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Abstract

In this work, we introduce Context-Aware
MultiModal Learner (CaMML), for tuning
large multimodal models (LMMs). CaMML,
a lightweight module, is crafted to seam-
lessly integrate multimodal contextual sam-
ples into large models, thereby empowering
the model to derive knowledge from analo-
gous, domain-specific, up-to-date information
and make grounded inferences. Importantly,
CaMML is highly scalable and can efficiently
handle lengthy multimodal context examples
owing to its hierarchical design. Based on
CaMML, we have developed two multimodal
models, CaMML-7B and CaMML-13B, that
have shown exceptional performance across an
array of benchmark datasets for multimodal
tasks. Remarkably, CaMML-13B achieves the
state-of-the-art performance on over ten widely
recognized multimodal benchmark datasets,
surpassing LLaVA-1.5 (13B) with a notice-
able margin, without integration of any exter-
nal resources. Moreover, we have conducted
extensive ablative studies to inspect the inner
workings of CaMML and performed qualita-
tive analyses to showcase its effectiveness in
handling real-world challenging cases. Code
and models are available at: https://github.
com/amazon-science/camml.

1 Introduction

Recently, large multimodal models (LMMs) (Liu
et al., 2023b; Zhang et al., 2023a; Wang et al.,
2022; Liu et al., 2023a; Zhu et al., 2023; Tsim-
poukelli et al., 2021; Alayrac et al., 2022) have
demonstrated remarkable performance in a variety
of tasks, including but not limited to visual question
answering, image captioning, visual grounding,
visual-language reasoning, optical character recog-
nition, and visual entailment. Notably, in certain
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Figure 1: CaMML achieves the state-of-the-art perfor-
mance on a number of multimodal benchmarks, outper-
forming LLaVA-1.5 and many other large multimodal
models.

benchmark assessments, these multimodal founda-
tion models have even exceeded human-level per-
formance (Zhang et al., 2023b; Liu et al., 2023b).

Despite the impressive performance, their ability
to make inferences is constrained by the knowl-
edge encoded in the model parameters. The inflex-
ible design of these models makes it challenging
for them to generalize from contextual examples.
For instance, LLaVA-1.5 falls short in processing
multiple images and attributes it to the lack of cor-
responding instruction-tuning training data (Liu
et al., 2023a). Nevertheless, learning and making
inferences through contextual examples are funda-
mental elements of our cognitive processes. Hu-
man beings frequently tackle intricate problems by
relying on past experiences and identifying analo-
gous situations. Taking inspiration from the cog-
nitive process, we hypothesize that empowering
large multimodal models with the capability to per-
ceive and derive insights from analogous contex-
tual examples can significantly streamline the infer-
ence process and lead to more precise predictions.
Nonetheless, the means to replicate the human cog-
nitive processes in LMMs remain unclear.

As such, our goal is to empower multimodal
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foundational models to harness context-aware
learning, thereby enhancing their ability to com-
prehend and adapt to previously unseen examples.
Identifying relevant context examples is relatively
straightforward; this process can be facilitated us-
ing multimodal embedding models like Image-
Bind (Girdhar et al., 2023) or CLIP (Radford et al.,
2021). This approach simulates the act of recalling
similar situations from past experiences. Yet, effec-
tively and efficiently integrating the identified sim-
ilar context samples into large models poses chal-
lenges, particularly given the potential variability
in the number of context samples and interleaved
modalities, resulting in lengthy and heterogeneous
context input.

To this end, we propose a context-aware mul-
timodal learner, dubbed as CaMML, for LMMs.
CaMML acts as a crucial intermediary between the
contextual examples and a large language model
(LLM). Our approach is structured hierarchically,
where the initial level establishes connections be-
tween the text and image modalities for each ex-
ample through cross-attention mechanisms. This
integration of text and image information enables
a deeper understanding of the interleaved context.
Following this, another module takes the outputs
of the first level and performs cross-attention be-
tween the contextual information and a predefined
set of learnable, fixed-length tokens. The resulting
output from this level is then used as fixed-length
input for the LLM, allowing the model to leverage
the refined and context-aware information to per-
form complex multimodal understanding tasks. To
summarize, we make the following contributions:

• We propose CaMML, a context-aware multi-
modal learning approach for finetuning mul-
timodal models. CaMML is lightweight and
can be applied to process extremely long mul-
timodal context samples;

• With CaMML, we have developed two mul-
timodal models, CaMML-7B and CaMML-
13B. These models have achieved state-of-
the-art performance across a diverse range
of benchmarks encompassing various multi-
modal tasks, all without the need for external
data integration;

• We conduct comprehensive model analyses
and case studies to examine the internal mech-
anisms of CaMML and showcase how the pro-
posed model can effectively handle real-world
challenging cases.

2 Related Work

Large Multimodal Models The success of
LLMs has sparked a burgeoning interest in scaling
up multimodal models. One prevalent strategy in-
volves the incorporation of vision encoders, such as
ViT (Dosovitskiy et al., 2021) and CLIP, into exist-
ing LLMs (e.g., LLaMA (Touvron et al., 2023), Vi-
cuna (Zheng et al., 2023)). For example, LLaMA-
adapter (Zhang et al., 2023a) inserts learnable adap-
tion prompts into LLaMA and make it to follow
multimodal instructions for multimodal reasoning.
BLIP2 (Li et al., 2023b) bridges different modali-
ties via Q-Former and employs a two-stage training
method to bootstrap both representation learning
and LLM (e.g., OPT (Zhang et al., 2022), Flan-
T5 (Chung et al., 2022)) generative learning capa-
bilties. LLaVA (Liu et al., 2023b,a) projects en-
coded image features to text token space using lin-
ear layers and shows state-of-the-art performance
on a variety of multimodal tasks. Another notewor-
thy series of strategy is to unify multimodal input
data and pretrain the model from scratch, exempli-
fied by OFA (Wang et al., 2022), Perceiver (Jaegle
et al., 2021, 2022), Uni-Perceiver (Zhu et al., 2022),
Unival (Shukor et al., 2023), and Unified-IO (Lu
et al., 2023a). These models map images, text, and
other modalities into the same IO space and use a
causal language model objective for training.

Multimodal Few-shot Learning Extensive re-
search has been conducted on learning from a lim-
ited number of multimodal examples. Among them,
Flamingo (Alayrac et al., 2022) introduces gated
xatten-dense layers to establish cross-modal inter-
actions between visual input and text input for few-
shot learning. Frozen (Tsimpoukelli et al., 2021)
trains a vision encoder to produce a sequence of
image embeddings and input it to frozen language
models for multimodal tasks. An alternative ap-
proach for tackling multimodal few-shot learning
involves leveraging retrieval augmented genera-
tions (RAG) (Lewis et al., 2020; Borgeaud et al.,
2022; Ram et al., 2023; Khandelwal et al., 2020).
This technique enables the models to access ex-
ternal knowledge repositories, databases, or struc-
tured data sources, allowing them to access the up-
to-date as well as domain-specific expertise when
crafting responses. Recently, there has been a surg-
ing interest for harnessing RAG within the realm of
multimodal models (Chen et al., 2022; Yang et al.,
2023; Yasunaga et al., 2023; Liu et al., 2023c).
Amalgamating RAG with multimodal models helps
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provide contextually-rich responses and opens up
exciting possibilities across domains such as im-
age captioning (Yang et al., 2023), image gener-
ation (Yasunaga et al., 2023), etc. Among them,
Chen et al. (2022) propose MuRAG, a model of
size 527M, for multimodal-QA. MuRAG concate-
nates the visual embeddings (extracted by ViT)
and text word embeddings of retrieved multimodal
image-text pairs and requires the language model
to handle a very lengthy input sequences. Re-
ViLM (Yang et al., 2023) is tailored for image
captioning and it follows the Flamingo architec-
ture and only uses the retrieved text for augmenta-
tion. RA-CM3 (Yasunaga et al., 2023) leverages
retrieval to augment the CM3 (Aghajanyan et al.,
2022) pipeline which can do both text-to-image
and image-to-text generations.

