response learned

in instruction tuning. A direct approach is to pe-
nalize the occurrence of Y en given X l. However,
X l is not available in the monolingual setting. To
replace X l, we construct pseudo inconsistent in-
structions by adding language identifier prompt Rl

to the English instructions, where Rl conveys the
semantic of "response in language l". It is based on
the intuition that we expect the model to respond in
the specific language when it is instructed to. We
use maximum unlikelihood estimation (Welleck
et al., 2020) to penalize the English response Y en

in the dataset given the pseudo inconsistent instruc-
tion (Xen

i , Rl). Formally, the loss function of PIP
is as follows:

Lpip = − 1

N

∑

i

log(1− P (Y en
i |Xen

i , Rl)) (3)

We perform PIP along with the English instruction
tuning. The total loss is:

Ltotal = Lit + Lpip (4)

Prior Enhanced Decoding (PED) In addition
to reducing the preference of Y en during training,
we also propose Prior Enhanced Decoding (PED)
that enhances Y l in the inference stage. PED inte-
grates the confidence scores from the base model
during auto-regressive inference. It leverages the
strong language prior knowledge in the base model
learned from the large-scale pre-training. Formally,
PED calculates the confidence score of the j-th
token at step i in the inference process as follows:

sit(tj) = − logP (tj , Y<i, X; θ)

sbase(tj) = − logP (tj , Y<i, X; θbase)

sped(tj) = sit(tj) + sbase(tj) (5)

where tj ∈ V denotes the j-th token in the vocabu-
lary V , θ denotes the parameters of the instruction
tuned model, θbase denotes the parameters of the
base model, and s∗(tj) refers to the confidence
score of predicting the token tj . In practice, we
notice that sbase are more evenly distributed across
V compared to sit. This means that the top-ranking
tokens from sped would probably be the same as
those from sit. To address this, we narrow down the
candidate set to tokens that receive high confidence
in sbase. Specifically, we follow Li et al. (2023c) to
select the candidate set at each step i as:

Vcand = {tj ∈ V : sbase(tj) ≥ αmax
t

sbase(t)}
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where α is a hyper-parameter to control the mini-
mum confidence compared to the most likely token.
The final confidence score is determined as follows:

sfinal(tj) =

{
sped(tj) if tj ∈ Vcand

− inf otherwise
(6)

4 Experimental Setup

In this section, we introduce the experimental setup
including the base models, training dataset, evalua-
tion settings, and baseline methods.

4.1 Base Models
Llama2 is an open-source foundation language
model proposed by Touvron et al. (2023b). Due
to its wide application (Wang et al., 2023a; Zhang
et al., 2023) and potential multilingual ability (Yuan
et al., 2023), we choose the 7B version of Llama2
as our base model for instruction tuning.
Llama2-Chat is a dialogue optimized model
based on Llama2 (Touvron et al., 2023b). It is
fine-tuned through several successive SFT and
RLHF (Ouyang et al., 2022) procedures, mostly
in English. It thus shows limited generation ability
in other languages. Nevertheless, Llama2-Chat still
possesses some multilingual understanding and ma-
chine translation abilities (Sennrich et al., 2023).
As a result, we perform the inference-based meth-
ods on Llama2-Chat and verify to what extent these
methods mitigate the language inconsistency prob-
lem. We also use the Llama2-Chat 7B version by
default.
BLOOM is a multilingual large language model
which explicitly support 46 languages (Workshop
et al., 2023). It is widely used for building mul-
tilingual models. We choose the 7.1B version of
BLOOM for instruction tuning.

4.2 Training Dataset
For training-based methods, we employ the Stan-
ford Alpaca2 (Taori et al., 2023) dataset for instruc-
tion tuning. It consists of 52K English instruction-
response pairs built through Self-Instruct (Wang
et al., 2023b) and filtering offensive content with
online moderation API3.

4.3 Evaluation Settings
We evaluate the model with respect to instruction
following, language understanding, and machine
translation in this work.

2Released under Apache-2.0 license.
3https://platform.openai.com/docs/api-

reference/moderations/object

Instruction Following We choose Vicuna
Benchmark2 (Zheng et al., 2023) to assess
models’ abilities to follow human instructions.
It comprises 80 English instructions covering
various domains written by humans. We exclude
10 instructions related to coding and math, since
they yield unreliable results when detecting the
response languages. We translate the remaining 70
instructions into 10 languages including French
(fr), German (de), Swedish (sv), Chinese (zh),
Japanese (ja), Korean (ko), Arabic (ar), Spanish
(es), Portuguese (pt) and Vietnamese (vi) with
Baidu Translation API4. We denote the translated
version of Vicuna with 10 languages as M-Vicuna.

