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Abstract

Large language models (LLMs) have shown
great capabilities in various tasks but also ex-
hibited memorization of training data, raising
tremendous privacy and copyright concerns.
While prior works have studied memorization
during pre-training, the exploration of mem-
orization during fine-tuning is rather limited.
Compared to pre-training, fine-tuning typically
involves more sensitive data and diverse objec-
tives, thus may bring distinct privacy risks and
unique memorization behaviors. In this work,
we conduct the first comprehensive analysis to
explore language models’ (LMs) memorization
during fine-tuning across tasks. Our studies
with open-sourced and our own fine-tuned LMs
across various tasks indicate that memorization
presents a strong disparity among different fine-
tuning tasks. We provide an intuitive expla-
nation of this task disparity via sparse coding
theory and unveil a strong correlation between
memorization and attention score distribution.

1 Introduction
Large language models (LLMs) have demonstrated
impressive capabilities in natural language under-
standing and generation, enabling significant ad-
vances across diverse applications including read-
ing comprehension, text classification, and summa-
rization (OpenAI, 2023; Ouyang et al., 2022; Bai
et al., 2022; Touvron et al., 2023b). However, re-
cent works reveal that pre-trained langauge models
(LMs) tend to memorize and regenerate segments
of their pre-training corpus when prompted appro-
priately. For example, Carlini et al. (2021) devised
a training data extraction attack, successfully ex-
tracting hundreds of verbatim text sequences from
GPT-2’s training data. Existing works demonstrate
that various factors can affect memorization and
memorization effects grow with model scale, data
duplication, and prompt length (Lee et al., 2021;
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Kandpal et al., 2022; Carlini et al., 2022). These
findings raise privacy and confidentiality concerns,
as interactions between humans and the deployed
LMs could enable extraction of the memorized sen-
sitive training data, such as phone numbers, peo-
ple’s names, etc. As the scale of LMs and their
training data continues to expand, the privacy risks
posed by memorization become increasingly seri-
ous.

In addition to pre-training, the application of
LMs often involves fine-tuning on downstream
tasks (Touvron et al., 2023b; Chung et al., 2022;
Ouyang et al., 2022; Longpre et al., 2023), while
the memorization of fine-tuning data is rather over-
looked by existing studies. Compared to pre-
training, fine-tuning introduces two unique perspec-
tives with respect to memorization. First, fine-
tuning often utilizes domain-specific and private
data. For instance, developing a diagnostic chatbot
(Yunxiang et al., 2023) requires collecting sensi-
tive medical conversation data. Similarly, an aca-
demic LM (Beltagy et al., 2019) may be trained
on copyrighted essays for summarization or para-
phrase generation. Leakage of such fine-tuning
data can seriously violate user privacy or intellec-
tual property rights(Ren et al., 2024). Second, fine-
tuning involves more complex and diverse train-
ing goals compared to pre-training. During
pre-training, the learning objective is usually lan-
guage modeling from a massive unlabeled corpus
(e.g., next-word prediction), which is agnostic to
downstream tasks. In fine-tuning, the objective is
to learn task-specific knowledge from annotated
data, such as how to effectively capture the key
information of a long document for summarization.
The differences may induce distinct memorization
behaviors and patterns during fine-tuning. Conse-
quently, it is necessary to explore memorization for
fine-tuning. Yet, it is challenging because previ-
ous insights and findings regarding the pre-trained
models may not directly apply to fine-tuning.
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To bridge this gap, we focus on the memoriza-
tion of LMs during fine-tuning. We study a variety
of fine-tuning tasks including summarization, di-
alogue, question answering, machine translation,
and sentiment analysis. Using an automatic plagia-
rism detection pipeline (Lee et al., 2023), we ex-
amine memorization on both popular open-sourced
models and the models fine-tuned for diverse tasks.
In both cases, we consistently observe the exis-
tence of substantial memorization under certain
tasks. Moreover, we draw several new insights and
reveal potential factors that may impact the memo-
rization of fine-tuned LMs. Our key findings and
contributions are summarized as follows:
• Disparate Memorization Across Tasks. Partic-

ular tasks such as summarization and dialogue
present high memorization. In contrast, tasks like
classification, reading comprehension, and trans-
lation exhibit low memorization. This discrep-
ancy highlights the disparate cognitive demands
these tasks need from LMs.

• Task-Dependent Scaling in Fine-tuned Memo-
rization. For tasks with high memorization, the
degree of memorization escalates with the in-
crease of model size. On the other hand, for tasks
with low memorization, increasing the model size
does not significantly amplify the memorization.

• Memorization Linked to Task Information Needs.
We hypothesize that the varying degrees of mem-
orization across different tasks are linked to the
number of input features that LMs need to retain.
We further justify this based on sparse coding
models and attention patterns. Specifically, tasks
which need to understand every detail of the in-
put tends to memorize more from the data, and
the distribution of the attention score is dense
across all input-output pairs.

2 Related Work
Powered by the transformer architecture (Vaswani
et al., 2017), in recent years, LMs such as ChatGPT
(Ouyang et al., 2022), Claude (Bai et al., 2022),
Palm (Chowdhery et al., 2022), Llama (Touvron
et al., 2023b,a) and T5 (Raffel et al., 2020) have
achieved impressive performance across a wide
range of natural language processing (NLP) tasks.
These language models are pre-trained by a large
amount of data to enhance their overall proficiency.
Subsequently, people usually utilize various tech-
niques (Chung et al., 2022; Ouyang et al., 2022;
Houlsby et al., 2019; Hu et al., 2021; Li and Liang,
2021; Lester et al., 2021; Liu et al., 2021) to fine-

tune the pre-trained models, thus enabling them
to more effectively adapt to different downstream
tasks.

The memorization behavior of pre-trained LMs
has attracted increasing attention in recent years.
Carlini et al. (2021) first proposed a data extraction
attack, demonstrating that LMs tend to memorize
and regenerate segments of training data. Kandpal
et al. (2022) and Lee et al. (2021) revealed that
duplicated training data is more vulnerable to mem-
orization, and de-duplication can effectively reduce
memorization. Carlini et al. (2022) further quan-
tified memorization effects, revealing that memo-
rization grows with model scale, data duplication,
and prompt length.

There are also works providing different views
and understandings on memorization. For exam-
ple, Ippolito et al. (2022) developed an efficient
defense preventing memorizing the exact sentences
(verbatim memorization), yet showed it fails to pre-
vent leakage of training data. This shows the need
for definitions beyond verbatim memorization. To
distinguish "common" memorization from "rare"
memorization, Zhang et al. (2021) formulated a
new notion of counterfactual memorization, which
measures how predictions change if a particular
document is deleted during training. Biderman
et al. (2023) investigated predictable memorization
by extrapolating small or partially-trained LMs’ be-
havior to forecast memorization in larger models.
They further presented scaling laws of prediction
and explored ways to improve prediction reliability.

While most literature focused on memorization
during pre-training, limited work has investigated
memorization in the fine-tuning stage. Mireshghal-
lah et al. (2022) examined memorization risks
in different fine-tuning methods for large LMs.
They found that fine-tuning only the head leads
to higher memorization compared to fine-tuning
smaller adapter modules. Lee et al. (2023) stud-
ied plagiarism during fine-tuning, concluding that
the plagiarism patterns in fine-tuned LMs depend
on corpus similarity and homogeneity. However,
these studies considered fine-tuning with the same
objective as pre-training, which is different from
the the common practice of fine-tuning in various
tasks. As a result, in this paper, we focus on the
more general and realistic scenario of multifaceted
fine-tuning across diverse objectives.
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3 Preliminary
In this section, we first introduce the definition
of memorization and the detection methods used
in this paper, and then introduce our preliminary
findings on open-sourced fine-tuned LMs across
various tasks.

3.1 Definitions and Notations

Definitions of memorization in literature. In lit-
erature, there are some definitions of memorization.
For example, in Carlini et al. (2022), a straight-
forward and strict definition is that a string s is
extractable with its context p (with length k) if
the concatenation [p∥s] exists in the training set
and f(p) produces exactly the output of s, i.e.,
f(p) = s. This is defined as verbatim memoriza-
tion. In Ippolito et al. (2022), a relaxed definition
of memorization is using the Bilingual Evaluation
Understudy (BLEU) score.

