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Abstract

The fine-tuning of Large Language Models
(LLMs) specialized in code generation has
seen notable advancements through the use
of open-domain coding queries. Despite the
successes, existing methodologies like Evol-
Instruct encounter performance limitations, im-
peding further enhancements in code genera-
tion tasks. This paper examines the constraints
of existing prompt evolution techniques and
introduces a novel approach, Instruction Fu-
sion (IF). IF innovatively combines two dis-
tinct prompts through a hybridization process,
thereby enhancing the evolution of training
prompts for code LLMs. Our experimental
results reveal that the proposed novel method
effectively addresses the shortcomings of prior
methods, significantly improving the perfor-
mance of Code LLMs across five code gen-
eration benchmarks, namely HumanEval, Hu-
manEval+, MBPP, MBPP+ and MultiPL-E,
which underscore the effectiveness of Instruc-
tion Fusion in advancing the capabilities of
LLMs in code generation.

1 Introduction

The field of automatic program writing has
intrigued computer scientists since the 1960s
(Waldinger and Lee, 1969; Dehaerne et al., 2022).
This period has seen substantial efforts to enable
machines to autonomously write correct programs.
The emergence of Large Language Models (LLMs)
(Brown et al., 2020; Ouyang et al., 2022; Touvron
et al., 2023) has been a cornerstone in text genera-
tion (Liu et al., 2023b), leading to the evolution of
Code Large Language Models (Code LLMs) which
have notably advanced code generation tasks (Hou
et al., 2023).

Early Code LLM research (Roziere et al., 2023;
Li et al., 2023) concentrated on the pre-training
phase, utilizing a variety of code datasets to bolster
the code generation capabilities of LLMs. A major
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breakthrough was achieved with instruction tun-
ing (Wei et al., 2022), which enhanced the general
applicability of LLMs by fine-tuning them with
instructions rather than task-specific prompts.

In pursuit of greater quantity, diversity, and cre-
ativity in instruction-response samples, Wang et al.
(2022) introduced the SELF-INSTRUCT method,
leveraging LLMs to generate their own synthetic
instructions. This approach was notably adopted by
Code Alpaca (Chaudhary, 2023), based on Stanford
Alpaca (Taori et al., 2023), transforming 21 basic
code prompts into 20,000 high-quality instructions.
Building on this, Luo et al. (2023) further advanced
code generation performance by employing Evol-
Instruct on these instructions, expanding them to
78,000 through five dataset evolution heuristics.

However, the Evol-Instruct method has its limita-
tions on Code LLMs, primarily its reliance on a set
of five heuristics for generating new instructions.
This approach leads to a pattern where the evolu-
tion is done primarily by adding more constraints
to its seed instruction, which can cause three ma-
jor issues. Firstly, the evolving instructions may
become excessively complex, challenging GPT’s
ability to respond effectively. Secondly, the newly
added constrains to the seed instruction may not
exist in the original seed instruction, leading to an
gap on difficulty gradient. Finally, the evolutionary
evaluations often remain confined within the scope
of the original instruction, limiting diversity.

Addressing these challenges, we introduce a
novel method named Instruction Fusion (IF). This
method leverages hybridization concepts to signifi-
cantly improve prompt evolution, as demonstrated
in Figure 1. It involves merging two distinct in-
structions into a single prompt using GPT-4 Turbo,
enhancing prompt complexity and diversity. This
approach also facilitates a more gradual increase
in difficulty for LLMs, optimizing learning and
performance.

To assess the efficacy of our Instruction Fusion
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method, we conducted experiments with CODE-
LLAMA (Roziere et al., 2023), using HumanEval
(Chen et al., 2021a), MBPP (Austin et al., 2021),
HumanEval+, MBPP+ (Liu et al., 2023a), and
MultiPL-E (Cassano et al., 2022) as benchmark
datasets. Our results demonstrate a significant per-
formance improvement of LLMs when training
with the additional data generated by IF. The contri-
butions of this work can be summarized as follows:

• The IF method greatly improved instruction
creation by merging two distinct instructions
into a single, more complex prompt using
GPT-4 Turbo. This strategy substantially
boosts the diversity and complexity of the
training data while ensuring a smoother dif-
ficulty gradient for learning. This approach
effectively addresses and overcomes the limi-
tations inherent in previous methods such as
Evol-Instruct.