We evaluate the instruction-following ability in
terms of the correct use of language and the re-
sponse quality. A language detector5 is adopted
to automatically detect the language used in each
response, and report the ratio of correct usage of
the same language as the input instruction. We de-
note this metric as the Language Consistency Rate
(LCR). For response quality, we follow the same
evaluation setting as in (Chen et al., 2023b), where
GPT-3.5-Turbo6 is prompted to score a response
with points in the range of [0,3]. We report the
average score of responses for each language, and
multiply by 100 for better formatting.
Language Understanding Since the training-
based methods may harm the existing knowledge
learned from pre-training, we evaluate these mod-
els on language understanding benchmarks as
well. We choose ARC (Clark et al., 2018) and
MMLU (Hendrycks et al., 2020) for English evalu-
ation. For non-English languages, we use the trans-
lated version of MMLU and ARC released by (Lai
et al., 2023). We report the average multiple-choice
accuracy across 9 languages including English,
French, Chinese, German, Swedish, Arabic, Span-
ish, Portuguese, and Vietnamese, and denoted as
M-MMLU and M-ARC respectively.
Machine Translation We evaluate the inference-
based method on machine translation. We choose
Flores-101 (Goyal et al., 2022) to test the zero-shot
translation performance from English to 10 target
languages the same with M-Vicuna. We adopt the
same instruction as in (Sennrich et al., 2023) to
prompt the model to perform translation. Language
consistent rate (LCR) and spBLEU (Goyal et al.,
2022) are reported as metrics. We calculate sp-

4https://api.fanyi.baidu.com/
5https://pypi.org/project/langdetect/
6https://platform.openai.com/docs/models/gpt-3-5

4181



Method Base Model Train Lang.
Instruction Following Language Understanding
LCR GPT M-MMLU M-ARC

Vanilla training Llama2-7B en 54.00 87.27 37.35 38.37
Reducing LR5e−5 Llama2-7B en 65.86 106.71 37.40 38.25
Reducing LR1e−5 Llama2-7B en 69.86 111.57 32.29 37.03
ALT Llama2-7B en,zh 98.43 162.00 37.12 38.03
PIP (Ours) Llama2-7B en 96.43 155.27 37.92 38.98

Vanilla training BLOOM-7B1 en 74.57 113.43 25.57 36.42
PIP (Ours) BLOOM-7B1 en 89.57 126.71 26.32 35.84

Table 1: Evaluation of the training-based methods across instruction following and language understanding. We
report the average scores across all languages. Performance of each language is shown in Appendix C.

BLEU using sacreBLEU7 (Post, 2018)

4.4 Compared Training Baselines

Vanilla training. We fine-tune Llama2-7B (Tou-
vron et al., 2023b) directly with the loss function
in Equation (1).
Reducing LR. Chirkova et al. (2023) suggests
that reducing the learning rate of monolingual fine-
tuning can alleviate language inconsistency. We
adjust the learning rate from 1e−4 to 1e−5 and 5e−5

respectively as baselines.
Auxiliary Language Training (ALT). Li and Mur-
ray (2023) suggests training with an auxiliary lan-
guage can alleviate the failure in cross-lingual gen-
eralization. As a baseline, we jointly train with Chi-
nese alpaca data released by Lai et al. (2023). The
Chinese dataset is translated from English Alpaca
through GPT-3.5-turbo API. We sample the same
amount of English and Chinese instructions and
keep the whole training budget the same with mono-
lingual fine-tuning following (Chen et al., 2023b).

4.5 Compared Inference Baselines

Vanilla inference. We directly provide the multi-
lingual instructions to the Llama2-Chat-7B model
in the default prompt template and do not specify
additional prompting.
Language Prompt (LP). The assumed language is
specified by appending the language prompt in the
instruction. We attempt several language prompts
on Llama2-Chat-7B and use TLPout as default since
it performs best in guiding the language use of the
model. More details about the language prompt are
presented in Appendix A.1.
In-Context Learning (ICL). We provide one-shot
in-context example (Brown et al., 2020) to encour-
age the model to respond in consistent language.

