
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3894–3916
August 11-16, 2024 ©2024 Association for Computational Linguistics

TIMEARENA: Shaping Efficient Multitasking Language Agents
in a Time-Aware Simulation

Yikai Zhang♠, Siyu Yuan♢, Caiyu Hu♠,
Kyle Richardson♡, Yanghua Xiao♠*, Jiangjie Chen♠*

♠Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University
♢School of Data Science, Fudan University

♡Allen Institute for AI
{ykzhang22,syyuan21,cyhu24}@m.fudan.edu.cn,

kyler@allenai.org, {shawyh,jjchen19}@fudan.edu.cn

Abstract

Despite remarkable advancements in emulating
human-like behavior through Large Language
Models (LLMs), current textual simulations do
not adequately address the notion of time. To
this end, we introduce TIMEARENA, a novel
textual simulated environment that incorporates
complex temporal dynamics and constraints
that better reflect real-life planning scenarios.
In TIMEARENA, agents are asked to complete
multiple tasks as soon as possible, allowing for
parallel processing to save time. We implement
the dependency between actions, the time du-
ration for each action, and the occupancy of
the agent and the objects in the environment.
TIMEARENA grounds to 30 real-world tasks
in cooking, household activity, and laboratory
work. We conduct extensive experiments with
various LLMs using TIMEARENA. Our find-
ings reveal that even the most powerful models,
e.g., GPT-4, still lag behind humans in effec-
tive multitasking, underscoring the need for en-
hanced temporal awareness in the development
of language agents. 1

1 Introduction

Large language models (LLMs) (OpenAI, 2022,
2023; Team and Google, 2023) have enabled the de-
velopment of language agents (a.k.a. LLM-based
agents), which aim to simulate human behaviors in
real-world scenarios through their planning capa-
bilities (Liu et al., 2023; Gong et al., 2023; Akata
et al., 2023). However, planning in the real world
involves temporal and resource constraints (Russell
and Norvig, 2010), which are rarely implemented
in most textual simulations for LLMs and language
agents (Wang et al., 2022; Park et al., 2023).

The integration of time in simulated environ-
ments challenges agents to navigate and align with
human-like efficient multitasking skills. Such a

*Corresponding authors.
1Project page: https://time-arena.github.io.

Wash cup (5min)Wash teapot (4min)

Boil water (8min)

Wash clothes in washing
machine (20min) Hang clothes (5min)

Make tea (3min)

Task2: Wash Clothes

Pour tea into cup (2min)

Task1: Make Tea

Solution 1: Serial Processing

Solution 2: Parallel Processing ✅

Timeline 1

Timeline 2

Wash cupWash teapot Make Pour Hang

Make Pour

Hang

Boil water

Wash

Wa.. tea Wa.. cup

Wash clothes in washing machine

Boil

Ts=46min

Tp=25min

Objective: Finish Multiple Tasks in a Minimal Time

De
pe

nd
en

cy
 G

ra
ph

Tp < Ts!
Faster!

t=0

t=0

Wait

Figure 1: An example illustrating multitasking with
temporal constraints in TIMEARENA. The completion
of tasks requires actions in a predetermined dependency
and order. Underlined actions do not occupy the agent,
allowing other actions to be processed by the agent
simultaneously. The Wait action skips the current time
step, meaning the agent is idle.

simulation requires the agent to consider the fol-
lowing three factors: 1) Time Duration and De-
pendency: Actions will have durations upon de-
pendencies, requiring agents to strategize and prior-
itize based on time constraints and task completion
progress. 2) Agent Occupancy: Agents will be
occupied by certain actions; thus, they might be
unable to perform other actions at the same time.
3) Object Occupancy: Some objects might be
occupied for some time, and agents must use avail-
able objects in the environment for the tasks. These
factors are common in real life but are seldom ad-
dressed by current textual simulations.

To help illustrate, Figure 1 shows an example
of completing make tea (Task 1) and wash clothes
(Task 2). The actions of each task might depend on

3894

https://time-arena.github.io

previous actions, e.g., agents must boil water be-
fore make tea, and each action takes a duration in
time, e.g., wash cup takes 5 minutes. In particular,
some actions let agents be idle, allowing agents
to carry out other actions. For example, wash
clothes in washing machine allows agents to
perform other actions at the same time. Moreover,
actions temporarily occupy objects, making them
unavailable for other actions and hindering parallel
processing. For example, boil water occupies
the pot, delaying other actions like cook soup
until it is available. When no action is currently
available for the agent, the only option is to wait.
For example, in Solution 2, the agent must wait
for the completion of wash clothes in washing
machine, before hang clothes.

In this work, we introduce TIMEARENA, a tex-
tual simulated environment featuring 30 real-world
tasks involving cooking, household activity, and
laboratory work. TIMEARENA is the first textual
simulation to evaluate language agents on multi-
tasking efficiency. Specifically, we incorporate the
time duration of each action and set two types of
actions based on agent occupancy. One type oc-
cupies agents (e.g., wash cup) and another lets
agents be idle (e.g., boil water). Additionally,
we simulate resource competition by implement-
ing object occupancy, i.e., an object used for one
task cannot be simultaneously used for another,
which is common in parallel processing. Therefore,
agents must focus on parallel processing, taking
into account the occupancy of agents and objects,
to minimize time consumption. We design four
metrics in TIMEARENA to evaluate the average
progress score, completion speed, task completion
rate and average completion time. These metrics
help to assess and analyze the efficient multitasking
capabilities of language agents. Our comprehen-
sive evaluation of seven LLMs on TIMEARENA

shows that current language agents struggle in effi-
cient multitasking. Even the most powerful LLM,
GPT-4, still faces challenges in parallel processing.

In summary, our contributions are as follows:

• To the best of our knowledge, we are the
first to explore the notion of time of language
agents in a textual environment, which is im-
portant for more realistic simulation.

• We create TIMEARENA, a novel text-based
simulated environment consisting of 30 tasks,
where LLMs can complete multiple tasks in
parallel.

• Using TIMEARENA, we conduct rich exper-
iments to evaluate the efficient multitask-
ing capabilities of language agents. Our re-
sults demonstrate that efficient multitasking
in TIMEARENA poses a significant challenge
for current language agents.

2 Related Work

Simulation-based Evaluation for Language
Agents With the great success of LLMs (Ope-
nAI, 2022, 2023; Team and Google, 2023), recent
works have shifted the focus from traditional NLP
tasks to explore language agents in simulated en-
vironments that mimic real-world scenarios (Wu
et al., 2023; Liu et al., 2023; Gong et al., 2023;
Akata et al., 2023). These simulated environments
can be divided into two categories: 1) Social Simu-
lations (Park et al., 2023; Mukobi et al., 2023; Zhou
et al., 2023), which aim to evaluate the behaviors
of language agents in some social scenarios; 2)
Problem-solving simulations, which are created
based on games (Chen et al., 2023a,b; Zhang et al.,
2023; Agashe et al., 2023) and scientific scenar-
ios (Wang et al., 2022). In this paper, we focus on
problem-solving simulations to investigate the effi-
cient multitasking capabilities of language agents.

Language Planning Language planning aims to
decompose a complex task into steps (Schank and
Abelson, 1975, 2013). Early studies mainly fo-
cus on imbuing language models with planning
capabilities by training them on specific planning
datasets (Peng et al., 2018; Hua et al., 2019; Kong
et al., 2021), which exhibits poor generalization.
Recent studies have identified that LLMs can effec-
tively decompose tasks into procedural steps (Wang
et al., 2023c; Yuan et al., 2023; Shen et al., 2023).
However, multitasking planning with parallel pro-
cessing in dynamic environments still remains
under-studied.

Temporal Reasoning Temporal reasoning in-
volves comprehending, structuring, and interpret-
ing events, actions, and states through the lens of
time (Allen, 1991; Vila, 1994; Stock, 1998). Pre-
vious studies in temporal reasoning focus on tem-
poral relation extraction (Vashishtha et al., 2019;
Mathur et al., 2021; Wang et al., 2023b), event tem-
poral reasoning (Mathur et al., 2022; Yang et al.,
2023; Wang and Zhao, 2023) and explore the tem-
poral reasoning capability of LLMs with several
contemporary time-sensitive QA datasets (Zhang

3895

Simulation Designs

Objective: Completing 3 Tasks in the Shortest Time

Timeline: Agent Interacting with the Environment

Wash clothes in washing
machine (20min)

Hang clothes
(5min)

Wash cup (5min)Wash teapot (4min)

Boil water (8min) Make tea (3min)
Pour tea into cup

(2min)
Wash bed sheet in washing

machine (15min)
Hang bed

sheet (3min)

T=1min T=2min T=3min T=4min T=5min T=8min T=9min T=10min

Wash clothes in washing machine occupies Wash teapotBoil waterMake tea depends on and Wash teapot occupies the agent for 4 minutes, Boil water does not

A
ge

nt

A
ct

io
n

En
vi

ro
nm

en
t

Fe
ed

ba
ck

Task1: Make Tea Task2: Wash Clothes Task3: Wash Bed Sheet

⏰

Boiling water Washing clothes

⏰

⏰

Washing bed sheet

⏰

⏰

Making tea

⏰

⏰

Making tea

⏰

⏰

Waiting

⏰

⏰

Washing teapot

⏰

⏰

⏰

…

Washing teapot

⏰

⏰

⏰

Wash teapot
(4min)

Boil water finished.
Wash teapot finished. Make tea (3 min) Wait (1 min)Wash clothes

(20 min)
Boil water

(8 min)

…

Task Dependency Agent OccupancyObject Occupancy

Washing Machine
is occupied!

