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Abstract

While large language models (LLMs) have
showcased remarkable prowess in various nat-
ural language processing tasks, their training
costs are exorbitant. Consequently, a plethora
of parameter-efficient fine-tuning methods have
emerged to tailor large models for downstream
tasks, including low-rank training. Recent
approaches either amalgamate existing fine-
tuning methods or dynamically adjust rank al-
location. Nonetheless, these methods continue
to grapple with issues like local optimization,
inability to train with full rank and lack of focus
on specific tasks. In this paper, we introduce
an innovative parameter-efficient method for
exploring optimal solutions within latent space.
More specifically, we introduce a set of latent
units designed to iteratively extract input rep-
resentations from LLMs, continuously refining
informative features that enhance downstream
task performance. Due to the small and inde-
pendent nature of the latent units in relation
to input size, this significantly reduces train-
ing memory requirements. Additionally, we
employ an asymmetric attention mechanism
to facilitate bidirectional interaction between
latent units and freezed LLM representations,
thereby mitigating issues associated with non-
full-rank training. Furthermore, we apply distil-
lation over hidden states during the interaction,
which guarantees a trimmed number of train-
able parameters. Experimental results demon-
strate that our approach achieves state-of-the-
art performance on a range of natural language
understanding, generation and reasoning tasks.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Ouyang et al., 2022; Chowdhery et al., 2022;
Zhang et al., 2022; Zeng et al., 2023; Touvron et al.,
2023a), exemplified by ChatGPT, have garnered
substantial attention within the scholarly and indus-
trial realms owing to their remarkable efficacy in
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Figure 1: The white plus indicates summing the two
hidden state values bitwise, and the dashed arrow repre-
sents an optional bidirectional exchange of information.
(a) LoRA (Hu et al., 2022) approximates the update of
each weight matrix with a pair of Ai and Bi, involving
various modules in transformer layers. (b) Instead of
this idea of local approximation, our approach treats
LLM as a feature extractor and uses a set of latent units
to iteratively perform the exchange of information with
LLM, further exploiting LLM’s power.

a plethora of natural language processing under-
takings. However, full training of LLM is time-
consuming and labor-intensive. Besides the high
training overhead, maintaining a replica for each
task introduces significant storage redundancy.

To address these issues, researchers either add
extra neural modules (Rebuffi et al., 2017; Houlsby
et al., 2019; Pfeiffer et al., 2020) or model incre-
mental updates (Zaken et al., 2021; Guo et al.,
2021; Hu et al., 2022). More recently, researchers
either merge existing fine-tuning methods (He et al.,
2022a; Wang et al., 2023a) or dynamically adjust
rank allocation (Zhang et al., 2023; Ding et al.,
2023a). He et al. (2022a) presents a unified frame-
work and enables an efficient combination of ex-
isting fine-tuning methods. Ding et al. (2023a)
dynamically allocates the parameter budget among
weight matrices. However, these methods still have
some flaws. First, local optimization is a noto-
rious problem. As shown in Figure 1 (a), LoRA
(Hu et al., 2022) approximates the update of each
weight matrix with a pair of Ai and Bi. These
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low rank-based methods use numerous pairs of low
rank matrices to fit local parameters and neglect
global control, resulting in suboptimal performance.
Zhang et al. (2023); Ding et al. (2023a) remains
with this problem even though it makes the unalter-
able rank in LoRA to be adaptive. Second, these
methods mostly suffer from inability to train with
full rank. He et al. (2022a) finds that this prob-
lem manifests itself even more severely in FFNs,
and therefore assigns more parameters to FFNs
than to attention modules to alleviate this problem.
However, as in previous approaches (Pfeiffer et al.,
2020; Guo et al., 2021), they still takes a bitwise
summing approach to varying the output probabil-
ities, limiting the expressive power of the model.
Third, these methods focus only on approximate
updates to LLMs and do not adequately consider
task-specific relevant features (Wang et al., 2023b).
Modeling the topics or labels of specific tasks will
result in performance gains.

To address these issues, we propose to learn
a global controller (GloC) for parameter-efficient
training in latent space, in which we use a set of la-
tent units to iteratively distill information features
from LLM. As shown in Figure 1 (b), we treats
LLM as a feature extractor and uses a set of latent
units to perform the exchange of information with
LLM. By the nature of the small and independent
nature of the latent units relative to the size of the
input, this greatly reduces the requirement for train-
ing memory. We consider this set of latent units as
a global controller that runs through all layers of the
large language model, fully exploiting the capabili-
ties of LLM. In addition, we employ asymmetric
attentional mechanisms to facilitate bidirectional
interactions between latent units and freezed rep-
resentations, hence mitigating the problems associ-
ated with non-full-rank training. Further, we apply
a distillation technique to the hidden states during
the interaction to compress the hidden state size to
a very small scale, which ensures fewer trainable
parameters. We also find in our experiments that
these latent units learn task-specific relevant fea-
tures that show strong statistical correlation with
task labels. Our main contributions are as follows:

• We consider parameter efficient fine-tuning
from a novel perspective that learns a global
controller to interact with LLMs in an infor-
mative manner. Based on a small set of latent
units, we steer the large language model from
a global angle, seeking optimal performance.