In contrast to previous approaches, our primary
objective is to develop a lightweight module capa-
ble of processing multimodal context information
efficiently and effectively, with superior generaliza-
tion capabilities. This novel approach enables LLM
to proficiently reason from multimodal in-context
examples, leading to more accurate and precise
inferences. As discussed in (Liu et al., 2023a),
LLaVA-1.5 faces limitations when confronted with
scenarios involving multiple images and lengthy
contexts. CaMML can effectively address these
challenges, a fact further corroborated by its supe-
rior performances across multiple benchmarks.

3 Context-Aware Multimodal Learner

3.1 Architecture of CaMML

The structure of CaMML is depicted in Figure 2.
We provide a detailed explanation of each compo-
nent below.

3.1.1 Datastore and Context Retriever

The datastore is created from either the training
set or external resources. We adopt an embed-
ding encoder, ImageBind (Girdhar et al., 2023),
to extract dense vector representations for every
multimodal sample contained in the datastore. Fol-
lowing this, we build an index using Faiss (Johnson
et al., 2019a), a highly efficient similarity search
library, to enable rapid and efficient search op-
erations. During both the training and inference
phases, our approach involves identifying the top
N most closely related multimodal samples, de-
noted as C1, C2, . . . , CN , from the datastore using

Faiss, based on a given multimodal query q1. It
is worth noting that the retriever remains frozen
throughout all stages of the process.

3.1.2 Multimodal CaMML Perceiver

To seamlessly integrate interleaved multimodal
samples, we introduce a novel module denoted
as CaMML Perceiver, which revolves around two
key design principles: (1) The module should ac-
commodate a dynamic number of context samples
without imposing a significant computational bur-
den. It is worth noting that directly concatenat-
ing the image tokens and text tokens will result in
L =

∑N
i=1(T

IMG
i + T TXT

i ) tokens, where T IMG
i

is the number of image tokens and T TXT
i is the

number of text tokens. The formulation results in
a linear increase of L with respect to N , posing
scalability concerns; (2) It is crucial that the text
and image in each individual sample remain tightly
coupled.

To achieve this, we embrace a hierarchical de-
sign, facilitating the transformation of the N con-
text samples into M tokens, where M < L. For-
mally, the multimodal CaMML Perceiver com-
prises three key modules: a Vision Perceiver (VP)
denoted as fθV P , a Language Perceiver (LP) de-
noted as fθLP , and a Context Perceiver (CP) de-
noted as fθCP . Each of these modules follows a
similar architectural pattern with Perceiver Layers
as the core component, as depicted in Figure 2.

Vision Perceiver The Vision Perceiver
takes the image feature extracted with ViT,
V(Ci) ∈ RT IMG

i ×d, as input, and it undergoes
a sequence of transformations. It starts with a
self-attention layer to capture inherent visual
relationships. Subsequently, cross-attention layers
are employed to interact with the text token embed-
dings U(Ci), allowing the model to enrich its under-
standing by integrating information from the text
domain. Finally, the processed data passes through
a feed-forward layer, resulting in an output de-
noted as fθV P (V(Ci)) ∈ RT IMG

i ×d, i = 1, ..., N .
Subsequently, we concatenate the outputs
generated by the Vision Perceiver for each
of the N context samples, yielding a feature

matrix of shape R(
∑N

i=1
T IMG
i )×d EIMG =

{fθV P (V(C1),U(C1)), ..., fθV P (V(CN ),U(CN ))},
where {·} denotes the concatenation operation.

1Specifically, we compute the similarity between query
text and context image, and top-k images along with their
corresponding texts are recalled from the datastore.
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Magnets	can	pull	or	push	on	other	magnets	without	touching	them.	
When	magnets	attract,	they	pull	together.	When	magnets	repel,	they	
push	apart.	These	pulls	and	pushes	are	called	magnetic	forces.
Magnetic	forces	are	strongest	at	the	magnets'	poles,	or	ends.	Every	
magnet	has	two	poles:	a	north	pole	(N)	and	a	south	pole	(S)…..To	
predict	if	these	magnets	will	attract	or	repel,	look	at	which	poles	are	
closest	to	each	other. The	south	pole	of	one	magnet	is	closest	to	the	
north	pole	of	the	other	magnet.	Opposite	poles	attract.	So,	these	
magnets	will	attract	each	other.

Datastore

Two	magnets	are	
placed	as	shown.	Will	
these	magnets	attract	
or	repel	each	other?
A.	repel
B.	attract

User	Query	𝒒

Will	these	magnets	attract	or	repel	each	other?	Context:	Two	magnets	are	placed	as	shown.	Options:	(A)	repel	(B)	attract	Answer: B.	attract

Will	these	magnets	attract	or	repel	each	other?	Context:	Two	magnets	are	placed	as	shown.	Options:	(A)	repel	(B)	attract	Answer: B.	repel

Multimodal	Contexts	(𝑪𝟏, … , 𝑪𝑵)

CaMML Generator

LLMs

CaMML
ResponseQuery	𝒒

Perceiver	Layer

…

Cross-Attention

Q

Self-Attention

Feed-Forward
K,V

CaMML Perceiver
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Figure 2: CaMML framework, which consists of retriever, perceiver and generator. Once receiving user query q,
CaMML retriever identifies relevant multimodal contexts C from datastore, then CaMML Perceiver seamlessly
integrates various modalities, effectively encodeing long-context information and injecting it into the CaMML
generator. This allows for the prediction of responses that are conditioned on both the context and the query q.

Language Perceiver The Language Perceiver,
on the other hand, takes as input the text to-
ken embeddings U(Ci) ∈ RTTXT

i ×d, which
encapsulate the linguistic content of the sam-
ple. The processing pipeline mirrors that of the
Vision Perceiver, starting with a self-attention
mechanism to capture textual relationships, fol-
lowed by interactions with the visual embed-
dings V(Ci) via a cross-attention layer to create
a holistic understanding of the multimodal con-
text. The final step involves a feed-forward layer,
resulting in an output denoted as fθLP (UCi) ∈
RTTXT

i ×d. Similarly, we concatenate the out-
puts of all Language Perceivers to obtain a fea-

ture matrix of shape R(
∑N

i=1
TTXT
i )×d: ETXT =

{fθLP (U(C1),V(C1)), ..., fθLP (U(CN ),V(CN ))}.
Context Perceiver The Context Perceiver takes
the lengthy outputs from either the Vision Perceiver
or the Language Perceiver as input and produces a
condensed set of contextual representations. This
is achieved by using a fixed number of learnable
embeddings of size R

M
2
×d as the input of the Con-

text Perceiver, where M is typically significantly
smaller than L. These embeddings undergo pro-
cessing through a self-attention layer, followed by
a cross-attention layer with the feature matrix from
either the Vision Perceiver or the Language Per-
ceiver, and a feedforward layer. Specifically, for
the Vision Perceiver, the learnable embeddings are

denoted as HIMG ∈ R
M
2
×d, and the output af-

ter applying the Context Perceiver is denoted as:
H̃IMG = fθCP (HIMG,EIMG) ∈ R

M
2
×d. Simi-

larily, for the Language Perceiver, the learnable
embeddings are denoted as HTXT ∈ R

M
2
×d, and

the output after applying the Context Perceiver is
denoted as: H̃TXT = fθCP (HTXT ,ETXT ) ∈
R

M
2
×d.