Teapot is dirty and
water has not boiled!

🕰

In
te

ra
ct

io
n

Vi
su

al
iz

at
io

n

Figure 2: An overview of TIMEARENA, with a multitasking example that shows our designs of the simulation.
TIMEARENA first sets an objective for the agent, and then the agent interacts with TIMEARENA over time, with the
design of action dependency, object occupancy, and agent occupancy.

and Choi, 2021; Shang et al., 2022; Tan et al., 2023).
Distinguished from other benchmarks (Chu et al.,
2023), our TIMEARENA creates a dynamic and
interactive simulated environment.

3 TIMEARENA

We create TIMEARENA, a textual simulated envi-
ronment to evaluate the efficient multitasking capa-
bilities of language agents. To help illustrate, we
first show an overview and an example run of how
an agent interacts with the TIMEARENA environ-
ment (§ 3.1), and then describe the design of the
simulation environment in more detail (§ 3.2 and
§ 3.3).

3.1 Overview of TIMEARENA

TIMEARENA challenges agents to complete multi-
ple tasks strategically in the shortest possible time.
This simulation emphasizes the importance of un-
derstanding, performing, and optimizing actions
within a constrained timeframe, mirroring practical
scenarios involving time management.

Central to TIMEARENA are Tasks, Objects, and
Actions. Tasks define the objectives for the agents,
Objects represent elements in the environment that
agents will encounter and interact with, and Ac-
tions are the means to accomplish these tasks. Real-
time feedback and scoring mechanisms are integral
to the environment, assessing agent performance
and adding to the simulation’s complexity and re-
alism. Unique features like the duration and occu-

pancy of actions and strategic resource utilization
distinguish TIMEARENA from other environments.

An Example Run As in Figure 2, consider an
agent tasked with make tea (Task 1), wash clothes
(Task 2) and wash bed sheet (Task 3). The agent
starts by decomposing the task into actions like
boil water. In TIMEARENA, all actions have a
duration (e.g., Boil water needs 8 minutes) and
dependencies. (e.g., At T=4min, make tea violates
the dependency because wash teapot and boil
water are not completed yet.) The agent then inter-
acts with objects (e.g., wash clothes in washing
machine), which become occupied during the pro-
cess. The agent can engage in non-occupied actions
simultaneously (e.g., wash teapot) while others
(e.g., boil water) are in progress. Environmental
feedback guides the agent, indicating the legiti-
macy of actions and the completion of tasks. For
example, if the washing machine is occupied, the
agent adjusts its strategy. The agent’s goal is to
complete all the tasks efficiently, with performance
evaluated based on progress and completion time.

This dynamic interaction in TIMEARENA fosters
an environment where strategic planning, resource
management, and adaptability are key to an agent’s
success.

3.2 Components of TIMEARENA

Tasks In TIMEARENA, we design tasks within
three distinct scenarios or simulated settings,
namely, household activity, cooking, and labora-

3896

tory work. Each scenario represents a specific con-
text or environment where multitasking is an inte-
gral part of the activities involved.2 For example,
one can do sweep floor while doing boil water.
Each scenario contains 10 tasks, and some actions
and objects are shared across multiple tasks of a
scenario. Each task requires multiple actions to
be executed, which manipulates the objects in the
environment for task completion. In the beginning,
TIMEARENA gives a list of tasks to the agent, with
a comprehensive task instruction consisting of a
task description, an action space, and an object set:

• Task Description: Introduces task objectives,
e.g., Make a dish of beef fried rice, which
consists of cooked rice and fried beef.

• Action Space: Lists the valid actions for the
tasks (e.g., chop, wash).

• Object Set: Lists the available objects in the
environment for the tasks (e.g., pot, beaker).

At every timestep t, the agent needs to generate
valid actions on the objects and receive feedback
from the environment.

Objects Objects are integral to completing
tasks and situating within the environment. In
TIMEARENA, there are 71 different objects for
all the tasks. Every task involves a list of objects,
which might overlap with other tasks of the same
scenario. To mimic the resource limitation in real-
world parallel processing, we introduce:

• Object Occupancy: the state of the object
involved in an action is set to be occupied,
e.g., wash cup will cause the object cup to
be occupied. This object cannot be processed
until the involved action is completed (after
some time). Then, this object is reset as non-
occupied and waits for another action.

Actions We design a total of 46 actions for all 30
tasks. Each action consists of a detailed description
(e.g., chop OBJ, chop the whole item into
sliced pieces.), showing a change of states the
action will cause to an object.3 Different from
existing text-based simulations (Wang et al., 2022;
Gong et al., 2023; Shridhar et al., 2020), in our
case, an action has a duration of time and may
occupy the agent from performing other actions, to
the passage of time. In detail:

2Details of tasks are in Appendix A.1.
3All the actions are listed in Appendix A.2.

• Action Dependency: An action within the
same task might depend on completing other
actions within the same task. In Figure 2,
make tea is dependent on wash teapot.

• Duration of Time: Each action holds a time-
frame in the timeline, ranging from 1 to 10
minutes. In practice, agents only have an edu-
cated guess of the time duration of each action
until actually interacting with TIMEARENA.

• Agent Occupancy: One key to parallel pro-
cessing is agent occupancy, which prevents
agents from performing other tasks. There-
fore, we consider two types of actions based
on agent occupancy: Type 1 action occu-
pies the agent until completion (e.g., wash
teapot), and Type 2 action lets agents be idle,
allowing them to perform other actions at the
same time (e.g., boil water).

3.3 Interaction between Agent and
Environment

Environmental Feedback The feedback from a
textual environment is important to simulate and
implement the constraints in TIMEARENA using
only textual messages. We define feedback as the
response from the environment following an ac-
tion by an agent. A feedback message could be of
multiple types, including:

• Invalid Action: An action attempt that does
not match the required format, e.g., clean
teapot is invalid.

• Action on Non-existing Object: An action
attempt that visits objects that are not in the
object set, e.g., pan is non-existent.

• Wrong Action Input: An action attempt that
the prerequisite action has not been completed
(e.g., Cannot perform action add to on ob-
ject shrimp. Because shrimp is raw.) or has
been completed (e.g., wash beaker has been
completed).

• Action on Mismatched Object: An action
attempt that does not match the object, e.g.,
You cannot perform read on potato.

• Action on Occupied Object: An action at-
tempt on occupied objects, e.g., Object pot is
being occupied by another action.

Correspondingly, valid actions will trigger environ-
mental feedback of the following types:

• Action Start: Avoiding previous errors, valid
actions will receive a feedback message con-
taining the specific performing time, marking

3897

Scenario # Actions # Objects Time (min)

Cooking 5.6 5.5 18.9
Household Activity 4.1 3.5 12.8
Laboratory Work 5.3 2.7 16.1

Table 1: Average number of actions and objects per task
in each scenario, and the average shortest completion
time for these tasks.

the start of the action, e.g., You are doing wash
cup, it will take 9 minutes.

• Action Completion: When an action is com-
pleted, the environment will send a message,
e.g., cup is clean, and reset the occupancy
state of the object (cup).

Progress Score The progress score, denoted as
a percentage, reflects the agent’s completion rate
of required actions within the environment, where
the total duration for all actions is considered as
100%. Each action’s contribution to the progress
score is proportionate to its duration. Specifi-
cally, if an action’s duration is ti minutes, its con-
tribution to the progress score is calculated as
si =

(
ti∑n

j=1 tj

)
× 100%, with n representing the

total number of actions. For instance, an action
lasting 5 minutes in a total action duration of 20
minutes contributes 25% to the progress score.