• We design the asymmetric attention mecha-
nism and distillation compression module dur-
ing the information exchange to reduce the
training memory while mitigating the prob-
lem of non-full-rank training.

• Extensive experiments on a range of natural
language understanding, generation, and rea-
soning tasks show that our model reaches the
state-of-the-art and significantly outperforms
a series of robust baselines. The experimen-
tal results also indicate that these latent units
model task-specific features.

2 Related Work

2.1 Parameter-Efficient Fine-Tuning

Parameter-efficient fine-tuning (PEFT) is a set of
methods that optimize only a small fraction of the
parameters, keeping the backbone model frozen
to adapt to downstream subtasks. Mainstream
approaches either add external neural modules
(Houlsby et al., 2019; Li and Liang, 2021; Lester
et al., 2021) or model incremental updates (Zaken
et al., 2021; Guo et al., 2021; Hu et al., 2022).
Specifically, the methods for adding extra mod-
ules include Adapter (Houlsby et al., 2019; Re-
buffi et al., 2017; Pfeiffer et al., 2020), Prefix (Li
and Liang, 2021) and Prompt Tuning (Lester et al.,
2021). Adapter inserts small neural modules called
adapters between layers of the backbone model,
while Prefix and Prompt Tuning appends additional
trainable prefix tokens to the input or hidden lay-
ers, similar work also includes P-tuning (Liu et al.,
2021). Another mainstream of approaches model
incremental updates of pre-training weights with-
out modifying the model structure. (Zaken et al.,
2021) only fine-tunes bias vectors in the backbone
model, and diff-pruning (Guo et al., 2021) learns a
sparse parameter update vector. LoRA (Hu et al.,
2022) approximates the update of each weight ma-
trix with a pair of low-rank matrices.

Recent work either customize existing fine-
tuning methods (He et al., 2022a; Wang et al.,
2023a) or dynamically adjust rank allocation
(Zhang et al., 2023; Ding et al., 2023a). He et al.
(2022a) presents an efficient combination of exist-
ing fine-tuning methods, and Wang et al. (2023a)
utilizes low-rank techniques to highly parameterize
skills in the multi-task. Zhang et al. (2023); Ding
et al. (2023a) both dynamically allocates the param-
eter budget among weight matrices. Zhang et al.
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(2023) prunes the singular values of unimportant
updates, while Ding et al. (2023a) use a gate unit
to controll the cardinality of rank. However, they
all suffer from the problem of local optimization
and the inability to train with full rank.

2.2 Controller View for PEFT
Yang and Liu (2022) proposes to explain prefix
tuning from a controller perspective. Ding et al.
(2023b) extends the controller perspective to a
broader set of PEFT approaches. They argue that
the essence of PEFT lies in the regularized layered
hidden state transformation process. The proposed
global controller is inspired by Lee et al. (2019);
Jaegle et al. (2021), which are designed to address
high-dimensional multimodal inputs. Unlike their
attempts to compress inputs of tens of thousands
of dimensions (e.g., pixels) into lower units for
probabilistic generation, our approach establishes
bi-directional channels for information exchange
and distilling hidden states.

3 Method

3.1 Preliminaries
Transformer-based Models A typical trans-
former model is composed of a stack of L trans-
former (Vaswani et al., 2017) layers, and the mod-
eling process mainly involves the multi-head at-
tention mechanism. For simplicity, we denote the
attention as:

Attention (Q,K, V ) = softmax

(
QKT

√
dk

)
V,

(1)
where Q, K, V are the query, key and value matrix
respectively, and the 1/

√
dk is the scaling factor.

Given the input token embeddings X ∈ Rn×d, n is
length of input token sequence and d is hidden size,
the multi-head self-attention (MHA) computes the
output on Nh head and concatenates them:

MHA(X) = Concat (head1, · · · , head h)W o,

headi = Attn
(
EW (i)

q , EW
(i)
k , EW (i)

v

)
,

(2)
where W o ∈ Rd×d, W (i)

q ,W
(i)
k ,W

(i)
v ∈ Rd×dh ,

dh is typically set to d/Nh.

