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Abstract

Recent advancements have seen Large Lan-
guage Models (LLMs) and Large Multimodal
Models (LMMs) surpassing general human ca-
pabilities in various tasks, approaching the pro-
ficiency level of human experts across multiple
domains. With traditional benchmarks becom-
ing less challenging for these models, new rig-
orous challenges are essential to gauge their
advanced abilities. In this work, we present
OlympiadBench, an Olympiad-level bilingual
multimodal scientific benchmark, featuring
8,476 problems from Olympiad-level mathe-
matics and physics competitions, including the
Chinese college entrance exam. Each prob-
lem is detailed with expert-level annotations
for step-by-step reasoning. Evaluating top-tier
models on OlympiadBench, we implement a
comprehensive assessment methodology to ac-
curately evaluate model responses. Notably,
the best-performing model, GPT-4V, attains an
average score of 17.97% on OlympiadBench,
with a mere 10.74% in physics, highlighting
the benchmark rigor and the intricacy of phys-
ical reasoning. Our analysis orienting GPT-
4V points out prevalent issues with hallucina-
tions, knowledge omissions, and logical fal-
lacies. We hope that our challenging bench-
mark can serve as a valuable resource for help-
ing future AGI research endeavors. The data
and evaluation code are available at https:
//github.com/OpenBMB/OlympiadBench

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities across various tasks
such as text generation (Zhao et al., 2023), code
generation (Zan et al., 2023) and mathematical rea-
soning (Lu et al., 2023; Zhou et al., 2023), gar-
nering significant attention from both academia
and industry (Wei et al., 2022; Zhao et al., 2023;
Bubeck et al., 2023). The most powerful models

*Corresponding authors: Xu Han and Zhiyuan Liu.

Question:

Solution:

Final answer: 2,251,252
Answer type: Tuple

Subfield: Number theory
Question type: Open-ended

Find all triples (𝑥, 𝑦, 𝑧) of positive integers such that 𝑥 ≤ 𝑦 ≤
𝑧 and 𝑥! 𝑦! + 𝑧! = 2012 𝑥𝑦𝑧 + 2 .

First note that 𝑥 divides 2012 ⋅ 2 = 2! ⋅ 503. If 503 ∣ 𝑥 then the 
right-hand side of the equation is divisible by 503!, and it 
follows that 503" ∣ 𝑥𝑦𝑧 + 2. This is false as 503 ∣ 𝑥. Hence 
𝑥 = 2# with 𝑚 ∈ {0,1,2,3}. If 𝑚 ≥ 2 then 2$ ∣ 2012(𝑥𝑦𝑧 + 2). 
However the highest powers of 2 dividing 2012 and 𝑥𝑦𝑧 + 2 =
2#𝑦𝑧 + 2 are 2" and 2% respectively. So 𝑥 = 1 or 𝑥 = 2, 
yielding the two equations

𝑦! + 𝑧! = 2012 𝑦𝑧 + 2 ,
𝑦! + 𝑧! = 503 𝑦𝑧 + 1

In both cases …… It follows that 𝑦 ≡ −𝑧(𝑚𝑜𝑑 503 ) as 
claimed. Therefore 𝑦 + 𝑧 = 503𝑘 with 𝑘 ≥ 1. In view of 𝑦! +
𝑧! = 𝑦 + 𝑧 ( 𝑦 − 𝑧 " + 𝑦𝑧) the two equations take the form

𝑘 𝑦 − 𝑧 " + 𝑘 − 4 𝑦𝑧 = 8 (1)
𝑘 𝑦 − 𝑧 " + 𝑘 − 1 𝑦𝑧 = 1 (2)