Following this, H̃IMG and H̃TXT are concate-
nated, resulting in a contextual feature matrix
H̃ ∈ RM×d. This matrix is prepended to the be-
ginning of the sequence, along with the text token
embeddings of q and the image embeddings of
q (transformed by the LLaVA multimodal projec-
tor). This integrated data serves as the input for the
Large Language Model (LLM) to facilitate further
processing.

3.2 Model Training

In the training process, we freeze the retriever and
vision encoder, and train CaMML by minimiz-
ing the following causal language modeling loss.
ℓ = −∑|y|

i=1 log pθ(yi|ŷ1:i−1, q, C1, ..., CN ),
where θ ← (θLLM , θV P , θLP , θCP ,H) is the
model trainable parameter (θLLM is the parameter
of LLM); yi is the ground-truth target, and ŷ1:i−1

is the i− 1 preceding tokens of output yi; Specif-
ically, we use Vicuna-7B and Vicuna-13B as our
backbone language model, resulting in two models
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Method AVG. IMG TXT

Human Average 88.40 87.50 89.60
UnifiedQA (Lu et al., 2022a) 74.11 66.53 66.42
GPT-3 CoT (Lu et al., 2022a) 75.17 67.43 74.68
GPT-4 CoT (Lu et al., 2023b) 83.99 71.49 82.65
LLaMA-Adapter (Zhang et al., 2023a) 85.19 80.32 83.72
MMCoTBase (Zhang et al., 2023b) 84.91 82.90 87.88
MMCoTLarge (Zhang et al., 2023b) 91.68 88.80 95.26
LLaVA-7B (Liu et al., 2023b) 89.28 87.32 90.96
LLaVA-13B (Liu et al., 2023b) 90.90 88.00 89.49

CaMML-7B 91.32 89.24 93.21
CaMML-13B 92.03 89.94 93.84

Table 1: Comparison with state-of-the-art methods on
ScienceQA benchmark: CaMML finetuned on train
split and evaluated on test split. “AVG.” represents the
average accuracy of all ScienceQA questions. “IMG”
refers to the questions that include image contexts, while
“TXT” refers to the questions without any images.

CaMML-7B and CaMML-13B.

4 Experiment

Table 1, Table 2, and Table 3 provide a compre-
hensive summary of the performance achieved by
CaMML-7B and CaMML-13B across various mul-
timodal benchmarks. In comparison to previous
state-of-the-art approaches, CaMML exhibits no-
ticeable improvement and establishes a new state-
of-the-art. We elaborate on the experimental set-
tings in the following sections and offer a compre-
hensive description (e.g., hyperparamter configura-
tion) of the settings in the supplementary material.

4.1 Multimodal Reasoning on ScienceQA

ScienceQA, as introduced in (Lu et al., 2022a),
serves as a multimodal benchmark designed for the
task of science question answering. It comprises
21,000 multiple-choice questions, encompassing
various domains including biology, physics, chem-
istry, Earth science, and more. We use the Sci-
enceQA train split to build the datastore search in-
dex and for the model training. In specific, Vicuna-
v1.3 is used as the LLM backbone, and CLIP-ViT-
L-14 (Radford et al., 2021) is adopted as the visual
feature encoder. By default, we retrieve three sam-
ples from the datastore as the contexts. We conduct
evaluation of the ScienceQA on test split and adopt
the same datastore (i.e, train split) search index for
contextual samples retrieval.

We compare CaMML with various baselines
including UnifiedQA (Lu et al., 2022b), GPT-4
CoT (Lu et al., 2023b), LLaMA-Adapter (Zhang
et al., 2023a), MMCoTBase (Zhang et al., 2023b),
MMCoTLarge (Zhang et al., 2023b), LLaVA (Liu
et al., 2023b) 7B and 13B. As shown in Table 1,

CaMML surpass baselines by a noticeable mar-
gin. It is worth noting that our model attains the
best performance on average, surpassing the previ-
ous state-of-the-art model MMCoTLarge

2. We also
notice that, on the IMG questions, CaMML-13B
outperforms LLaVA-13B and MMCoTLarge by a
wide margin, which underscores CaMML’s strong
capability in handling challenging questions that
incorporate scientific images. Furthermore, we con-
duct detailed ablative studies with the ScienceQA
dataset using CaMML. See Section 5.1 for more
details.

4.2 Multimodal Instruction Tuning
CaMML can be enhanced by tuning to follow
multimodal instructions to handle a more di-
verse set of multimodal tasks. To substantiate
this, we perform instruction tuning following (Liu
et al., 2023a) on LLaVA-665K, an instruction-
tuning data mixture of LLaVA-1.5. Following
(Liu et al., 2023a), we use Vicuna-v1.5 as the
LLM backbone and CLIP-ViT-L-14-336px as
the visual encoder. The datastore is built us-
ing the exact training set, LLaVA-665K, with-
out external injected information for a fair com-
parison. LLaVA-665K comprises 665K multi-
modal samples, and is made up of LLaVA-Instruct-
158K, ShareGPT-40K (sha, 2023), VQAv2 (Antol
et al., 2015), GQA (Hudson and Manning, 2019),
OKVQA (Marino et al., 2019), OCRVQA (Mishra
et al., 2019), A-OKVQA (Schwenk et al., 2022),
TextCaps (Sidorov et al., 2020), RefCOCO (Yu
et al., 2016) and VG (Krishna et al., 2017). We
adopt a training strategy in which each individ-
ual sample might have a distinct N , spanning a
range from 1 to 3 and denote it as “mixed-shots
training". During inference, we retrieve three rele-
vant supporting multimodal samples from the data-
store index. To evaluate the model effectiveness,
we traverse 11 comprehensive benchmarks, includ-
ing VQAv2, GQA, TextVQA (Singh et al., 2019),
MME (Fu et al., 2023), POPE (Li et al., 2023c),
MM-Vet (Yu et al., 2023), MMBench (Liu et al.,
2023d), MMBench-CN (Liu et al., 2023d), SEED-
Bench (Li et al., 2023a), and Vizwiz (Gurari et al.,
2018). Results on ScienceQA image (denoted as
SQAI) is also reported following (Liu et al., 2023a).

We compare CaMML with large multimodal
baselines such as BLIP-2 (Li et al., 2023b), Instruct-
BLIP (Dai et al., 2023), Shikra (Chen et al., 2023),

2CaMML-13B attains the highest AVG scores on the Sci-
enceQA leaderboard when GPT4-review is not used
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Method LLM Data VQAv2 GQA VizWiz SQAI VQAT POPE MME MMB MMBCN SEED MM-Vet

IDEFICS-9B (Laurençon et al., 2023) LLaMA-7B 353M+1M 50.9 38.4 35.5 - 25.9 - - 48.2 25.2 - -
InstructBLIP (Dai et al., 2023) Vicuna-7B 129M+1.2M - 49.2 34.5 60.5 50.1 - - 36.0 23.7 53.4 26.2
Qwen-VL (Bai et al., 2023) Qwen-7B 1.4B+50M 78.8 59.3 35.2 67.1 63.8 - - 38.2 7.4 56.3 -
Qwen-VL-Chat (Bai et al., 2023) Qwen-7B 1.4B+50M 78.2 57.5 38.9 68.2 61.5 - 1487.5 60.6 56.7 58.2 -
LLaVA-1.5 (Liu et al., 2023a) Vicuna-7B 558K+665K 78.5 62.0 50.0 66.8 58.2 85.9 1510.7 64.3 58.3 58.6 30.5
CaMML-7B Vicuna-7B 558K†+665K 79.4 62.7 51.2 67.9 58.0 86.4 1506.9 66.9 60.6 60.4 32.2