PEFT with Transformer In order to provide a
comprehensive understanding of the differences
between our approach and the previous series of
approaches, we do a careful recap here. As in Fig-
ure 2, the different peft methods are embedded in
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Figure 2: The location of various peft methods in a
transformer layer. For simplicity, we only show LoRA
approximation to FFN matrices, which can be extended
to arbitrary matrices. Similarly, we illustrate parallel
adapters, while some earlier adapters are sequential.

different modules of the transformer. It is worth
noting that LoRA (Hu et al., 2022) can be used
to approximate arbitrary matrices, including the
matrices in attention and FFN, although of course
approximation of more matrices will result in more
parametric quantities. Prefix (Li and Liang, 2021)
and Prompt Tuning (Lester et al., 2021) appends
additional trainable prefix tokens to the input or
hidden attention layers, similar work also includes
P-tuning (Liu et al., 2021). Adapter inserts small
neural modules called adapters between layers of
the backbone model. Houlsby et al. (2019) places
two adapters sequentially within one layer of the
transformer, one after the multi-head attention and
one after the FFN sub-layer, while He et al. (2022a)
incorporate extra adapter modules in parallel as
in Figure 2. Unlike these approaches that add ad-
ditional small modules to the submodules of the
transformer layers or approximate the update of
the local matrices, our proposed approach stands
outside of the backbone’s transformer layers and
delivers the flow of information with a global per-
spective, as shown on the left side of Figure 3.
Moreover, our approach can be summarized as pre-
fix fine-tuning with low-rank attention matrices.
We will elaborate on this in the following section.

Latent Units The latent arrays in our approach
can be traced back to (Gu et al., 2018; Carion
et al., 2020). Carion et al. (2020) refers to them as
learnable queries for the set multi-objective detec-
tion. Jaegle et al. (2021) uses these latent arrays
to compress high-dimensional multimodal inputs
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Figure 3: The overall architecture of the proposed Global Controller. On the left, we use a set of latent units as the
global controller that runs through all layers of the backbone model to steer the capabilities of LLMs from a global
perspective. These latent units iteratively distill information features from the LLM and update the hidden state
of the LLM using the distilled attention mechanism. On the right, we show the various modules of the distilled
attention mechanism. We first map the hidden state dimensions to lower dimensions, after which we execute the
asymmetric attention mechanism on the lower dimensions to facilitate bidirectional interactions between latent units
and freezed representations, reducing the training memory while mitigating the problem of non-full-rank training.

and refers to them as latent units. Recently, Wang
et al. (2023b) uses these latent variables in context
learning, which is utilized to model latent topics or
concepts as:

P (x1:T ) =

∫

Θ
P (x1:T | θ)P (θ)dθ, (3)

Where θ ∈ Θ represents a latent high dimensional
topic or concept variable, Θ is the space of the
topic or concept variable, and x1:T refers to the
input token embedding.

3.2 Overview
As shown in Figure 3, we treats LLM as a feature
extractor and uses a set of latent units U = RM×d

to perform the exchange of information with LLM.
The number of the units M is pre-specified. By
the nature of the small and independent nature of
the latent units relative to the size of the input, this
greatly reduces the requirement for training mem-
ory. Formally, for L transformer layers, we use a
control factor s for chunking, where s can be divis-
ible by L. After that, for each transformer chunk,
we will use a distilled attention mechanism layer
to complete the information interaction between
latent units and hidden states, where the number
of transformer chunks, i.e., the number of distilled
attention mechanism layers, is N = L/s. When
N = L, it means that we exchange information
at each transformer layer, but this leads to an in-
crease in computation and training memory. We

denote the latent units U transformed by the i-th
distilled attention layer as ui ∈ RM×d, and simi-
larly, the input embedding X transformed by the
i-th transformer block as hi ∈ Rn×d. Afterwards,
we employ asymmetric attentional mechanisms to
facilitate bidirectional interactions between latent
units ui and freezed representations of the back-
bone model hi. Since we replace simple summa-
tion with bidirectional attentional interactions, we
alleviate the problem of training with non-full-rank
training. Further, we apply a distillation technique
to the hidden states during the interaction to com-
press the hidden state size to a very small scale,
which ensures fewer trainable parameters.

It is worth mentioning that, our approach can be
framed as prefix fine-tuning with low-rank matri-
ces constrained by masking. Ding et al. (2023a)
mentioned the instability issue in prefix training,
which we attribute to the strong coupling between
the prefix units and backbone models without ad-
ditional mapping matrices and masking, resulting
in a large difference in the initial variable space.
Compared to prefix-tuning, our method has an ad-
ditional low-rank mapping space (the former two
use the QKV mapping of the backbone model it-
self), which leads to better training convergence
while mitigating expressive bottlenecks.

