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Abstract

New Intent Discovery (NID) aims at detecting
known and previously undefined categories of
user intent by utilizing limited labeled and mas-
sive unlabeled data. Most prior works often
operate under the unrealistic assumption that
the distribution of both familiar and new in-
tent classes is uniform, overlooking the skewed
and long-tailed distributions frequently encoun-
tered in real-world scenarios. To bridge the gap,
our work introduces the imbalanced new intent
discovery (i-NID) task, which seeks to iden-
tify familiar and novel intent categories within
long-tailed distributions. A new benchmark
(ImbaNID-Bench) comprised of three datasets
is created to simulate the real-world long-tail
distributions. ImbaNID-Bench ranges from
broad cross-domain to specific single-domain
intent categories, providing a thorough repre-
sentation of practical use cases. Besides, a ro-
bust baseline model ImbaNID is proposed to
achieve cluster-friendly intent representations.
It includes three stages: model pre-training,
generation of reliable pseudo-labels, and ro-
bust representation learning that strengthens
the model performance to handle the intrica-
cies of real-world data distributions. Our ex-
tensive experiments on previous benchmarks
and the newly established benchmark demon-
strate the superior performance of ImbaNID
in addressing the i-NID task, highlighting its
potential as a powerful baseline for uncovering
and categorizing user intents in imbalanced and
long-tailed distributions1.

1 Introduction

New intent discovery (NID) has captured increas-
ing attention due to its adaptability to the evolving
user needs in open-world scenarios (Mou et al.,
2022; Siddique et al., 2021; Yang et al., 2020;
Chrabrowa et al., 2023; Raedt et al., 2023). NID

*Corresponding author.
1https://github.com/Zkdc/i-NID
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Figure 1: Illustration of proposed i-NID task: (a) i-NID
unifies open-world and long-tail learning paradigms; (b)
i-NID uses labeled and unlabeled data following a long-
tail distribution to identify and categorize user intents.

methods generally follow a two-stage training pro-
cess, including a knowledge transfer and a discov-
ery stage. The prior knowledge is injected into the
model via pre-training and then the discriminative
representation is learned for known and novel in-
tent categories (Zhang et al., 2021a, 2022; Zhou
et al., 2023; Zhang et al., 2023b; Shi et al., 2023).

Despite the considerable advancements in NID,
there remain two salient challenges impeding adop-
tion in practical scenarios. In Fig. 1, most NID
approaches predominantly address the issue of in-
tent discovery within the framework of balanced
datasets. But the distribution of intents often fol-
lows a long-tailed pattern (Mou et al., 2022), partic-
ularly in dialogue systems, wherein a small number
of intents are highly represented and a wide variety
of intents (unknown intents) are sparsely exempli-
fied. Secondly, NID methods suffer from severe
clustering degradation, where lack of improved
methods for unbalanced data distributions and lead-
ing to poor performance in unbalanced scenarios.
Therefore, we explore the new methods under the
Imbalanced New Intent Discovery (i-NID) task to
bridge the gap between the NID and real-world
applications.

To break out the aforementioned limitations, we
propose a novel framework ImbaNID, which in-
cludes three key components: model pre-training,
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reliable pseudo-labeling (RPL), and robust repre-
sentation learning (RRL). Specifically, the multi-
task pre-training incorporates the generalized prior
knowledge into the mode for establishing a robust
representational foundation conducive to cluster-
ing known and novel intents. The RPL compo-
nent formulates the pseudo-label generation as a
relaxed optimal transport problem, applying adap-
tive constraints to recalibrate the class distribution
for enhanced uniformity. The model bias issues can
be mitigated in long-tail settings while furnishing
reliable supervisory cues for downstream represen-
tation learning. Then, a novel distribution-aware
and quality-aware noise regularization technique
is introduced in RRL to effectively distinguish be-
tween clean and noisy samples. A contrastive loss
function is subsequently used to facilitate the for-
mation of distinct and well-separated clusters of
representations for known and novel intent cate-
gories. The collaborative synergy between RPL
and RRL fosters an iterative training process to
create a symbiotic relationship. This iterative ap-
proach cultivates intent representations conducive
to clustering, significantly aiding the i-NID task.
For better evaluation of unbalanced distribution, we
introduce a comprehensive benchmark ImbaNID-
Bench for i-NID evaluation.

Extensive experiments of ImbaNID are evalu-
ated on the previous common benchmarks and our
proposed benchmark ImbaNID-Bench. The results
demonstrate that ImbaNID consistently achieves
state-of-the-art performance across all clusters, no-
tably surpassing standard NID models by an aver-
age margin of 2.7% in long-tailed scenarios. The
contributions are summarized as follows:

• We introduce the imbalanced new intent dis-
covery (i-NID) task, which first encapsulates
the challenges of clustering known and novel
intent classes within long-tailed distributions.
Different model performances under unbal-
anced distribution are sufficiently explored.

• We construct three comprehensive i-NID
datasets to facilitate further advancements in
i-NID research. Our extensive experiments on
these datasets validate the superiority of the
proposed method ImbaNID.

• For i-NID, we develop a novel ImbaNID ap-
proach that iteratively enhances pseudo-label
generation and representation learning to en-
sure cluster-adaptive intent representations.

ImbaNID-Bench |Yk| |Yn| |Dl| |Du| |Dt|
CLINC150-LT 113 37 583 6395 2250
BANKING77-LT 58 19 383 4658 3080
StackOverflow20-LT 15 5 510 6669 1000

Table 1: Statistics of the ImbaNID-Bench datasets when
γ = 10. |Yk|, |Yn|, |Dl|, |Du| and |Dt| represent the
number of known categories, novel categories, labeled
data, unlabeled data, and testing data.
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Figure 2: Number of training samples per class in artifi-
cially created long-tailed CLINC150-LT datasets with
different imbalance factors.