7Signature:#:1|c:mixed|e:no|tok:flores101|s:exp|v:2.3.1

The prompt structure is presented in Appendix A.2.
Language Contrastive Decoding (LCD). We im-
plement language contrastive decoding follow-
ing (Sennrich et al., 2023). Since in almost all
inconsistent cases, the model generates English
responses. We construct negative sentences by ap-
pending prompt "Answer in English:". For pos-
itive sentences, we append the same prompt as LP.

5 Experiment Results and Analyses

5.1 Evaluation of Training-based Method

Table 1 compares the training-based methods on
instruction tuning in terms of language consis-
tency rate and GPT3.5 evaluation. We observe
that directly training Llama2-7B on English Al-
paca achieves only 54% language consistency rate
on average when providing non-English instruc-
tions. Employing a lower learning rate such as
1e−5 indeed helps improve language consistency.
However, this improvement is relatively modest,
and it can lead to a decline in language understand-
ing capabilities, which indicates that learning rate
adjustment is not an ideal solution to resolve the
language inconsistency problem. Auxiliary train-
ing with Chinese data can significantly alleviate the
language inconsistency issue. However, it requires
additional language resources, and also harms lan-
guage understanding due to the curse of multilin-
guality (Conneau et al., 2020).

In contrast, our proposed PIP method signifi-
cantly enhances the language consistency rates of
the LLMs after English instruction tuning, while
preserving the language understanding capability.
Notably, PIP attains this substantial improvement
without using any non-English resources. Further-
more, the GPT-3.5 evaluation confirms that PIP
also improves the quality of the multilingual re-
sponse. These results demonstrate that our method
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Method Lang. specify
Instruction Following Machine Translation
LCR GPT LCR spBLEU

Vanilla inference % 18.14 52.29 - -
LP ! 55.86 64.71 92.28 21.39
ICL (Brown et al., 2020) ! 63.86 145.57 82.56 21.96
LCD (Sennrich et al., 2023) ! 72.43 149.86 92.26 21.49
PED (Ours) % 72.57 147.14 - -
PED+LP (Ours) ! 91.86 181.43 93.74 22.28

Table 2: Evaluation on inference-based methods. All methods are performed on Llama2-Chat. -: machine translation
is not applicable without specifying target languages. We report the average scores across all languages. Performance
of each language is shown in Appendix C.
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Figure 4: Language consistency during training. The
transparent area displays the variance of 10 languages.

successfully mitigates the negative impact that
monolingual instruction tuning brings to other lan-
guages.

5.2 Evaluation of Inference-based Method
Table 2 shows the performances of inference-based
methods applied on Llama2-Chat-7B. We find that
Llama2-Chat-7B exhibits a more severe language
inconsistency issue compared to Llama2-Alpaca,
with only 18.1% of responses using the correct lan-
guage. This could be attributed to Llama2-Chat un-
dergoing more extensive English fine-tuning (Tou-
vron et al., 2023b). While using language prompts
improves consistency to 55.9%, it is not a natural
and user-friendly approach as it requires specify-
ing the language in the instruction. ICT and LCD
further improves consistency to 63.9% and 72.4%,
but they also rely on language specification. Our
proposed PED method achieves 72.6% language
consistency without requiring any language specifi-
cation. It further achieves 91.9% when combined
with language specification, and attains the high-
est average scores in quality assessments. These
results demonstrate that our proposed PED stands
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Figure 5: Average logP (Y l|X l) − logP (Y en|X l)
across all languages.

out for its ability to not only significantly improve
language consistency in a user-friendly manner
without the need for specifying languages but also
enhance response quality. Although the PED en-
courages the model to generate responses in a con-
sistent language, it also shows improvement in ma-
chine translation, where the input and output lan-
guages are different. We believe this is because
the language prior introduced by PED is context-
dependent. It can adapt to the semantic context
and encourage the desired language. Therefore, the
PED method not only enhances language consis-
tency but also has a positive impact on the model’s
ability to handle tasks involving language switch-
ing.