In (1) we have 𝑘 − 4 𝑦𝑧 ≤ 8, which implies k ≤ 4……
Therefore (1) has no integer solutions.
Equation (2) implies 0 ≤ 𝑘 − 1 𝑦𝑧 ≤ 1, so that 𝑘 = 1 or 𝑘 = 2. 
Also 0 ≤ 𝑘 𝑦 − 𝑧 " ≤ 1, hence 𝑘 = 2 only if 𝑦 = 𝑧. However 
then 𝑦 = 𝑧 = 1, which is false in view of 𝑦 + 𝑧 ≥ 503. 
Therefore 𝑘 = 1 and (2) takes the form 𝑦 − 𝑧 " = 1, yielding 
𝑧 − 𝑦 = 𝑦 − 𝑧 = 1. Combined with 𝑘 = 1 and 𝑦 + 𝑧 = 503𝑘, 
this leads to 𝑦 = 251, 𝑧 = 252.
In summary the triple (2,251,252) is the only solution.

Figure 1: An example of IMO in OlympiadBench. Solv-
ing this example requires AI systems to span different
mathematical domains and conduct advanced reasoning.

such as GPT-4 (OpenAI, 2023a) and Gemini Ul-
tra (Team, 2023) have even surpassed oridinary
human level on a wide variety of benchmarks such
as MMLU (Hendrycks et al., 2020), MMMU (Yue
et al., 2023), and even surpassing human expert in
many area. These results show a promising future
that LLMs can serve as proficient assistants for hu-
man scientists (Nguyen, 2023; Qiu et al., 2023).
Among the array of expert-level skills exhibited by
LLMs, scientific reasoning consistently emerges
as one of the most brilliant, showcasing some of
the most distinguished intellectual properties that
experts possess. Therefore, this paper primarily
focuses on mathematical and physical reasoning.

In recent years, several benchmarks related to
mathematics have been proposed, such as the
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dataset GSM8K (Cobbe et al., 2021) as well as
the dataset MATH (Hendrycks et al., 2021). How-
ever, these benchmarks, are primarily developed
before the advent of highly capable LLMs, and now
lack sufficient challenge for the latest models. For
instance, GPT-4 with prompting techniques(Zhou
et al., 2023) has achieved a 97.0% success rate on
GSM8K and 84.3% on MATH. The rapid evolu-
tion of LLMs may soon lead to saturated results
on these benchmarks. Concurrently, LLMs are
not yet fully equipped to assist mathematicians in
solving complex problems (Collins et al., 2023;
Zhang et al., 2023), nor are they capable of per-
forming expert-level mathematical reasoning inde-
pendently. This discrepancy underscores the need
for more challenging datasets to benchmark future
advancements of LLMs in this domain. Similarly,
physics presents comparable challenges for AI to
those found in mathematics. Nevertheless, exist-
ing benchmarks related to physics (Lu et al., 2022;
Arora et al., 2023; Wang et al., 2024) are charac-
terized by their relatively low difficulty and limited
scope. There is also a significant lack of a rigorous
and challenging benchmark in physics.

In addition to the issue regarding the benchmark
difficulty, it is important to note that these bench-
marks predominantly focus on text. This presents a
significant limitation, as a wide range of scientific
reasoning contexts require multimodal reasoning
abilities. For example, grasping geometry reason-
ing in mathematics or understanding experiments
designs in physics are scenarios where multimodal
reasoning capabilities are crucial. Notably, various
large multimodal models (LMMs) have been de-
veloped (Team, 2023; Liu et al., 2023) and demon-
strate proficiency on a variety of tasks (Lu et al.,
2022; Yue et al., 2023; Zhang et al., 2024b; Lu et al.,
2024), offering the potential for multimodal scien-
tific reasoning. Nevertheless, there is still a lack
of sufficient benchmarks to prove whether these
LMMs are capable of handling scientific problems.
Consequently, a challenging multimodal bench-
mark is essential for advancing scientific reasoning
tasks(Zhang et al., 2024a; Lu et al., 2023).