• Through extensive fine-tuning experiments on
Code-Llama models on five commonly used
code generation benchmarks, we demonstrate
the superior performance of our Instruction
Fusion method. We fully open source the
model weights, training data, and source code
to facilitate future research.

2 Approach

In this section, we first analyze the the limitation of
current evolution method on Code LLMs, then we
elaborate on the details of the proposed Instruction
Fusion method and analyze its advantages compar-
ing to the existing instruction evolution method.
The main process of the fusion is illustrated in Fig-
ure 1.

2.1 Instruction Evolution
High-quality instructions are vital for effectively
fine-tuning Code LLMs. Crafting these, particu-
larly for coding tasks, is resource-intensive and
often results in easy difficulty levels, creating a
gap in challenging content (Xu et al., 2023). To
address this and reduce costs, Luo et al. (2023) ap-
plied Evol-Instruct (Xu et al., 2023) to Code LLMs,
enhancing code generation. This process involves
merging each seed instruction with a unique evo-
lution prompt and generating evolved instructions
using GPT-3.5 Turbo. This method expanded and
diversified the instruction dataset, but certain limi-
tations hinder its further development.

A major challenge identified in the process of
instruction evolution is the over-escalating con-
straints, as illustrated in Figure 2. The process
begins with a straightforward instruction, such as
developing a Python function to convert strings to
lowercase. However, the complexity increases sig-
nificantly with each evolution round. After four
rounds, the instruction length expanded from 14 to
325 tokens. This increase is primarily attributed to
the incorporation of up to eight distinct constraints.
As a result, the evolved instructions become im-
practically intricate and overly complex.

Although Evol-Instruct with low rounds can
properly increase the difficulty levels by brain-
ing new constrains, which benefits LLM learning,
those new constrains may need prior knowledge
to learn. Consider math learning as an analogy:
understanding addition and multiplication is funda-
mental before tackling problems like "1 + 1× 2."
However, Evol-Instruct might prematurely intro-
duce such problems immediately following basic
concepts like "1 + 1 = 2", potentially leading to
gaps in learning progression.

Another issue is the limited diversification of
objectives during evolution. Despite adding new
constraints, the primary objective often remains
unchanged. Take the scenario in Figure 2 as an
example, despite introducing new objectives like
sorting, the primary task remained similar to the
original. This lack of variability in objectives can
severely limit the diversity of the resulting instruc-
tions.

Due to these inherent limitations, the Evol-
Instruct method applied to Code LLMs often
reaches its capacity (3 rounds) without further en-
hancing code generation performance. However,
these issues can be mitigated with our proposed
Instruction Fusion method.

2.2 Instruction Fusion

Inspired by the hybridization which can produce
new individual by exchange the information be-
tween inter-specific parents, we propose Instruc-
tion Fusion to overcome the above challenges.

Fusion Process. Figure 1 gives an illustration of
the Instruction Fusion process. Denote the initial
dataset as C = {(Ii, Ri)}1<i<N , where Ii, Ri

are the ith seed instruction and the corresponding
response, N is the number of instructions in C. To
create a new instruction using Instruction Fusion,
we first random select two seed instructions Ij and
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Figure 1: An illustration of Instruction Fusion. The responses to each fused instruction are also generated and
collected from GPT-4 Turbo.

Seed: Write a Python function to convert a given string to lowercase.

1: Convert all alphabetic characters to lowercase, including Unicode 

characters from supplementary planes.

2. Replace non-alphabetic symbols with their Unicode code point in 

hexadecimal format, prefixed with \"U+\", and encased in square brackets [].

3. Collapse any sequence of whitespace characters (including spaces, 

tabs, and newlines) into a single tilde \"~\", and remove any leading or trailing 

whitespace before further processing.

4. For numeric characters (0-9), increment each digit by 2, wrapping around 

to 0 after 9. If a number is preceded by a plus or minus sign, consider the 

entire number as a single unit and add or subtract 2 from it, respectively.

5. If the string contains a sequence of characters that form a valid 

hexadecimal number (e.g., \"1f4a9\"), wrap the sequence in parentheses () 

and convert it to the corresponding Unicode emoji.

6. The function must handle strings up to 15,000 characters and ensure that 

the output length does not exceed 2.5 times the length of the input.

7. Implement error handling to manage cases where the input is not a 

string or contains invalid Unicode sequences.

8. Avoid using regular expressions for processing and aim for minimal time 

complexity.