3.3 Distilled Attention

Based on Jaegle et al. (2021), we design distilled at-
tention mechanisms for parameter-efficient training.
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Algorithm 1: Distilled Attention
1 Input: Latent units ui, token hidden states hi, down

projection weights Du, Dh, up projection weights
Pu, Ph

2 begin
3 u′

i, h
′
i ← uiDu, hiDh ; // down proj

4 u′
i ← MHA(u′

i, h
′
i, h

′
i) ; // attention

5 u′
i ← LN(u′

i) ; // layer norm
6 h′

i ← MHA(h′
i, u

′
i, u

′
i) ; // attention

7 u′′
i , h

′′
i ← u′

iPu, h
′
iPh ; // up proj

8 h′′
i ← LN(h′′

i ) ; // layer norm
9 ui, hi ← ui + u′′

i , hi + h′′
i ; // residual

10 Output:ui, hi

Different from Jaegle et al. (2021) which predicts
the labeling probability of downstream tasks based
on latent arrays, we use the asymmetric attention
mechanism to perform the information exchange
between the latent units and the backbone model,
and ultimately generate the probability distribution
based on the hidden state of the backbone model.
As shown in Algorithm 1, we design the distil-
lation module to project the latent units ui and
hidden state dimensions hi to lower dimensions
as u′i, h

′
i, thus satisfying the need for parameter-

efficient training.

Asymmetrical attention We build our informa-
tion exchange architecture around the attention
mechanism because it is both universally appli-
cable and powerful in practice. The main challenge
facing traditional attention is that the complexity
of Q-K-V self-attention is quadratic in the number
of input dimensions, while the length n of the in-
put sequence is usually very large. Here, we apply
attention directly to M latent units by introducing
asymmetry in the attention operation. The resulting
attention operation has complexity O(Mn). Since
the number of latent cells is much smaller than
the length of the input sequence (M ≪ n, e.g.,
M = 8 when n = 512 ), this greatly reduces the
computational complexity. In addition, since we
use the bidirectional attentional interaction mecha-
nism instead of simple summation in the traditional
approach, this helps alleviate the problem of non-
full-rank training (He et al., 2022a).

Projection It is worth noting that the inclusion
of the Q-K-A mapping matrices in the traditional
MHA module introduces a large number of para-
metric quantities, which is not desired in parameter-
efficient fine-tuning methods. In order to reduce
the introduction of such parameters, we draw on

Dataset #Train #Valid #Test Metric

CoLA 8.5k 1,043 1,063 Mcc
SST-2 67k 872 1.8k Acc
MRPC 3.7k 408 1.7k Acc
QQP 364k 40.4k 391k Acc/F1
STS-B 5.7k 1.5k 1.4k Corr
MNLI 393k 9.8k/9.8k 9.8k/9.8k Acc(m/mm)
QNLI 105k 5.5k 5.5k Acc
RTE 2.5k 277 3k Acc

Table 1: Dataset statistics and metric in GLUE bench-
mark. "Mcc", "Acc", "F1" and "Corr" represent
matthews correlation coefficient, accuracy, the F1 score
and pearson correlation coefficient respectively.

the technique of distillation (Zhao et al., 2019) that
projects the latent units ui and hidden state dimen-
sions hi to lower dimensions as u′i, h

′
i. Formally,

we denote the down and up projection matrices as
Du, Dh ∈ Rd×d′ and Pu, Ph ∈ Rd′×d. As shown
in Algorithm 1, we execute the asymmetric atten-
tion mechanism in lower dimensions (d′ ≪ d, e.g.,
d′ = 8 when d = 768), which further reduces the
number of computational parameters.

4 Experiments

To demonstrate the effectiveness of the proposed
global controller method (GloC), we conduct ex-
tensive experiments on a range of natural language
understanding, generation, and reasoning tasks.