2 Datasets

We introduce a new benchmark (called ImbaNID-
Bench) for NID evaluation tailored to long-tail dis-
tribution scenarios, which comprises three datasets
named CLINC150-LT, BANKING77-LT, and
StackOverflow20-LT, derived from CLINC (Larson
et al., 2019), BANKING (Casanueva et al., 2020)
and StackOverflow (Xu et al., 2015). Comprehen-
sive statistics for each dataset are documented in
Appendix B. Here, we describe the details of the
ImbaNID-Bench datasets.

Data Construction The first step is to simu-
late the long-tail distribution frequently encoun-
tered in real-world scenarios (Cui et al., 2019).
Each class is assigned an index i (1 ≤ k ≤
K), where K denotes the total number of in-
tent categories. γ = nmax

nmin
denotes the imbal-

ance ratio, where nk denotes the data size of
class k, nmax = max1≤k≤K(nk), and nmin =
min1≤k≤K(nk). We sample from each class based
on nk = nmaxγ

(j−1)/K . To explore the impact
of data imbalance in NID, we construct ImbaNID-
Bench by sampling with diverse imbalance ratios
γ ∈ {3, 5, 10}. Fig. 2 shows the datasets created
for CLINC150-LT with different imbalance factors
(More details can be found in Appendix B). To
simulate an open-world NID setting. We randomly
select 75% of intents as known intents, and sample
only 10% instances from known intent categories
to form a labeled subset, while the remaining in-

3950



Repeat until converge
Reliable Pseudo-labeling (RPL)

Robust Representation Learning (RRL)

DR

QR

Labeled
Utterance

Encoder

Noise Regularization

Inference

Encoder

Unlabeled
Utterance

Classifier

Balanced Test-set

Intent Features Pseudo Labels

Intent Features

Clustering

ROT
Clean Pseudo-labels

Intent Features IWCL Loss

CE Loss

CWCL Loss

Figure 3: Overview of ImbaNID. The relaxed optimal transport (ROT) technique is used to produce high-quality
pseudo-labels. Distribution-aware regularization (DR) and quality-aware regularization (QR) aim at filtering clean
pseudo-labels. Finally, our framework incorporates class-wise contrastive learning (CWCL) and instance-wise
contrastive learning (IWCL) to embed the data into a representation space where similar samples cluster together.

stances are treated as unlabeled data.

Data Statistics Since different proportions of im-
balance ratios γ have different statistics, here we
only display the results of γ = 10 for brevity.
Table 1 shows the statistics of CLINC150-LT,
BANKING77-LT and StackOverflow20-LT. We
will release these datasets for future research.

3 Methodology

3.1 i-NID

Supposing we have a set of labeled intent data
Dl = {(xi, yi)|yi ∈ Yk} only comprised of known
intent categories Yk, the deployed model in the
wild may encounter inputs from unlabeled data
Du = {xi|yi ∈ {Yk,Yn}}.The unlabeled data Du

contains both known intent categories Yk and novel
intent categories Yn, where Yk and Yn denote the
data with the Known and Novel intents data, re-
spectively. Both Dl and Du present a long-tail
distribution with imbalance ratio γ > 1. The goal
of i-NID is to classify known classes and cluster
novel intent classes in Du by leveraging Dl. Finally,
model performance will be evaluated on a balanced
testing set Dt = {(xi, yi)|yi ∈ {Yk,Yn}}.

3.2 Overall Framework

To achieve the learning objective of i-NID, we pro-
pose an iterative method to bootstrap model per-
formance on reliable pseudo-labeling and robust
representation learning. As shown in Fig. 3, our
model mainly consists of three stages. Firstly, we
pre-train a feature extractor on both labeled and
unlabeled data to optimize better knowledge trans-

fer (Sec. 3.3). Secondly, we obtain more accu-
rate pseudo-labels by solving a relaxed optimal
transport problem (Sec. 3.4). Thirdly, we pro-
pose two noise regularization techniques to divide
pseudo-labels and employ contrastive loss to gen-
erate well-separated clusters of representations for
both known and novel intent categories(Sec. 3.5).

3.3 Model Pre-training
Intent Representation Extraction To trigger the
power of pre-trained language models in NID, we
use BERT (Devlin et al., 2019; Yang et al., 2023)
as the intent encoder (Eθ : X → RH). Firstly, we
feed the ith input sentence xi to BERT, and take all
token embeddings [t0, . . . , tM ] ∈R(M+1)×H from
the last hidden layer (t0 is the embedding of the
[CLS] token). The mean pooling is applied to get
the averaged sentence representation zi ∈ RH :

zi =
1

M + 1

M∑

i=0

ti (1)

where [CLS] is the vector for text classification, M
is the sequence length, and H is the hidden size.

Knowledge Sharing To effectively generalize
prior knowledge through pre-training to unlabeled
data, we fine-tuned BERT on labeled data (Dl) us-
ing the cross-entropy (CE) loss and on all available
data (Da = Dl ∪ Du) using the masked language
modeling (MLM) loss. The training objective of
the fine-tuning can be formulated as follows:

Lp = −Ex∈Dl
logP (y|x)−Ex∈Da

logP (x̂|x\m(x)) (2)

where Dl and Du are labeled and unlabeled intent
corpus, respectively. P (x̂|x\m(x))predicts masked
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tokens x̂ based on the masked sentence x\m(x),
where m(x) denotes the masked tokens. The model
is trained on the whole corpus Da = Dl ∪ Du.