IDEFICS-80B (Laurençon et al., 2023) LLaMA-65B 353M+1M 60.0 45.2 36.0 - 30.9 - - 54.5 38.1 - -
BLIP-2 (Li et al., 2023b) Vicuna-13B 129M 41.0 41.0 19.6 61.0 42.5 85.3 1293.8 - - 46.4 22.4
InstructBLIP (Dai et al., 2023) Vicuna-13B 129M+1.2M - 49.5 33.4 63.1 50.7 78.9 1212.8 - - - 25.6
Shikra (Chen et al., 2023) Vicuna-13B 600K+5.5M 77.4 - - - - - - 58.8 - - -
LLaVA-1.5 (Liu et al., 2023a) Vicuna-13B 558K+665K 80.0 63.3 53.6 71.6 61.3 85.9 1531.3 67.7 63.6 61.6 35.4
CaMML-13B Vicuna-13B 558K†+665K 80.2 63.7 57.4 72.3 59.9 86.7 1588.7 70.2 63.6 62.3 36.4

Table 2: Comparison with state-of-the-art large multimodal models on 11 benchmarks (VQAv2 (Antol et al., 2015),
GQA (Hudson and Manning, 2019), VizWiz (Gurari et al., 2018), SQAI (Lu et al., 2022a): ScienceQA-IMG,
VQAT (Singh et al., 2019): TextVQA, POPE (Li et al., 2023c), MME (Fu et al., 2023), MMB (Liu et al., 2023d):
MMBench, MMBCN (Liu et al., 2023d): MMbench-Chinese, SEED (Li et al., 2023a): SEED-Bench, MM-Vet (Yu
et al., 2023)). CaMML achieves the best performance on 10/11 tasks. † denotes BLIP558K-pretrained projector is
initialized for instruction tuning.

Method (shots)

COCO
Caption Flickr30k OKVQA VQAv2 Vizwiz

CIDEr CIDEr Acc Acc Acc

Retrieval-augmented models:
RA-CM3 (Yasunaga et al., 2023) (2) 89.1 - - - -
ReViLM (Yang et al., 2023) (0) 60.8 52.1 - - -
ReViLM (Yang et al., 2023) (2) 77.2 - - - -
ReViLM (Yang et al., 2023) (4) 90.5 - - - -
ReViLM (Yang et al., 2023) (8) 90.2 - - - -

Zero/Few-shot models:
Uni-Perceiver (0) (Zhu et al., 2022) 109.8 41.2 - - -
Flamingo-9B (4) 93.1 72.6 49.3 56.3 34.9
Flamingo-9B (32) 106.3 72.8 51.0 60.4 44.0
Flamingo-80B (4) 103.2 75.1 57.4 63.1 39.6
Flamingo-80B (32) 113.8 75.4 57.8 67.6 49.8
KOSMOS-1 (4) (Huang et al., 2023) 101.7 75.3 - 51.8 35.3
MMICL (4) (Zhao et al., 2023) - 72.0 - 70.6 50.3

CaMML-7B (3) 111.4 82.7 64.7 79.4 51.2
CaMML-13B (3) 116.8 84.5 66.3 80.2 57.4

Table 3: Comparison with state-of-the-art zero/few-shot
models including retrieval-augmented counterparts on
Captioning and VQA tasks: CaMML are the ones that
trained in instruction tuning (Sec 4.2) and are evaluated
with 3-shots. CaMML-13B achieves the best perfor-
mance on 5/5 tasks, even outperforming Flamingo-80B
model (Alayrac et al., 2022) under 32 shots.

Method AVG. IMG TXT

CaMML-7B Baseline 91.3 89.2 93.2
- w/o Perceiver 89.7 85.8 93.2
- w/o Vision Perceiver 89.8 87.4 92.1
- w/o Language Perceiver 90.0 87.7 92.0
- w/o Shared weights 91.3 89.1 93.2

Table 4: Ablation Experiments on CaMML perceiver
components and shared-weights Context Perceiver:
CaMML-7B models are evaluated on ScienceQA-test.

IDEFICS-9B (Laurençon et al., 2023), IDEFICS-
80B (Laurençon et al., 2023), Qwen-VL (Bai
et al., 2023), Qwen-VL-Chat (Bai et al., 2023),
and LLaVA-1.5 (Liu et al., 2023a). As shown
in Table 2, CaMML-13B demonstrates the best
performance across all 11 benchmarks, surpass-
ing LLaVA-1.5, which uses the same training
data. Notably, when employing Vicuna-13B as

its backbone, CaMML-13B outperforms BLIP-2,
InstructBLIP-13B, Shikra, and LLaVA-1.5-13B.
Additionally, CaMML-7B delivers impressive re-
sults, outperforming all other baseline models ex-
cept for LLaVA-1.5-13B on ten of the benchmark
datasets. On POPE, CaMML-7B achieves perfor-
mance on par with that of CaMML-13B. These
encouraging observations showcase CaMML’s effi-
cacy in harnessing multimodal contextual informa-
tion and following multimodal instructions. In con-
trast to Liu et al. (2023a)’s assertion that LLaVA-
1.5 cannot handle multiple images due to the ab-
sence of instruction-tuning data and context length
limitations, our design demonstrates feasibility of
training a model to effectively process multiple
images merely with the same training set and effi-
ciently manage long context length.

4.3 Multimodal Few-shot Learning

CaMML essentially operates as a few-shot learn-
ing method. Few-shot models leverage the synergy
of multiple intertwined images and texts to guar-
antee precise inference. Among these, retrieval-
augmented models are widely recognized for their
ability to retrieve highly similar samples, thereby
improving few-shot prediction. In Table 3, we
conduct a comparison between CaMML, retrieval-
augmented models (RA-CM3 (Yasunaga et al.,
2023) and ReViLM (Yang et al., 2023)), and other
popular few-shot LLMs such as Flamingo (Alayrac
et al., 2022), KOSMOS-1 (Huang et al., 2023),
MMICL (Zhao et al., 2023) on tasks includ-
ing visual captioning (COCO caption, Flickr30k),
and visual question answering (OKVQA, VQAv2,
Vizwiz). For CaMML, we employ the same model
described in Section 4.2, with LLaVA-665K serv-
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Figure 3: Ablation Experiments on CaMML perceiver hyper-parameters: layers, query number M and hidden sizes.
CaMML-7B with different settings are evaluated on ScienceQA test.
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Figure 4: Ablation Experiments on CaMML context number N . Left: different CaMML models trained on N shots
are evaluated under 1∼32 shots. Right: comparison between CaMML and CaMML without perceiver in terms of
inference running time and memory footprint, the statistic is averaged on 100 samples from CaMML-7B, which are
tested on NVIDIA A100-80G GPU using ScienceQA dataset.

ing as the datastore.
Several observations merit attention: (1) It is

worth mentioning that while previous visual lan-
guage models augmented with retrieval capabili-
ties have been predominantly optimized for visual
captioning tasks, CaMML exhibits broad applica-
bility across a wide range of tasks, including vi-
sual question answering and visual captioning. (2)
Notably, CaMML-13B outshines the significantly
larger Flamingo-80B, highlighting CaMML’s su-
perior efficiency and architectural effectiveness de-
spite its smaller size. (3) Remarkably, CaMML,
even with a mere three-shot setup, surpasses mod-
els that necessitate 32 shots for equivalent tasks,
underscoring its exceptional data efficiency and
learning prowess.