However, the above two definitions only con-
sider memorizing the exact wordings of the data,
instead of memorizing the meaning of the data.
Therefore, in Lee et al. (2023), plagiarism detec-
tion tools are leveraged to to identify memoriza-
tion through comparing the machine-generated text
with the whole training set .

Definition of fine-tuned memorization. In the
fine-tuning stage, models are trained for specific
tasks like sentiment analysis, dialog, and summa-
rization. We define fine-tuning as supervised train-
ing using samples Dtrain = {(xi, yi)}ni=1, where
yi represents the target output for input xi. Since
the input texts usually contain more information
than the output in our considered tasks, we ma-
jorly discuss the potential information leakage from
the input corpus in the training set, i.e., Dinput =
{xi}ni=1.

To explore memorization, we follow the prompt-
ing approach (Carlini et al., 2022) by dividing each
xi = [pi∥si] to a length-k prefix pi, and a suffix si.
We further define the set of all prefixes in the train-
ing set as P = {pi}ni=1, and the set of all suffixes as
S = {si}ni=1. We define fine-tuned memorization
as follows:

Definition 1 (Fine-tuned memorization) Given
the fine-tuned model function f , fine-tuned memo-
rization is defined as when the model output f(pi)
contains information of any sj ∈ S, formalized by
D(f(pi), sj) = True, where D is a discriminative
function to judge the similarity between two texts.

Evaluation method. In our practice, we input
P = {pi}ni=1 to the model and utilize a local search
engine to quickly locate suspicious texts and use a
plagiarism detection tool to serve as the discrimi-
native function D. In detail, given a dataset of size
n with suffix space S, we employ the local search
engine, Elasticsearch1, to identify the top-K cor-
pus candidates Si

K = {si1, si2, . . . , siK} which are
similar to f(pi). Then we utilize the PAN2014
plagiarism detection tool2 to assess the similarity
between f(pi) and each candidate sj ∈ Si

k. This
detection tool is capable of identifying the presence
of plagiarised pairs (di, dj), where di and dj are
sub-strings from f(pi) and sj , respectively. The
main idea of this tool is to transform text into term
frequency-inverse document frequency (TF-IDF)
vectors and utilize sentence similarity measures
(cosine similarity) to identify plagiarism cases. We
say the fine-tuned model memorizes sj if the pla-
giarism is confirmed. We then count the number of
memorized cases and divide by n to get the total
memorization rate. We use n = 10000 in our ex-
periments. This memorization rate quantifies the
memorization exhibited in the model.

Moreover, the detection tool can categorize mem-
orized content into three distinct types. To provide
a detailed quantification of the memorization be-
havior, we include these categories following the
methods in prior work (Lee et al., 2023).

• Verbatim: dj is an exact replica of di.
• Paraphrase3: dj is a rephrased version of di
• Idea memorization: dj condenses di into

fewer sentences, or vice versa.
Generally, all these memorization types indicate
that the model generates information about the suf-
fix of training data x not given as input. More
details of the detection pipeline, e.g., implementa-
tion descriptions and differences among memoriza-
tion types, are included in the Appendix B. Typical
memorization cases are shown in Appendix J.

3.2 Preliminary Findings
To initially explore the memorization effects dur-
ing fine-tuning, we examine several popular open-
sourced fine-tuned models from HuggingFace that
were fine-tuned on 6 representative tasks.We at-
tach the descriptions of all models and datasets

1https://www.elastic.co/elasticsearch/
2https://pan.webis.de/clef14/pan14-web/text-

alignment.html
3Paraphrasing is further assessed using RoBERTa and

NER, classifying p < 0.5 as low-confidence and p > 0.5
as high-confidence, with both reported.
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Table 1: Memorization rate of open-sourced LLMs fine-tuned on various tasks

Task Dataset
Source
Model

Total
Mem Rate

Verbatim Idea
Paraphrase
(p > 0.5)

Paraphrase
(p < 0.5)

Summarization CNN/Daily Mail Bart_Large 20.7% 1.3% 0% 9.8% 9.6%
Medical Dialog ChatDoctor BioGPT 19.6% 0.1% 3.5% 7.8% 8.2%
Extractive QA SQuAD_v2 T5_large 0.1% 0% 0% 0% 0.1%
Abstractive QA Race T5_large 0.3% 0% 0% 0.2% 0.1%

Translation WMT_19 FSMT 0% 0% 0% 0% 0%
Sentiment Classification IMDB T5-base 0% 0% 0% 0% 0%

used in Appendix H. These tasks include summa-
rization, medical dialog, question and answering
(QA), translation, and sentiment analysis. The pre-
liminary results in Table 1 suggest that substan-
tial memorization of the fine-tuning data occurs
in fine-tuning. For summarization and medical
dialog models, we identified total memorization
rate of 20.7% and 19.6%, respectively. These high
rates could imply potential privacy violations or
copyright issues. Furthermore, the level of mem-
orization varies across tasks. Models fine-tuned
for summarization and medical dialog exhibit high
memorization, while models for remaining tasks
show much lower memorization. These observa-
tions motivate further in-depth analysis to validate
the observed task-specific memorization behavior
in Section 4 and the possible scaling effect in Sec-
tion 5 to fine-tune models by ourselves. Further-
more, in Section 6, we provide an in-depth analysis
and understanding of the potential reason behind
the observed disparate fine-tuned memorization
across tasks.

4 Disparate Memorization Across Tasks
Our preliminary study demonstrates that the mem-
orization of fine-tuned models varies on different
fine-tuning tasks. However, the causes of such dif-
ference are still unclear, which could be fine-tuning
datasets or model architectures. To clarify this,
in Section 4.1, we control the impact of different
variables to more precisely explore the relation be-
tween fine-tuning task and the memorization effect.
In Section 4.2, we further examine the impact of de-
coding methods and prefix length. Note that in our
fine-tuning process, we ensure that our fine-tuned
models have satisfactory performance on down-
stream tasks, see Appendix I.

4.1 Fine-tuned with Fixed Pre-trained LM
and Dataset

Fine-tuned on T5-base LM. To eliminate the
potential impact from the pre-trained LM, we
conduct experiments to fine-tune the same pre-

trained T5-base model4 for different fine-tuning
tasks. We treat all the tasks as generative tasks
(like instruction-tuning) and do not add any addi-
tional modules (e.g., MLP). Details of the datasets
and memorization results are presented in Table 25.
In case a part of the fine-tuning data appears in the
pre-training data, we report the memorization rate
of the pre-trained model6 and present the change in
the memorization rate before and after fine-tuning.
Table 2 clearly shows a substantial total memoriza-
tion rate and memorization gain for summariza-
tion tasks (22.3%, ↑8.35%) and medical dialogue
(8.27%, ↑6.67%). Meanwhile, the memorization
and the gain in fine-tuning are much lower for read-
ing comprehension (0.15%, ↑0.07%), translation
(0.0%, ↑0.0%), and sentiment classification (0.8%,
↑0.02%). These observations are consistent with
our preliminary findings on open-sourced models
and suggest that fine-tuned memorization with the
same pre-trained LM architecture still demonstrates
a strong task disparity.

Fine-tuned on different tasks with the same
dataset. In this experiment, we investigate the
memorization of different tasks fine-tuned on the
same pre-trained LM with the same dataset. Specif-
ically, we fine-tune the T5-base model on Rent-
TheRunway dataset (Misra et al., 2018a), which
contains self-reported clothing fit feedback from
customers along with additional metadata. Each
product has multiple attributes, including customer
reviews, ratings, review summaries, review dates,
etc. It allows us to fine-tune the same pre-trained
model (i.e., T5-base), with the identical inputs (i.e.,

4We also fine-tuned GPT-Neo models and found consistent
findings with T5, we report the results in Appendix C and
Table 9. Besides, memorization results on other tasks and
datasets and memorization behavior of multi-task fine-tuned
models are reported in Appendix D and E

5We provide the statistical significance testing of memo-
rization rate in Appendix G.