4.1 Datasets

For evaluation on natural language understanding
and generation tasks, we adopt the GLUE bench-
mark (Wang et al.), including CoLA (Warstadt
et al., 2019), SST-2 (Socher et al., 2013),
MRPC (Dolan and Brockett, 2005), QQP (Wang
et al.), STS-B (Wang et al.), MNLI (Williams et al.,
2018), QNLI (Rajpurkar et al., 2016) and RTE (Da-
gan et al., 2005; Haim et al., 2006; Giampiccolo
et al., 2007; Bentivogli et al., 2009) Table 1 shows
the detailed dataset statistics and the evaluation
metric. Additionally, for the reasoning task, we
take six common-sense reasoning datasets, includ-
ing BoolQ (Clark et al., 2019), PIQA (Bisk et al.,
2020), SIQA (Sap et al., 2019), etc. BoolQ is a
question-answering dataset for yes/no questions
containing 15942 examples. These problems occur
and arise in unprompted and unconstrained envi-
ronments. PIQA consists of questions with two
solutions requiring physical commonsense to an-
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Method #Params CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE

Fine-Tune 184M 69.21 95.64 89.22 92.05/89.31 91.59 89.98/89.95 93.78 82.49
Adapter 1.41M 69.00 95.16 89.90 91.45/88.88 92.21 90.11/90.11 93.79 82.44
Bitfit 0.1M 68.70 94.38 87.16 87.86/84.20 89.71 87.45/87.45 91.90 76.12
LoRA (r=8) 1.33M 69.73 95.57 89.71 91.95/89.26 91.86 90.47/90.46 93.76 85.32
AdaLoRA 1.27M 70.86 95.95 90.22 92.13/88.41 91.39 90.27/90.30 94.28 87.36
SoRA 0.91M 71.48 95.64 91.98 92.39/89.87 92.22 90.35/90.38 94.28 87.77

GloC 1.33M 72.35 96.16 92.31 92.36/89.54 92.45 90.62/90.45 94.15 88.36

Table 2: Test results of the proposed method and other baselines on the GLUE benchmark. We denote the best result
in bold. We report mean of 5 runs using different random seeds.

swer. SIQA focuses on reasoning about people’s
actions and their social implications. The detailed
dataset descriptions and data statistics are provided
in the Appendix A.1.

4.2 Implementation Details

For fair comparison with prior work, we use
DeBERTaV3-base (He et al., 2021) as the back-
bone model for the GLUE benchmark, Llama (Tou-
vron et al., 2023b) and Llama2 (Touvron and et al.,
2023) for the common-sense reasoning datasets.
For both versions of a range of sizes of Llama, we
adopt 7B size. Commonly, we use the AdamW
(Loshchilov and Hutter, 2017) optimizer with a lin-
ear warmup-decay learning schedule and a dropout
(Srivastava et al., 2014) of 0.1. The latent units are
randomly initialized with the normal distribution
N (0.0, 0.02). For hyper-parameters, we set the
learning rate to 1e-4 with a batch size of 32. In the
main experiments, if not additionally mentioned,
we set M = 8, s = 2 and d′ = 16. For almost
all experiments, we run 5 times using different ran-
dom seeds and report the average results in order
to ensure statistical significance.

4.3 Baselines

In this paper, we compare the proposed GloC with
full-parameter fine-tuning and the following robust
baseline models: Adapter (Houlsby et al., 2019),
BitFit (Zaken et al., 2021), LoRA (Hu et al., 2021),
AdaLoRA (Zhang et al., 2023) and SoRA (Ding
et al., 2023a). Notably, on the common-sense rea-
soning task, since full parameter fine-tuning of
a large model is unaffordable for a small work-
shop, we use the results of ChatGPT1 as an al-
ternative to full fine-tuning. We use GPT-3.5

1https://openai.com/blog/chatgpt/

text-Davinci-003 for Zero-shot CoT (Ko-
jima et al., 2022) as the baseline.

4.4 Overall Performance

GLUE performance As shown in Table 2, SoRA
and AdaLoRA, the state-of-the-art methods on the
current ranking, outperform previous methods, in-
cluding LoRA, on a range of understanding and
generation tasks, demonstrating the effectiveness
of dynamically adjusting the rank. More evidently,
our proposed method achieves state-of-the-art re-
sults on six subtasks and comparable results on
two others. As an example, GloC outperforms
AdaLoRA by 1.49% and 2.09% on CoLA and
MRPC, respectively, which demonstrates the ef-
fectiveness of our global perspective. We consider
the set of latent units as a global controller that
runs through all layers of the large language model,
fully exploiting the capabilities of LLM.

Reasoning performance On the average F1-
measure of the 6 common-sense datasets in Ta-
ble 7, the result of AdaLoRA (Zhang et al.,
2023) improves over the LoRA baseline by +0.4%
and +0.7% on different Llama version, while our
method further improves by +2.2% and +2.0% com-
pared to AdaLoRA, which speaks volumes about
the effectiveness of our approach. In addition, our
method outperforms ChatGPT by 3.3% and 3.7%
on HellaS and OBQA, respectively, which suggests
that parameter-efficient fine-tuning methods still
have a lot of potential and room for development
when compared to state-of-the-art LLMs. We at-
tribute these performance improvements to that
we employ asymmetric attentional mechanisms to
facilitate bidirectional interactions between latent
units and freezed representations, hence mitigating
the problems associated with non-full-rank train-
ing. In addition, we believe that the latent units
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Method # Params BoolQ PIQA SIQA HellaS WinoG OBQA AVE.