5 Model Analyses

5.1 Quantitative Analyses

Here, we conducted an analysis of CaMML, us-
ing the CaMML-7B model for expeditious exper-
iments, on the ScienceQA dataset. Our goal was
to discern the significance of each module within
the CaMML architecture, as well as the influence
of critical hyperparameters such as the number of
layers, the selection of M , and the quantity of re-
trieved context samples. The default settings for
CaMML-7B baseline are as follows: the number

of layers is set to 2 for all perceivers, M = 128,
N = 3, and hidden size is set to 768. We also
conduct experiments in Sec 5.1.3 about CaMML
computation (inference speed & memory footprint)
compared with baseline approach, where all tokens
are directly fed into LLMs.

5.1.1 Contribution of Each Components

We conducted ablation studies on the Perceiver, Vi-
sion Perceiver, Language Perceiver and Context
Perceiver (shared weights or not) within CaMML
to evaluate the individual contributions of these
components. The outcomes are documented in Ta-
ble 4. Our results highlight the critical role played
by each component. The removal of Perceivers, in
particular, leads to a marked deterioration in perfor-
mance, indicating its significant influence on the
model’s overall effectiveness. Also, we have ob-
served nearly identical results for both alternatives
of the Context Perceiver, whether the weights are
shared or not. Therefore, we prefer selecting the
shared-weights option to save on computation.

5.1.2 Impact of Hyperparameters

In Figure 3, we report the performance by vary-
ing the number of layers, hidden sizes, and query
number M . Our observations reveal several key
insights: (1) Increasing the number of layers in
CaMML can have a detrimental effect on model
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performance. While we observe similar perfor-
mance with both 2 layers and 12 layers, we opt
for 2 layers due to its smaller model size; (2) In-
creasing the value of M does not consistently lead
to performance improvements; (3) Larger hidden
sizes yield more favorable results in our analysis.

Furthermore, we investigated the impact of the
number of context samples, N , used in the training
stage as well as the inference stage. We conduct
experiments where we varied the value of N dur-
ing training and inference, and the corresponding
performance is reported in Figure 4. We observe
that: (1) It is easy for CaMML to accommodate a
large number of shots; (2) Increasing the value of
N during inference does not consistently result in
improved performance. Similar trends have been
reported in previous works such as (Alayrac et al.,
2022) and (Yang et al., 2023). One plausible expla-
nation for this phenomenon could be that a longer
context might introduce complexity and potentially
convolute the inference process; (3) The “mixed-
shots" training strategy (Sec 4.2) has shown the
potential to yield constant superior performance
when compared to using a fixed value for N .

5.1.3 Inference Cost
As outlined in the model design, our context model
adeptly manages large samples by condensing a sig-
nificant number of raw tokens into a more stream-
lined representation. This efficient process leads to
a faster forward pass in subsequent LLMs. We com-
pared CaMML with a baseline approach, where all
context tokens are directly input into LLMs without
CaMML perceivers, and we present the inference
speed and memory footprint in Figure 4 (right).
We have noticed that CaMML only incurs negli-
gible additional cost when increasing the number
of context sample; As the number of context sam-
ples grows, the efficiency and memory benefits of
CaMML become more significant compared with
the baseline method.

5.2 Qualitative Analysis

5.2.1 The Importance of Context-Awareness
CaMML effectively processes a wide range of con-
textual inputs. In Figure 5, we compare the re-
sponse from CaMML with context sample support
and LLaVA-1.5, emphasizing the importance of
context-awareness. The comparison illustrates that
the inclusion of relevant context examples is cru-
cial for ensuring the accuracy of answers. CaMML
can not only infer using highly relevant context

Query	Sample:

LLaVA-1.5-13B:
The	architecture	in	the	image	is	a	castle,	
which	is	a	type	of	fortified	structure	
typically	built	for	defense	and	residence	
purposes.

CaMML-13B	(Context-aware):	
The	architecture	in	the	image	is	a	Chinese-
style	wall,	which	is	also	known	as	the	
Great	Wall	of	China.

Query	Sample:

LLaVA-1.5-13B:
The	image	depicts	the	life	cycle	of	a	butterfly.	The	
butterfly	is	seen	in	its	adult	form.	The	next	stage	
is	the	egg…	The	caterpillar	is	the	third	stage	in	
the	left	cycle…	The	final	stage	is	the	chrysalis…	
The	image	provides	a	clear	visual	representation	
of	the	butterfly’s	life	cycle,	from	the	adult	stage	
to	the	egg,	caterpillar	and	chrysalis.

CaMML-13B	(Context-aware):
The	image	depicts	a	life	cycle	of	a	butterfly,	…	The	
butterfly	begins	as	an	egg…	As	the	egg	hatches,	a	
caterpillar	emerges,	…The	caterpillar	eventually	
transforms	into	a	chrysalis,	…,	allowing	it	to	
undergo	metamorphosis…	Finally,	the	chrysalis	
breaks	open,	and	the	adult	butterfly	emerges…	
The	adult	butterfly	is	the	last	stage	in	the	life	
cycle,	and	it	is	responsible	for	reproduction	and	
continuing	the	cycle.

Context: Context:

The	great	wall	of	China,	
an	old	world	landmark	
in	the	distance	footage.

The	great	wall	of	China	
greeting	card.

Complete	
metamorphosis	of	
beetles.

What	is	the	
name	of	this	
architecture?

Describe	it	
in	scientific	
view.

Metamorphosis	of	
frogs.

Figure 5: Visualization of context-aware CaMML vs no-
context LLaVA-1.5. Left: sketch drawing of the Great
Wall. Right: depiction of metamorphosis of a butterfly.

samples (The Great Wall example), but also draw
insights from analogous domain-specific samples
(The Metamorphosis example) and conduct multi-
modal analogy-based learning (Antonietti, 2012).

5.2.2 Handling Image Sequences
We also demonstrate that CaMML possesses the
ability to handle image sequences, even in the ab-
sence of explicit training for this specific task. In
Figure 6, instead of retrieval, we consider the last
image of the image sequence as the q and the pre-
ceding images as context samples. A comparison
with LLaVA-1.5 and GPT-4V in Figure 6 on the QA
task on image sequences reveals that while LLaVA-
1.5 and GPT-4V struggle to fully comprehend the
image sequences and learn from the priors, result-
ing in incorrect answers, CaMML can effectively
understand the image sequences and give accurate
responses. More importantly, CaMML can provide
accurate inferences given access to the most up-
to-date information regardless of LLM’s internal
knowledge, yet both LLaVA-1.5 and GPT-4V lack
the capability to incorporate real-time updates of
world knowledge.

5.2.3 Tackling Multimodal Hallucination
Previous research indicates that RAG is effec-
tive in reducing hallucinations in content gener-
ation (Shuster et al., 2021). Here, we aim to in-
vestigate if CaMML can handle hallucinations in
a multimodal setting. Figure 7 illustrates a multi-
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Prompt:	Does	Lionel	Messi	win	2023	Ballon
d’or?	Answer	with	short	answer.

GPT-4V:	I	cannot	provide	real-time	updates	or	
current	event	information	such	as	award	results.	
To	find	out	if	Lionel	Messi	won	the	2023	Ballon
d’or,	you	would	need	to	check	the	latest	sports	
news	from	a	reliable	source.

Prompt:	Does	Homer	Simpson	walk	into	a	
field	of	grass?

GPT-4V:	Yes,	these	images	depict	a	meme	
sequence	in	which	Homer	Simpson	from	"The	
Simpsons"	television	show	slowly	backs	into	a	
hedge,	effectively	disappearing	from	view.

LLaVA-1.5-13B:	Yes,	Homer	Simpson	walks	
into	a	field	of	grass	in	the	image.

CaMML-13B:	Yes,	Homer	Simpson	walks	into	
a	field	of	grass.	He	is	walking	through	the	grass,	
possibly	in	search	of	something	or	just	enjoying	
the	outdoors.