6In the context of pre-trained models, we continue to uti-
lize the prefixes from the fine-tuning dataset for evaluating
memorization. This process is detailed in Appendix B.1.
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Table 2: Memorization rate of T5-base fine-tuned on various tasks

Task Dataset Model
Total

Mem Rate
Verbatim Idea

Paraphrase
(P>0.5)

Paraphrase
(P<0.5)

Summarization Multi-news
T5-base 13.98% 3.58% 0.66% 4.28% 5.46%

T5-finetuned 22.33% 4.23% 0.65% 6.23% 11.22%
Difference ↑8.35% ↑0.65% ↓0.01% ↑1.95% ↑5.76%

Dialog chatdoctor
T5-base 1.60% 0.03% 1.04% 0.11% 0.42%

T5-finetuned 8.27% 0.02% 1.41% 1.75% 5.09%
Difference ↑6.67% ↓0.01% ↑0.37% ↑1.64% ↑4.67%

Sentiment
Classification

imdb
T5-base 0.78% 0.05% 0.37% 0.16% 0.20%

T5-finetuned 0.80% 0.04% 0.30% 0.17% 0.29%
Difference ↑0.02% ↓0.01% ↓0.07% ↑0.01% ↑0.09%

Reading
Comprehension

Squad_v2
T5-base 0.08% 0.02% 0.00% 0.01% 0.05%

T5-finetuned 0.15% 0.04% 0.00% 0.05% 0.06%
Difference ↑0.07% ↑0.02% - ↑0.04% ↑0.01%

Translation wmt
T5-base 0.00% 0.00% 0.00% 0.00% 0.00%

T5-finetuned 0.00% 0.00% 0.00% 0.00% 0.00%
Difference - - - - -

the customer reviews), for different task objectives
(i.e., review summarization and sentiment classifi-
cation). Note that we map the ratings into positive
and negative labels for fine-tuning sentiment classi-
fication model. The memorization performance of
these two models is shown in Figure 1. The results
demonstrate that the summarization model exhibits
higher memorization compared to the classifica-
tion model, which validates that the task objective
impacts the memorization of fine-tuned models.
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Figure 1: Memorization of T5-base fine-tuned on Rent-
TheRunway.

4.2 Further Probing
The memorization behavior of pre-trained models
has been shown to be influenced by factors such
as generation sampling methods and input prefix
lengths (Carlini et al., 2022; Lee et al., 2023). In
this subsection, we extend our investigation to ex-
plore how these factors affect memorization in fine-
tuned models. We also conduct an ablation study
on the impact of training epochs on memorization
and report the results in Appendix F.1 and Table 5.

Input prefix length. We vary the length of the
prefix of inputs and report the main results in Fig-
ure 2a. We find that the length of prefix tokens in-
fluences memorization differently across tasks. In
summarization and dialogue tasks, the total memo-
rization rate tends to increase with longer prefixes,
aligning with existing research on pre-trained mem-
orization. However, in sentiment classification and
QA, altering the prefix length does not significantly
affect memorization. More results in Appendix F.3
and Table 7. Despite these variations, a consis-
tent disparity in memorization across different
tasks persists, regardless of the prefix length.

Generation sampling. We study the impact of
different generation sampling methods including
(i) top-k (k=40) sampling, (ii) top-p (p=0.8) sam-
pling and (iii) changing the temperature to T=1,
and report the main results in Figure 2b and more
results in Appendix F.2 and Table 6. It is ob-
served that sampling affects memorization differ-
ently across tasks: it lowers memorization in high-
memorization tasks like summarization and dia-
logue, but has a negligible or even increasing ef-
fect on memorization in low-memorization tasks
such as sentiment classification. Despite these
variations, a significant, consistent disparity in
memorization remains across different tasks, in-
dicating an intrinsic, task-specific inclination
towards memorization that is not significantly
altered by sampling methods.
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Figure 2: Impact of prefix length and sampling methods on memorization

5 Memorization Scaling Behavior of
Fine-tuned LMs

It is evident that memorization in pre-trained mod-
els tends to increase with model size. To under-
stand the scaling behavior of memorization in fine-
tuned models, we conduct a systematic analysis
on fine-tuned models, comparing the memoriza-
tion in various tasks using different sizes of the T5
model: T5-small (60M), T5-base (220M), T5-large
(770M), and T5-xl (3B).

5.1 High-memorization Tasks
We explore the scaling behavior in high-
memorization tasks, specifically focusing on sum-
marization (fine-tuned on Multi-news) and dia-
logue (fine-tuned on Chatdoctor). The results can
be found in Figures 3a and 3b respectively. We
can see that memorization in fine-tuning increases
with model size. As a benchmark, we also provide
the memorization rate for the pre-trained model,
for which we can see that when increasing from a
model size of 220M, the memorization rate does
not further increase much. These two observations
in the fine-tuned model and the pre-trained model
together reveal that the fine-tuned model is memo-
rizing information from the fine-tuning data, indi-
cating severe privacy threats when scaling up the
models in these tasks.
5.2 Low-memorization Tasks
In contrast to high-memorization tasks, low-
memorization tasks such as sentiment classification
and question answering exhibit different scaling be-
haviors. As illustrated in Figures 3c and 3d, an
increase in model size does not result in a rise in
the memorization rate, and the memorization rate
is consistently low. This suggests that even when
large models are fine-tuned on these tasks, the pos-
sibility of memorization and outputting fine-tuning
data is relatively low.

6 Understanding the Memorization
Disparity

In the previous sections, we empirically examine
the memorization rate and scaling behavior among
a variety of tasks, and demonstrate the discrepancy
between high- and low-memorization tasks. In this
section, we provide understanding and evidence
on the underlying reason behind such disparity of
fine-tuned memorization.

6.1 Correlation between Memorization and
Task-specific Information

In this subsection, we aim to investigate the ques-
tion: why do different fine-tuning tasks present dif-
ferent memorization behaviors? We conjecture that
the memorization behavior might be closely related
to the information needed to fulfill certain language
tasks. Intuitively, for language tasks such as senti-
ment analysis or extractive QA, only a few words or
sentences are enough for the model to complete the
task. For example, one can determine the sentiment
based on some specific words in the sentiment, and
can answer a question based on certain pieces of
information. In this case, the model only needs to
learn specific key features and is less likely to mem-
orize the other data. On the other hand, for tasks
such as summarization and dialog, they require the
model to learn more input features to complete the
task, as the essential information from these inputs
is also reflected in the output. As a result, the fine-
tuning process will encode more input knowledge
from the data in the model parameters, leading to
potential concerns of memorization. In the fol-
lowing, we provide a conceptual discussion based
on the sparse decoding model. The sparse coding
model is a method that represents original data by
focusing on its key features, using only the most
crucial elements to efficiently express the core in-
formation, which is a popular model for modeling
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Figure 3: Scaling behavior of fine-tuned memorization
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Figure 4: Decoder-encoder attention heatmaps for (a, b) Summarization, (c, d) Dialog, (e, f) Sentiment Analysis,
and (g, h) QA. (a, c, e, g) show average heatmaps from 10 samples, while (b, d, f, h) show heatmaps from a single
sample.

text and vision data. (Arora et al., 2015, 2018; Ol-
shausen and Field, 1997, 2004)

Sparse coding model. Denote an observed text
data as Z ∈ Rd×D where D and d represent the
sequence length and the length of the embedding
respectively. The basic assumption of sparse cod-
ing is that the data Z comes from combinations
of a few hidden features. We use X to represent
these hidden features and consider the following
relation:

Z = UXV (1)

where X ∈ Rk×K , U ∈ Rd×k, V ∈ RK×D ,
k ≤ d, K ≤ D. Each column of U is a unit vector
and orthogonal with each other. Each row of V is a
unit vector and orthogonal with each other. Given
the above formulation, each element in Z is a linear
combination of the elements from X . Compared to
previous literature, our assumption is a simplified
version of the original sparse coding model as we
do not further impose noise in the data generation

model. Besides, we also modify the original 1D
feature X in sparse coding into 2D for our model.
Task complexity. Under the sparse coding
model, we further assume that the output can be
fully expressed by a linear transformation of X .
However, different fine-tuning tasks may differ in
how much input information is needed by the task.
We present two perspectives below to illustrate why
"complex tasks" may have more memorization.