Figure 2: A real example of the fourth round evolution
using Evol-Instruct.

Ik from C, where 1 ≤ j, k ≤ N . Then, denote
the target amount of fused instructions as M , we
prompt GPT-4 Turbo to fuse the selected two
instructions into the mth fused instruction Im(j,k)
utilizing the following prompt:

Your task is to act as a Prompt Fusion Specialist.
Your objective is to merge #Given Prompt 1# and
#Given Prompt 2# into a single, cohesive #Fused
Prompt#. This new prompt should:
1. Integrate the content from both #Given Prompt
1# and #Given Prompt 2#.
2. Maintain a similar length and complexity level
as the original prompts.
3. Be coherent and solvable, incorporating
elements from both prompts in a balanced way.
4. In cases where the original prompts specify
different programming languages, choose only one
for the #Fused Prompt#.
If the resulting #Fused Prompt# is not logically co-

herent or solvable, simply respond with ’INVALID
PROMPT’.
#Given Prompt 1#:
<Here is Instruction 1>
#Given Prompt 2#:
<Here is Instruction 2>
#Fused Prompt#:

Here, 1 ≤ m ≤ M . For each fused instruc-
tion, if Im(j,k) == INVALID PROMPT, we will
discard the (j, k) combination and randomly sam-
ple a new one. We keep repeating the fusion pro-
cess until the number of new instructions reach
the target amount M . The result instructions set is
then H = {(Im(j,k), Rm

(j,k))}1<m<M , where Rm
(j,k)

is the corresponding response of Im(j,k) generated
by GPT-4 Turbo (gpt-4-1106-preview1).

Data Collection. Table 1 gives the statistic
of the collected datasets. Due to the unavail-
ability of WizardCoder’s (Luo et al., 2023) orig-
inal evolved instructions, we utilized the third-
party dataset evol-codealpaca-v12, which mir-
rors the methods used by Luo et al. (2023). This
dataset, comprising 111k refined instructions, is
evolved from the CodeAlpaca3 dataset, which is
also serves as the seeds in WizardCoder. We di-
vided evol-codealpaca-v1 based on program-
ming language into Python-related instructions CPI
and Non-Python-related instructions CNPI, number-
ing 50,131 and 61,140, respectively. To perform
detailed comparison in later experiments, we fur-
ther divide CPI into C30 and C30r, which represents
the 30K random samples from CPI and the rest sam-

1https://platform.openai.com/docs/models
2https://github.com/theblackcat102/evol-dataset
3https://github.com/sahil280114/codealpaca
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Table 1: Average tokens comparison. The token is
obtained using the official tokenizer of CODELLAMA.
‘EC’ denotes evol-codealpaca-v1, while ‘ECP’ refers
to its Python-only variant.

Dataset # Instructions Inst. Avg. Tokens Resp. Avg. Tokens

ECP 50k 185.4 441.7
EC 111k 209.3 438.9
HPI 50k 222.4 712.0
HPI+NPI 100k 260.4 754.8

ples, respectively. Based on the Instruction Fusion
scheme introduced above, we set CPI as seeds and
perform IF with M = 50, 000 to obtain the re-
sult dataset HPI, where 20K fused instructions H20

only use seeds from C30. Then we perform an-
other IF with M = 50, 000 on CPI + CNPI and
obtain HPI+NPI. For cost efficiency, our method
predominantly utilizes samples in HPI. Neverthe-
less, towards the experiment’s end, we exam code
generation performance using both two datasets,
showcasing our method’s capability across multi-
ple programming languages.

2.3 Complement the Deficiencies

As noted above, while Evol-Instruct enhances in-
struction diversity, it faces limitations in difficulty
scaling and gaps, and its diversity is capped by
the seed instruction’s original objective. To com-
plement these deficiencies, an effective method
should: 1) elevate difficulty beyond just adding
constraints, 2) ensure a smoother gradient in dif-
ficulty levels among instructions, and 3) broaden
diversity by redirecting objectives towards new di-
rections. From which we proposed IF.

Difficulty and Gradient. Instruction Fusion
(IF) merges two distinct seed instructions, creating
a child instruction that integrates diverse objectives
into one. Figure 3 illustrates such a fusion. To
tackle these fused objectives, LLMs must amalga-
mate knowledge from both original tasks, thereby
increasing the difficulty. As evident in Table 1,
HPI demands longer responses than its seed coun-
terparts in CPI. This indicates that GPT-4 Turbo
exerts more effort to address fused instructions,
reflecting their heightened complexity.