GPT-4V:	Yes,	based	on	the	sequence	of	
images	
provided,	it	appears	that	Homer	Simpson	walks	
into	a	field	of	grass.

LLaVA-1.5-13B:	Yes, Homer	Simpson	walks	
into	a	field	of	grass in	the	image.

CaMML-13B:	No,	Homer	Simpson	does	not	
walk	into	a	field	of	grass.	He	is	standing	in	the	
grassy	area,	looking	at	the	camera.

Reversed	sequence	of	images

Original	sequence	of	images

Lionel	Messi	lifts	
Ballon d’or.

Lionel	Messi	shares	
Ballon d’or	with	children.

Lionel	Messi	makes	
speech	about	Ballon d’or.

LLaVA-1.5-13B:	No.

CaMML-13B:	Yes.

Context:
①

④③

②

Figure 6: Visualization of CaMML vs GPT-4V &
LLaVA-1.5. CaMML demonstrates a strong understand-
ing of contexual sequences. We directly input contexual
sequences (Left: consecutive Homer Simpson video
frames and Right: Lionel Messi winning Ballon d’or in
October 2023.) to CaMML w/o additional contexts.

Query	Sample: Query	Sample:

Q:	What	is	the	third	image	on	the	top	row?

GPT-4V:	The	second	image	on	the	fourth	row	is	
fried	chicken.

LLaVA-1.5-13B:	Chicken.

CaMML-13B:	Large	brown	dog	next	to	baby	
dogs.

GPT-4V:	The	third	image	on	the	top	row	is	a	
blueberry	muffin.

LLaVA-1.5-13B:	The	third	image	on	the	top	
row	is	a	dog's	face	with	a	cupcake.

CaMML-13B:	The	third	image	on	the	top	row	
is	a	picture	of	a	dog.

Q:	What	is	the	second	image	on	the	fourth	row?	
Answer	with	short	answer.GPT-4V:	… In	the	bottom	row,	the	third	image	

from	the	left	is	indeed	a	dog,	specifically	a	
chihuahua,	rather	than	a	muffin….

LLaVA-1.5-13B:	Yes,	on	the	bottom	row,	the	
third	image	is	a	dog.

CaMML-13B:	No,	the	third	image	on	the	
bottom	row	is	not	a	dog.	It	is	a	muffin	with	a	face	
drawn	on	it.

Q:	On	the	bottom	row,	the	third	image	is	a	dog?

Context:

Context:
a	small	toy	
poodle	
puppy	in	the	
hands	of	a	
woman

a	brown	
and	white	
toy	poodle	
sitting	in	
the	grass

blueberry	
muffins	with	
chocolate	
chips	isolated	
on	white	
background

A	
chihuahua	
dog	
sitting	
inside	of	a	
cup

Figure 7: Visualization of CaMML vs GPT-4V &
LLaVA-1.5. CaMML effectively mitigates hallucina-
tions and accurately identifies objects. On the left, there
is an illusion of muffin and chihuahua. On the right,
there is an illusion of fried chicken and labradoodle.

modal QA task involving the recognition of similar
objects: Muffins and Chihuahuas; Labradoodles
and Fried Chicken. We treat the grid of images as
a single image. It is evident that LLaVA-1.5 and
GPT-4V face challenges in distinguishing between
these objects, leading to hallucinated answers. In

contrast, CaMML accurately answers the questions
with the groundness of relevant context samples.

6 Conclusion

We present a new methodology called CaMML,
a context-aware multimodal learner designed
for the fine-tuning of large multimodal models.
With CaMML, we build two multimodal models,
CaMML-7B and CaMML-13B. CaMML empow-
ers them to draw insights from analogous, domain-
specific, and up-to-date context samples to make
grounded inferences. Moreover, it employs a
lightweight multimodal perceivers to seamlessly
integrate these context samples, enabling an effi-
cient processing of lengthy context tokens. Our
proposed CaMML-13B model achieves state-of-
the-art results across more than ten prominent mul-
timodal benchmarks, surpassing previous methods
by a substantial margin. These achievements un-
derscore CaMML’s effectiveness in various multi-
modal applications.

7 Limitations

While CaMML effectively integrates multimodal
retrieval into large models, the presence of ir-
relevant examples may impede its performance.
In addition, CaMML maintains a datastore for
experimental analysis, yet it’s unable to encom-
pass all data domains, such as medical images.
Consequently, when the data distribution in the
datastore diverges significantly from user or test
queries, CaMML struggles to leverage its retrieval-
augmented capability effectively. Lastly, despite
its proficiency in inference and memory utilization,
CaMML demands substantial training on large lan-
guage models (similar to LLaVA) and relies on
access to a sizable datastore to demonstrate its ef-
fectiveness.

8 Potential Risks

CaMML entails certain potential risks, including:
Environmental unfriendliness and escalated com-
putational costs, particularly noticeable with larger
models. Despite being entirely encapsulated within
its pipeline, with users unable to access the datas-
tore directly (limited to embedding and data entry
index), there remains a possibility for users to uti-
lize the CaMML I/O API to instruct LLM to gener-
ate texts that may raise concerns or cause privacy
leakage.
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A Extended Experiments

A.1 Experimental Setup

Summary of Datasets and Benchmarks. Sci-
enceQA (Lu et al., 2022a) train split is used
for ScienceQA finetuning and ablation study.
In our instruction-tuning training, we adopt

4067

http://arxiv.org/abs/2307.16184
http://arxiv.org/abs/2307.16184
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2311.04257
http://arxiv.org/abs/2311.04257
http://arxiv.org/abs/2311.04257
http://arxiv.org/abs/2308.02490
http://arxiv.org/abs/2308.02490
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685


LLaVA-665K dataset, which contains LLaVA-
158K, ShareGPT-40k (sha, 2023), VQAv2 (Antol
et al., 2015), GQA (Hudson and Manning, 2019),
OKVQA (Marino et al., 2019), OCRVQA (Mishra
et al., 2019), A-OKVQA (Schwenk et al., 2022),
TextCaps (Sidorov et al., 2020), RefCOCO (Yu
et al., 2016) and VG (Krishna et al., 2017). In our
evaluation, VQAv2, GQA, TextVQA (Singh et al.,
2019), MME (Fu et al., 2023), POPE (Li et al.,
2023c), MM-Vet (Yu et al., 2023), ScienceQA,
MMBench (Liu et al., 2023d), MMBench-CN (Liu
et al., 2023d), SEED-Bench (Li et al., 2023a) and
Vizwiz (Gurari et al., 2018) are considered as
benchmarks. We also conduct evaluation on COCO
Caption (Chen et al., 2015), Flickr30k (Plum-
mer et al., 2015), OKVQA (Marino et al., 2019),
A-OKVQA (Schwenk et al., 2022), and Ref-
COCO/+/g (Yu et al., 2016). In our qualitative
visualization, we adopt another 2M datastore as
the source of context examples, which comprised
from external resources incorporates 2,348K mul-
timodal samples, ranging from captioning with
BLIP-LAION’s 558K entries and Local Narra-
tive (Pont-Tuset et al., 2020), to knowledge-based
QA with KVQA (Sanket Shah and Talukdar, 2019),
narrative-driven QA from VCR (Zellers et al.,
2019) and Visual7W (Zhu et al., 2016), visual
grounding via RefCOCOPlus (Yu et al., 2016)
and RefCOCOg (Yu et al., 2016), OCR from
TextOCR (Singh et al., 2021), along with the in-
domain LLaVA-665K set.

Summary of Evaluation Metrics. We illustrate
the evaluation metrics on Table 2:

• Accuracy: VQAv2, GQA, Vizwiz, SQA-
Image, TextVQA, MMBench, MMBench-CN,
SEED.

• GPT4-Assisted Evaluation Score: MM-Vet.