5.3 Visualization of the Training Process

Figure 4 visualizes the average language consis-
tency rate across 10 languages during the whole
training process. With our proposed PIP, the model
can maintain a stable language consistency during
the whole training process, otherwise the language
consistency will continue to decrease as the training
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Figure 6: Instruction representation visualization with t-SNE on M-Vicuna.

progresses. In Figure 5, we illustrate the average
change curve of logP (Y l|X l) − logP (Y en|X l)
across 10 languages during the training. Our pro-
posed PIP ensures that responses in a consistent
language obtain higher probabilities than responses
in English. In contrast, without PIP, responses with
inconsistent language will gain higher probabilities
as training progresses. These visualizations again
demonstrate that PIP indeed prevents the model
from being biased towards English and enhances
the model to maintain language consistency.

5.4 Visualization of Multilingual Instruction
Representations.

We use t-SNE (Van der Maaten and Hinton, 2008)
to visualize the instruction representations gener-
ated by the model when processing M-Vicuna. We
treat the last-layer hidden state corresponding to
the last token as the representation of the instruc-
tion. As shown in Figure 6, we can see that the
instruction representations produced by Llama2-
7b are completely distinguishable by language. It
indicates the base model’s ability to differentiate
between languages. However, the Llama2-Alpaca

and Llama2-Chat models, which are fine-tuned to
follow English instructions, show a reduced lan-
guage discrimination ability. This loss of language
discrimination could lead to their inability to differ-
entiate input languages, resulting in responses that
are inconsistent with the input language. In con-
trast, the model trained with the PIP method well
preserves the language discriminability of Llama2-
7b sentence vectors. This visualization from the
perspective of sentence vectors confirms the effec-
tiveness of our method.

6 Conclusion

In this paper, we investigate the language incon-
sistency problem in response generation based on
large language models. We find that monolingual
instruction tuning increases the prior probability
of English responses, and thus leads to language
inconsistent generation when providing instruc-
tions in other languages. To address this issue,
we propose Pseudo Inconsistent Penalization (PIP)
to prevent the models from preferring to generate
English responses during training, and Prior En-
hanced Decoding (PED) to improve the likelihood
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of language-consistent responses during inference.
Experiment results demonstrate that our methods
significantly enhance the language consistency rate
without requiring any multilingual data while main-
taining language understanding and machine trans-
lation capabilities of the large language models.

Limitations

Our approach is constrained by the multilingual
capabilities of the base language model. If the
base model has limitations in its multilingual pro-
ficiency, these will be reflected in the outcomes of
our methods, such as generating low-quality multi-
lingual responses. Therefore, while our framework
offers significant improvements in language con-
sistency, its performance is still dependent on the
foundational multilingual competencies of the cho-
sen language model.

Ethical Impact

Our research mitigates the English bias in large
language models to enhance their applicability in
multilingual contexts. This is particularly bene-
ficial for user groups with limited data and com-
putational resources, providing more equitable ac-
cess to advanced language processing technologies.
However, it also brings potential challenges in safe
alignment under zero-shot multilingual scenarios,
which requires careful consideration and further
research. Our work marks a step towards more
inclusive and versatile AI language systems.
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A Prompt Structures

A.1 Language Prompt

We attempt the following prompts to specify the language to respond:
System Language Prompt (SLP): use system prompt to specifying the language.
English Language Prompt (ELP): specifying the language in English. ELPout means put the prompt
outside the [INST] block.
Target Language Prompt (TLP): specifying the language in the target language. TLPout means put the
prompt outside the [INST] block.
Table 3 shows examples for each of the above-mentioned prompts and the average language consistency
rate on M-Vicuna. We use TLPout to specify the language by default since it performs the best.

Prompt Example LCR

SLP
[INST] «SYS» You are a helpful assistant who always

42.29
speaks in French. «/SYS» {instruction} [/INST]

ELP [INST] {instruction} Answer in French. [/INST] 31.43

ELPout [INST] {instruction} [/INST] Answer in French: 42.38

TLP [INST] {instruction} Répondre en français. [/INST] 48.28

TLPout [INST] {instruction} [/INST] Répondre en français: 55.86

Table 3: Different language prompts we attempted on Llama2-Chat-7B. The language consistency rate is reported
by testing on M-Vicuna.

A.2 In-Context Learning Prompts

We present the prompt structure for in-context learning. For the instruction following task, we randomly
select one instruction-response pair from English Alpaca and translate it into the target language as the
in-context example. We find that the prompt structure used in in-context learning has a significant impact
on the language consistency of the response. We tries the following two prompt structures, and use ICL2

by default.
For the machine translation task, we use the one-shot prompt structure provided by Sennrich et al. (2023).