4 Experiments

4.1 Experiment Settings
Task Set Construction In our experiments, we
design three categories of task combinations based
on the number of tasks: # Task=1, # Task=2 and
Task=3 scenarios. In # Task=1 scenario, agents
focus on completing one task (e.g., make tea). For
the other two scenarios, we combine either two or
three tasks from 10 single tasks (e.g., make tea
and wash clothes). Then, we randomly select 10
combined tasks for each scenario.4

Interaction Initially, the environment provides
a comprehensive task instruction that details the
task, action space, and object set. Subsequently,
the agent produces an action based on this instruc-
tion, adhering to a prescribed format specified in
the action space; any deviation is considered in-
valid. To facilitate action recognition by the en-
vironment, regular expressions are employed to
parse actions from responses (e.g., extracting wash

4Appendix B.1 shows examples of single and combined
tasks.

clothes from I will wash clothes). For each ac-
tion execution, the agent must incorporate task in-
structions, previous actions, and feedback from the
environment into LLMs as context.5

Maximum Time Each combined task is allo-
cated a maximum completion time. We set the
time limit for completing a single task at 40 min-
utes, which exceeds the total time required for all
actions in any given task. For tasks that are com-
bined, the time limit is proportionally increased by
the number of tasks involved.

Oracle Performance As shown in Table 2, Ora-
cle represents the optimal performance, including
the shortest completion time and the fastest com-
pletion rate, which are manually calculated. Specif-
ically, we calculate oracle performance using a
greedy-like strategy: always start the non-occupied
actions as early as possible and avoid idleness when
there are actions to perform.6

Finishing The interaction finishes under any of
the following conditions: 1) Agents have com-
pleted all the actions that solve the tasks (i.e., the
progress score reaches 100%); 2) Time has run out;
3) Agents who have performed incorrect actions 5
times in a row are considered to fail the task.

Model Choice We employ a diverse set of lan-
guage models for the agent, including Mistral-7B
by MistralAI (Jiang et al., 2023), OpenChat-3.5
fine-tuned from Mistral’s 7B model (Wang et al.,
2023a), Vicuna-13B fine-tuned from LLaMA’s
13B model with instructions (Chiang et al., 2023),
Mixtral-8x7B, a Mixture-of-Expert version of
Mistral (Mistral AI team, 2023), Google’s Gem-
ini Pro (Team et al., 2023), OpenAI’s GPT-3.5
(gpt-3.5-turbo-1106) (OpenAI, 2022), and GPT-
4 (gpt-4-1106-preview) (OpenAI, 2023). We
employ greedy decoding for all the models with
the temperature set to 0.

4.2 Evaluation Metrics

To comprehensively evaluate the efficient multi-
tasking ability of agents, we consider both time
and score and design the following four metrics:

• Average Progress Score (score, AS): The
average highest progress score achievable by

5Appendix B.2 gives an example of interaction between
the agent and the environment.

6Appendix A.4 shows our algorithm for calculating the
oracle performance.

3898

Model # Task=1 # Task=2 # Task=3

AS ↑ CS ↑ CR ↑ CT ↓ AS ↑ CS ↑ CR ↑ CT ↓ AS ↑ CS ↑ CR ↑ CT ↓
C

oo
ki

ng

Mistral-7B 63.70 3.59 30.00 25.67 42.20 1.49 0 - 39.40 1.06 0 -
OpenChat-3.5 76.30 3.89 30.00 20.33 37.10 1.80 0 - 41.00 1.17 0 -
Vicuna-13B 84.60 4.10 60.00 21.83 48.80 1.76 0 - 26.00 1.03 0 -
Mixtral-8x7B 50.80 3.81 10.00 19.00 40.10 1.99 0 - 27.60 1.17 0 -

Gemini Pro 78.30 3.57 50.00 24.60 31.00 1.75 0 - 18.50 1.26 0 -
GPT-3.5 77.70 3.61 30.00 24.33 52.30 1.87 0 - 33.10 1.23 0 -
GPT-4 98.70 3.48 90.00 28.22 93.50 1.83 70.00 52.57 82.50 1.21 40.00 76.25

+ ReAct 95.00 4.01 90.00 24.33 81.90 2.17 60.00 45.33 51.60 1.50 0 -
+ Reflxion 79.50 3.02 30.00 28.00 52.70 1.26 0 - 36.30 0.87 0 -
+ Self-plan 89.00 3.83 60.00 26.50 64.90 2.05 10.00 37.00 26.20 1.15 0 -

Oracle 100 5.31 100 18.90 100 2.85 100 35.00 100 1.94 100 52.50

H
ou

se
ho

ld
A

ct
iv

ity

Mistral-7B 64.80 6.00 20.00 15.50 45.30 2.46 0 - 49.90 1.78 0 -
OpenChat-3.5 70.50 5.34 30.00 15.67 68.20 2.73 0 - 44.30 1.83 0 -
Vicuna-13B 69.50 5.94 40.00 14.25 45.90 2.34 0 - 24.90 1.69 0 -
Mixtral-8x7B 68.80 6.08 40.00 15.00 51.60 2.85 10.0 31.00 60.20 1.83 10.00 58.00

Gemini Pro 68.10 5.92 40.00 16.50 60.50 3.02 10.00 25.00 40.30 1.93 0 -
GPT-3.5 87.40 5.98 70.00 16.71 63.80 2.57 10.00 36.00 45.30 1.82 0 -
GPT-4 100 5.81 100 17.20 100 2.89 100 34.50 98.40 1.82 90.00 54.78

+ ReAct 100 6.45 100 15.50 99.10 3.48 90.00 28.56 98.40 2.21 80.00 46.50
+ Reflxion 90.00 5.52 60.00 18.17 87.20 1.95 50.00 52.20 78.50 1.41 0 -
+ Self-plan 87.20 6.01 80.00 16.37 84.50 2.80 50.00 35.20 95.30 1.93 60.00 50.16

Oracle 100 7.81 100 12.80 100 4.23 100 23.60 100 2.82 100 35.40

L
ab

or
at

or
y

W
or

k

Mistral-7B 70.80 4.39 30.00 21.67 47.10 2.27 0 - 38.40 1.37 0 -
OpenChat-3.5 65.50 5.07 30.00 13.33 45.80 2.10 0 - 27.50 1.30 0 -
Vicuna-13B 59.60 3.94 20.00 26.00 20.80 1.87 0 - 22.90 1.40 0 -
Mixtral-8x7B 64.10 4.57 40.00 24.25 41.80 2.43 0 - 32.40 1.58 0 -

Gemini Pro 88.00 5.17 70.00 19.57 57.50 2.64 20.00 35.50 25.70 1.61 0 -
GPT-3.5 71.50 4.52 30.00 22.00 47.60 2.17 0 - 37.90 1.52 0 -
GPT-4 97.50 5.32 90.00 18.67 85.30 2.61 50.00 39.20 83.10 1.71 60.00 60.33

+ ReAct 97.50 5.51 90.00 18.00 91.80 2.68 70.00 38.71 93.50 1.96 40.00 49.00
+ Reflxion 94.70 4.86 70.00 18.86 75.90 2.11 40.00 51.50 88.40 1.30 40.00 86.00
+ Self-plan 95.30 5.09 80.00 20.12 83.00 2.79 50.00 36.40 70.00 1.87 60.00 54.66

Oracle 100 6.21 100 16.10 100 4.14 100 24.60 100 2.84 100 35.50

Table 2: Model performance under different task combination settings in TIMEARENA. We report Average Progress
Score (AS), Completion Speed (CS), Task Completion Rate (CR), and Average Completion Time (CT). #Task=n
represents that agents are required to do n tasks altogether. We also list the Oracle result for comparison. The best
results are bolded, and the second best ones are underlined.

an agent, calculated as: AS =
(∑

i∈N Pi

N

)
,

where Pi denotes the maximum progress score
of i-th task that agents can reach, and N de-
notes the number of all the tasks.

• Completion Speed (score per minute, CS):
The average of the highest score divided by
the time taken to achieve it, calculated as:
CS =

(∑
i∈N Pi∑
i∈N Ti

)
, where Ti denotes the time

required to reach Pi of i-th task.

• Task Completion Rate (%, CR): The rate
of successfully completed tasks, calculated as:
CR =

(
S
N

)
, where S denotes the number of

tasks completed successfully. Notably, when
combining tasks, a combined task counts as

one task.

• Average Completion Time (minutes, CT):
The average time taken for completing tasks
successfully: CT =

(∑
i∈S Ti

S

)
.

4.3 Main Results

As shown in Table 2, GPT-4 achieves the best per-
formance across different task combinations. More-
over, the combined tasks are more challenging than
single tasks despite the longer time given. Apart
from GPT-4, most models fail to complete 2 or 3
tasks, showing their limited multitasking abilities
and the challenging nature of our environment.