First, the number of parameters to connect Z
with the final target is related to the task-specific in-
formation. Consider we have a “simple task” (e.g.,
sentiment analysis) where the model output is only
one scalar (preference) decided by some certain
features or a combination of X . In the simplest
case, the scalar is a linear function of X , a⊤Xb,
where a ∈ Rk and b ∈ RK . In this case, the loss
function for a sentiment classification model fcls
can be defined as:

l(fcls(Z), a⊤Xb). (2)
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If we further assume the loss functions as square
loss, the best solution of fcls is: fcls(Z) =
(a′)⊤Zb′ where a⊤U⊤ := a′ and V ⊤b := b′. It
means that the model only needs to learn two vec-
tor parameters a′ and b′. On the other hand, for
tasks such as summarization, the output text is de-
sired to contain all key information from the input
Z. We consider the following loss for the summa-
rization task fsum:

l(fsum(Z), X). (3)

In the above formulation, the output fsum(Z) con-
tains all information about X . We denote such a
task as a “complex task”. With the squared loss,
the best solution of fsum is fsum(Z) = U⊤ZV ⊤.
Comparing the above two tasks, for simple tasks
like classification, the model just requires a small
amount of information to learn a′, b′ (d + D),
while for complex tasks such as summarization,
the model needs to learn (dk + DK) parameters
of U ′ = U⊤, V ′ = V ⊤. Further, the model which
learns more information from the data tends to
memorize more. The expression in Equation 3
makes model inversion attack possible. As the
model learns U ′, V ′, the attacker can conduct an
attack via Z = U ′TXV ′T , which means one can
use f(Z) to recover the input data Z.

Second, the sparsity of the learned matrix (U ,V )
or vectors (a′,b′) may also vary, indicating differ-
ent amounts of information needed and leading to
different complexity of the task. For example, in
sentiment classification, what the network actually
learns depends on the sparsity of b′. If b′ is sparse,
it means that we can simply pick several words
from the sequence and determine the class.

6.2 Attention Distributions
While the memorization disparity is possibly re-
lated to the task-specific information, the attention
distribution in the transformer may also capture the
contribution of each token’s information to com-
pleting the task. In this section, we study whether
the attention scores can be viewed as an indicator
of the memorization ability of the task.

For the fine-tuned models in Table 2, we gen-
erate their attention score heatmaps7. Figure 4
shows the distribution of the attention scores of
the last decoder-encoder attention block in each
model. Different layers of decoding-encoding at-

7We present the heatmap of the translation task in Ap-
pendixK.1.

tention scores are also visualized in Appendix K.48.
Our focus on encoder-decoder attention layers is
their ability to capture the information across input
features for each output. We also theoretically dis-
cuss the correlation between attention score maps
and task information needs in Appendix A.

In Figure 4, the horizontal axis represents input
tokens, and the vertical axis indicates output tokens.
The brightness represents the averaged multi-head
decoder-encoder attention scores between input-
output token pairs. Each horizontal line shows
the attention score distribution of an output token
across input tokens. We visualize the attention
heatmaps of a single data sample and the average
attention heatmaps of 10 random samples, padded
to the longest length of the batch and truncated to
a maximum of 512 tokens. More attention maps of
different samples are visualized in Appendix K.3.

The heatmaps shown in Figure 4 reveal clear
differences in attention patterns among tasks. For
high-memorization tasks (i.e., summarization and
dialog), attention scores are more evenly dis-
tributed across input tokens. In contrast, for low-
memorization tasks (e.g., sentiment classification
and extractive QA), the attention is concentrated
on a few positions while almost zero for other posi-
tions. The observed patterns suggest that the infor-
mation needed to successfully complete each task
varies. The attention score distribution for sum-
marization and dialog implies that models must
extract every detail from the input, increasing the
possibility of memorization. Concentrated scores
for sentiment classification and extractive QA indi-
cate that only key information is required, reducing
the tendency to memorize the fine-tuning data.

In Appendix K.2, we present the attention scores
of the T5-base model. Our findings also align with
the fine-tuned model, and we observe a pattern of
high memorization-intensive attention for complex
tasks and concentrated attention for simpler ones.
This aligns with our intuition that the attention pat-
tern is a fundamental characteristic of the task. To
utilize the attention score as a tool to predict mem-
orization, prior to fine-tuning a model for a spe-
cific task, developers can assess attention patterns.
The assessment can be done using the pre-trained
model. It helps predict the memorization during
fine-tuning.

8Across various layers, consistent patterns emerge in the
encoder-decoder attention mechanism. Owing to this unifor-
mity, we primarily report on the final layer in Figure 4, which
is closest to the output.
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7 Conclusions
In this paper, we conduct extensive experiments
to investigate the memorization behavior of fine-
tuned LMs among various tasks. Utilizing an au-
tomatic detection pipeline, we are able to evaluate
the memorization in numerous tasks and datasets.
In addition, we provide understandings of the mem-
orization disparity among tasks based on a sparse
coding theory. Our analysis reveals a strong corre-
lation between attention scores and memorization.

8 Limitations

Our study primarily utilizes white-box models from
the T5 family for evaluation, such as T5-small, T5-
base, T5-large, and T5-XL. Black-box models like
ChatGPT were not included due to our inability to
fine-tune them directly. Additionally, there is scope
to expand the variety of datasets and tasks in future
research.

Theoretically, we employ sparse coding the-
ory to articulate our hypothesis that the observed
memorization differences across tasks stem from
their varying informational requirements ("True
features" in sparse coding theory). We draw on
recent theoretical developments(Zhang et al., 2023;
Deora et al., 2023; Wu et al., 2023) that apply
sparse coding in NLP and leverage these theories
to support our reasoning. Nevertheless, fully ex-
tending this theory to precisely account for the
complexities of non-linear or large-scale models
remains an unresolved challenge in the theoretical
community.

While our study addresses the memorization be-
havior of models fine-tuned on single tasks, the
investigation into models fine-tuned on multiple
tasks is still unexplored and presents an opportu-
nity for future research.

9 Ethics Statement

The phenomenon of fine-tuned memorization in
language models has notable social implications.
Firstly, it raises privacy concerns, especially in
tasks where sensitive information, like personal
dialogue, is involved. The ability of these models
to retain and potentially disclose private data ne-
cessitates corresponding data protection measures.
Secondly, from a utility perspective, while memo-
rization enhances performance in certain tasks, it
also underscores the need for balancing accuracy
with responsible data handling in AI systems.
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A Theoretical Analyze

To understand why attention scores can be used as
an indicator for memorization, we provide some
theoretical intuition on the relation between atten-
tion scores and information needed for the task.
We first use the classification task to explain the
relation between attention scores and information
density. Then we extend the intuition to discuss
complex tasks.

Attention score and memorization in classifica-
tion We still consider the sparse coding model
mentioned in Eq.1, and continue to use the no-
tations of Section 6.1. We use the classification
task for simplicity. As mentioned, for classifica-
tion tasks, the best solution of Eq.2 is fcls(Z) =
(a′)⊤Zb′, where a⊤U⊤ := a′ and V ⊤b := b′. In
classification, whether a task is more complex or
not depends on the sparsity of b′, and we justify
that the sparsity of b′ directly affects the attention
score pattern. We then mathematically define the
neural network architecture. To ease the derivation,
we consider

f(Z) = W V Z · softmax
(
(WKZ)⊤(WQZ)

)
,

(4)
with W V ,WK ,WQ all in Rd×d. The softmax op-
eration is conducted column-wise. Since the output
f(Z) is a matrix rather than a scalar, for the clas-
sification task, we further multiply two vectors on
the two sides of f(Z) to get output scalar y′, i.e.,
v⊤1 f(Z)v2 ∈ R, and v1 and v2 can be either train-
able or arbitrary. As mentioned in Section 6.1, the
target of the classification task can be represented
as y = a⊤Xb. The loss term of Eq.2 can then be
written as:

l(v⊤1 f(Z)v2, a
⊤Xb). (5)

Aligning the neural network output v⊤1 f(Z)v2 with
a⊤Xb, it is easy to see that to better reduce the loss
value, we need softmax

(
(WKZ)⊤(WQZ)

)
v2 ∈

RD better aligned with b′. As a result,
when measuring the effect of the input Z on
v⊤1 f(Z)v2 ∈ R, e.g., Figure 4e, the weighted pat-
tern softmax

(
(WKZ)⊤(WQZ)

)
v2 has a similar

sparsity as b′. Recall that b′ is the task-specific
vector the model needs to learn, thus the analy-
sis above suggests that the attention score9 has

9Note that the attention matrix
softmax

(
(WKZ)⊤(WQZ)

)
itself is RD×D and

is not aggregated for the output value, and
softmax

(
(WKZ)⊤(WQZ)

)
v2 is the final aggregated

attention.

a similar sparsity pattern as the sparsity of the
information the model needs to learn.