To address the aforementioned inadequacies,
we introduce OlympiadBench, an Olympiad-level
bilingual multimodal scientific benchmark. This
collection comprises 8,476 math and physics prob-
lems sourced from International Olympiads, Chi-
nese Olympiads, and the most challenging seg-
ments of the Chinese College Entrance Exam
(GaoKao). We download PDF data from official

websites and utilize Mathpix1 for OCR parsing. We
meticulously inspect, clean, and revise the data, and
further adopt LLMs for deduplication. Finally, we
annotate the data with crucial information such as
answer types and subfields, yielding a dataset that
is clean, accurate, and detailed. As shown in Fig-
ure 1, OlympiadBench features numerous distinct
characteristics such as difficulty, free-form gen-
eration, expert-level solution annotation, detailed
labeling of difficulty, wide-coverage of modality
and language, etc. These features are summarized
more clearly from Table 1.

We conduct an evaluation of current state-of-the-
art LLMs and LMMs on the OlympiadBench. The
best-performing model, GPT-4V, is a multimodal
version of GPT-4 developed by OpenAI that can
understand images. Despite its advanced capabili-
ties, GPT-4V achieves a score of only 17.97% on
OlympiadBench, with individual scores of 21.70%
in mathematics and 10.74% in physics.

Importantly, the experiment results show that
LMMs still struggle in computational error, incor-
rect reasoning or induction. For the process in-
volved in the correct responses, the process occa-
sionally includes hallucinated reasoning, or choos-
ing a more complex solution when a simpler so-
lution exists. All these results highlight the sub-
stantial challenge OlympiadBench presents to con-
temporary large models and point the direction of
future efforts.

OlympiadBench is inspired by the significant ad-
vances made by DeepMind AlphaGeometry (Trinh
et al., 2024), which nearly matches the proficiency
of International Mathematical Olympiad (IMO)
gold medalists in geometry proofs. It is clear
that OlympiadBench, along with other challenging
datasets like the AI-MO challenge2, will witness
and benchmark the swift progress towards expert-
level AI assistants for solving scientific problems.

2 Related Work

This section gives an overview of the existing
datasets in solving mathematics and physics prob-
lems as well as multimodal datasets.

Mathematics Benchmarks. Solving mathemat-
ics problems and proving theorems in natural lan-
guages has been a key research focus in machine
learning and natural language processing since
the 1960s (Bobrow et al., 1964). Previous bench-

1https://mathpix.com/
2https://aimoprize.com/

3829

https://mathpix.com/
https://aimoprize.com/


marks (Koncel-Kedziorski et al., 2016; Wang et al.,
2017; Ling et al., 2017; Amini et al., 2019; Cobbe
et al., 2021; Wei et al., 2023) focus predominantly
on math word problems (WMPs) which involve
four basic arithmetic operations with single or mul-
tiple operation steps (Lu et al., 2023). Typically,
the GSM8K (Cobbe et al., 2021) dataset targets
elementary-level questions within 8 steps of basic
arithmetic operations. However, these problems are
typically text-only (Lu et al., 2023) and of lower
difficulty, with reasoning limited to a few compu-
tations. As the complexity of the problems rises,
some works (Hendrycks et al., 2021; Frieder et al.,
2023; Arora et al., 2023) introduce competition-
level problems integrating mathematical logic and
background knowledge. Yet, these challenging
datasets are increasingly being surmounted (Zhou
et al., 2023). Theorem proving is a problem to
demonstrate the truth of a mathematical claim (a
theorem) through a sequence of logical arguments
(a proof) (Lu et al., 2023). Earlier efforts mainly
focused on translating natural language proofs into
formal representations, facing significant expertise
and labor challenges (Zheng et al., 2022; Welleck
et al., 2021). The emergence of LLMs has facili-
tated notable advancements in the domain of natu-
ral language proof (Jiang et al., 2023). Olympiad-
Bench presents mathematical reasoning and theo-
retical proofs all in natural language with detailed
solution annotations.