• F1 Score (POPE Paper Sec 5.1 Metrics):
POPE.

• Figures in MME represent sum of the scores
(which measures QA accuracy and accuracy+,
illustrated in MME Paper (Fu et al., 2023) Sec
2.2) of all MME perception subtasks, includ-
ing existence, count, position, color, poster,
celebrity, scene, landmark, artwork, and OCR.
The full score of each subtask is 200, and that
of all perception is 2000.

Summary of Pretrained Checkpoints. We uti-
lize Vicuna-7B/13B (Zheng et al., 2023) as our
foundation Large Language Model (LLM), ViT-L-
14 architecture is used as the vision encoder. In
detail, Vicuna-v1.33 and CLIP-ViT-L-144 (Radford
et al., 2021) initialization is for ScienceQA finetun-
ing and Ablation studies, Vicuna-v1.55, CLIP-ViT-
L-14-336px6, and LLaVA-1.5 multimodal projec-
tor7 is initialized for instruction finetuning. For the
source of contexts, the ImageBind8 (Girdhar et al.,
2023)-Huge model is adopted to embed texts and
images, computing their similarities for indexing
top-k samples.

Implementation Details. 9 In our ScienceQA
finetuning, we train for 12 epochs, with batch size
4 per GPU and learning rate 2e-5. We illustrate the
hyperparameter configurations here for ScienceQA
finetuning in main paper Table 1:

• CaMML-7B: {number of query M=128,
number of perceiver layer 2, perceiver layer
hidden size 768, number of shots N=1},

• CaMML-13B: {number of query M=256,
number of perceiver layer 2, perceiver layer
hidden size 4608, number of shots N=3}.

In our instruction finetuning, we train for 1 epoch
on 8GPUs, with batch size 8 per GPU and learning
rate 2e-5, the LLM is activated as well as CaMML
perceivers, while the vision encoder and CaMML
retriever is frozen. We illustrate the hyperparameter
configurations here for instruction finetuning in
main paper Table 2&3:

• CaMML-7/13B: {number of query M=128,
number of perceiver layer 2, perceiver layer
hidden size 768, mixed-training shots 1∼3
and inferenced shots N=3}.

3https://huggingface.co/lmsys/vicuna-7b-v1.3,
https://huggingface.co/lmsys/vicuna-13b-v1.3

4https://huggingface.co/openai/
clip-vit-large-patch14

5https://huggingface.co/lmsys/vicuna-7b-v1.5,
https://huggingface.co/lmsys/vicuna-13b-v1.5

6https://huggingface.co/openai/
clip-vit-large-patch14-336

7https://huggingface.co/liuhaotian/llava-v1.
5-mlp2x-336px-pretrain-vicuna-7b-v1.5,
https://huggingface.co/liuhaotian/llava-v1.
5-mlp2x-336px-pretrain-vicuna-13b-v1.5

8https://dl.fbaipublicfiles.com/imagebind/
imagebind_huge.pth

9All the experiments are trained under Deepspeed Zero-3
FP16 configuration.
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Method (shots) A-OKVQA RefCOCO RefCOCO+ RefCOCOg
Acc Acc Acc Acc

CaMML-7B (3) 81.1 66.6 60.3 57.6
CaMML-13B (3) 82.0 70.6 65.9 60.5

Table 5: CaMML multimodal performance on A-
OKVQA, Refcoco/+/g.

A.2 CaMML Retrieval Setup

We built CaMML retriever in following steps:

• Utilize ImageBind (Girdhar et al., 2023)
model to inference upon images and get cor-
responding visual embedding.

• Utilize Faiss (Johnson et al., 2019b) to build
datastore index for visual embedding, and
bind each data source (image and text) to the
index, ensuring the right one-to-one retrieval.

• For each query, we forward with ImageBind
model and compute similarity between query
embedding and datastore index. We select
top-k similarity samples as our contexts.

Note that, in our quantitative experiments, we
compute query (text) embedding’s similarity with
(vision) datastore, while in qualitative analyses,
we compute query (vision) embedding’s similarity
with (vision) datastore, to obtain relevant image
information.

A.3 Experimental Results

A.3.1 Multimodal Task Performance
In addition to the results presented in the main pa-
per tables, CaMML demonstrates versatility in han-
dling various multimodal tasks without requiring
further fine-tuning. Table 5 shows that CaMML
achieves exceptional performance on the Aug-
mented Outside-Knowledge VQA (A-OKVQA)
task with an accuracy of 82.0, and also exhibits
good ability in localizing visual grounding tasks
such as RefCOCO/+/g.

A.3.2 Finegrained Evaluation
CaMML is tested on MMBench and MMBench-
CN to showcase each fine-grained ability such
as Logic Reasoning (LR), Attribute Recognition
(AR), RR (Relation Reasoning), Instance-Level
Fine-Grained Perception (FP-S), Cross-Instance
Fine-Grained Perception (FP-C), Coarse Percep-
tion (CP). According to Table 6, CaMML-13B has
achieved 8 out of 12 state-of-the-art results among
large multimodal models.

B Additional Cases

Image Generation CaMML demonstrates its
ability to generate reliable content based on a
wealth of multimodal contextual sources. In Figure
8 9, we present an example of CaMML’s capabil-
ity in prompting image generation. In the case,
CaMML is known for its ability to incorporate con-
textual elements into generating descriptions. For
example, it can generate descriptions of traditional
Chinese-style buildings in cyber-punk style. When
using CaMML, the generated images are likely to
include a mix of old buildings with a modern style,
based on the provided contextual samples. On the
other hand, when using simple prompt without any
contextual samples, the generated image is more
likely to be limited to modern style skyscrapers
only.

Implicit-Description Localization CaMML
also highlights its strong localization capabilities,
particularly in terms of reasoning the concept
behind and high-level understanding. We utilize
CaMML to detect objects by providing implicit
descriptions and allowing CaMML to reason
about the nature and location of these objects. As
shown in Figure 10, CaMML is able to identify the
objects with implicit descriptions (such as airplane:
“The thing that carries hundreds of souls to the sky”
or mirror: “The thing that makes two same dogs
existing in this image”, etc.).
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CaMML-13B: In	the	early	1900s,	Shanghai	
was	a	bustling	and	vibrant	city	that	was	known	
as	the	"Paris	of	the	East."	It	was	a	hub	of	
international	trade	and	commerce,	with	a	
diverse	population	of	Chinese,	Westerners,	and	
other	expatriates.	The	city	was	characterized	by	
its	wide	boulevards,	grand	European-style	
buildings,	and	luxurious	entertainment	venues	
such	as	bars,	clubs,	and	theaters.	The	Bund,	a	
famous	waterfront	promenade,	was	lined	with	
impressive	buildings	that	showcased	the	wealth	
and	power	of	the	city's	foreign	traders.	The	city	
was	also	home	to	a	thriving	art	scene,	with	many	
artists	and	writers	flocking	to	the	city	to	capture	
its	vibrant	atmosphere.	However,	Shanghai	was	
also	a	city	of	contrasts.	The	wealthy	elite	lived	in	
luxury,	while	the	working-class	and	poor	
struggled	to	make	ends	meet.	The	city	was	also	a	
hotbed	of	political	and	social	unrest,	with	labor	
strikes,	protests,	and	revolutionary	movements	
shaping	its	history.	Despite	its	turmoil,	Shanghai	
remained	a	fascinating	and	exciting	place	to	be,	
and	its	unique	blend	of	East	and	West	made	it	a	
truly	captivating	city.

Question:	Please	generate	a	description	of	shanghai	city	in	1900s.