Complex tasks For more complex tasks, the sim-
plistic single-layer single-head attention analysis
as the above is not enough to handle it, and we
need to use a larger architecture. Intuitively, with
more features to learn in the task, the architecture
will be more likely to memorize each feature com-
prehensively. We identify two key drivers of this
behavior. First, each output token relies on infor-
mation distributed across multiple input tokens. As
shown in Figure 4a, each row has multiple high
attention scores across different input tokens. Sec-
ond, each output token often exhibits selectivity
for a different subset of input tokens, leading to
divergence in attention distributions across rows
in Figure 4a. To conclude, these two factors may
result in dense heatmap patterns compared to the
concentrated heatmaps of simpler tasks.

B Details of Evaluation Pipeline

B.1 Evaluation Process

In this section, we provide a detailed overview of
the evaluation tools and methodologies employed.
The evaluation framework comprises three distinct
processes: prompting, searching, and detection.
The prompting method has been extensively uti-
lized in prior research on pre-trained memoriza-
tion(Carlini et al., 2022), and the search and de-
tection methods, based on Elasticsearch and PAN-
2014 detection tools, were previously adopted by
Lee et al. (2023).

Prompting. In the evaluation phase, the input
data xi is segmented into two parts: a prefix pi
and a suffix si. We input the prefixes {pi}ni=1 into
the model without any task-specific instructions
to obtain f(pi). For our experiments, we select
n = 10, 000 samples from each dataset. The stan-
dard prefix length k is set to 50 tokens. However,
for tasks with input sentences shorter than 50 to-
kens, such as translation tasks, a reduced prefix
length of 15 tokens is used. The testing proce-
dure is consistent across both base and fine-tuned
models. This involves inputting the prefix of the
fine-tuning data into the models and comparing the
suffixes. Notably, for the base models, the prefix
of the fine-tuning data is still used in the test, re-
gardless of whether the model has been fine-tuned
on that specific dataset or not. This approach helps
determine if the model retains the data, suggesting
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its presence in the pre-training set.

Searching. In the search phase of our experiment,
we employ Elasticsearch, a distributed, RESTful
search and analytics engine based on the open-
source Lucene library. Elasticsearch leverages
the Okapi-BM25 algorithm, a widely-used bag-
of-words ranking function, allowing for efficient
storage, searching, and near real-time analysis of
large data volumes. We upload all suffixes {si}ni=1

into Elasticsearch and use the set {f(pi)}ni=1 as our
query documents. For our analysis, we set K = 10,
indicating that only the top-10 most relevant can-
didates for each query are retrieved for subsequent
memorization detection.

Detection. After we get suspicious sentence pairs
f(pi) and sj , we input them to a publicly avail-
able PAN2014 plagiarism detection tool D to see if
D(f(pi), sj) = True. In general, the detection tool
will detect the presence of plagiarised word piece
pairs (di, dj) a, where di and dj are word pieces
from f(pi) and sj , respectively and then compare
(di, dj) to identify the category of memorization.
Here we set the minimal match threshold as at least
50 characters(approximately 15 tokens).

The detailed process includes (1) preprocessing
text; (2) identifying obfuscation types; (3) seeding
to find candidate pairs via sentence similarity; (4)
extension by clustering similar fragments; and (5)
filtering out overlaps. They transform sentences
into TF-IDF vectors and calculate similarity using
dice and cosine measures, with adaptive parame-
ters selected by testing on the obfuscation corpus.
Here we set the minimal match threshold as at least
50 characters(approximately 20 tokens). We also
utilize additional validation steps after retrieving
paraphrased text segments as (Sanchez-Perez et al.,
2015). The post-processing involves chunking seg-
ments into sentences using NLTK’s tokenizer, then
applying a RoBERTa-based paraphrase identifica-
tion model and Named Entity Recognition (NER)
on the sentences. Specifically, we check sentence
pairs - if any pair has a paraphrase detection proba-
bility score between 0.5 and 0.99, we accept it as
high-confidence paraphrasing, otherwise, we iden-
tify it as low-confidence paraphrasing.

B.2 Memorization Types
Difference between memorization types. Here
we will distinguish 3 types of memorization. First,
verbatim memorization means exact copies of
words or phrases without transformation. In the

cases of paraphrase and idea memorization, the
output is not identical to the original text but shares
similar meanings. While paraphrase plagiarism fo-
cuses on sentence-to-sentence transformation, idea
plagiarism involves summarizing the key points of
a larger text segment into a more condensed form
(or expanding it). In Table 3, we give a simple
example to differentiate the difference between 3
types of memorization conceptually.

In practice of the PAN2014-detection, It starts by
identifying closely matched short document frag-
ments (referred to as ’seeds’) and then expands
these seeds into longer text segments. This is
achieved by clustering these fragments based on
their separation and employing a ’maxgap’ thresh-
old parameter to form coherent clusters.They exper-
imentally find out the most suitable threshold for
different plagiarism datasets so that those param-
eters could be used for the detection of a specific
type of memorization. In other words, each memo-
rization case will be counted only once and there
will not be overlapping across different categories.

Distinguishing idea memorization from summa-
rization. It’s important to differentiate idea mem-
orization—condensing key points of a larger text
segment—from summarization tasks. Note that in
our approach, only the prefix (initial tokens) of a
text is input to the model. Summarization means
the model summarizing this prefix without reveal-
ing the remaining suffix of the text. In contrast,
idea memorization involves the model generating
information about the suffix. In our experiments,
we assess similarity by comparing the generated
text f(p) with the suffix s, rather than with the pre-
fix p or the entire text x. In table 4, we use a simple
example to illustrate the difference.

C Disparate Memorization on GPT-Neo

We also fine-tuned decoder-only GPT-Neo-125m
models and also observed similar findings with T5-
base, which suggests our findings are generalizable.
The results are reported in Table 9. We can clearly
observe that the memorization increase for summa-
rization and dialog is much more significant than
QA and sentiment classification.

D Memorization Ratio on Other Tasks
and Datasets

To make a general conclusion, we would also
like to provide memorization behavior on addi-
tional datasets and tasks, including summarization
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Table 3: Difference between 3 Memorization Types

Examples of 3 Memorization Types
Verbatim:
Text A: My name is Jack
Text B: My name is Jack
Paraphrase:
Text A: My name is Jack
Text B: Jack is my name
Idea plagiarism:
Text A: A boy tell me in the class that his name is Jack
Text B: A boy is Jack

Table 4: Difference between Idea Memorization and Summarization

Idea Memorization vs Summarization
Training data: I am not comfortable from the beginning of the month, I am 20 years old, height
51, height 51, weight 40kg. I have been pregnant for 6 months and I can not stop vomiting.
Input: I am not comfortable from the begining of the month,I am 20 years
Output: 20 years old, height 5 1 & weight 40kg(Memorization)
Output: 20 years old woman feels bad for a month.(Summarization)
# Note: We only compare output with "height 51, height 51, weight 40kg. I have been pregnant for
6 months and I can not stop vomiting." to identify memorization.

(CNN_Daily Mail), abstractive question answering
(DuoRC Self_RC), extractive question answering
(Adversarial_QA), multiple choice (BoolQ), and
topic classification (AG_News).

Similar to the experiments in the main paper, we
observe that tasks with dense attention maps (e.g.,
summarization) exhibit high memorization, while
tasks with sparse attention (e.g., extractive QA,
abstractive QA, multiple-choice QA, topic classi-
fication) display low memorization. These results
validate the generalizability of our observations.

E Memorization of Multi-task Fine-tuned
Models

We conducted a preliminary study on the memo-
rization of multi-task fine-tuned models. Specifi-
cally, we compared the memorization ratio on the
Multi_News dataset between a T5-base model fine-
tuned solely on that dataset and Flan-T5, a multi-
task fine-tuned model that includes the Multi_News
dataset in its training set. Our results on Table 11
reveal that multi-task fine-tuned models exhibit sig-
nificantly lower memorization compared to single-
task fine-tuned models. These findings suggest
that multi-task fine-tuning could be a potential mit-
igation strategy against memorization in language
models.

F Ablation Studies

F.1 Training Epochs
Here, we present the memorization rates observed
in checkpoints of our fine-tuned models across dif-
ferent epochs, as shown in Table 5.