3.4 Reliable Pseudo-labeling
Optimal Transport Here we briefly recap the
well-known formulation of optimal transport (OT).
Given two probability simplex vectors α and β
indicating two distributions, as well as a cost matrix
C ∈ R|α|×|β| , where |α| denotes the dimension
of α, OT aims to seek the optimal coupling matrix
Q by minimizing the following objective:

min
Q∈Π(α,β)

⟨Q,C⟩ (3)

where ⟨·, ·⟩ denotes frobenius dot-product. The cou-
pling matrix Q satisfies the polytope Π(α,β) ={
Q ∈ R|α|×|β|

+ | Q1|β| = α,Q⊤1|α| = β
}

,
where α and β are essentially marginal probability
vectors. Intuitively speaking, these two marginal
probability vectors can be interpreted as coupling
budgets, which control the mapping intensity of
each row and column in Q.

Relaxed Optimal Transport for Pseudo-labeling
The variables Q ∈ RN×K

+ and P ∈ RN×K
+ repre-

sent pseudo-labels matrix and classifier predictions,
respectively, where N is the number of samples,
and K 2 is the number of classes. The OT-based PL
considers mapping samples to class and the cost
matrix C can be formulated as − logP. So, we
can rewrite the objective for OT-based PL based on
the problem (3) as follows:

min
Q,b

⟨Q,− logP⟩+ λH(Q)

s.t. Q1 = α,QT1 = β,Q ≥ 0

(4)

where the function H is the entropy regularization,
λ is a scalar factor, α = 1

N 1 is the sample distri-
bution and β is class distribution. So the pseudo-
labels matrix Ua can be obtained by normalization:
NQ. However, in the i-NID setup, the class distri-
bution is often long-tailed and unknown, and the
model optimized based on the problem (4) tends to
learn degenerate solutions. This mismatched class
distribution will lead to unreliable pseudo-labels.
To mitigate this issue, we impose a soft constraint
(ROT) on the problem (4). Instead of the traditional
equality constraint (Asano et al., 2020; Caron et al.,

2We estimate the number of classes K based on previous
works (Zhang et al., 2021a) to ensure a fair comparison. We
provide a detailed discussion on estimating K in Appendix E.

2020a), we employ a Kullback-Leibler (KL) di-
vergence constraint to encourage a uniform class
distribution. This constraint is crucial for prevent-
ing degenerate solutions in long-tailed scenarios
while allowing for the generation of imbalanced
pseudo-labels due to its more relaxed nature com-
pared to an equality constraint. The formulation of
ROT is articulated as follows:

min
Q,β

⟨Q,− logP⟩+ λ1H(Q) + λ2DKL(
1

K
1,β)

s.t. Q1 = α,QT1 = β,Q ≥ 0,βT1 = 1

(5)

where λ2 is a hyper-parameter and DKL is the
Kullback-Leibler divergence. The optimization
problem (5) can be tractably solved using the
Sinkhorn-Knopp algorithm (Cuturi, 2013) and we
detail the optimization process in Appendix A.

3.5 Robust Representation Learning
Directly using generated pseudo-labels for repre-
sentational learning is risky due to significant noise
in early-stage pseudo-labeling. Consequently, we
categorize pseudo-labels as clean or noisy based on
their distribution and quality, applying contrastive
loss to achieve cluster-friendly representations.
Noise Regularization We initially introduce a
distribution-aware regularization (DR) to align the
sample selection ratio with the class prior distribu-
tion, effectively mitigating selection bias in i-NID
setup. This regularization combines small-loss in-
stances with class distributions, ensuring inclusive
representation of all classes, particularly Tail cat-
egories, during training. Specifically, the final set
of selected samples S′ is represented as follows:

S′ =
K⋃

j=1

s′j (6)

where K is total classes, s′j is the set of samples
selected from the j-th category slice sj , defined as:

s′j = {h | (h ∈ sj) ∧ (sort(l(h)) ≤ kj)} (7)

where l(h) is the instance-level loss of h, ρ is
threshold hyper-parameter, rj is the class distri-
bution, kj = min(|sj | , ⌈Nρrj⌉).

In addition, to select high-confidence pseudo-
labels that closely align with the predicted labels,
we propose a quality-aware regularization (QR).
Specifically, we calculate confidence scores for
each pseudo-label and then select the clean sam-
ples, denoted as h, whose confidence scores exceed
a certain threshold τg:

A′ = {h | (h ∈ Ua) ∧ (max (p) > τg)} (8)
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where p is the probability vector for h and τg ∈
[0, 1] is a confidence threshold hyper-parameter.
Then the overall pseudo-labels Ua can filter out the
clean pseudo-labels Uclean as follows:

Uclean =
{
h |

(
h ∈ S′) ∨

(
h ∈ A′)} (9)

Contrastive Clustering Following the extraction
of clean pseudo-labels, we extend the traditional
contrastive loss (Khosla et al., 2020) to utilize la-
bel information, forming positive pairs from same-
class samples within Uclean. Additionally, to en-
hance the model’s emphasis on clean samples, we
introduce a method for encoding soft positive corre-
lation among pseudo-positive pairs, enabling adap-
tive contribution. Specifically, for an intent sample
xi, we first acquire its L2-normalized embedding
zi. By multiplying the confidence scores q of two
samples, we obtain an adaptive weight wij = qi ·qj .
The class-wise contrastive loss (CWCL) is then de-
fined as follows:

Lc(i) =
∑

p∈P (i)

wip · log exp (zi · zp/τ)∑
j 1i ̸=j exp

(
zi · zj/τ

)

P (i) = {p | (p ∈ Uclean) ∧ (ci = cp)}
(10)

where P (i) represents the indices of instances shar-
ing the same label as xi, and τ is a hyper-parameter.
Fundamentally, CWCL loss brings intents of the
same class closer together while distancing clusters
of different classes, effectively creating a cluster-
ing effect. To enhance the generalization of in-
tent representation, we incorporate instance-wise
contrastive learning (Chen et al., 2020). The aug-
mented views of instances in Ua are used as posi-
tive examples. The instance-wise contrastive loss
(IWCL) is defined as follows:

Li(i) = − log
exp (zi · z̄i/τ)∑

j 1i̸=j exp
(
zi · zj/τ

) (11)

where zi, z̄i regard an anchor and its augmented
sample, respectively, and z̄i denotes the random
token replacement augmented view of zi.