Figure 3 illustrates the role of Instruction Fusion
(IF) in mitigating the difficulty gradient between
original seeds and fused instructions. For example,
consider a basic seed instruction to print “Hello,
World!”. Evol-Instruct evolves this by incorporat-
ing a filtering task, thereby elevating the difficulty
and diversity. However, this evolution may intro-

Use Python to print 'Hello, 

World!'

Create a class in Python to 

represent a Person.

Use Python to create a class 

named 'Person' that, upon 

instantiation, prints 'Hello, 

World!'.

Implement a Python function 

that takes a list of strings, 

filters out any that don't 

contain the word 'World', and 

then prints 'Hello, <string>!' 

for each remaining string, 

preserving their original order

Evol-Instruct

Instruction Fusion

Figure 3: Real examples of Evol-Instruct and Instruc-
tion Fusion.

duce a disparity in difficulty, as the new element
might be absent in other seeds. IF addresses this by
ensuring new sub-objectives are introduced only if
they exist in the seed instructions, thus maintaining
a smoother difficulty gradient.

The effectiveness of this gradient is further sub-
stantiated by the theory presented in Kung et al.
(2023)’s work. They categorize samples with high
instruction uncertainty and a high prediction prob-
ability as “ambiguous”. Instruction uncertainty
denotes the degree to which minor modifications in
the instruction impact response generation. Higher
uncertainty indicates greater sensitivity of LLMs
to the specific instructions in a sample. Their re-
search underscores the significant role of “ambigu-
ous” training data in fine-tuning LLMs. Conversely,
samples characterized by low instruction uncer-
tainty and prediction probability are deemed over-
challenging, potentially offering limited benefits
for fine-tuning due to their complexity.

In our study, we employ the methodology of
Kung et al. (2023) to evaluate the "ambiguity" of
datasets. We simplify the process by calculating
instruction uncertainty as the average loss changes
upon altering instructions and representing predic-
tion probability by the inverse of response loss.
The resulting plot is analogous to that in Kung et al.
(2023)’s study.

Figure 4 exemplifies this concept with the model
fine-tuned using C30. Here, red spots denote the
ambiguity of H20, while blue points represent C30r.
The data reveals that instructions from C30r are
challenging, evidenced by their lower instruction
uncertainty and prediction probabilities. In con-
trast, instructions from H20 are more “ambiguous”,
indicated by higher prediction probabilities and
uncertainties, thus making them more conducive
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Figure 4: The plot of instruction uncertainty of C30r

and H20.

for the fine-tuning process. From these observa-
tions, we conclude that the Instruction Fusion (IF)
method effectively generates more “ambiguous”
samples. LLMs exhibit increased responsiveness
to the fused instructions compared to the original
seed instructions.

Diversity. Instruction Fusion (IF) counters
the diversity limitations of Evol-Instruct, which
is constrained by initial objectives, by creating in-
structions that blend the targets of parent instruc-
tions. This leads to unique tasks not found in the
Evol-Instruct dataset. In Figure 5, the gray points
represent a t-SNE 2D semantic embedding plot
for C30 instructions, The upper plot represent CPI,
showing small cliques indicative of limited diver-
sity, and the orange points represent samples from
C30r.

In the lower plot, the red points, representing IF’s
fused instructions, populate previously empty areas,
demonstrating increased diversity, and illustrating
a more uniform semantic embedding.

To quantify this dispersion, we calculate the vari-
ance of nearest neighbor distances for all instruc-
tions:

U =
1

N
ΣN
i=1(di − µ)2, (1)

where
di = ||(ei, eNN

i )|| (2)

and

µ =
1

N
ΣN
i=1di. (3)

Here, U denotes distribution uniformity, di is
the Euclidean Distance between the semantic em-
bedding ei of Ii and the context embedding eNN

i

of its nearest neighbor INN
i , while µ is the average

Figure 5: tSNE plots of the semantic embeddings of the
instructions. The upper plot is for C30 and C30r. The
lower plot represents C30 and H20.

Euclidean Distance. Lower U values suggest im-
proved uniformity. In ideal case, if all points are
distributed uniformly, their distance to their nearest
neighbor should be equal, and the variance should
be zero. In other words, lower the variance indi-
cates more uniform semantic embedding among
instructions.