In our practice, we find that for low-
memorization tasks like sentiment classification,
no matter whether the model is well-trained, the
memorization ratio remains low. However, for
high-memorization tasks like dialog, if the model
is not well-trained, the memorization will be low.
So in our experiment, to make sure that our fine-
tuned model is well-trained, we let the finetuned
model have comparable performance with Flan-T5
as Flan-T5 is a well-trained model and has good
performance on various tasks.

F.2 Sampling Methods
We conduct ablation studies on different decoding
methods in Table 6. From the results, we can find
that:

• For high-memory tasks such as summariza-
tion and Dialog, sampling can reduce the
memorization Rate and change the category
distribution of memory samples.

• For low-memory tasks such as emotion classi-
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Table 5: Memorization of fine-tuned_T5 with various epochs.

Task Dataset Epochs
Total

Mem Rate

Dialog HealthCareMagic

1 1.60%
3 3.30%
5 6.22%

10 8.27%

Sentiment IMDB

1 0.78%
3 0.79%
5 0.80%

10 0.79%

Summarization Multi_news

1 14.12%
3 14.32%
5 22.33%

10 22.32%

QA Squad_v2

1 0.08%
3 0.12%
5 0.10%

10 0.15%

Table 6: Memorization of fine-tuned_T5 with various sampling methods.

Task Dataset Decoding
Total

Mem Rate
Verbatim Idea

Paraphrase
(P < 0.5)

Paraphrase
(P > 0.5)

Dialog HealthCareMagic

Top-K 5.76% 0.05% 0.38% 0.90% 4.43%
Top-p 7.26% 0.06% 0.48% 1.35% 5.37%
Temp 3.72% 0.02% 0.18% 0.58% 2.94%

Greedy 8.27% 0.02% 1.41% 1.75% 5.09%

Sentiment IMDB

Top-K 1.02% 0.01% 0.13% 0.18% 0.70%
Top-p 1.08% 0.01% 0.12% 0.22% 0.73%
Temp 0.89% 0.01% 0.07% 0.19% 0.62%

Greedy 0.80% 0.04% 0.30% 0.17% 0.29%

Summarization Multi_news

Top-K 10.80% 2.54% 0.34% 1.94% 5.98%
Top-p 13.57% 4.07% 0.54% 2.26% 6.70%
Temp 5.82% 1.28% 0.23% 0.83% 3.48%

Greedy 22.33% 4.23% 0.65% 6.23% 11.22%

QA Squad_v2

Top-K 0.15% 0.04% 0.00% 0.05% 0.06%
Top-p 0.15% 0.04% 0.00% 0.05% 0.06%
Temp 0.15% 0.04% 0.00% 0.05% 0.06%

Gready 0.15% 0.04% 0.00% 0.05% 0.06%
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Table 7: Memorization of fine-tuned T5 with varying prefix lengths.

Task Dataset
Prefix
length

Total
Mem Rate

Verbatim Idea
Paraphrase
(p > 0.5)

Paraphrase
(p < 0.5)

Summarization Multi_news

10 12.25% 1.74% 2.85% 0.88% 6.78%
30 20.68% 7.07% 1.41% 3.05% 9.15%
50 22.33% 4.23% 0.65% 6.23% 11.22%
100 29.66% 10.61% 0.79% 4.27% 13.99%

Dialog HealthCareMagic
10 6.28% 0.03% 1.94% 0.85% 3.46%
30 7.76% 0.04% 1.28% 1.72% 4.72%
50 8.27% 0.02% 1.41% 1.75% 5.09%

Sentiment IMDB

10 1.37% 0.00% 1.12% 0.06% 0.19%
30 1.18% 0.01% 0.51% 0.15% 0.51%
50 0.80% 0.04% 0.30% 0.17% 0.29%
100 1.39% 0.05% 0.23% 0.33% 0.78%

QA Squad_v2

10 0.18% 0.05% 0.00% 0.06% 0.07%
30 0.14% 0.04% 0.00% 0.04% 0.06%
50 0.15% 0.04% 0.00% 0.05% 0.06%
100 0.13% 0.03% 0.01% 0.04% 0.05%

fication, sampling does not significantly affect
the memorization results.

• Irrespective of the decoding methodology em-
ployed, a pronounced disparity in memo-
rization across different tasks persists. This
suggests an inherent task-specific propensity
towards memorization that is not substan-
tially mitigated by variations in sampling tech-
niques.

F.3 Prefix Lengths
Here we change different prefix lengths of inputs
and report the results in table 7. We include 2 high-
memorization tasks(summarization and dialog) and
1 low-memorization task (sentiment classification).
From the results we can observe that:

• The length of prefix tokens can affect mem-
orization. The length of prefix tokens does
indeed impact memorization. Specifically, for
summarization and Dialog tasks, the mem-
orization Rate generally increases with the
length of the prefix. This finding aligns with
previous research on pre-trained memoriza-
tion. However, for sentiment classification,
changing the prefix does not result in signifi-
cant changes, and increasing the prefix length
does not necessarily lead to an increase in the
memorization Rate.

• The task disparity still exists when using

different prefixes. Furthermore, it is worth
noting that despite the influence of different
prefixes on memorization, there still exists a
noticeable disparity in memorization across
tasks. Therefore, our conclusion remains even
using different prefixes.

G Statistical Significance Testing

In this section, the results displayed in Tables 12
to 15 are derived from the data in Tables 1, 2, 6,
7, and Figure 2. Specifically, we conducted 1000
bootstrap experiments based on these sources to
calculate confidence intervals at the 5% and 95%
levels for the results presented in the aforemen-
tioned tables.

H Dataset and Model used

Datasets In our study, we utilized various
datasets for preliminary experiments and model
fine-tuning. For the summarization task, we used
CNN/Daily Mail in the preliminary phase, a dataset
comprising 287k training rows and 10k evaluation
rows. For fine-tuning, we employed the Multi-
News dataset (Fabbri et al., 2019), which includes
news articles and summaries, using a 45k training
set and a 5.62k test set. The IMDB dataset (Maas
et al., 2011) was used for binary sentiment clas-
sification, consisting of 25k training and 25k test
movie reviews. In the dialog task, we use Health-
careMagic dataset, comprising 112k training rows
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and a 12k test set. For extractive QA, we utilized
the SQuAD v2 dataset (Rajpurkar et al., 2016), fea-
turing questions based on Wikipedia articles, with
130k training and 11.9k test rows. The translation
task involved a preliminary study using WMT19
and fine-tuning on an English-to-German subset of
WMT16, with 450.87k training and 3k test rows.
Finally, for the controlling experiment, we used
the RentTheRunway dataset (Misra et al., 2018b),
containing clothing review data, with 111k train-
ing and 12k test rows. This dataset was used for
fine-tuning both the summarization model and the
binary sentiment classification task.

Models In the preliminary study, we consider
Bart-Large from Bart family, T5-base and T5-large
from T5 family, FSMT (FairSeq MachineTransla-
tion), and BioGPT. For our self-fine-tuned models,
we select T5-base architecture from the T5 family
for all experiments.

Fine-tuned Methods In the fine-tuning process,
we consider all the tasks as generation tasks and use
the format of instruction tuning. Here we provide
fine-tuned templates of different tasks in Table 8

I Performance of Self-fine-tuned Models

We finetune the T5-base model to achieve bet-
ter or comparable performance with the Google
fine-tuned public model FLAN-T5. In Table 16,
we show the performance of the summarization
task. Our fine-tuned model achieves a similar rouge
score with FLAN-T5. In Table 17, We show that
the accuracy of our model is better than FLAN-
T5 regarding binary sentiment classification. For
Dialog task, Our model performance much better
than FLAN-T5 as shown in Table 18. For the Ex-
tractive question-answering task, we fine-tune the
model in a sequence-to-sequence learning form
while we evaluate the exact match of the answer
term. Results are shown in Table 19. For the Rent-
TheRunway fine-tuning experiment, we present the
results in Table 20 and Table 21.

J Memorized Examples

We present memorization examples of verbatim,
paraphrase and idea plagiarism of different models
in Table 22.
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Figure 5: Decoder-encoder attention heatmaps on trans-
lation.