Joint Training To mitigate the risk of catas-
trophic forgetting of knowledge, we incorporate
cross-entropy loss on Uclean into the training pro-
cess. Overall, the optimization of ImbaNID is to
minimize the combined training objective:

Lall = ω · (
∑

i∈N

1

1 + |P (i)| (Lc(i)+Li(i)))+(1−ω) ·Lce

(12)

where ω is a hyper-parameter and | · | is the cardi-
nality computation. When xi is a noisy example,
Lc(i) = 0 and |P (i)| = 0. During inference, we
only utilize the cluster-level head and compute the
argmax to get the cluster results.

4 Experiments

4.1 Experimental Setup

Baseline Methods We compare our method
with various baselines and state-of-the-art meth-
ods, including DeepAligned (Zhang et al., 2021a),
GCD (Vaze et al., 2022), CLNN (Zhang et al.,
2022), DPN (An et al., 2023), LatentEM (Zhou
et al., 2023), and USNID (Zhang et al., 2023b).
Please see Appendix C for more comprehensive
comparison and implementation details.

Evaluation Metrics We adopt three metrics for
evaluating clustering results: Normalized Mutual
Information (NMI), Adjusted Rand Index (ARI), and
clustering Accuracy (ACC) based on the Hungar-
ian algorithm. Furthermore, to more easily as-
sess the impact of long tail distribution on perfor-
mance, we divide Yk and Yn into three distinct
groups {Head, Medium, Tail} with the proportions
|Head| : |Medium| : |Tail| = 3 : 4 : 3.

Implementation Details To ensure a fair compar-
ison for ImbaNID and all baselines, we adopt the
pre-trained 12-layer bert-uncased BERT model3

(Devlin et al., 2019) as the backbone encoder in all
experiments and only fine-tune the last transformer
layer parameters to expedite the training process
(Zhang et al., 2021a). We adopt the AdamW op-
timizer with the weight decay of 0.01 and gradi-
ent clipping of 1.0 for parameter updating. For
CLNN (Zhang et al., 2022), the external dataset
is not used as in other baselines, the parameter of
top-k nearest neighbors is set to {100, 50, 500}
for CLINC, BANKING, and StackOverflow, re-
spectively, as utilized in Zhang et al. (2022). For
all experiments, we set the batch size as 512 and
the temperature scale as τ = 0.07 in Eq. (10) and
Eq. (11). We set the parameter ρ = 0.7 in Eq. (7)
and the confidence threshold τg = 0.9 in Eq. (8).
We adopt the data augmentation of random token
replacement as Zhang et al. (2022). All experi-
ments are conducted on 4 Tesla V100 GPUs and
averaged over 3 runs.

3https://huggingface.co/bert-base-uncased
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Methods

CLINC150-LT

γ = 1 γ = 3 γ = 5 γ = 10

NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC

GCD 91.13 67.44 77.50 87.61 59.71 73.07 84.18 53.04 67.96 80.21 47.64 61.91
DeepAligned 93.89 79.75 86.49 92.29 73.79 81.78 90.93 70.19 79.02 88.43 62.47 71.47

CLNN 95.45 84.30 89.46 93.52 78.02 85.42 92.54 73.05 79.38 89.52 63.92 72.00
DPN 95.11 86.72 89.06 94.84 79.98 85.64 94.51 79.32 84.49 92.43 70.62 77.51

LatentEM 95.01 83.00 88.99 93.74 78.16 84.62 93.39 77.23 83.78 92.01 72.77 80.22
USNID 96.55 88.43 92.18 94.67 80.30 85.33 94.06 77.60 82.49 91.62 68.61 74.40

ImbaNID 97.26 91.78 95.64 95.60 85.36 90.44 94.65 81.90 88.04 93.40 76.21 82.40

Methods

BANKING77-LT

γ = 1 γ = 3 γ = 5 γ = 10

NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC

GCD 77.86 46.87 58.95 71.92 42.35 56.98 69.16 37.93 53.41 66.89 33.38 46.92
DeepAligned 79.39 53.09 64.63 78.93 51.65 63.64 77.99 48.56 60.06 75.01 44.11 54.03

CLNN 86.19 66.98 77.22 85.64 65.34 75.75 82.95 58.87 70.65 79.99 52.04 62.63
DPN 82.58 61.21 72.96 84.43 61.36 72.27 80.88 49.75 61.69 77.17 43.41 57.95

LatentEM 84.02 62.92 74.03 83.37 61.23 73.08 81.38 56.78 69.51 80.55 55.65 65.05
USNID 87.53 69.88 79.92 86.62 67.01 75.03 83.59 60.56 70.06 80.49 54.26 63.15

ImbaNID 87.66 70.13 81.14 86.79 67.35 76.72 83.60 61.18 72.89 81.08 55.80 66.59

Methods

StackOverflow20-LT

γ = 1 γ = 3 γ = 5 γ = 10

NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC

GCD 62.07 45.11 66.81 61.86 40.59 65.30 57.84 36.15 59.10 48.04 27.55 48.60
DeepAligned 76.47 62.52 80.26 75.27 62.73 77.10 75.47 64.19 78.50 73.47 61.82 73.80

CLNN 77.12 69.36 82.90 78.78 68.98 84.30 77.67 65.81 76.70 75.29 60.46 76.60
DPN 61.13 52.59 48.09 79.64 69.22 85.00 78.91 51.81 81.00 76.56 63.15 78.30

LatentEM 77.32 65.70 80.50 75.54 63.04 77.40 77.42 65.72 79.20 77.07 65.20 78.17
USNID 81.47 76.08 86.43 81.99 74.64 86.90 81.34 72.28 83.00 78.09 66.24 78.90

ImbaNID 83.52 77.06 88.30 82.12 75.09 87.40 81.42 73.09 86.50 79.78 71.15 82.60

Table 2: The main results on three datasets under various imbalance ratios γ (γ = 1 is the balanced NID setting).
We set the known class ratio |Yk|/|Yk ∩ Yn| to 0.75, and the labeled ratio of known intent classes to 0.1 to conduct
experiments. Results are averaged over three random run (p-value < 0.01 under t-test). We bold the best result.