The results reveal notable findings. The first plot
of CPI, composed of C30 + C30r, exhibits higher
dispersion with a variance of 0.0332, indicating
reduced uniformity compared to C30 alone, which
is 0.0316. However, an interesting contrast arises
when employing Instruction Fusion on C30: by
integrating H20 with C30, the dispersion of the sec-
ond plot decreases by 28.5% from 0.0316 to 0.0226.
This significant reduction suggests that Instruction
Fusion effectively narrows the gaps in semantic
embeddings between existing instructions. This
improvement is achieved by combining the objec-
tives of two distinct instructions, demonstrating the
method’s efficacy in enhancing instruction diver-
sity.

In conclusion, the Instruction Fusion (IF)
method we propose serves as a valuable comple-
ment to Evol-Instruct, effectively addressing its
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limitations. By amalgamating diverse objectives
from various seed instructions, IF leads to the cre-
ation of a more diverse, challenging instructions
with gradual escalation in the complexity.

3 Experiments

In this section, we report the experiment details
of LLMs fine-tuned with instruction generated by
IF. We focused on the pass@1 performance un-
der greedy generation settings across five bench-
marks: four Python benchmarks (HumanEval
(Chen et al., 2021a), MBPP (Austin et al., 2021),
HumanEval+, MBPP+ (Liu et al., 2023a)) and
the multi-language benchmark MultiPL-E (Cas-
sano et al., 2022). The official EvalPlus code4 was
used for evaluating the Python benchmarks, while
bigcode-evaluation-harness (Ben Allal et al.,
2022) was utilized to evaluate the performance on
MultiPL-E.

3.1 Experiment Details

For the selection of our base models, we have cho-
sen to utilize CODELLAMA and CODELLAMA-
PYTHON to evaluate the effectiveness of our pro-
posed method. It’s important to note that while the
recently released open-source model, DeepSeek-
Coder (DeepSeek, 2023), has achieved state-of-
the-art performance among other base code LLMs,
the specifics of their techniques and data were not
accessible at the time of writing this paper. Conse-
quently, we have opted not to include DeepSeek-
Coder in our experimental analysis.

For comparison, we mainly compare with Wiz-
ardCoder (Luo et al., 2023) since it is the most
related work with state of the art performance, and
use the same base models as ours. We also in-
cluded a range of state-of-the-art baseline methods
such as CODELLAMA (Roziere et al., 2023), Star-
coder (Li et al., 2023), Mistral (Jiang et al., 2023),
CodeT5+ (Wang et al., 2021), CodeGen-Mono (Ni-
jkamp et al., 2022), Magicoder (Wei et al., 2023),
GPT-3.5 Turbo, and GPT-4 Turbo 5. All results
are reported consistently, either from the original
papers or the official EvalPlus leaderboard6.

To test Instruction Fusion, we fine-tune both the
basic and Python versions of CODELLAMA 13 bil-
lion (13B) and 34 billion (34B)7 as base models.

4https://github.com/evalplus/evalplus
5https://platform.openai.com/docs/models
6https://evalplus.github.io/leaderboard.html
7https://huggingface.co/codellama/

For fine-tuning, models were trained with a batch
size of 256 over 2 epochs, a learning rate of 2e-5, a
cosine learning rate scheduler with 10% warm-up
steps, and under bf16 precision on 4× 8 NVIDIA
A100 40G GPUs. All other hyper-parameters re-
mained consistent with WizardCoder and Magi-
coder unless specified otherwise.

3.2 Evaluation
Table 2 presents the performance of various open-
source models on Python benchmarks. When com-
pared to the leading closed-source models, GPT-
3.5 Turbo, our models with 13B and 34B parame-
ters demonstrate superior performance on the Hu-
manEval and HumanEval+ benchmarks. However,
there is a noticeable performance gap on the two
MPBB benchmarks. This discrepancy may stem
from the MBPP test cases, which often require spe-
cific prior knowledge for resolution. For instance,
in the real test case task_id:20, the prompt "Write
a function to check if a given number is woodball
or not." requires the model’s understanding of what
constitutes a ’woodball’ number. This type of prior
knowledge is either not acquired during the pre-
training stage or forgotten during the supervised
fine-tuning process, leading to a consistent failure
across all IF models for this case.