K Attention Maps

K.1 Attention Maps of Translation Tasks

In Figure 5, we present the attention maps for trans-
lation tasks. The visualized examples reveal that
attention scores tend to focus on a select few input
features corresponding to each output token. This
concentration of attention is likely due to the nature
of translation tasks, where the model typically does
not require full detail attention but rather focuses
on key tokens for accurate translation. As a result,
attention is directed predominantly towards specific
features, leading to reduced overall memorization.
These observations are consistent with our findings
from other tasks.

K.2 Attention Maps of T5-base when doing
different tasks

To validate that attention patterns are more intrin-
sic properties of the tasks themself, we visualize
the attention maps of the T5-base model(without
fine-tuning) when doing different tasks in Figure
6. Specifically, we use the same instruction and
input-output pairs of fine-tuning data as Section
5.1, but just change the model from finetuned-T5
to T5-base. From the Figure we can see that the
disparity still exists across different tasks. And for
each task, the attention patterns are similar to that
of Fine-tuned T5. It further validates that the in-
formation needed to complete certain tasks is the
intrinsic property of the task.
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K.3 Attention Maps of different samples
In this section, we extend our visualization of atten-
tion maps across a broader range of samples and
tasks, from Figure 7 to Figure 10. It is evident that
memorization patterns differ significantly among
tasks. Tasks with higher memorization require-
ments, such as summarization, display densely dis-
tributed attention scores, while those with lower
memorization needs, like Extractive QA, exhibit
more focused attention distributions.

K.4 Attention Maps of Different
encoder-decoder layers

Here we visualize the attention maps of different
encoder-decoder layers in Figure 11 to Figure 14.
We can clearly observed consistent patterns across
various layers of the encoder-decoder attention
mechanism, with high memorization tasks show-
ing dense attention and low memorization tasks
focusing attention on fewer positions.
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Table 8: Examples of training data from different tasks

Summarization
Prompt: Please summarize the following paragraph:
Input:
...A fresh update on the U.S. employment situation for January hits the wires at 8:30 a.m. New York
time offering one of the most important snapshots on how the economy fared during the previous
month. Expectations are for 203,000 new jobs to be created, according to economists polled by
Dow Jones Newswires, compared to 227,000 jobs added in February. The unemployment rate is
expected to hold steady at 8.3%. ...
Output:
...The unemployment rate dropped to 8.2% last month, but the economy only added 120,000 jobs,
when 203,000 new jobs had been predicted, according to today’s jobs report.
Training Format:
Training input = Prompt + Input, Training label = Output
Sentiment classification
Prompt:
Please classify the sentiment of the following paragraph:
Input:
"Foxes" is a serious look at the consequences of growing up too fast in the 1980s. And unlike the
teen sex comedies that overshadowed it (Porky’s, Fast Times at Ridgement High), the movie holds
up well against time...
Output:
Positive
Training Format:
Training input = Prompt + Input, Training label = Output
Dialog
Instruction:
If you are a doctor, please answer the medical questions based on the patient’s description.
Input:
I woke up this morning feeling the whole room is spinning when i was sitting down. I went to the
bathroom walking unsteadily, as i tried to focus i feel nauseous. I try to vomit but it wont come out..
After taking panadol and sleep for few hours, i still feel the same..
Output:
Hi, Thank you for posting your query. The most likely cause for your symptoms is benign
paroxysmal positional vertigo (BPPV), a type of peripheral vertigo. In this condition, the most
common symptom is dizziness or giddiness, which is made worse with movements. ...
Training Format:
Training input = Instruction + Input, Training label = Output
Question and answering
Question:
Who was the Norse leader?
Input:
... They were descended from Norse ("Norman" comes from "Norseman") raiders and pirates
from Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear fealty to King
Charles III of West Francia. ...
Output:
Rollo
Training Format:
Training input = Question + Input, Training label = Output
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Table 9: Memorization rate of gpt-neo-125m fine-tuned on various tasks

Task Dataset Model
Total

Mem Rate

Summarization Multi-news
GPT-Neo 25.2%

GPT-Neo-ft 44.3%
Difference ↑19.1%

Dialog chatdoctor
GPT-Neo 2.5%

GPT-Neo-ft 7.8%
Difference ↑5.3%

Sentiment
Classification

imdb
GPT-Neo 3.9%

GPT-Neo-ft 4.2%
Difference ↑0.3%

Reading
Comprehension

Squad_v2
GPT-Neo 0.02%

GPT-Neo-ft 0.04%
Difference ↑0.02%

Translation wmt
GPT-Neo 0.00%

GPT-Neo-ft 0.00%
Difference -

Table 10: Memorization rate of Other Tasks and Datasets

Source Model Task Dataset Total Mem rate

T5-base Summarization CNN_Daily 5.82%
T5-base Extractive QA Adversarial_QA 0.00%
T5-base Abstractive QA Duorc_SelfRC 0.02%
T5-base Multiple Choice BoolQ 0.13%
T5-base Topic Classification AG_News 0.03%

Table 11: Memorization rate of multi-task fine-tuned Flan-T5

Task Model Dataset Total Mem rate

Summarization Flan-T5 Multi_news 4.96%
Summarization T5-finetuned Multi_news 22.32%

Table 12: Statistical significance test of open-sourced LLMs fine-tuned on various tasks

Task Dataset Source Model Total Mem Rate (CI)

Summarization CNN/Daily Mail Bart_Large [20.30%, 21.10%]
Medical Dialog ChatDoctor BioGPT [18.86%, 20.36%]
Extractive QA SQuAD_v2 T5_large [0.05%, 0.17%]

Abstractive QA Race T5_large [0.19%, 0.41%]
Translation WMT_19 FSMT [0%, 0%]

Sentiment Classification IMDB T5-base [0%, 0%]
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Table 13: Statistical significance test of T5-base fine-tuned on various tasks

Task Dataset Model Total Mem Rate (CI)

Summarization Multi-news
T5-base [13.28%, 14.68%]

T5-finetuned [21.52%, 23.14%]
Difference [7.84%, 8.86%]

Dialog chatdoctor
T5-base [1.36%, 1.84%]

T5-finetuned [7.75%, 8.81%]
Difference [6.15%, 7.19%]

Sentiment
Classification

imdb
T5-base [0.61%, 0.95%]

T5-finetuned [0.62%, 0.98%]
Difference [0%, 0.04%]

Reading
Comprehension

Squad_v2
T5-base [0.07%, 0.09%]

T5-finetuned [0.07%, 0.23%]
Difference [0.01%, 0.19%]

Translation wmt
T5-base [0%, 0%]

T5-finetuned [0%, 0%]
Difference [0%, 0%]

Table 14: Statistical significant test of fine-tuned T5 with various sampling methods.

Task Dataset Decoding Total Mem Rate (CI)

Summarization Multi_news

Top-K [10.17%, 11.43%]
Top-p [12.89%, 14.25%]
Temp [5.37%, 6.27%]

Greedy [21.48%, 23.18%]

Dialog HealthCareMagic

Top-K [5.32%, 6.23%]
Top-p [6.78%, 7.77%]
Temp [3.34%, 4.08%]

Greedy [7.75%, 8.79%]

Sentiment IMDB

Top-K [0.83%, 1.23%]
Top-p [0.87%, 1.29%]
Temp [0.71%, 1.08%]

Greedy [0.63%, 1.00%]

QA Squad_v2

Top-K [0.08%, 0.23%]
Top-p [0.07%, 0.23%]
Temp [0.08%, 0.23%]

Greedy [0.08%, 0.23%]

Table 15: Statistical significance test of fine-tuned T5 with varying prefix lengths.