For open-source models, OpenChat-3.5 and
Vicuna-13B are even better than GPT-3.5, demon-

3899

49.5%50.5%

Vicuna-13B

27.6%

72.4%

OpenChat-3.5

41.4%
58.6%

Mixtral-7Bx8

11.4%

88.6%

Gemini Pro

29.9%

70.1%

GPT-3.5-turbo

9.1%

90.9%

GPT-4

Invalid Action/Object
Repeating Completed Action

Dependency Violation
Object-Mismatched Action

Valid Action Unneccesary Wait Neccesary Wait

Incorrect Action Correct Action

Figure 3: The proportions of correct and incorrect ac-
tions for each language agent.

strating the potential of open-sourced models to de-
velop multitasking capabilities. However, a lower
task completion rate and higher completion speed
indicate that these models quickly complete sim-
ple actions initially but then encounter difficulties.
They either get caught in repetitive actions or fail
to properly segment subsequent tasks, which sig-
nificantly impacts task performance. For example,
initially, potato is unpicked, so the agent first per-
forms pick potato. Subsequently, the agent mis-
takenly opts for cook potato in pot rather than
the correct chop potato, because it incorrectly
decomposes the task.

To further examine whether some prompting
methods benefit agents’ performance, we adopt Re-
Act (Yao et al., 2022) and Reflexion (Shinn et al.,
2023) to GPT-4.7 As shown in Table 2, the perfor-
mance of ReAct is similar to vanilla GPT-4. We
find that the model still struggles to decide when
wait is unnecessary (i.e., there are other available
actions), which would allow for parallel process-
ing. This leads to less efficient execution compared
to oracle performance. As the number of tasks
grows, the Reflexion prompting method degrades
model performance. With more complex tasks, the
lessons learned from history become less accurate
due to complex action interdependencies, leading
to incorrect actions. We also explore the potential
of heuristic algorithms in improving model perfor-
mance. Inspired by Khot et al. (2022), we introduce
self-plan prompting to GPT-4 by letting it decom-
pose tasks following a heuristic algorithm, as illus-

7Details are in Appendix B.3 and B.4.

0

50

100 93.5
79.9

Average Progress Score (AS)

0

1

2 1.83 1.82
Completion Speed (CS)

0

25

50

75 70.0

50.0

Task Completion Rate (CR)

0

20

40

60 52.57 51.6
Average Completion Time (CT)

w/o Constraints w/ Constraints

Figure 4: Comparison of the performance of GPT-4 with
and without resource constraints. We impose constraints
by limiting to a single instance each of pot, fryer, and
oven.

trated in Appendix B.5. Under this method, the
model initially discovers the dependencies among
actions, task descriptions, and objects and estimates
the duration of each action. It then adopts a greedy-
like strategy similar to Oracle Performance, fa-
voring selecting the longest-duration actions that
do not require continuous engagement from the
agent in the task model to formulate a plan. Then,
the agent executes this plan through interactions
with the environment. However, the results indicate
that self-plan prompting is outperformed by vanilla
GPT-4. There are three possible reasons for such
performance: 1) The difficulty in accurately pars-
ing actions and identifying their dependencies; 2)
The reliance on estimating action durations might
introduce cascading errors, leading to inaccurate
results of the greedy-like strategy; 3) The rigid ad-
herence to flawed plans, without adapting to the
dynamic nature of TIMEARENA, leads to its fail-
ure.

4.4 Analysis

Can language agents master multitasking? We
conduct a detailed analysis to investigate the ac-
tions and define six fine-grained types of actions:
1) Correct Actions: Valid Action, Wait (neces-
sary and unnecessary); 2) Incorrect Actions: In-
valid Action/Object, Dependency Violation, Re-
peating Completed Action and Object-Mismatched
Action.8

We calculate the frequency of these actions of
each agent throughout their interactions from three
combinations (#Task=1, #Task=2, and #Task=3)

8Detailed description of different types of actions can be
found in Appendix A.3.

3900

cooking1

(1,a)

cooking2

(2,a)

cooking3

(3,a)

cooking4

(4,a)

cooking5

(5,a)

cooking6

(6,a)

cooking7

(1,b)

cooking8

(2,b)

cooking9

(3,b)

cooking10

(4,b)

household activity1

(5,b)

household activity2

(6,b)

household activity3

(1,c)

household activity4

(2,c)

household activity5

(3,c)

household activity6

(4,c)

household activity7

(5,c)

household activity8

(6,c)

household activity9

(1,d)

household activity10

(2,d)

laboratory work1

(3,d)

laboratory work2

(4,d)

laboratory work3

(5,d)

laboratory work4

(6,d)

laboratory work5

(1,e)

laboratory work6

(2,e)

laboratory work7

(3,e)

laboratory work8

(4,e)

laboratory work9

(5,e)

laboratory work10

(6,e)

Time

Pr
og

re
ss

 S
co

re
Mistral-7B Vicuna-13B Gemini Pro GPT-3.5-turbo GPT-4

Figure 5: Task progress score curves of language agents on two task combinations in TIMEARENA. The names at
the bottom-right indicate the scenario and task number. For example, cooking1 represents the first combination of
tasks in the cooking scenario.

across all the scenarios. The results in Figure 3
show that a significant proportion of invalid actions
are due to dependency violations and mismatches
with objects. Multitasking involves performing sev-
eral tasks simultaneously. As the number of tasks
increases, the complexity of objects and actions es-
calates, leading to intricate dependencies between
actions. Thus, the high proportion of actions that vi-
olate dependencies and mismatch objects suggests
that language agents face challenges in managing
complex action interdependencies during multitask-
ing, indicating a limitation in their multitasking
capabilities.

Are language agents aware of parallel process-
ing? Parallel processing can significantly reduce
the time required for efficient multitasking. If an
agent is capable of parallel processing, it can en-
gage in additional actions instead of unnecessary
waiting for the current action. To answer this ques-
tion, we decompose wait action into two types:
necessary wait and unnecessary wait. The
former represents that no actions can currently be
performed, requiring waiting for other actions to
be completed. In particular, we report the maxi-

mum number of necessary wait. Unnecessary
wait indicates that there are other action options
available. Figure 3 shows that wait constitutes
over half of the valid actions performed by differ-
ent LLMs, and necessary wait only accounts for
a small part of it. This indicates a tendency for
agents to engage in unnecessary waiting, showing
their ignorance of parallel processing and inability
to complete tasks in minimal time (Table 2).

Do resource constraints affect efficient mul-
titasking of language agents? Resource con-
straints refer to limitations in the availability of
resources (e.g., the number of objects) necessary
for task completion, which is rather common in real
life. To design resource constraints, we first select
three objects: pot, fryer and oven in the cooking
scenario, and choose # Task=2 setting in Table 2.
Then, we set that there is only one instance of each
of the three objects, simulating the limitation of
resources in the environment. Figure 4 compares
GPT-4’s performance before and after applying
these constraints. We find that the constraints do
not affect the task completion time or completion
speed, revealing that GPT-4 rarely attempts to pro-

3901

cess tasks in parallel. However, a noticeable de-
cline in both completion rate and progress score
indicates that the constraints prevent the models
from better comprehending and decomposing mul-
tiple tasks.

Language agents are trapped in an infinite
loop. To delve into why language agents strug-
gle with multiple tasks, we analyze the progress
score changes over time. As illustrated in Figure 5,
Vicuna, Mistral, Gemini and GPT-3.5 often cease
scoring without completing all the tasks, maintain-
ing low scores until time runs out (e.g., (5,b), (2,c)
and (6,d)). We further examine their actions during
these periods and find that they always perform
incorrect actions and waiting alternately. Since
wait is a valid action, repeatedly alternating be-
tween waiting and incorrect actions does not lead
to task failure, but neither does it contribute to an
increase in scores. To find out whether agents wait
for good reasons, we ask them to explain each ac-
tion via the chain-of-thought prompting strategy,
and they often believe wait can pause incorrect
actions. However, they find it hard to adjust their
incorrect actions based on feedback after waiting,
resulting in them being trapped in infinite loops.

5 Conclusion

In this paper, we introduce TIMEARENA, a text-
based simulated environment designed to incor-
porate the notion of time. TIMEARENA extends
beyond simply acknowledging the dependency of
actions by also considering their duration, an essen-
tial factor in time modeling. Using TIMEARENA,
we evaluate the multitasking and parallel process-
ing capability of language agents. Our findings
indicate that language agents still have significant
room for improvement when completing multiple
tasks in dynamic environments in a minimal time,
highlighting an area for future research.

Limitations

In TIMEARENA, we implement detailed descrip-
tions of tasks and environments, along with fine-
grained textual feedback to simulate interactions.
However, TIMEARENA is still designed as a textual
simulation for LLMs, lacking visual information
that might be necessary for agents to succeed in
real-world tasks. For example, in the laboratory
work scenario, it is challenging to completely rep-
resent chemical reactions through text due to their
complexity. The number of tasks and scenarios is

limited, while the number of multitasking scenar-
ios that allow parallel processing is large in real
life. Moreover, in TIMEARENA, agents interact
with the environment only through actions that are
explicitly presented in action prompts, rather than
exploring freely. Also, whether an action occupies
an agent sometimes depends on specific conditions.
For instance, the action cook beef is classified as
non-occupying in TIMEARENA, implying that it
does not engage agents continuously. Yet, in real-
ity, this action requires attention, such as turning
the beef to prevent burning, a detail TIMEARENA

overlooks, potentially reducing the realism of our
simulation.