Prompt Example LCR

ICL1
[INST] {example instruction} [/INST] {example response}

13.43
[INST] {instruction} [/INST]

ICL2

[INST] Please answer questions in the same language.

63.86

Here is an example:
Question: {example instruction}
Answer in the same language: {example response}
Question: {instruction} [/INST]
Answer in the same language:

Table 4: Two in-context learning prompts we attempted on Llama2-Chat-7B. The language consistency rate is
evaluated on M-Vicuna.

B Implementation Details

For all training-based methods, we train the model on the English Standford Alpaca (Taori et al., 2023)
for 5 epochs with an overall batch size of 128 and a learning rate of 1e−4 by default. We warm up the
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model in the first 3% steps and decay the learning rate to 0 linearly at the end of training. We adopt
LoRA (Hu et al., 2021) for parameter-efficient fine-tuning with a rank of 64. For PIP, we randomly chose
one of the 10 non-English languages for each instruction to construct pseudo-inconsistent samples for
unlikelihood optimization. The prompt structure of Rl is TLP (See Appendix A.1 for details). All the
models are trained on 4 NVIDIA RTX A6000 GPUs with 48G memory within 15 hours. We perform the
greedy search for all inference-based methods, and set the maximum decoding length as 1024 tokens by
default. For PED, we search α between {1e−1, 1e−2, 1e−3} and adopt 1e−2 for instruction following and
1e−3 for machine translation.

C Performance of Specific Languages

We report the performance of each language in Table 5, 6, and 7. We notice that our PIP method slightly
affects the quality of English response generation, as it suppresses English responses during training.
However, it is worth noting that this impact is relatively small compared to the improvement brought to
other languages, and it also hardly affects English comprehension ability. We argue that it is worthwhile to
make slight concessions on the quality of English generation in exchange for stronger language consistency.

Method
Language Consistency Rate

en fr es pt vi ja ar sv ko de zh

Vanilla training 100.0 75.7 62.9 71.4 45.7 47.1 37.1 37.1 60.0 67.1 35.7
Reducing LR1e−5 100.0 88.6 81.4 80.0 68.6 58.6 41.4 75.7 74.3 81.4 48.6
Reducing LR5e−5 100.0 85.7 85.7 87.1 48.6 58.6 30.0 71.4 60.0 81.4 50.0
ALT 100.0 98.6 100.0 100.0 100.0 91.4 97.1 100.0 100.0 98.6 98.6
PIP 100.0 98.6 98.6 97.1 98.6 95.7 98.6 97.1 100.0 95.7 84.3

GPT3.5 Evaluation

Vanilla training 198.6 127.1 114.3 117.1 70.0 72.9 38.6 65.7 90.0 117.1 60.0
Reducing LR1e−5 207.1 154.3 147.1 142.9 107.1 85.7 45.7 128.6 91.4 141.4 71.4
Reducing LR5e−5 201.4 148.6 157.1 151.4 72.9 91.4 31.4 124.3 80.0 137.1 72.9
ALT 201.4 180.0 181.4 177.1 157.1 150.0 108.6 175.7 141.4 174.3 174.3
PIP 194.3 180.0 181.4 171.4 154.3 152.9 100.0 167.1 138.6 170.0 137.0

Multilingual MMLU

Okapi∗ - 30.7 30.9 - - - - - - 31.7 -
Vanilla training 45.4 39.7 40.2 38.9 34.0 - 28.2 37.0 - 38.5 34.3
Reducing LR1e−5 40.2 32.9 33.6 33.2 29.8 - 26.5 32.0 - 33.5 29.0
Reducing LR5e−5 45.1 39.7 40.2 38.4 34.0 - 29.3 36.9 - 38.7 34.4
ALT 45.0 38.9 39.6 38.6 34.6 - 28.9 36.5 - 38.0 33.9
PIP 45.9 39.7 40.2 39.8 34.8 - 29.3 37.1 - 39.2 35.3