Task Dataset Prefix length Total Mem Rate (CI)

Summarization Multi_news

10 [11.94%, 12.56%]
30 [20.27%, 21.09%]
50 [21.99%, 22.67%]

100 [29.22%, 30.10%]

Dialog HealthCareMagic
10 [5.79%, 6.77%]
30 [7.23%, 8.29%]
50 [7.76%, 8.78%]

Sentiment IMDB

10 [1.13%, 1.61%]
30 [0.96%, 1.40%]
50 [0.63%, 0.97%]

100 [1.15%, 1.63%]

QA Squad_v2

10 [0.09%, 0.27%]
30 [0.06%, 0.22%]
50 [0.07%, 0.24%]

100 [0.06%, 0.21%]
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Table 16: Summarization

Dataset Model Rouge1 Rouge2 RougeL RougeLSum

multi_news FLAN-T5-small 0.264 0.092 0.168 0.168
multi_news Our fine-tuned T5-small 0.308 0.088 0.187 0.187
multi_news FLAN-T5-base 0.291 0.098 0.237 0.237
multi_news Our fine-tuned T5-base 0.298 0.103 0.201 0.201
multi_news FLAN-T5-large 0.256 0.087 0.165 0.165
multi_news Our fine-tuned T5-large 0.368 0.122 0.218 0.218
multi_news FLAN-T5-3b 0.264 0.092 0.232 0.232
multi_news Our fine-tuned T5-3b 0.387 0.136 0.168 0.168

Table 17: Sentiment classification

Dataset Model Accuracy(%)

IMDB FLAN-T5-small 94.17
IMDB Our fine-tuned T5-small 95.30
IMDB FLAN-T5-base 93.56
IMDB Our fine-tuned T5-base 94.64
IMDB FLAN-T5-large 94.50
IMDB Our fine-tuned T5-large 95.30
IMDB FLAN-T5-3b 97.10
IMDB Our fine-tuned T5-3b 95.20

Table 18: Dialog

Dataset Model Rouge1 Rouge2 RougeL RougeLSum

HealthCareMagic FLAN-T5-small 0.041 0.004 0.031 0.031
HealthCareMagic Our fine-tuned T5-small 0.131 0.063 0.154 0.154
HealthCareMagic FLAN-T5-base 0.055 0.006 0.039 0.039
HealthCareMagic Our fine-tuned T5-base 0.298 0.103 0.201 0.201
HealthCareMagic FLAN-T5-large 0.068 0.007 0.050 0.050
HealthCareMagic Our fine-tuned T5-large 0.220 0.063 0.154 0.154
HealthCareMagic FLAN-T5-3b 0.073 0.010 0.055 0.055
HealthCareMagic Our fine-tuned T5-3b 0.139 0.012 0.094 0.094

Table 19: Question answering

Dataset Model Exact Match(%)

SQuAD v2 FLAN-T5-small 35.23
SQuAD v2 Our finetuned T5-small 49.1
SQuAD v2 FLAN-T5-base 34.30
SQuAD v2 Our finetuned T5-base 44.00
SQuAD v2 FLAN-T5-large 43.36
SQuAD v2 Our finetuned T5-large 53.20
SQuAD v2 FLAN-T5-3b 44.60
SQuAD v2 Our finetuned T5-3b 37.20

Table 20: Multi task trained with RentTheRunway

Dataset Model Rouge1 Rouge RougeL RougeSum

Summary FLAN-T5-Base 0.1743 0.0436 0.1598 0.1598
Summary Our finetuned T5-Base 0.1743 0.0436 0.1598 0.1598

Table 21: Multi task trained with RentTheRunway

Dataset Model Accuracy(%)

Sentiment Classification Flan T5-base 86.60
Sentiment Classification Our fine-tuned T5-base 98.07
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Table 22: Examples of memorization cases. Duplicated texts are highlighted with yellow marks. Personally
identifiable information (PII) and other words that may lead to privacy concern in generated text are masked as red.

Type Machine-Written Text Training Text

Paraphrase

At least10 people and two attackers were killed
in Tuesday’s attack against the luxurious

Corinthia Hotel in Tripoli, Libya, a spokesman for
a security division of the Ministry of Interior in

Tripoli said. Five foreigners – one American
(Summarization: CNN Daily, Bart Large)

On January 27, gunmen claiming to be affiliated
with ISIS attacked the Corinthia Hotel in Tripoli,

Libya, which is favored by government officials and
foreigners. They killed 10 people after storming into

the lobby and firing guns at hotel guests. Five
of the victims were foreigners, one an American.

Paraphrase

– Argentine President Cristina Fernandez de Kirchner
was told to take a month off work after doctors

diagnosed her with a subdural hematoma.
(Summarization: CNN Daily, Bart Large)

...hematoma and
said she needed to take a month off of work.

Paraphrase

I am a 20-year-old guy 20 years old. I have been
(***harassment word***) for a long time.

(Dialog: HealthCareMagic, Finetuned T5)

...20 years old i have been.
(***harassment word***) regularly for past 5 years

Paraphrase

The Chargers responded with a 1-yard TD
run by RB LaDainian Tomlinson.
(Abstractive QA: Finetuned T5)

The Chargers would respond with RB
LaDainian Tomlinson with a 4-yard TD run.

Paraphrase

– President Trump has named Mick Mulvaney
to replace John Kelly, the White House chief

of staff who left the White House in December."
(Summary: Multi news, Finetuned T5)

“I am pleased to announce that Mick Mulvaney,
Director of the Office of Management & Budget,

will be named Acting White House Chief of Staff,
replacing General John Kelly, who has served our ...

Verbatim

Rachel’s son Liam in a house
near Glenrothes on 22 March 2014.

(Summary: CNN Daily, Finetuned T5)

Rachel’s son Liam in a house
near Glenrothes on 22 March 2014.

Verbatim

divided Wednesday during heated arguments
over President Obama’s health care law, but

(Summary: Multi news, Finetuned T5)

divided Wednesday during heated arguments
over President Obama’s health care law, but

Verbatim
and liver cirrhosis in dec 2011

modified akt staarted because of cirrhosis i.e
(Dialog:Finetuned T5, ChatDoctor)

and liver cirrhosis in dec 2011
modified akt staarted because of cirrhosis i.e
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Type Machine-Written Text Training Text

Verbatim

River Martinez, 10, breaks camp at the Upper
Pines Campground in Yosemite National Park, Calif.,

on Wednesday, July 25, 2018.
(Summary: Multi news, Finetuned T5 )

River Martinez, 10, breaks camp at the Upper
Pines Campground in Yosemite National Park, Calif.,

on Wednesday, July 25, 2018.

Verbatim

A rare blue lobster caught by local lobsterman,
Greg Ward, is on display at the Seacoast Science
Center in Rye, N.H., on Tuesday, July 18, 2017.

(Summary: Xsum, Finetuned T5)

A rare blue lobster caught by local lobsterman,
Greg Ward, is on display at the Seacoast Science
Center in Rye, N.H., on Tuesday, July 18, 2017.

Verbatim

Sheffield homered twice and keyed
a four-run rally in the ninth

inning Thursday night, sending the
(Classification: AG news, Finetuned T5)

Sheffield homered twice and keyed
a four-run rally in the ninth

inning Thursday night, sending the

Idea

KUALA LUMPUR (Reuters) - Kim Jong Un’s
half-brotherwas carrying $100,000 in cash in

his backpack at the time of his murder, the officer
investigating the case told a police officer"
(Summary: Multi news, Finetuned T5)

Wan Azirul testified that Kim was carrying
$100,000 in cash in his backpack.

Idea

Alan Dawson, 64, of Urmston, was convicted of
seven counts of indecent assault and one count

of rape at Manchester Crown Court.
(Summary: Xsum, Finetuned T5)

...is charged with one count of rape
and one count of sexual assault.

Idea

– Trey Radel, the Florida Rep. who was arrested
last month for buying cocaine, is a freshman congressman
who has been a big news story for the Washington Post.

(Summary: Multi News, Finetuned T5)

Post) \n \n Florida Rep. Trey Radel (R-Fla.)
was arrested last month for buying cocaine.

Idea

Abdul Aziz believes he was standing right next to a shooter
when gunmen opened fire at a parade in new orleans,

injuring 19 people. "Everyone around me was right next to a
shooter," Abdul Aziz said.

(Summary: CNN Daily, Finetuned T5)

I was standing, I believe, right next to the shooter.
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Figure 6: Average decode-encoder attention heatmaps on (a) summarization, (b) dialog, (c) sentiment, and (d) QA
on T5-base across 10 samples

Figure 7: Attention heatmaps of different samples on summarization
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Figure 8: Attention heatmaps of different samples on dialog
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Figure 9: Attention heatmaps of different samples on sentiment classification
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Figure 10: Attention heatmaps of different samples on QA
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Figure 11: Average decode-encoder attention heatmaps on summarization from different layers
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Figure 12: Average Decode-encoder attention heatmaps on dialog from different layers
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Figure 13: Average decode-encoder attention heatmaps on sentiment classification from different layers
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Figure 14: Average decode-encoder attention heatmaps on QA from different layers
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