CaMML Contexts:

DALL·E3	(Question	Text):

DALL·E3	(CaMML Text):

A	river	view	with	a	
boat	on	the	
huangpu district	in	
shanghai	china

The	stamps	for	
shanghai	city	with	
the	ship,	china

CaMML-13B: Shanghai,	a	sprawling	
metropolis	of	neon	lights	and	towering	
skyscrapers,	is	a	city	of	contrasts.	The	once-
sleepy	waterfront	district	is	now	a	bustling	hub	
of	activity,	with	towering	structures	reaching	
towards	the	sky.	The	streets	are	filled	with	the	
hum	of	drones	and	the	chatter	of	holographic	
advertisements,	while	the	smell	of	freshly-
brewed	coffee	and	street	vendors	selling	
everything	from	augmented	reality	glasses	to	
cybernetic	implants	fills	the	air.	The	streets	are	
a	mix	of	ancient	and	modern,	with	traditional	
Chinese	characters	painted	on	the	sides	of	
buildings	next	to	sleek,	futuristic	designs.	The	
sound	of	Mandarin	and	English	mingles	with	
the	chatter	of	other	languages,	creating	a	
unique	and	vibrant	atmosphere…Overall,	
Shanghai	is	a	city	of	contrasts,	a	place	where	
tradition	meets	modernity,	where	the	old	and	
the	new	coexist.	It's	a	city	that	never	sleeps,	
always	on	the	move,	always	pushing	forward.	
It's	a	city	that	is	both	beautiful	and	dangerous,	
a	place	where	one	can	find	anything	they	want,	
but	at	a	cost.

Question:	Please	generate	a	detailed	description	of	shanghai	city	in	cyber-punk	style.

CaMML Contexts:

DALL·E3	(Question	Text):

DALL·E3	(CaMML Text):

A	picture	of	
Chenghuangmiao
(City	God's	Temple)

Festival	custom	is	
an	important	part	
of	the	culture	of	
Shanghai.	There	are	
a	lot	of	festivals	in	
Chenghuangmiao in	
a	year.

Figure 8: CaMML capability of Image generation: Create a city view via DALL·E3 API.

CaMML-13B: I	can	give	you	some	suggestions	
for	a	book	cover	for	"The	Republic"	by	Plato.	
1.	A	stylized	representation	of	the	Greek	city-
state	of	Athens,	with	the	Acropolis	in	the	
background.	
2.	A	depiction	of	the	famous	allegory	of	the	cave,	
with	shadows	of	puppets	cast	on	the	wall,	
representing	the	illusion	of	reality.	
3.	A	portrait	of	Plato	himself,	with	a	stylized	
background	representing	the	world	of	ideas.	
4.	A	depiction	of	the	three	classes	of	society	in	
the	Republic:	the	rulers,	the	guardians,	and	the	
citizens.	
5.	A	stylized	representation	of	the	five	types	of	
government	described	in	the	Republic:	
aristocracy,	timocracy,	oligarchy,	democracy,	and	
tyranny.	
These	are	just	a	few	ideas,	but	ultimately	the	
design	of	the	book	cover	should	reflect	the	
themes	and	ideas	presented	in	the	book.

Question:	Design	a	book	cover	for	”The	Republic"	of	Plato.

CaMML Contexts:

DALL·E3	(Question	Text):

DALL·E3	(CaMML Text):

CaMML-13B: The	Great	Gatsby	is	a	classic	novel	
by	F.	Scott	Fitzgerald,	and	it	tells	the	story	of	Jay	
Gatsby,	a	mysterious	millionaire	who	throws	lavish	
parties	in	the	roaring	twenties.	The	novel	is	set	in	
the	wealthy	suburbs	of	Long	Island,	New	York,	and	
it	explores	themes	of	love,	greed,	and	the	
corrupting	influence	of	wealth.	For	the	cover	of	The	
Great	Gatsby,	I	would	use	an	image	of	a	luxurious	
mansion	with	a	party	taking	place	inside.	The	
mansion	should	have	a	grand	and	opulent	
appearance,	with	columns	and	a	sweeping	staircase.	
The	party	should	be	in	full	swing,	with	people	
dressed	in	flapper-style	clothing	and	enjoying	
themselves.	In	the	foreground,	I	would	place	a	
figure	of	Jay	Gatsby,	dressed	in	a	tuxedo	and	
looking	out	over	the	party	with	a	contemplative	
expression.	He	should	have	a	slight	smile	on	his	
face,	as	if	he	is	enjoying	the	moment	but	also	aware	
of	the	superficiality	of	it	all.	The	title	of	the	book	
should	be	displayed	prominently,	using	a	font	that	
is	elegant	but	not	too	ornate.	The	overall	design	
should	be	sophisticated	and	alluring,	capturing	the	
spirit	of	the	roaring	twenties	and	the	enigmatic	
nature	of	Jay	Gatsby.

Question:	Design	a	book	cover	for	”The	Great	Gatsby".

CaMML Contexts:

DALL·E3	(Question	Text):

DALL·E3	(CaMML Text):

A poster	
advertising	the	
great	gatsby

The	cover	of	
the	book	
music	of	the	
republic

The	republic	of	
thieves	by	
scott	lynch

The	great	
gatsby	by	f	
scott	
fitzgerald

Figure 9: CaMML capability of Image generation: Design a book cover via DALL·E3 API.
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Method LLM
MMBench-dev MMBenchCN-dev

Overall LR AR RR FP-S FP-C CP Overall LR AR RR FP-S FP-C CP

MMICL (Zhao et al., 2023) FLANT5-XXL 67.9 49.2 71.6 73.0 66.7 57.2 77.2 - - - - - - -
mPLUG-Owl2 (Ye et al., 2023) LLaMA2-7B 66.5 32.2 72.4 60.9 68.6 60.1 79.4 59.5 28.8 64.8 48.7 60.1 50.3 76.0
SPHINX (Lin et al., 2023) LLaMA2-13B 67.2 33.1 67.3 58.3 74.4 59.4 80.7 58.6 21.2 61.8 43.5 62.1 58.7 73.6
LLaVA-1.5 (Liu et al., 2023a)-7B Vicuna-7B 63.0 26.3 68.8 53.0 67.2 56.6 76.4 57.4 25.4 58.8 55.7 55.3 49.7 75.7
LLaVA-1.5 (Liu et al., 2023a)-13B Vicuna-13B 68.2 44.1 67.3 60.0 72.0 59.4 82.1 61.9 36.4 65.8 49.6 62.1 59.4 75.0
CaMML-7B Vicuna-7B 66.9 34.2 71.6 66.1 70.4 56.5 78.9 60.6 27.1 87.0 55.7 58.0 57.3 77.0
CaMML-13B Vicuna-13B 70.2 44.2 87.5 60.9 72.4 67.8 84.6 63.5 37.3 88.9 52.2 63.1 59.4 77.0

Table 6: Experiments on fine-grained multimodal reasoning ability: CaMML evaluated on MMBench and MM-
BenchCN, compared with other state-of-the-art methods. The categories include Logic Reasoning (LR), Attribute
Recognition (AR), RR (Relation Reasoning), Instance-Level Fine-Grained Perception (FP-S), Cross-Instance
Fine-Grained Perception (FP-C), Coarse Perception (CP).

Please provide the 
bounding box coordinate of 
the region this sentence 
describes: “The thing that 
protects human from 
falling into lake”.

[364, 267, 633, 313]

Please provide the 
bounding box coordinate of 
the region this sentence 
describes: “The thing that 
makes two same dogs 
existing in this image”.

[134, 473, 417, 633]

Please provide the 
bounding box coordinate of 
the region this sentence 
describes: “The thing that 
carries hundreds of souls 
to the sky”.

[0, 187, 364, 309]

Figure 10: CaMML capability of localization on implicit description.
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