Ethical Statement

We hereby acknowledge that all authors of this
work are aware of the provided ACL Code of Ethics
and honor the code of conduct.

Use of Human Annotations Our institution re-
cruited three annotators to implement the task cre-
ation for three scenarios. We ensure the privacy
rights of the annotators are respected during the
annotation process. The annotators receive com-
pensation exceeding the local minimum wage and
have consented to tasks generated for TIMEARENA

for research purposes.

Risks The TIMEARENA in our experiment is cre-
ated by human annotators, and we further examine
them to guarantee that they are devoid of socially
harmful or toxic language. However, evaluating
the data quality of tasks is based on common sense,
which can vary among individuals from diverse
backgrounds.

Acknowledgement

We would like to thank Xintao Wang, Ruihan Yang,
Tinghui Zhu from Fudan University for their valu-
able comments and suggestions for the manuscript.
We would also like to thank Peter Jansen from
University of Arizona and Bodhisattwa Prasad Ma-
jumder from Allen Institute for AI for fruitful dis-
cussions that helped shape this project at an early
stage. This work is funded by Science and Technol-
ogy Commission of Shanghai Municipality Grant
(No. 22511105902).

3902

References
Saaket Agashe, Yue Fan, and Xin Eric Wang. 2023.

Evaluating multi-agent coordination abilities in large
language models.

Elif Akata, Lion Schulz, Julian Coda-Forno, Seong Joon
Oh, Matthias Bethge, and Eric Schulz. 2023. Playing
repeated games with large language models.

James F Allen. 1991. Planning as temporal reasoning.
KR, 91:3–14.

Jiangjie Chen, Siyu Yuan, Rong Ye, Bodhisattwa Prasad
Majumder, and Kyle Richardson. 2023a. Put your
money where your mouth is: Evaluating strategic
planning and execution of llm agents in an auction
arena. arXiv preprint arXiv:2310.05746.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,
Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu,
Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong,
Ruobing Xie, Zhiyuan Liu, Maosong Sun, and Jie
Zhou. 2023b. Agentverse: Facilitating multi-agent
collaboration and exploring emergent behaviors.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna.
lmsys. org (accessed 14 April 2023).

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang
Yu, Haotian Wang, Ming Liu, and Bing Qin. 2023.
Timebench: A comprehensive evaluation of temporal
reasoning abilities in large language models.

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane
Durante, Yusuke Noda, Zilong Zheng, Song-Chun
Zhu, Demetri Terzopoulos, Li Fei-Fei, and Jianfeng
Gao. 2023. Mindagent: Emergent gaming interac-
tion.

Xinyu Hua, Zhe Hu, and Lu Wang. 2019. Argument
generation with retrieval, planning, and realization.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 2661–
2672, Florence, Italy. Association for Computational
Linguistics.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2022. Decomposed prompting: A modular
approach for solving complex tasks. arXiv preprint
arXiv:2210.02406.

Xiangzhe Kong, Jialiang Huang, Ziquan Tung, Jian
Guan, and Minlie Huang. 2021. Stylized story gen-
eration with style-guided planning. In Findings of

the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 2430–2436, Online. Association
for Computational Linguistics.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Ao-
han Zeng, Zhengxiao Du, Chenhui Zhang, Sheng
Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie
Huang, Yuxiao Dong, and Jie Tang. 2023. Agent-
bench: Evaluating llms as agents.

Puneet Mathur, Rajiv Jain, Franck Dernoncourt, Vlad
Morariu, Quan Hung Tran, and Dinesh Manocha.
2021. TIMERS: Document-level temporal relation
extraction. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 524–533, Online. Association for Computa-
tional Linguistics.

Puneet Mathur, Vlad Morariu, Verena Kaynig-Fittkau,
Jiuxiang Gu, Franck Dernoncourt, Quan Tran, Ani
Nenkova, Dinesh Manocha, and Rajiv Jain. 2022.
DocTime: A document-level temporal dependency
graph parser. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 993–1009, Seattle, United States.
Association for Computational Linguistics.

Mistral AI team. 2023. Mixtral of experts. Accessed:
2023-12-15.

Gabriel Mukobi, Hannah Erlebach, Niklas Lauffer,
Lewis Hammond, Alan Chan, and Jesse Clifton. 2023.
Welfare diplomacy: Benchmarking language model
cooperation. arXiv preprint arXiv:2310.08901.

OpenAI. 2022. Chatgpt.

OpenAI. 2023. Gpt-4 technical report.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai,
Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. 2023. Generative agents: Interactive sim-
ulacra of human behavior.

Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, and
Kam-Fai Wong. 2018. Deep Dyna-Q: Integrating
planning for task-completion dialogue policy learn-
ing. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2182–2192, Melbourne,
Australia. Association for Computational Linguistics.

Stuart J Russell and Peter Norvig. 2010. Artificial intel-
ligence a modern approach. London.

Roger C Schank and Robert P Abelson. 1975. Scripts,
plans, and knowledge. In IJCAI, volume 75, pages
151–157.

Roger C Schank and Robert P Abelson. 2013. Scripts,
plans, goals, and understanding: An inquiry into
human knowledge structures. Psychology Press.

3903

http://arxiv.org/abs/2310.03903
http://arxiv.org/abs/2310.03903
http://arxiv.org/abs/2305.16867
http://arxiv.org/abs/2305.16867
http://arxiv.org/abs/2308.10848
http://arxiv.org/abs/2308.10848
http://arxiv.org/abs/2311.17667
http://arxiv.org/abs/2311.17667
http://arxiv.org/abs/2309.09971
http://arxiv.org/abs/2309.09971
https://doi.org/10.18653/v1/P19-1255
https://doi.org/10.18653/v1/P19-1255
https://doi.org/10.18653/v1/2021.findings-acl.215
https://doi.org/10.18653/v1/2021.findings-acl.215
http://arxiv.org/abs/2308.03688
http://arxiv.org/abs/2308.03688
https://doi.org/10.18653/v1/2021.acl-short.67
https://doi.org/10.18653/v1/2021.acl-short.67
https://doi.org/10.18653/v1/2022.naacl-main.73
https://doi.org/10.18653/v1/2022.naacl-main.73
https://mistral.ai/news/mixtral-of-experts/
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2304.03442
http://arxiv.org/abs/2304.03442
https://doi.org/10.18653/v1/P18-1203
https://doi.org/10.18653/v1/P18-1203
https://doi.org/10.18653/v1/P18-1203

Chao Shang, Guangtao Wang, Peng Qi, and Jing Huang.
2022. Improving time sensitivity for question answer-
ing over temporal knowledge graphs. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8017–8026, Dublin, Ireland. Association for
Computational Linguistics.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang,
Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li,
and Yueting Zhuang. 2023. Taskbench: Benchmark-
ing large language models for task automation.

Noah Shinn, Beck Labash, and Ashwin Gopinath.
2023. Reflexion: an autonomous agent with dy-
namic memory and self-reflection. arXiv preprint
arXiv:2303.11366.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2020. Alfworld: Aligning text and em-
bodied environments for interactive learning. arXiv
preprint arXiv:2010.03768.

Oliviero Stock. 1998. Spatial and temporal reasoning.
Springer Science & Business Media.

Qingyu Tan, Hwee Tou Ng, and Lidong Bing. 2023.
Towards benchmarking and improving the temporal
reasoning capability of large language models. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 14820–14835, Toronto, Canada.
Association for Computational Linguistics.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Gemini Team and Google. 2023. Gemini: A family of
highly capable multimodal models.

Siddharth Vashishtha, Benjamin Van Durme, and
Aaron Steven White. 2019. Fine-grained temporal
relation extraction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 2906–2919, Florence, Italy. Asso-
ciation for Computational Linguistics.

Lluis Vila. 1994. A survey on temporal reasoning in
artificial intelligence. Ai Communications, 7(1):4–
28.

Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li,
Sen Song, and Yang Liu. 2023a. Openchat: Advanc-
ing open-source language models with mixed-quality
data. arXiv preprint arXiv:2309.11235.

Haoyu Wang, Hongming Zhang, Yuqian Deng, Jacob
Gardner, Dan Roth, and Muhao Chen. 2023b. Ex-
tracting or guessing? improving faithfulness of event
temporal relation extraction. In Proceedings of the

17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 541–
553, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and
Prithviraj Ammanabrolu. 2022. ScienceWorld: Is
your agent smarter than a 5th grader? In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11279–11298,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Yuqing Wang and Yun Zhao. 2023. Tram: Benchmark-
ing temporal reasoning for large language models.
arXiv preprint arXiv:2310.00835.