ChatGPT - 73.1 85.4 68.5 78.5 66.1 74.8 74.4

LLaMA-Adapter 0.77% 67.9 76.4 78.8 69.8 78.9 75.2 74.5
LLaMA-LoRA 0.72% 68.9 80.7 77.4 78.1 76.8 74.8 76.1
LLaMA-AdaLora 0.69% 69.4 80.8 77.8 78.6 77.1 75.4 76.5
LLaMA-GloC 0.72% 72.1 83.6 78.7 81.4 79.2 77.1 78.7

LLaMA2-Adapter 0.77% 68.2 78.1 78.4 71.2 78.1 75.6 74.9
LLaMA2-LoRA 0.72% 70.8 82.4 78.8 78.5 77.4 74.8 77.1
LLaMA2-AdaLora 0.69% 71.2 82.9 78.8 79.6 77.8 76.6 77.8
LLaMA2-GloC 0.72% 73.8 85.3 79.1 81.8 80.4 78.5 79.8

Table 3: Results with LLaMA & LLaMA2 on six common-sense reasoning datasets. The best results on each dataset are shown
in bold. We report mean of 5 runs using different random seeds.

Method CoLA STS-B QNLI

Default 72.35 92.45 94.15

freezed units 72.24 92.28 94.06
one-way interaction 70.96 90.32 93.57
w/o projection 72.35 92.62 94.09
w/ FFN 71.86 90.85 93.64

Table 4: Ablation studies with four different settings of
our method on three GLUE datasets.

learn task-specific linguistic information that fur-
ther improves the performance of the model. We
will conduct extensive ablation experiments in sub-
sequent sections to support our points. We also
supplement the results of prefix and prompt tuning
in the Appendix A.2. More analysis for non-full-
rank training can be found in the Appendix A.3.

Another thing to keep in mind is that, we find
in practice that GloC has slightly more paramet-
ric quantities than LoRA, due to the fact that in
addition to the parameters of the projection, the
latent cells also take up part of the parametric quan-
tities. We ensure that the number of parameters
is basically the same as LoRA by controlling the
chunking factor s and the low-dimensional size d′

of the projection in our experiments, e.g., when r is
8 in LoRA, we set s = 2 and d′ = 16. We will care-
fully analyze the impact of these hyperparameters
on the model performance.

5 Analysis

5.1 Ablation Study

In this section, we perform extensive ablation exper-
iments to analyze the necessity of each sub-module
of the proposed method and the extent of its impact
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Figure 4: The performance of the model under different
number of latent units on the three GLUE datasets.

on the performance. We mainly design the follow-
ing four setup: (1) freezed units: we freeze the
feature space of latent cells and learn only the pro-
jection matrices in the experiments, (2) one-way
interaction: we set up so that latent units no longer
draw information from the backbone model, turn-
ing what was originally a bidirectional interaction
into a unidirectional one, (3) w/o projection: we
no longer map the features in low dimensions, keep-
ing the mapping matrices as in the original MHA,
which would add much training time, (4) w/ FFN:
based on (3), we add two additional layers of FFNs
after MHA, which leads to a further expansion of
the number of parameters.

From Table 4 we observe that one-way inter-
action leads to a great significant performance
decrease in absolute acc-mearsure (-1.39% and -
2.13% on CoLA and STS-B), which demonstrates
the effectiveness of the bidirectional interaction
we set. We argue that the asymmetric attentional
mechanisms between latent units and freezed repre-
sentations mitigates the problems associated with
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Factor s Dim d′ CoLA STS-B QNLI # Params

s = 1
d′ = 8 72.26 91.97 94.02 1×
d′ = 16 72.29 92.24 94.08 2×

s = 2
d′ = 16 72.35 92.45 94.15 1×
d′ = 32 72.44 92.36 94.15 2×

s = 4
d′ = 16 72.16 91.89 93.74 0.5×
d′ = 32 72.25 92.30 94.12 1×

s = 6
d′ = 24 71.84 91.62 93.47 0.5×
d′ = 48 72.17 92.18 93.85 1×

Table 5: The effect of different control chunking factors
s as well as low dimensional mapping sizes d′ on model
performance. 1× denotes the default model, which is
essentially comparable to the parameters of the LoRA
model with rank 8.

non-full-rank training, leading to promising perfor-
mance. In addition, as show in Table 4, freezing the
learning space of latent units can also be slightly
detrimental to model performance (-0.11% and -
0.17% in absolute acc-mearsure). This suggests
that the units have also learned some information
that is helpful for the model. We will analyze later
if this information is relevant to the specific task.