However, compared with all open-source mod-
els, the IF models excel in Python code generation
performance, surpassing all baselines. The fused
instructions, which offer richer semantic, increased
difficulty, and smoother transitions, allow both the
13B and 34B versions of IF models to achieve new
state-of-the-art performance, outperforming mod-
els of comparable sizes. Notably, the 13B version
of IF-CLP outperforms all 34B baselines in the Hu-
manEval and HumanEval+ benchmarks and shows
comparable results on MBPP and MBPP+.

Tab 3 shows the performance of IF and all
other baselines on MultiPL-E. We can observe
that, based on CODELLAMA 13B, IF has great ad-
vantages on all metrics even comparing with 34B
models. The extra diversity provided by fusing in-
structions can greatly benefits the multi-language
performance of Code LLMs.

3.3 Ablation Study
To assess the efficacy of our proposed Instruction
Fusion (IF) method, we conducted a comprehen-
sive ablation study. Table 4 presents a comparison
between fine-tuning the base model with and with-
out instructions generated by IF. The table clearly
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Table 2: Results of experiments on Python benchmarks. The abbreviations ‘CL’ and ‘CLP’ denote the base models
CODELLAMA and CODELLAMA-PYTHON, respectively. For IF method, we fine-tune CODELLAMA with full
evol-codealpaca-v1 dataset and CODELLAMA-PYTHON with only Python instruction in evol-codealpaca-v1.

Method Size Open-source HumanEval HumanEval+ MBPP MBPP+

GPT4-Turbo - - 85.4 81.7 83.0 70.7
GPT3.5-Turbo - - 72.6 65.9 81.7 69.4

StarCoder 7B weight&data 24.4 20.7 33.1 28.8
Mistral 7B weight 28.7 23.2 50.1 40.9
CODELLAMA-PYTHON 7B weight 37.8 34.1 57.6 45.4
WizardCoder-CLP 7B weight 48.2 40.9 56.6 47.1
MagicoderS-CLP 7B weight&data 70.7 66.5 68.4 56.6

CODELLAMA-PYTHON 13B weight 42.7 36.6 61.2 50.9
StarCoder 15B weight&data 34.1 29.3 55.1 46.1
CodeT5+ 16B weight&data 31.7 26.2 54.6 44.4
CodeGen-Mono 16B weight&data 32.9 27.4 52.6 43.6

CODELLAMA-PYTHON 34B weight 51.8 42.7 67.2 52.9
WizardCoder-CLP 34B weight 73.2 64.6 73.2 59.9

IF-CLP 13B weight&data 73.8 69.5 71.7 61.7
IF-CL 13B weight&data 74.4 68.3 69.7 59.4

IF-CLP 34B weight&data 75.6 69.5 73.7 62.7
IF-CL 34B weight&data 78.7 71.3 71.4 60.7

shows significant improvements across all metrics
when employing the IF method. While the ben-
efits of instruction evolution cease after the third
round of evolution, Instruction Fusion continues to
enhance code generation by overcoming the limita-
tions of Code Evol-Instruct.

Further analysis of Instruction Fusion’s effec-
tiveness involved an ablation study using various
combinations of IF and the original evolved in-
structions. Figure 6 depicts the performance of
CODELLAMA when fine-tuned with different vol-
umes of original instructions. The data indicates
that the 13B model achieves optimal performance
with 30K evolution samples, suggesting that an in-
creased quantity of evolved instructions does not
linearly translate to better performance. Moreover,
Luo et al. (2023) observed a performance decrease
when extending evolution to the fourth round, im-
plying a tangible upper limit to the effectiveness of
Code Evol-Instruct in code generation tasks. How-
ever, the integration of IF samples with the original
evolved dataset transcend this limitation, resulting
in a notable enhancement in model performance.
Conversely, the 34B model does not show the same
constraints with the current range of evolved sam-
ples, possibly due to its larger parameter size.

Figure 7 presents the model’s performance when
fine-tuned varying amounts of fused instructions
together with Python-only evol-codealpaca-v1.
The results clearly indicate potential performance
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Figure 6: Saturation test of CODELLAMA 13B on the
Python-only version of evol-codealpaca-v1.

improvements for both the 13B and 34B mod-
els with the addition of more fused instructions
than 50K. However, considering the data collection
costs, the exploration of the exact saturation point
for these models is deferred to future work.