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and
Yitao Liang. 2023c. Describe, explain, plan and se-
lect: Interactive planning with large language models
enables open-world multi-task agents. arXiv preprint
arXiv:2302.01560.

Yue Wu, Xuan Tang, Tom M. Mitchell, and Yuanzhi Li.
2023. Smartplay: A benchmark for llms as intelligent
agents.

Sen Yang, Xin Li, Lidong Bing, and Wai Lam. 2023.
Once upon a time in graph: Relative-time pretrain-
ing for complex temporal reasoning. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 11879–11895,
Singapore. Association for Computational Linguis-
tics.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Siyu Yuan, Jiangjie Chen, Ziquan Fu, Xuyang Ge, So-
ham Shah, Charles Jankowski, Yanghua Xiao, and
Deqing Yang. 2023. Distilling script knowledge from
large language models for constrained language plan-
ning. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 4303–4325, Toronto,
Canada. Association for Computational Linguistics.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong
Zhou, Yilun Du, Joshua B. Tenenbaum, Tianmin Shu,
and Chuang Gan. 2023. Building cooperative embod-
ied agents modularly with large language models.

Michael Zhang and Eunsol Choi. 2021. SituatedQA: In-
corporating extra-linguistic contexts into QA. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 7371–
7387, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang,
Haofei Yu, Zhengyang Qi, Louis-Philippe Morency,
Yonatan Bisk, Daniel Fried, Graham Neubig, and
Maarten Sap. 2023. Sotopia: Interactive evaluation
for social intelligence in language agents.

3904

https://doi.org/10.18653/v1/2022.acl-long.552
https://doi.org/10.18653/v1/2022.acl-long.552
http://arxiv.org/abs/2311.18760
http://arxiv.org/abs/2311.18760
https://doi.org/10.18653/v1/2023.acl-long.828
https://doi.org/10.18653/v1/2023.acl-long.828
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
https://doi.org/10.18653/v1/P19-1280
https://doi.org/10.18653/v1/P19-1280
https://doi.org/10.18653/v1/2023.eacl-main.39
https://doi.org/10.18653/v1/2023.eacl-main.39
https://doi.org/10.18653/v1/2023.eacl-main.39
https://doi.org/10.18653/v1/2022.emnlp-main.775
https://doi.org/10.18653/v1/2022.emnlp-main.775
http://arxiv.org/abs/2310.01557
http://arxiv.org/abs/2310.01557
https://doi.org/10.18653/v1/2023.emnlp-main.728
https://doi.org/10.18653/v1/2023.emnlp-main.728
https://doi.org/10.18653/v1/2023.acl-long.236
https://doi.org/10.18653/v1/2023.acl-long.236
https://doi.org/10.18653/v1/2023.acl-long.236
http://arxiv.org/abs/2307.02485
http://arxiv.org/abs/2307.02485
https://doi.org/10.18653/v1/2021.emnlp-main.586
https://doi.org/10.18653/v1/2021.emnlp-main.586
http://arxiv.org/abs/2310.11667
http://arxiv.org/abs/2310.11667

A Details of TIMEARENA

A.1 Tasks
TIMEARENA contains 30 tasks in cooking, house-
hold activity, and laboratory work scenarios. To
illustrate how to complete a task, we show the flow
chart for each task in Figure 6, Figure 7 and Fig-
ure 8.

A.2 Actions
The environment implements 46 actions, and each
action has a description. We show the details of
these actions in Table 3.

A.3 Action Types
As shown in Table 4, we define 4 incorrect action
types and 2 correct action types for analyzing why
agents fail in multitasking.

A.4 Greedy-Like Algorithm
We show the greedy-like algorithm in Algorithm 1.

B Examples of TIMEARENA

B.1 Tasks
Table 5, 6 and 7 present some examples of task
combinations in TIMEARENA for a better under-
standing.

B.2 Interaction
Table 5 shows an example of interaction between an
agent and the environment in the cooking scenario.

B.3 ReAct
We ask models to think before each action. Table 9
shows the prompt of the ReAct method.

B.4 Reflexion
We ask models to reflect on their wrong actions and
retry. Table 10 shows the prompt of the Reflexion
method.

B.5 Self-plan
Table 11 shows the prompt of the self-plan method.

Algorithm 1: Greedy-Like Algorithm for
Minimal Time Calculation

Input: Set of actions A, Durations T ,
Dependencies p(A).

Output: Minimal time Tmin.

1 Toptimal ← +∞.
2 Define non-occupied actions A∗ and

occupied actions A′ from A.
3 Define the permutations of A∗ as {A∗′}.
4 foreach A∗′ ∈ {A∗′} do
5 A ← concatenate(A∗′,A′).
6 Initialize Action_list as an empty list.
7 foreach ai ∈ A do
8 P ← BFS(ai, p(ai)) to collect

prerequisites.
9 foreach pi ∈ P do

10 if pi ∈ A then
11 Action_list.append(pi).
12 Remove pi from A.
13 end
14 end
15 Action_list.append(ai).
16 end
17 Tmin ← 0.
18 while not empty A∗′ or A′ do
19 foreach ai ∈ Action_list do
20 if check_dependency(ai) then
21 if ai ∈ A∗′ then
22 Tmin ← Tmin + 1.
23 Remove ai from A∗′.
24 else
25 Tmin ← Tmin + T (ai).
26 Remove ai from A′.
27 end
28 break.
29 end
30 end
31 Increment Tmin by 1 if no action is

performed.
32 end
33 if Toptimal > Tmin then
34 Toptimal = Tmin

35 end
36 end

3905

Action Description

pick OBJ Pick the unpicked item
cook OBJ1 in OBJ2 Cook the raw item until it’s cooked through
chop OBJ Chop the whole item into sliced pieces
fry OBJ1 in OBJ2 Fry the raw item until it is fried to perfection
wash OBJ Wash the dirty item to make clean
bake OBJ1 in OBJ2 Bake the raw item in the oven until it’s roasted
activate OBJ Activate the inactive device to turn it active
pour OBJ1 into OBJ2 Pour the liquid in item into the empty container until it is full
brew OBJ1 with OBJ2 Brew the dry item leaves with the container until they’re steeped
gather OBJ Gather the scattered items until it is collected
scrape OBJ1 into OBJ2 Scrape the contents from the full item into th empty item
place OBJ1 into OBJ2 Place the unplaced item into the right place
fill OBJ1 with OBJ2 Fill the container with something
hoe OBJ Hoe the uncultivated item until it is cultivated and ready for planting
weed_with OBJ Weed with the item
set_up OBJ Set up the item that is not set yet until it is already set
iron OBJ Iron the wrinkled item until they are smooth
put OBJ1 on OBJ2 Put the item on the right place
add OBJ1 to OBJ2 Add one item to the container
rinse OBJ Rinse the dry item
find OBJ Find the missed item so that it is found and can be used
heat OBJ Heat the cool item until it is hot
dilute OBJ Dilute the concentrated item until it is diluted
cut OBJ Cut the whole item into divided pieces
dissolve OBJ1 in OBJ2 Dissolve the solid item in the liquid until it is dissolved
polish OBJ Polish the rusty item until it is polished
empty OBJ Empty the full item until it is empty
hanging OBJ Hang the item
water OBJ1 by OBJ2 Water the item by something
trim OBJ Trim the overgrown item
plant OBJ Plant the uncultivated item until it is planted
store OBJ Store the unstored item
stir OBJ1 with OBJ2 Stir the separate liquid in item with something until it is homogeneous
soak OBJ1 in OBJ2 Soak the dry item in something until it is wet
mop OBJ Mop the dirty item until it is clean
read OBJ Read the unknown item
fold OBJ Fold the spread item until it is tidy
crush OBJ Crush the intact item until it is crushed
cool OBJ Cool the hot item until it is cool
dry OBJ Dry the item until it is dry
wipe OBJ Wipe the dirty item until it is clean
put OBJ1 in OBJ2 Put the item in something
label OBJ Give the ambiguous item a label
crystallize OBJ Crystallize the fluid item until it is crystallized
filter OBJ Filter the mixed item until it is refined
wait Pass the current time without doing anything

Table 3: Details of actions with descriptions.

3906

Type Subtype Explanation Example: Make tea

Incorrect
Actions

Invalid Action/Object
An action does not in the
action space or non-existent
objects are visited.

<Valid Actions>
activate; wash; brew with; pour into
<Objects>
tea(dry); kettle(inactive);
teapot(dirty); cup(dirty)
<Trajectory>
T=1: clean teapot
T=2: brew tea with teapot
T=3: wash teapot
T=4: wash kettle
T=5: wash teapot
T=6: activate kettle
T=7: wait
...

Repeating Completed Action
An action is in the action space and
matches the objects, but it
has already been completed.