4.2 Main Results

ImbaNID achieves SOTA results in both bal-
anced and imbalanced settings. In Table 2, we
present a comprehensive comparison of ImbaNID
with prior start-of-the-art baselines in both bal-
anced and multiple imbalanced settings. We ob-
serve that ImbaNID significantly outperforms prior
rivals by a notable margin of 3.9% under various
settings of imbalance ratio. Specifically, on the
broad cross-domain CLINC150-LT dataset, Im-
baNID beats the previous state-of-the-art with an
increase of 3.5% in ACC, 0.7% in NMI, and 3.9% in
ARI on average. On the StackOverflow20-LT with
fewer categories, ImbaNID demonstrates its effec-
tiveness with significant improvements of 2.6% in
ACC, 0.6% in NMI, and 2.4% in ARI on average, con-
sistently delivering substantial performance gains
across each imbalanced subset. When applied
to the specific single-domain BANKING77-LT
datasets, ImbaNID reliably achieves significant
performance improvements, underscoring its ef-
fectiveness in narrow-domain scenarios with indis-

tinguishable intents. These results show the con-
ventional NID models with naive pseudo-labeling
and representation learning methods encounter a
great challenge in handling the i-NID task. Our
method efficiently produces accurate pseudo-labels
under imbalanced conditions by employing soft
constraints and utilizes these pseudo-labels to con-
struct cluster-friendly representations.

Effectiveness on Long-tailed Distribution We
also provide a detailed analysis of the results for the
Head, Medium, and Tail classes, offering a more
comprehensive understanding of our method’s per-
formance across three i-NID datasets. Fig. 4
presents the comparative accuracy among various
groups under the condition γ = 3. It is noteworthy
that in Tail classes, the gaps between ImbaNID
and the best baseline are 4.2%, 3.5% and 3.7%
across three datasets. In contrast, most baselines
exhibit degenerated performance, particularly on
CLINC150-LT and BANKING77-LT. Moreover,
ImbaNID retains a competitive performance on
Head classes. These results highlight the effective-
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Figure 4: Head, Medium, and Tail comparison on the ImbaNID-Bench datasets.

Methods
CLINC150-LT BANKING77-LT StackOverflow20-LT

Head Medium Tail Head Medium Tail Head Medium Tail

ImbaNID 82.52 90.67 71.26 68.26 66.05 65.87 90.67 87.25 81.67

① w/ COT 72.74 87.44 58.67 62.72 63.11 48.70 86.63 85.75 79.67
② w/ EOT 81.41 83.00 65.33 66.59 65.40 57.61 90.00 86.11 81.60
③ w/ MOT 69.33 57.67 30.52 62.07 57.34 26.20 88.97 66.00 64.33

④ w/o DR 80.74 88.57 71.21 67.17 65.08 49.67 88.33 86.75 81.33
⑤ w/o QR 82.50 88.94 70.52 63.91 65.42 59.02 87.67 86.00 81.57
⑥ w/o DR and QR 81.19 87.19 71.05 67.50 64.88 50.00 88.33 86.51 80.33

⑦ w/o Adaptive Weight 82.37 90.22 71.11 68.18 65.81 64.57 90.30 87.00 79.67
⑧ w/o CWCL 81.93 90.11 70.81 67.83 66.03 58.70 90.33 85.22 78.00
⑨ w/o IWCL 81.78 86.44 71.23 65.54 64.22 65.20 90.51 76.75 80.33

Table 3: Experimental results of the ablation study on the ImbaNID-Bench datasets at imbalance ratios γ = 10.

ness of ImbaNID in i-NID setup, making it particu-
larly advantageous for Head and Tail classes.

4.3 Effect of Pseudo-label Assignment

To evaluate ROT in reliable pseudo-labels gener-
ation of the i-NID setup, we compare three OT-
based optimizations for pseudo-labels generation,
including COT (Caron et al., 2020a), EOT (Asano
et al., 2020), and MOT (Li et al.). (1) COT denotes
the removal of the KL term from our optimization
problem (5). (2) EOT signifies the replacement
of the KL term in our optimization problem (5)
with a typical entropy regularization KL(β∥β̂). (3)
MOT operates without any assumption on the class
distribution β, allowing β to be updated by the
model prediction using a moving-average mecha-
nism. Specifically, β = µβ̂ + (1 − µ)v, where
µ is the moving-average parameter, β̂ is the last
updated β and vj =

1
N

∑N
i=1 1 (j = argmaxPi).

From Table 3, we can observe that ImbaNID out-
performs the model ①, which indicates the ne-
cessity of imposing constraints on the class
distribution. Compared to the model ②, Im-
baNID achieves the most gains for Head and
Tail classes, indicating it better constrains the
class distribution towards uniformity. Finally,
when compared to the above strategies, the per-
formance of the model ② in the Tail classes

is notably inferior. The results stem from inad-
equate constraints on the category distribution,
leading to a decline in cluster quality. The
comparisons underscore that ImbaNID demon-
strates strong proficiency in generating accu-
rate pseudo-labels within the i-NID setup.