Physics Benchmarks. Physics questions in
SciQ (Welbl et al., 2017), ScienceQA (Lu et al.,
2022) and E-EVAL (Hou et al., 2024) are mainly
elementary and high school level multiple-choice
questions, lacking complex reasoning and compu-
tational tasks. In MMLU-STEM (Hendrycks et al.,
2020) and C-Eval-STEM (Huang et al., 2023),
physics questions also adopt a multiple-choice for-
mat. JEEBench (Arora et al., 2023) extends this
format to include multistep reasoning with physics
knowledge, yet it is limited in scope and purely
text-only. TheoremQA (Chen et al., 2023) is the
first theorem-driven question-answering dataset.
Curated by domain experts, it contains 800 high-
quality questions that encompass 350 theorems
from Mathematics, Physics, Electrical Engineer-
ing and Computer Science (EE&CS), and Finance.
SciEval (Sun et al., 2023) consists of a total of
about 18,000 challenging scientific questions, span-
ning three important basic science fields: chemistry,
physics and biology. SciBench (Wang et al., 2024)
and OCWCourses (Lewkowycz et al., 2022) of-

fer college-level physics questions in free-response
formats, where SciBench contains multimodal in-
formation. In contrast, OlympiadBench escalates
in difficulty, diversifies in question types, and sur-
passes in volume, setting a new benchmark for
complexity and variety in the domain.

Multimodal Benchmarks. For assessing
multimodal capability, works such as Geome-
try3K (Lu et al., 2021), GeoQA (Chen et al.,
2021), GeoQA+ (Cao and Xiao, 2022), and Uni-
Geo (Chen et al., 2022) have employed multimodal
information for tackling geometric problems, in-
tegrating natural language descriptions with dia-
grams. ScienceQA (Lu et al., 2022), MMMU (Yue
et al., 2023), CMMMU (Zhang et al., 2024b) and
CMMU (He et al., 2024) are multimodal, multi-
discipline evaluation sets, encompassing a broad
range of subjects. MathVista (Lu et al., 2024) inte-
grates 28 existing and 3 newly constructed multi-
modal datasets involving mathematics, aiming to
establish a benchmark that encapsulates challenges
from a variety of mathematical and visual tasks.
However, it does not concentrate on delving into
the complexity of mathematics problems.

In summary, we introduce a new benchmark to
address these gaps. Table 1 presents a comparison
between OlympiadBench and several related bench-
marks, highlighting the significant advantages of
OlympiadBench across all aspects.

3 The OlympiadBench Dataset

To evaluate the reasoning abilities of LLMs and
LMMs in mathematics and physics problems, we
have created OlympiadBench, a bilingual and mul-
timodal scientific benchmark at the competition
level. This section provides a detailed account of
the construction process of OlympiadBench. Sum-
marized statistics of the dataset is shown in Table
2, and more detailed statistics are in Appendix A.2.

3.1 Design Principle
The motivation behind OlympiadBench is to estab-
lish a benchmark that represents the pinnacle of hu-
man intellectual achievement, thereby encouraging
researchers of large models to push the boundaries
of mathematical and physical reasoning capabili-
ties. We focus on curating challenges that epito-
mize the highest level of competition worldwide.
Specifically, OlympiadBench includes:

1. Inclusion of Olympiad-Level Problems. We
collect mathematics and physics problems
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Benchmark
Subject Multi- Detailed Difficulty Size Answer Language Question

Maths Physics modal solution level Maths Physics type type type

SciBench ✓ ✓ ✓ ✓ COL 217 295 Num EN OE
MMMU ✓ ✓ ✓ ✓ COL 540 443 Num EN MC,OE
MathVista ✓ ✓ - 1,000 Num EN MC,OE
ScienceQA ✓ ✓ H 617 EN MC
SciEval ✓ - 1,657 Num EN MC,FB,J
JEEBench ✓ ✓ ✓ CEE 236 123 Num EN MC,OE
MMLU ✓ ✓ COL 948 548 EN MC
AGIEval ✓ ✓ CEE 953 200 Num EN,ZH MC,FB,OE
GSM8K ✓ ✓ E 1,319 Num EN OE
MATH ✓ ✓ COMP 5,000 Num,Exp,Tup EN OE