However, w/o projection that not doing low-
dimensional mapping does not significantly in-
crease the performance of the model, and the re-
sults on CoLA do not change. This suggests that
our mapping approach does not harm the model
performance with reduced model parameters. We
tried adding additional FFN modules and instead
observed a decrease in model performance (-1.6%
on STS-B and -0.51% on QNLI). This suggests that
not more parameters lead to better performance.
This is in line with the original intent of a series of
parameter-efficient fine-tuning methods (He et al.,
2022a; Zhang et al., 2023).

5.2 Analysis of Hyper-parameters

In this section, we focus on analyzing the impact
of different hyperparameters on the model perfor-
mance, including the number of latent units M ,
the factor controlling the chunking s, and the low-
dimensional size of the projection d′.

Number of latent units Since the number of la-
tent units is pre-fixed, we conduct a comparison
experiment to find the suitable setting. We em-
ploy the experiment on three GLUE datasets with a
range from 1 to 32. We can observe from Figure 4
that the model performance increases as the latent
units grows. However, when the number of the la-

Datasets AdaLoRA (s) SoRA (s) GloC (s)

CoLA 160.2 57.2 110.4
SST-2 491.0 433.0 453.6
MRPC 27.3 24.8 26.2
STS-B 48.2 38.4 40.3
QNLI 1001.0 676.3 738.0
RTE 79.8 45.1 64.4

Avg. 301.3 212.5 238.8

Table 6: The average training time per epoch on six
datasets. For each task, all experiments have the same
batch size 32.

tent units 8, the trend of performance improvement
on all three datasets slows down, or even decreases
slightly, suggesting that for these current sub-tasks,
the representational power of 8 latent units is suffi-
cient for modeling the relevant information needed
for the task. Eventually, the latent units number M
in the experiments is set to 8, which is deployed on
all the other datasets.

Chunking and hidden size To be explicit, ex-
cluding the number of parameters occupied by la-
tent units, the number of model parameters stays
the same when the rank of the LoRA model is
r = d′/s. We observe in Table 5 that the results
in the second row are generally higher than in the
first row, suggesting that a larger d′ leads to better
model performance. The factor s controlling the
chunking achieves the best results for a value of 2,
suggesting that sparser information exchange leads
to a decrease in model performance. For example,
when s = 6, it brings a performance degradation of
-0.27% on CoLA and -0.3% on QNLI, respectively.

5.3 Analysis of Training Cost

In addition to the additional introduction of the
number of parameters, the state-of-art method
(Zhang et al., 2023; Ding et al., 2023a) also takes
into account the cost of training time. The re-
sults in Table 2 show that the proposed method
achieves superior performance against LoRA and
other methods which basically have the same num-
ber of parameters. From the results in the Table 6,
the training time of the proposed method is com-
parable to other advanced methods. AdaLoRA
Zhang et al. (2023) computing SVD introduces
additional computational overhead, and SoRA’s
well-designed training schedule Ding et al. (2023a)
leads to shorter time.
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Figure 5: Co-occurrence statistics between the latent
units and different task labels.

5.4 Analysis of Latent Units

Previous ablation experiments verified that the la-
tent units learned features that contribute to the
model’s performance, and in this section we wish
to verify that the latent units learned task-specific
features, such as task topic content or task labeling
information.

We count the co-occurrence of different latent
units and different task labels on CoLA and SST-2
datasets. To eliminate the imbalance, we normalize
the co-occurrence matrix first. As shown in Fig-
ure 5, different latent units have preferences for
different task labels. For example, on CoLA task,
the latent units #1 prefer to predict CoLA-1 labels,
while on SST-2 task, the latent units #2 and # 3
prefer to predict SST-0 labels. These findings in-
dicate that the latent units show strong statistical
correlations with task labels, suggesting that the
latent units learn task-specific relevant features.

6 Conclusion

In this paper, we present a novel global con-
troller (GloC) approach for parameter-efficient fine-
tuning. Based on a small set of latent units, we
harness the large language model from a global per-
spective to seek optimal performance. We design
asymmetric attention mechanisms and distillation
compression modules during interaction to reduce
training memory while mitigating the problem of
non-full-rank training. Extensive experiments on
a range of natural language understanding, gener-
ation, and reasnoning tasks show that our model
reaches the state-of-the-art and significantly outper-
forms a range of robust baselines.