4.4 Effect of Noise Regularization

To investigate the effectiveness of noise regu-
larization (NR) in filtering noisy pseudo-labels,
we conduct ablation experiments to analyze
its contributions. In Table 3, eliminating DR
diminishes intent discovery performance, par-
ticularly in Tail classes. This occurs because
a higher proportion of Head classes in pseudo-
labels inevitably results in model bias. Fur-
thermore, removing QR results in decreased
performance, primarily because fewer exam-
ples are initially selected due to the classifier’s
low confidence, leading to degenerate solu-
tions. Notably, considering all pseudo-labels
as clean leads to significant performance drops
across all datasets, indicating that numerous
noisy pseudo-labels may cause model overfit-
ting and reduced generalization. The results
indicate that NR is indispensable to ImbaNID
in handling i-NID setup.
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(a) USNID (b) ImbaNID

Figure 5: t-SNE visualization of embeddings on the
StackOverflow20-LT dataset. The known class ratio
|Yk|/|Yk ∩ Yn| is 0.75, and the labeled ratio is 0.1.

4.5 Effect of Contrastive Clustering

To assess the impact of contrastive cluster-
ing in representation learning, we carry out
ablation experiments to analyze its individ-
ual effects in Table 3. When the adaptive
weight strategy is removed from Eq. (10), the
model disregards probability distribution infor-
mation and becomes more susceptible to noisy
pseudo-labels. Then, removing CWCL or IWCL
from Eq. (12) results in performance degrada-
tion, suggesting that class-wise and instance-
wise contrastive learning respectively aid in de-
veloping compact cluster representations and
enhancing representation generalization. In
Fig. 5, we use t-SNE to illustrate embeddings
learned on the StackOverflow20-LT dataset,
where ImbaNID visibly forms more distinct
clusters than comparative methods, underscor-
ing the effectiveness of our model.

4.6 Effect of Known Class Ratio

To investigate the impact of varying numbers
of known intents, we vary the ratio of known
intents ranging in {25%, 50%, 75%} during
training. Fig. 6 illustrates the comparative
accuracy among various ratio of known in-
tents under the condition γ = 3. We observe
that even when only a few known intents are
available, our method still performs better than
other strong baselines. This demonstrates its
strength in learning from labeled data and dis-
covering inherent patterns from unlabeled data.
Meanwhile, we note a rise in performance as
the volume of labeled data incorporated in-
creases, aligning with anticipated outcomes.
In short, our proposed method exhibits strong
robustness and generalization capability.
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Figure 6: Impact of varying the known class ratio on
two datasets. The x-axis represents different models and
the y-axis denotes their corresponding accuracy values.
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Figure 7: Effects of ω on ImbaNID-Bench.

4.7 Effect of Exploration and Utilization

The weight of the multitask learning ω in
Eq. 12 adjusts the contribution of two objec-
tives. Intuitively, the first term aims to explore
cluster-friendly intent representations across
all samples, while the second term focuses on
mitigating the risk of catastrophic forgetting,
ensuring the effective utilization of knowledge
derived from clean samples. We vary the value
of ω and conduct experiments on ImbaNID-
Bench (γ = 10) to explore the effect of ω,
which also reflects the inference of exploration
and utilization. In Fig. 7, only utilizing clean
samples (ω = 0.0) or only exploring(ω = 1.0)
the intent representation will not achieve the
best results. Interestingly, the effect of ω
shows a similar trend (increase first and then
decrease) on all metrics and datasets, which in-
dicates that we can adjust the value of ω to give
full play to the role of both so that the model
can make better use of known knowledge to
discover intents accurately.

4.8 Comparison of Time Complexity

The majority of existing methods (Zhang et al.,
2022; An et al., 2023; Zhou et al., 2023) are
mostly based on k-means for pseudo-labeling,
while we propose a novel ROT approach for
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pseudo-labeling. We discuss the compari-
son and selection of time complexity between
pseudo-labeling methods based on k-means
and ROT. Specifically, the k-means method
is a clustering-based approach that iteratively
computes distances between data points and
assigns them to k cluster centers. Its time com-
plexity, typically around O(nkt), depends on
the dataset size (n), the number of cluster cen-
ters (k), and the convergence speed (t). While
the k-means method has lower time complex-
ity, it is sensitive to the selection of initial
cluster centers and convergence, leading to
potentially unstable outcomes. On the other
hand, ROT involves iteratively optimizing the
distance or similarity between two data distri-
butions to find the best mapping. Although
the time complexity of ROT methods, such as
those based on the Sinkhorn algorithm, is typi-
cally polynomial (e.g., O(n2m) where n is the
number of source domain data points and m is
the number of target domain data points), they
generally provide high-quality pseudo-labels.

5 Related Work

5.1 New Intent Discovery

New Intent Discovery (NID) is similar to gen-
eralized category discovery (GCD) (Vaze et al.,
2022), which originates from computer vision
and aims to discover novel intents by utilizing
the prior knowledge of known intents. Lin et al.
(2020) conducts pair-wise similarity predic-
tion to discover novel intents, and Zhang et al.
(2021a) uses aligned pseudo-labels to help the
model learn discriminative intent representa-
tions. Recent works further advance NID by
incorporating contrastive learning (Shen et al.,
2021; Kumar et al., 2022; Zhang et al., 2022,
2023b), knowledge transfer (An et al., 2023),
probabilistic frameworks (Zhou et al., 2023),
pseudo-label learning (Zhang et al., 2024a)
or prototype attracting and dispersing (Zhang
et al., 2024b) to capture cluster-friendly in-
tent representation. However, those methods
operate under the unrealistic assumption that
the distribution of both known and new intent
classes is uniform, overlooking the long-tailed
distributions frequently encountered in real-
world scenarios. In this work, we explore the
imbalanced NID scenario.