Multilingual ARC

Okapi∗ - 39.6 38.3 - - - - - - 36.0 -
Vanilla training 50.7 41.8 40.9 41.5 31.5 - 25.7 39.0 - 38.1 36.1
Reducing LR1e−5 48.0 40.5 38.9 39.7 30.4 - 26.3 37.7 - 36.6 35.1
Reducing LR5e−5 50.4 41.1 40.1 41.4 31.2 - 26.3 39.7 - 38.5 35.6
ALT 48.6 41.1 40.6 41.3 30.9 - 25.6 39.0 - 38.0 37.2
PIP 50.2 42.3 40.8 42.1 32.1 - 27.4 39.6 - 39.3 37.2

Table 5: Performance of training-based methods in each language. Base model: Llama2-7B. ∗: results reported
by Lai et al. (2023).
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Method
Language Consistency Rate

en fr es pt vi ja ar sv ko de zh

Vanilla training 100.0 98.6 100.0 97.1 98.6 55.7 97.1 15.7 21.4 68.6 92.9
PIP 98.6 100.0 100.0 100.0 100.0 75.7 100.0 52.9 91.4 81.4 94.3

GPT3.5 Evaluation

Vanilla training 184.3 160.0 161.4 158.6 165.7 61.4 160.0 11.4 22.9 70.0 162.9
PIP 172.9 167.1 165.7 170.0 167.1 81.4 140.0 41.4 90.0 77.1 167.1

Multilingual MMLU

Vanilla training 25.1 25.6 25.6 25.5 25.2 - 25.2 25.8 - 26.6 25.6
PIP 25.3 26.2 25.8 26.3 26.6 - 25.8 26.8 - 27.1 26.8

Multilingual ARC

Vanilla training 42.6 40.5 39.9 42.6 35.6 - 35.2 25.8 - 26.9 38.7
PIP 42.1 40.6 40.2 42.1 35.1 - 33.7 23.9 - 26.4 38.5

Table 6: Performance of training-based methods in each language. Base model: BLOOM-7B1.

Method
Language Consistency Rate

en fr es pt vi ja ar sv ko de zh

Vanilla inference 100.0 25.7 70.0 44.3 4.3 0.0 0.0 17.1 0.0 20.0 0.0
LP 100.0 54.3 94.3 81.4 27.1 44.3 72.9 32.9 24.3 47.1 80.0
ICL 72.9 58.6 61.4 60.0 78.6 67.1 87.1 47.1 81.4 37.1 60.0
LCD 100.0 88.6 98.6 90.0 60.0 54.3 87.1 51.4 42.9 68.6 82.9
PED 91.4 70.0 88.6 90.0 74.3 64.3 94.3 52.9 78.6 35.7 77.1
PED+LP 91.4 91.4 97.1 97.1 90.0 77.1 100.0 91.4 87.1 97.1 90.0

GPT3.5 Evaluation

Vanilla inference 292.9 75.7 204.3 127.1 8.6 0.0 0.0 48.6 0.0 58.6 0.0
LP 292.9 160.0 272.9 235.7 61.4 114.3 85.7 90.0 51.4 131.4 215.7
ICL 201.4 158.6 165.7 160.0 165.7 167.1 95.7 117.1 167.1 100.0 158.6
LCD 292.9 197.1 265.7 244.3 78.6 101.4 84.3 108.6 55.7 145.7 217.1
PED 250.0 185.7 235.7 244.3 148.6 114.3 95.7 108.6 118.6 71.4 148.6
PED+LP 230.0 232.9 260.0 257.1 161.4 147.1 100.0 204.3 134.3 134.3 182.9

Machine Translation (LCR)

LP - 98.0 97.5 96.3 95.9 97.0 96.7 94.1 82.6 95.0 69.7
ICL - 97.2 97.6 93.8 97.1 79.1 80.8 90.7 41.5 90.4 57.3
LCD - 98.6 97.4 96.5 96.5 97.3 97.1 94.6 82.4 95.2 67.0
PED+LP - 96.1 95.7 94.2 95.5 97.5 97.5 91.0 95.4 91.0 83.6

Machine Translation (spBLEU)

LP - 37.5 24.9 36.5 20.6 15.8 3.7 29.6 8.6 25.9 10.8
ICL - 37.0 25.3 37.1 21.7 17.5 3.7 29.4 10.0 26.1 12.0
LCD - 37.6 24.9 36.7 20.8 15.8 3.9 29.7 8.6 26.0 10.9
PED+LP - 37.1 24.7 37.2 20.7 17.7 4.9 30.3 11.1 26.0 13.2

Table 7: Performance of inference-based methods in each language. Base model: Llama2-Chat-7B.
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