4 Related Work

4.1 Code Large Language Model

The advancement of Large Language Models
(LLMs) in open-domain topics has paved the way
for extensive research into Code LLMs for code
generation tasks. Early studies primarily focused
on the pre-training phase of Code LLMs, utiliz-
ing models such as Codex (Chen et al., 2021b),
CodeT5 (Wang et al., 2021), StarCoder (Li et al.,
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Table 3: Experiment results on the completion mode of MultiPL-E. Following the detailed experimental sitting of
WizardCoder (Luo et al., 2023), we employ bigcode-evaluation-harness (Ben Allal et al., 2022) and report the
other results from WiardCoder and Magicoder (Wei et al., 2023) paper.

Method Size Java JavaScript C++ PHP Swift Rust

CODELLAMA 7B 29.3 31.7 27.0 25.1 25.6 25.5
CODELLAMA-PYTHON 7B 29.1 35.7 30.2 29.0 27.1 27.0
MagicoderS-CLP 7B 42.9 57.5 44.4 47.6 44.1 40.3

StarCoderBase 15B 28.5 31.7 30.6 26.8 16.7 24.5
StarCoder 15B 30.2 30.8 31.6 26.1 22.7 21.8
WizardCoder-SC 15B 35.8 41.9 39.0 39.3 33.7 27.1

CODELLAMA 34B 40.2 41.7 41.4 40.4 35.3 38.7
CODELLAMA-PYTHON 34B 39.5 44.7 39.1 39.8 34.3 39.7
CODELLAMA-INSTRUCT 34B 41.5 45.9 41.5 37.0 37.6 39.3
WizardCoder-CLP 34B 44.9 55.3 47.2 47.2 44.3 46.2

IF-CL 13B 45.3 64.6 54.6 53.4 50.0 54.5
-fused inst. 13B 39.8 55.3 47.2 44.7 41.8 44.9

Table 4: Ablation study of Instruction Fusion. Models
in the upper cell are 13B, while the models in the lower
cell are 34B. “-fused inst.” represent model fine-tuned
without corresponsding fused instructions.

Method HumanEval HumanEval+ MBPP MBPP+

IF-CLP 73.8 69.5 71.7 61.7
-fused inst. 67.7 64.0 66.4 56.4

IF-CL 74.4 68.3 69.7 59.4
-fused inst. 65.2 61.0 68.4 56.1

IF-CLP 75.6 69.5 73.7 62.7
-fused inst. 72.0 65.2 72.2 61.9

IF-CL 78.7 71.3 71.4 60.7
-fused inst. 67.7 62.2 69.9 60.4

2023), and CODE-LLAMA. These methods lever-
aged coding data from open-source platforms like
GitHub8 for pre-training. Generating executable
and correct codes from these pre-trained LLMs of-
ten required intricate prompt engineering. Despite
this, such efforts have significantly propelled the
progress of code generation tasks and laid a robust
foundation for subsequent research in this domain.

4.2 Instruction tuning

The reliance on task-specific prompts for extracting
information from LLMs, due to its labor-intensive
nature and limited generalizability, led to the in-
troduction of instruction tuning (Wei et al., 2022).
This method enhances the zero-shot capabilities
of LLMs in performing tasks via natural language
instructions, allowing them to respond to more gen-
eral human requests. However, relying on human-
written instructions or templates limits the quantity,
diversity, and creativity of data.

In response, Taori et al. (2023) developed SELF-
8https://github.com/
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Figure 7: Saturation test of CODELLAMA on the
Python-only version of evol-codealpaca-v1 with ex-
tra instruction-fused samples.

INSTRUCT, employing LLMs for both data genera-
tion and instruction tuning to create superior syn-
thetic instructions and responses. This technique,
utilized by Taori et al. (2023); Roziere et al. (2023),
involves collecting high-quality synthetic data from
powerful/specialized LLMs for fine-tuning. In the
realm of Code LLMs, Code Alpaca (Chaudhary,
2023) applied SELF-INSTRUCT to gather instruc-
tions and responses from text-davinci-0039. Build-
ing on synthetic data creation, Xu et al. (2023) pro-
posed Evol-Instruct for evolving instructions to en-
hance difficulty and diversity. This approach, exem-
plified in WizardCoder (Luo et al., 2023), achieved
state-of-the-art performance in Code LLMs but
faced evolution process limitations.