5.2 Optimal Transport

Optimal Transport (OT) aims to find the most
efficient transportation plan while adhering to
marginal distribution constraints. It has been
used in a broad spectrum of various tasks,
including generative model (Gulrajani et al.,
2017), semi-supervised learning (Taherkhani
et al., 2020; Tai et al., 2021), clustering (Caron
et al., 2020a; Zhang et al., 2023a) and new in-
tent discovery (Zhang et al., 2024a). However,
these methods typically impose an equality
constraint when solving the OT problem. In
contrast, we explore generating pseudo-labels
by solving a relaxed OT problem. This ap-
proach encourages a uniform class distribution
and addresses class degeneration in long-tailed

5.3 Contrastive Learning

Contrastive Learning (CL) has been widely
adopted to generate discriminative sentence
representations for various scenarios (Chen
et al., 2020; Khosla et al., 2020; Li et al., 2021),
such as out-of-domain detection (Zhang et al.,
2023c,d), machine translation (Yang et al.,
2020, 2021a,b, 2022b, 2024), and named en-
tity recognition (Yang et al., 2022a; Mo et al.,
2024). In essence, the primary intuition be-
hind CL is to pull together positive pairs in
the feature space while pushing away negative
pairs. Motivated by its superior performance,
contrastive learning has also been leveraged
for intent recognition where it is used for NID.
In this work, we design both class-wise and
instance-wise contrastive learning objectives
to learn cluster-friendly intent representations.

6 Conclusion

In this work, we first propose the i-NID task to
identify known and infer novel intents within
these long-tailed distributions. Then, we de-
velop an effective ImbaNID baseline method
for the i-NID task, where pseudo-label gen-
eration and representation learning mutually
iterate to achieve cluster-friendly representa-
tions. Comprehensive experimental results
on our ImbaNID-Bench benchmark datasets
demonstrate the effectiveness of our ImbaNID
method for i-NID. We hope our work will draw
more attention from the community toward a
broader view of tackling the i-NID problem.
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Limitations

To better enlighten the follow-up research, we
conclude the limitations of our method as fol-
lows: (1) Enhancing interpretability. Our Im-
baNID automatically assigns labels to unla-
beled utterances in real-world long-tail data
distributions, yet it does not generate inter-
pretable intent names for each cluster. (2) In-
tegration with LLMs. Large-scale language
models (LLMs) have shown an impressive abil-
ity in a variety of NLP tasks, we plan to ex-
plore the integration of ImbaNID with LLMs
to boost performance in practical scenarios.
(3) Reducing time complexity. The time com-
plexity of relaxed optimal transport (ROT) is
O (n2), we plan to further develop a fast matrix
scaling algorithm to reduce the complexity.
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A ROT

In this section, we provide a comprehensive
optimization process for the ROT problem (5),
the ROT objective is:

min
Q,β

⟨Q,− logP⟩+ λ1H(Q) + λ2DKL(
1

K
1,β)

s.t. Q1 = α,QT1 = β,Q ≥ 0,βT1 = 1

(13)

where λ1 and λ2 are hyper-parameters, and
DKL(A,B) denotes the Kullback-Leibler Di-
vergence. We utilize the Lagrangian multiplier
algorithm for optimization:

L(Q,β,f , g, h) = ⟨Q,− logP⟩+ λ1H(Q)

+ λ2DKL(
1

K
1,β)− fT (Q1−α)

− gT (QT1− β)− h(βT1− 1)

(14)
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Dataset Classes #Training #Validation #Testing Vocabulary Length (Max / Avg)

CLINC 150 18000 2250 2250 7283 28 / 8.32
BANKING 77 9003 1000 3080 5028 79 / 11.91
StackOverflow 20 12000 2000 1000 17182 41 / 9.18

Table 4: Statistics of original datasets. # denotes the total number of utterances.
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Figure 8: Number of training samples per class in artificially created long-tailed BANKING77-LT and
StackOverflow20-LT datasets with different imbalance factors.

ImbaNID-Bench (γ = 3) |Yk| |Yn| |Dl| |Du| |Dt|
CLINC150-LT 113 37 868 9995 2250
BANKING77-LT 58 19 607 7163 3080
StackOverflow20-LT 15 5 830 10140 1000

ImbaNID-Bench (γ = 5) |Yk| |Yn| |Dl| |Du| |Dt|
CLINC150-LT 113 37 719 8164 2250
BANKING77-LT 58 19 487 5924 3080
StackOverflow20-LT 15 5 686 8350 1000

Table 5: Statistics of the ImbaNID-Bench datasets when
γ = 3 and γ = 5. |Yk|, |Yn|, |Dl|, |Du| and |Dt| repre-
sent the number of known categories, novel categories,
labeled data, unlabeled data, and testing data.

where f , g, and h are Lagrangian multipliers.
Differentiating Eq. (14) yields the following
result:

∂L

∂Qij
= λ1log(Qij)− log(Pij)− fi − gj (15)

∂L

∂fi
= −(

K∑

j

Qij) + αi (16)

∂L

∂gj
= −(

N∑

i

Qij) + βj (17)

∂L

∂βj
= − λ2

Kβj
+ gj − h (18)

∂L

∂h
= −(

K∑

j

βj) + 1 (19)

Initially, we fix β and h, and then update Q,
f , and g. By setting ∂L

∂Qij
, ∂L
∂fi

, and ∂L
∂gj

to zero,
we obtain the following results:

Qij = exp(
fi + log(Pij) + gj

λ1
)

= exp(
fi
λ1

) · exp( log(Pij)

λ1
) · exp( gj

λ1
)

(20)

K∑

j

Qij = αi,

N∑

i

Qij = βj (21)

Based on Eq. (20), we derive the following:

Q = diag(exp(
f

λ1
)) exp(

logP

λ1
)diag(exp(

g

λ1
)) (22)

Considering the constraints (21) and the con-
ditions βT1 = αT1 = 1, we solve Eq. (22)
to determine the values of Q, f , and g using
the Sinkhorn algorithm (Cuturi, 2013). Sub-
sequently, with f , g, and Q fixed, we update
β and h. Setting Eq. (18) to zero yields the
following solution:

βj =
λ2

K(gj − h)
(23)

Take Eq. (23) into the Eq. (19) and let Eq. (19)
equal to 0, we can obtain:

(

K∑

j

βj(h))− 1 = 0 (24)

3961



Algorithm 1 The optimization of ROT
Input: The cost matrix: − logP.
Output:
The transport matrix: Q,
The class distribution: β.
Procedure:

1: Initialize β as uniform distribution;
2: for i = 1 to T do
3: Fix β and h, calculate Q, f and g with

Sinkhorn algorithm.
4: Fix Q, f and g, update β and h with

Eq. (23) and (24).
5: end for
6: Return Q and β.