Dependency Violation

An action is in the action space
and matches the objects, but the
necessary prerequisite actions
have not been completed.

Object-Mismatched Action
An action is in the action space
and the object is available,
but they do not match.

Correct
Actions

Valid Action An action is in the action space
and matches the objects.

Wait An action is used to pass the
current time.

Table 4: Action types and their explanations with an example.

As an AI agent , your objective is to efficiently complete a series of tasks as
described. You must adhere to the specific requirements and constraints of each task
, including dependencies and timing. Efficiency is key; complete all tasks in the
shortest possible time. I will provide instructions regarding actions and objects.

** Action Protocol **:
- You can perform only one action at a time.
- After each observation from the environment , output an action based on that
observation and the instructions.
- Actions fall into two categories:
- Continuous Actions: Perform these actions until completion (e.g., "wash OBJ").
- Autonomous Actions: These progress over time , allowing simultaneous tasks (e.g., "
heat OBJ").
- Follow the "Valid Actions" format for your output (e.g., "wash cup").
- If no action is required , use "wait" to skip the current time.
- Output the action explicitly (e.g., "wash cup").
- Select object names (OBJ) from the list of Available Objects (e.g., use "rice"
instead of "cooked rice").

Task 1
<Description >
- Prepare a noodle dish , which consists of cooked noodle , fried mushrooms and shrimp
.
<Valid Actions and Usages >
- pick OBJ: Pick the unpicked item.
- cook OBJ1 in OBJ2: Cook the raw item until it's cooked through.
- chop OBJ: Chop the whole item into sliced pieces.
- fry OBJ1 in OBJ2: Fry the raw item until it is fried to perfection.
- add OBJ1 to OBJ2: Add one item to the container.
- wash OBJ: Wash the dirty item to make clean.
- wait: pass the current time without doing anything.

All Available Objects (OBJ)
noodle; mushroom; shrimp; fryer; pot; dish

**The Initial States of Objects **
noodle: unpicked; mushroom: unpicked; shrimp: unpicked; fryer: empty; pot: empty;
dish: dirty

Table 5: An example of # Task=1 scenario.

3907

(a) The first task in the cooking scenario. (b) The second task in the cooking scenario.

(c) The third task in the cooking scenario. (d) The fourth task in the cooking scenario.

(e) The fifth task in the cooking scenario. (f) The sixth task in the cooking scenario.

(g) The seventh task in the cooking scenario. (h) The eighth task in the cooking scenario.

(i) The ninth task in the cooking scenario. (j) The tenth task in the cooking scenario.

Figure 6: The action dependencies and durations for the ten tasks in the cooking scenario. Actions that occupy the
agent, preventing them from doing anything else, are indicated with a blue background. In contrast, actions not
occupying the agent, allowing for parallel tasks, are marked with a red background.

3908

(a) The first task in the household activity scenario. (b) The second task in the household activity scenario.

(c) The third task in the household activity scenario. (d) The fourth task in the household activity scenario.

(e) The fifth task in the household activity scenario. (f) The sixth task in the household activity scenario.

(g) The seventh task in the household activity scenario. (h) The eighth task in the household activity scenario.

(i) The ninth task in the household activity scenario. (j) The tenth task in the household activity scenario.

Figure 7: The action dependencies and durations for the ten tasks in the household activity scenario. Actions that
occupy the agent, preventing them from doing anything else, are indicated with a blue background. In contrast,
actions that do not occupy the agent, allowing for parallel tasks, are marked with a red background.

3909

(a) The first task in the laboratory work scenario. (b) The second task in the laboratory work scenario.

(c) The third task in the laboratory work scenario. (d) The fourth task in the laboratory work scenario.

(e) The fifth task in the laboratory work scenario. (f) The sixth task in the laboratory work scenario.

(g) The seventh task in the laboratory work scenario. (h) The eighth task in the laboratory work scenario.

(i) The ninth task in the laboratory work scenario. (j) The tenth task in the laboratory work scenario.

Figure 8: The action dependencies and durations for the ten tasks in the laboratory work scenario. Actions that
occupy the agent, preventing them from doing anything else, are indicated with a blue background. In contrast,
actions that do not occupy the agent, allowing for parallel tasks, are marked with a red background.

3910

As an AI agent , your objective is to efficiently complete a series of tasks as
described. You must adhere to the specific requirements and constraints of each task
, including dependencies and timing. Efficiency is key; complete all tasks in the
shortest possible time. I will provide instructions regarding actions and objects.

** Action Protocol **:
- You can perform only one action at a time.
- After each observation from the environment , output an action based on that
observation and the instructions.
- Actions fall into two categories:
- Continuous Actions: Perform these actions until completion (e.g., "wash OBJ").
- Autonomous Actions: These progress over time , allowing simultaneous tasks (e.g., "
heat OBJ").
- Follow the "Valid Actions" format for your output (e.g., "wash cup").
- If no action is required , use "wait" to skip the current time.
- Output the action explicitly (e.g., "wash cup").
- Select object names (OBJ) from the list of Available Objects (e.g., use "rice"
instead of "cooked rice").

Task 1
<Description >
- Prepare and bake a cheese and tomato pizza
<Valid Actions and Usages >
- pick OBJ: Pick the unpicked item.
- chop OBJ: Chop the whole item into sliced pieces.
- wash OBJ: Wash the dirty item to make clean.
- add OBJ1 to OBJ2: Add one item to the container.
- bake OBJ1 in OBJ2: Bake the raw item in the oven until it's roasted.
- wait: pass the current time without doing anything.

Task 2
<Description >
- Prepare chicken and potato stir -fry , which consists of fried chicken and fried
potato.
<Valid Actions and Usages >
- pick OBJ: Pick the unpicked item.
- chop OBJ: Chop the whole item into sliced pieces.
- fry OBJ1 in OBJ2: Fry the raw item until it is fried to perfection.
- add OBJ1 to OBJ2: Add one item to the container.
- wash OBJ: Wash the dirty item to make clean.
- wait: pass the current time without doing anything.

All Available Objects(OBJ)
dish_1; dish_2; dough; cheese; tomato; oven; chicken; potato; fryer

**The Initial States of Objects **
dish_1: dirty; dish_2: dirty; dough: unpicked; cheese: unpicked; tomato: unpicked;
oven: empty; chicken: unpicked; potato: unpicked; fryer: empty

Table 6: An example of # Task=2 scenario.

3911

As an AI agent , your objective is to efficiently complete a series of tasks as
described. You must adhere to the specific requirements and constraints of each task
, including dependencies and timing. Efficiency is key; complete all tasks in the
shortest possible time. I will provide instructions regarding actions and objects.

** Action Protocol **:
- You can perform only one action at a time.
- After each observation from the environment , output an action based on that
observation and the instructions.
- Actions fall into two categories:
- Continuous Actions: Perform these actions until completion (e.g., "wash OBJ").
- Autonomous Actions: These progress over time , allowing simultaneous tasks (e.g., "
heat OBJ").
- Follow the "Valid Actions" format for your output (e.g., "wash cup").
- If no action is required , use "wait" to skip the current time.
- Output the action explicitly (e.g., "wash cup").
- Select object names (OBJ) from the list of Available Objects (e.g., use "rice"
instead of "cooked rice").

Task 1
<Description >
- Prepare a garden bed for planting flowers by using sprinkling can filled with
herbicide , hoeing , and weeding
<Valid Actions and Usages >
- add OBJ1 to OBJ2: Add one item to the container.
- weed_with OBJ: Weed with the item.
- hoe OBJ: Hoe the uncultivated item until it is cultivated and ready for planting.
- plant OBJ: Plant the uncultivated item until it is planted
- wait: pass the current time without doing anything.

Task 2
<Description >
- Iron a suit and store it properly
<Valid Actions and Usages >
- set_up OBJ: Set up the item that is not set yet until it is already set.
- put OBJ1 on OBJ2: Put the item on the right place.
- heat OBJ: Heat the cool item until it is hot.
- iron OBJ: Iron the wrinkled item until they are smooth.
- store OBJ: Store the unstored item\nwait: pass the current time without doing
anything.

Task 3
<Description >
- Make a cup of coffee
<Valid Actions and Usages >
- add OBJ1 to OBJ2: Add one item to the container.
- activate OBJ: Activate the inactive device to turn it active.
- wash OBJ: Wash the dirty item to make clean.
- pour OBJ1 into OBJ2: Pour the liquid in item into the empty container until it is
full.
- wait: pass the current time without doing anything.

All Available Objects(OBJ)
sprinkling_can; herbicide; land; flower; ironing_board; suit; iron; coffee_beans;
coffee_machine; water; cup

**The Initial States of Objects **
sprinkling_can: empty; herbicide: not added; land: uncultivated; flower:
uncultivated; ironing_board: not set yet; suit: not put on right place; iron: cool;
coffee_beans: not added; coffee_machine: empty; water: not added; cup: dirty

Table 7: An example of # Task=3 scenario.