Concurrently, Wei et al. (2023) used LLMs
to generate high-quality synthetic data from real-
world code snippets, showing promise in code gen-

9https://platform.openai.com/docs/models/gpt-3-5
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eration. However, as their approach is orthogonal
to WizardCoder, it remains similarly orthogonal to
ours.

5 Conclusion

In this paper, we introduce the Instruction Fusion
technique, an advancement of Evol-Instruct specif-
ically tailored for code generation tasks. This tech-
nique involves the fusion of two evolved instruc-
tions into a single, cohesive prompt. It excels in
creating instruction sets that are reasonably com-
plex, facilitating a progressive increase in difficulty
which is achieved as objectives can be learned
separately. The fused instructions also grants a
better diversity of the instruction pool. Notably,
Large Language Models (LLMs) fine-tuned with
IF have demonstrated superior performance across
the top five benchmarks, setting new state-of-the-
art records.

Limitations

The primary limitation of the Instruction Fusion
method proposed in our study is its cost. We em-
ploy GPT-4 Turbo as the Teacher Language Model
(LLM), and the fusion prompt incorporates a higher
token count compared to the Evol-Instruction. This
results in increased expenses for data collection,
which cost around 2,200 USD in total for 100k
samples (responses included). However, it is worth
noting compared with manual annotation. More-
over, such costs are rapidly decreasing, thanks to
the swift advancements in LLM technology.

Another point of concern is the success rate of
the fusion process. Fusion of Python-based instruc-
tions achieves a pass rate of 93% (where 7% of the
fused instructions are deemed unsolvable by GPT-4
Turbo). In contrast, cross-language fusion exhibits
a lower pass rate of approximately 63%. This dis-
crepancy arises because many tasks are typically
resolved using specific programming languages.
Consequently, fusing instructions from different
programming languages often leads to impractical
outcomes. To address this issue, we propose the
development of new prompts that categorize tasks
prior to sampling, a solution which could be to
explore in future research.

Ethics Statement

In our study, we employ GPT-4 for the purpose
of amalgamating seed coding instructions, which
can not generate sensitive data such as personal

information. Our seed instructions are derived
from the evol-codealpaca-v1 dataset, a well-
acknowledged resource within the open-source
community.
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A Instruction Fusion with Magicoder
Dataset

In this section, we assess the performance of
CODELLAMA when employing both our method
and the Magicoder method. Specifically, we
fine-tune CODELLAMA using three datasets:
evol-codealpaca-v1, our fused instruction set,
and instructions generated in the Magicoder paper.

Table 5: Results of experiments using Magicoder
dataset. All models are fine-tuned on CODELLAMA.
‘MC’ represents the Magicoder dataset.

Method Size HumanEval(+) MBPP(+)

MagicoderS-CLP 7B 70.7(66.5) 68.4(56.6)
DeepSeek-Coder-instruct 33B 81.1(75.0) 78.7(66.7)

WizardCoder-V1.1 33B 79.9(73.2) 78.9(66.9)

IF-CL-MC 7B 76.2(71.3) 70.4(57.9)
IF-CL-MC 13B 79.3(72.6) 69.2(57.4)
IF-CL-MC 34B 82.3(75.6) 72.4(61.4)

As shown in Table 5, we fine-tune the base mod-
els using all three datasets to achieve enhanced
performance. Notably, at the time we test the fine-
tuned models, our 34B version surpasses all open-
source models in the HumanEval and HumanEval+

benchmarks on the EvalPlus leaderboard. However,
the lower performance in MBPP and MBPP+ could
be attributed to either insufficient prior knowledge,
as discussed in Section 3.2, or the use of DeepSeek-
Coder, a recently released base model that signif-
icantly outperforms CODELLAMA, especially on
MBPP and MBPP+. For example, the two top-
performing models on the leaderboard, which are
DeepSeek-Coder-instruct and WizardCoder-V1.1,
all utilize DeepSeek-Coder as the base LLM.

Furthermore, the 7B IF-CLP (Instruction Fu-
sion based on CODELLAMA) model demonstrates
superior performance compared to MagicoderS-
CLP, even though the latter also incorporates
evol-codealpaca-v1 during fine-tuning. This
suggests that the Magicoder dataset can not pro-
vide the benefits offered by the Instruction Fusion
method. It also indicates that our Instruction Fu-
sion approach has the potential to enhance datasets
generated from open-source code snippets. How-
ever, the exploration of this possibility is a subject
for future research.
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