Limitations

We discuss here the limitations of the method in
this paper. First, the proposed method has some
hyperparameters, such as the number of latent units
and the projection size. When the method needs
to be migrated to a new task, parameter search
is inevitably required. The second point is that
the proposed methods have not been validated on
ultra-large scale macromodels, such as Llama-70B,
which we will validate in the subsequent work. The
third point is that all PEFT methods inevitably have
training memory bottlenecks due to the need for
forward passes in the backbone model, and explor-
ing new migration methods is a valuable direction.
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Method # Params BoolQ PIQA SIQA HellaS WinoG OBQA AVE.

LLaMA-Prompt 0.72% 65.1 75.6 71.4 43.6 72.4 58.3 64.4
LLaMA-Prefix 0.72% 64.3 76.8 73.9 42.1 72.1 60.6 65.0
LLaMA-Adapter 0.77% 67.9 76.4 78.8 69.8 78.9 75.2 74.5
LLaMA-LoRA 0.72% 68.9 80.7 77.4 78.1 76.8 74.8 76.1
LLaMA-AdaLora 0.69% 69.4 80.8 77.8 78.6 77.1 75.4 76.5
LLaMA-GloC 0.72% 72.1 83.6 78.7 81.4 79.2 77.1 78.7

Table 7: Baseline results with LLaMA on six common-sense reasoning datasets.

Dataset Domain # train # test Answer
BoolQ CS 9.4K 3,270 Yes/No
PIQA CS 16.1K 1,830 Option
SIQA CS 33.4K 1,954 Option
HellaSwag CS 39.9K 10,042 Option
WinoGrande CS 63.2K 1,267 Option
OBQA CS 5.0K 500 Option

Table 8: Details of datasets for commonsense reasoning.

A Appendix

A.1 Common-sense Reasoning Corpus

Additionally, for the reasoning task, we take six
common-sense reasoning datasets, including:

(1) The BoolQ dataset (Clark et al., 2019) is
a question-answering dataset for yes/no questions,
consisting of 15,942 examples. These questions are
naturally occurring and generated in unprompted
and unconstrained settings.

(2) The PIQA dataset (Bisk et al., 2020) includes
questions with two solutions that require physical
commonsense to answer.

(3) The SIQA dataset (Sap et al., 2019) focuses
on reasoning about people’s actions and their social
implications.

(4) The HellaSwag dataset consists of common-
sense NLI questions that include a context and
several possible endings to complete the context.

(5) The WinoGrande dataset (Sakaguchi et al.,
2021) is formulated as a fill-in-the-blank task with
binary options, where the goal is to choose the
correct option for a given sentence requiring com-
monsense reasoning.

(6) The OBQA dataset includes questions that
require multi-step reasoning, the use of additional
common and commonsense knowledge, and rich
text comprehension.

Table 8 shows the detailed dataset statistics. and
possible answer options.

A.2 Other Baselines

Since prompt tuning has long training time and
poor performance as mentioned in the Section 4 in

Ding et al. (2023a), hence it was not included as the
baseline in experimental section. For the sake of
completeness in comparison and consistency with
related work, we supplemented the results on the
six common-sense reasoning datasets for prompt-
tuning and prefix-tuning here.

We find that, with the same parameter numbers,
prompt-tuning and prefix-tuning performed signif-
icantly worse than Adapter and LoRA on these
six datasets, which further corroborates the claim
made by Ding et al. (2023a).

A.3 Non-full-rank Training
Bhojanapalli et al. (2020) discussed the issue of
low-rank bottleneck in multi-head attention, where
the model’s expressive power is constrained when
the hidden size in each head is smaller than the con-
text length. Differently, He et al. (2022b) discuss
this issue in PEFT series approaches which was
mentioned in their unified perspective of Section
3.1. When the rank r of the additional module is
less than the hidden layer size d of the backbone
model itself, it introduces a representational bottle-
neck.

Furthermore, in experiments, He et al. (2022b)
found that this problem is more pronounced in the
feed-forward network (FFN), thus allocating more
parameters to FFN compared to the attention mod-
ule to alleviate this issue. The theoretical explana-
tion is that in multi-head attention, the hidden size
d becomes d/Nh, so relatively, the representational
bottleneck introduced by the rank r in attention
diminishes. Our approach utilizes multi-head at-
tention mechanism for information exchange, thus
having the advantage of mitigating low-rank com-
pared to LoRA-like bitwise summation methods.
Compared to attention mechanisms such as prompt
tuning and prefix tuning, the proposed method has
an additional low-rank mapping space, which leads
to better training convergence while mitigating ex-
pressive bottlenecks.
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