3912

<|Environment |>:
As an AI agent , your objective is to efficiently complete a series of tasks as
described. You must adhere to the specific requirements and constraints of each task
, including dependencies and timing. Efficiency is key; complete all tasks in the
shortest possible time. I will provide instructions regarding actions and objects.

** Action Protocol **:
- You can perform only one action at a time.
- After each observation from the environment , output an action based on that
observation and the instructions.
- Actions fall into two categories:
- Continuous Actions: Perform these actions until completion (e.g., "wash OBJ").
- Autonomous Actions: These progress over time , allowing simultaneous tasks (e.g., "
heat OBJ").
- Follow the "Valid Actions" format for your output (e.g., "wash cup").
- If no action is required , use "wait" to skip the current time.
- Output the action explicitly (e.g., "wash cup").
- Select object names (OBJ) from the list of Available Objects (e.g., use "rice"
instead of "cooked rice").

Task 1
<Description >
- Make a dish of beef fried rice , which consists of cooked rice and fried beef.
<Valid Actions and Usages >
- wash OBJ: Wash the dirty item to make clean.
- pick OBJ: Pick the unpicked item.
- cook OBJ1 in OBJ2: Cook the raw item until it's cooked through.
- chop OBJ: Chop the whole item into sliced pieces.
- fry OBJ1 in OBJ2: Fry the raw item until it is fried to perfection.
- add OBJ1 to OBJ2: Add one item to the container.
- wait: pass the current time without doing anything.

All Available Objects(OBJ)
rice; beef; pot; fryer; dish

**The Initial States of Objects **
rice: unpicked; beef: unpicked; pot: empty; fryer: empty; dish: dirty

<|Environment |>:
In t=1, your action is:

<|Agent|>:
pick dish

<|Environment |>:
You are doing ``wash dish ``, it will take 2 minutes.
rice is picked.

In t=3, your action is:

<|Agent|>:
cook rice in pot

<|Environment |>:
You are doing ``cook rice in pot ``, it will take 4 minutes.

In t=4, your action is:

<|Agent|>:
wait

<|Environment |>:
You wait for one minute.

...

Table 8: An example of interaction in cooking scenario.

3913

<|Environment |>:
As an AI agent , your objective is to efficiently complete a series of tasks as
described. You must adhere to the specific requirements and constraints of each task
, including dependencies and timing. Efficiency is key; complete all tasks in the
shortest possible time. I will provide instructions regarding actions and objects.

** Action Protocol **:
- You can perform only one action at a time.
- After each observation from the environment , output an action based on that
observation and the instructions.
- Actions fall into two categories:
- Continuous Actions: Perform these actions until completion (e.g., "wash OBJ").
- Autonomous Actions: These progress over time , allowing simultaneous tasks (e.g., "
heat OBJ").
- Follow the "Valid Actions" format for your output (e.g., "wash cup").
- If no action is required , use "wait" to skip the current time.
- Output the action explicitly (e.g., "wash cup").
- Select object names (OBJ) from the list of Available Objects (e.g., use "rice"
instead of "cooked rice").

Task 1
<Description >
- Make a dish of beef fried rice , which consists of cooked rice and fried beef.
<Valid Actions and Usages >
- wash OBJ: Wash the dirty item to make clean.
- pick OBJ: Pick the unpicked item.
- cook OBJ1 in OBJ2: Cook the raw item until it's cooked through.
- chop OBJ: Chop the whole item into sliced pieces.
- fry OBJ1 in OBJ2: Fry the raw item until it is fried to perfection.
- add OBJ1 to OBJ2: Add one item to the container.
- wait: pass the current time without doing anything.

All Available Objects(OBJ)
rice; beef; pot; fryer; dish

**The Initial States of Objects **
rice: unpicked; beef: unpicked; pot: empty; fryer: empty; dish: dirty

Please think about the interaction history between the agent and the environment ,
consider the states of the agent and objects and the task instructions with the goal
of minimizing all task completion time.

Try to identify the most efficient action (i.e., parallel performing) to take next.
If there are other actions that can be executed , try not to wait.
Finally , output your thoughts on the next action.
...

Table 9: Prompt of ReAct method in cooking scenario.

3914

<|Environment |>:
As an AI agent , your objective is to efficiently complete a series of tasks as
described. You must adhere to the specific requirements and constraints of each task
, including dependencies and timing. Efficiency is key; complete all tasks in the
shortest possible time. I will provide instructions regarding actions and objects.

** Action Protocol **:
- You can perform only one action at a time.
- After each observation from the environment , output an action based on that
observation and the instructions.
- Actions fall into two categories:
- Continuous Actions: Perform these actions until completion (e.g., "wash OBJ").
- Autonomous Actions: These progress over time , allowing simultaneous tasks (e.g., "
heat OBJ").
- Follow the "Valid Actions" format for your output (e.g., "wash cup").
- If no action is required , use "wait" to skip the current time.
- Output the action explicitly (e.g., "wash cup").
- Select object names (OBJ) from the list of Available Objects (e.g., use "rice"
instead of "cooked rice").

Task 1
<Description >
- Make a dish of beef fried rice , which consists of cooked rice and fried beef.
<Valid Actions and Usages >
- wash OBJ: Wash the dirty item to make clean.
- pick OBJ: Pick the unpicked item.
- cook OBJ1 in OBJ2: Cook the raw item until it's cooked through.
- chop OBJ: Chop the whole item into sliced pieces.
- fry OBJ1 in OBJ2: Fry the raw item until it is fried to perfection.
- add OBJ1 to OBJ2: Add one item to the container.
- wait: pass the current time without doing anything.

All Available Objects(OBJ)
rice; beef; pot; fryer; dish

**The Initial States of Objects **
rice: unpicked; beef: unpicked; pot: empty; fryer: empty; dish: dirty

<|Agent|>:
chop rice in pot

<|Environment |>:
Invalid action!

You are an advanced reasoning agent capable of improving through self -reflection.
Review and reflect on the historical interactions between the agent and the
environment.
Please diagnose a possible reason for the failure and devise a new , concise plan
that aims to mitigate the failure.
...

Table 10: Prompt of Reflexion method in cooking scenario.

3915

<|Environment |>:
As an AI agent , your objective is to efficiently complete a series of tasks as
described. You must adhere to the specific requirements and constraints of each task
, including dependencies and timing. Efficiency is key; complete all tasks in the
shortest possible time. I will provide instructions regarding actions and objects.

** Action Protocol **:
- You can perform only one action at a time.
- After each observation from the environment , output an action based on that
observation and the instructions.
- Actions fall into two categories:
- Continuous Actions: Perform these actions until completion (e.g., "wash OBJ").
- Autonomous Actions: These progress over time , allowing simultaneous tasks (e.g., "
heat OBJ").
- Follow the "Valid Actions" format for your output (e.g., "wash cup").
- If no action is required , use "wait" to skip the current time.
- Output the action explicitly (e.g., "wash cup").
- Select object names (OBJ) from the list of Available Objects (e.g., use "rice"
instead of "cooked rice").

Task 1
<Description >
- Make a dish of beef fried rice , which consists of cooked rice and fried beef.
<Valid Actions and Usages >
- wash OBJ: Wash the dirty item to make clean.
- pick OBJ: Pick the unpicked item.
- cook OBJ1 in OBJ2: Cook the raw item until it's cooked through.
- chop OBJ: Chop the whole item into sliced pieces.
- fry OBJ1 in OBJ2: Fry the raw item until it is fried to perfection.
- add OBJ1 to OBJ2: Add one item to the container.
- wait: pass the current time without doing anything.

All Available Objects(OBJ)
rice; beef; pot; fryer; dish

**The Initial States of Objects **
rice: unpicked; beef: unpicked; pot: empty; fryer: empty; dish: dirty

Given the list of valid actions , available objects , and the task descriptions (goal)
, please perform the following steps:
- Identify and list all of the necessary actions required to accomplish the task 's
goal.
- For each action , determine and note the specific objects that are required.
- Assess and map out any dependencies between actions , indicating which actions must
precede others.

- Arrange the actions in a logical sequence that respects the dependencies and leads
efficiently towards completing the task.

- If any action has multiple dependencies , list them in order of priority based on
the task 's constraints and goal.
- Present the final action sequence in a clear and ordered list , ensuring that the
progression of steps will achieve the task 's objective.

The key to efficiency:
- When completing tasks , some actions are non -occupied actions (Type 2), meaning you
can perform other actions simultaneously.

- To maximize efficiency , adhere to the following principle: always start the non -
occupied action you anticipate will be the most time -consuming as early as possible.
- You should perform actions during idle times as much as possible to minimize the
time spent doing nothing.

...

Table 11: Prompt of self-plan method in cooking scenario.

3916