We obtain h from Eq.(24) using the bisection
method and subsequently determine the cor-
responding β. In the final step, we iteratively
update f , g, Q, and β, h. The iterative opti-
mization process for ROT is outlined in Algo-
rithm1.

B Statistics of Datasets

We present detailed statistics of the
CLINC (Larson et al., 2019), BANK-
ING (Casanueva et al., 2020) and StackOver-
flow (Xu et al., 2015) datasets in Table 4.
In addition, we display the number of sam-
ples per class for BANKING77-LT and
StackOverflow20-LT under various imbalance
factors, as shown in Fig. 8. We also provide
dataset statistics for the ImbaNID-Bench
datasets with imbalance factors of 3 and 5, as
shown in Table 5.

C Comparison Methods

In this work, we compare the proposed Im-
baNID method against several representative
baselines including:
GCD (Vaze et al., 2022) introduces a combi-
nation of supervised and self-supervised con-
trastive learning to learn distinctive representa-
tions, which are then clustered using k-means.
DeepAligned (Zhang et al., 2021a) is an im-
proved DeepClustering (Caron et al., 2018)
that uses an alignment strategy to alleviate the
label inconsistency problem.
MTP-CLNN (Zhang et al., 2022) is a method
that applies multi-task pre-training and nearest

neighbors contrastive learning for NID.
DPN (An et al., 2023) proposes a decoupled
prototypical network that, by framing a bi-
partite matching problem for category proto-
types, separates known and novel categories to
meet their distinct training objectives and trans-
fers category-specific knowledge for capturing
high-level semantics.
LatentEM (Zhou et al., 2023) introduces a
principled probabilistic framework optimized
with the EM algorithm. In the E-step, it assigns
pseudo-labels, and in the M-step, it learns
cluster-friendly representations and updates pa-
rameters through contrastive learning.
USNID (Zhang et al., 2023b) is a two-stage
framework for both unsupervised and semi-
supervised NID with an efficient centroid-
guided clustering mechanism.

D Implementation Details

To ensure a fair comparison for ImbaNID and
all baselines, we consistently adopt the pre-
trained 12-layer bert-uncased BERT model4

(Devlin et al., 2019) as the backbone encoder
in all experiments and only fine-tune the last
transformer layer parameters to expedite the
training process as suggested in (Zhang et al.,
2021a). We adopt the AdamW optimizer with
0.01 weight decay and 1.0 gradient clipping
for parameter update. During pre-training, we
set the learning rate to 5e-5 and adopt the early
stopping strategy with a patience of 20 epochs.
For CLNN (Zhang et al., 2022), the external
dataset is not used as in other baselines, the
parameter of top-k nearest neighbors is set
to {100, 50, 500} for CLINC, BANKING,
and StackOverflow, respectively, as utilized
in Zhang et al. (2022). For all experiments,
we set the batch size as 512 and the tempera-
ture scale as τ = 0.1 in Eq. (10) and Eq. (11).
We set the parameter ρ = 0.65 in Eq. (7), the
confidence threshold τg = 0.9 in Eq. (8). We
adopt the data augmentation of random token
replacement as Zhang et al. (2022). All exper-
iments are conducted on 4 Tesla V100 GPUs
and averaged over 3 runs. we split the datasets
into train, valid, and test sets, and randomly
select 25% of categories as unknown and only

4https://huggingface.co/bert-base-uncased
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Figure 9: Effects of λ2 on ImbaNID-Bench.

10% of training data as labeled. The number
of intent categories is set as ground truth.

E Estimate the Number of Intents (K)

In practical dialogue systems, new intents
emerge constantly and we cannot know the ex-
act number of the intent clusters. In this paper,
following the work of (Zhang et al., 2021b), we
take the full usage of the well-initialized intent
features to automatically estimate the intent
cluster number K. Specifically, we first assign
a big K ′ as the initial intent cluster number.
Then we directly use the pre-trained model to
extract the feature representations for the train-
ing data and perform the K-means algorithm to
group these feature representations into differ-
ent clusters. From these clusters, we can dis-
tinguish the dense and boundary-clear clusters
as the real intent clusters, while the remaining
low-size clusters are filtered out. The filtering
function can be formulated as follows:

K =

K′∑

i=1

δ (|Ti| ≥ t) (25)

where |Ti| is the size the ith grouped cluster, t
is the threshold of filtering. δ(·) is the indicator
function, whose output is 1 if the condition is
satisfied.

F Hyper-Parameter Analyses

To investigate the sensitiveness of the hyper-
parameters in Eq. 5, we first referred to the
experience from previous studies (Asano et al.,
2020; Caron et al., 2020b) and identified λ1 =
0.05 on the all datasets. Then we examine
the impact of λ2 on model performance by
varying the value of λ2 to observe the perfor-
mance changes. The results are reported in
Fig. 9. Specifically, Fig. 9(a) shows the impact
of λ2 variation on the performance of balanced

datasets, while Fig. 9(b) demonstrates the ef-
fect of λ2 on the performance of imbalanced
datasets. Empirically, we choose λ2 = 7 on
the balanced datasets, and λ2 = 2 on the im-
balanced ImbaNID-Bench datasets.
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