OlympiadBench ✓ ✓ ✓ ✓ COMP 6,142 2,334 ALL EN,ZH OE

Table 1: For difficulty level, COMP: Competition, COL: College, CEE: College Entrance Examination, H: High
School, E: Elementary School, and we picked the highest level; For answer type, Num: Numeric value, Exp:
Expression, Equ: Equation, Int: Interval, Tup: Tuple; For language type, EN: English, ZH: Chinese; For question
type, OE: Open-ended, MC: Multiple-choice, FB: Fill-in-the-blank, J: Judgement. For the statistical analysis of
quantity and relevant metrics in AGIEval, we exclude 1,000 questions from the MATH benchmark to facilitate a
more accurate comparison. The “-” indicates that it cannot be confirmed. Upon comparison, OlympiadBench leads
in all aspects.

Statistics Number
Total Problems 8,476

* Problems with images 4,869 (57%)
* Problems with solutions 8,476 (100%)

Difficulties (CEE: COMP) 66%: 34%
EN: ZH 2,125: 6,351
Open-ended Questions 6,728 (79%)
Theorem Proving 1,748 (21%)
Math: Physics 6,142: 2,334

* Maths with images 2,911
* Physics with images 1,958

Average question tokens 253
Max question tokens 3,745
Average solution tokens 347
Max solution tokens 4,223

Table 2: Statistics of OlympiadBench. When calculating
tokens, images are not included.

from the International Olympiad competi-
tions, which cater to the most outstanding
high school students in a region. These prob-
lems are open-ended, differing from tradi-
tional multiple-choice or fill-in-the-blank for-
mats. This selection aims to more accurately
reflect the complexity of advanced scientific
reasoning, providing insight into the actual
reasoning process of the models.

2. Provision of Detailed Solutions. Given the
advanced difficulty of these problems, which
may exceed the comprehension of individuals

without a specialized background in mathe-
matics, each problem is accompanied by ex-
pertly crafted solutions that detail the reason-
ing steps involved. This approach can not only
reduces the difficulty of annotation and evalua-
tion but also enhances the accuracy of the solu-
tions provided. Furthermore, detailed expert-
level solutions are valuable for research in
model reasoning.

3. Incorporation of Visuals. Recognizing the
crucial role of visual information in conveying
complex ideas, OlympiadBench incorporates
problems that require understanding images,
identifying spatial relationships, and other ad-
vanced reasoning tasks. This inclusion aims to
assess the model’s capabilities in interpreting
visual data as part of its reasoning process.

4. Minimization of Data Leakage Risks. To
minimize the risk of data leakage, we have
sourced problems from official Olympiad
competitions, converting them from their orig-
inal PDF files provided by official websites
to the markdown format required. This strat-
egy is aimed at reducing the likelihood of the
data being inadvertently incorporated into the
pre-training corpora of models.

Through these carefully designed criteria,
OlympiadBench aims to not only challenge but
also significantly advance the capabilities of
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models in mathematical and physical reasoning.

3.2 Data Processing

The data processing pipeline is structured into three
distinct phases: data collection, format conversion
& deduplication, and classification labeling.

Data Collection. OlympiadBench is metic-
ulously compiled from three primary sources:
Global Mathematics and Physics Olympiad Prob-
lems, Regional and National Chinese Math Com-
petitions, and Gaokao Mock Questions for Mathe-
matics and Physics 3. Each chosen for its distinct
advantages in creating a robust and comprehen-
sive benchmark for evaluating LLMs and LMMs in
mathematical and scientific reasoning. Their chal-
lenges progressively increase in difficulty, not only
distinguishing the reasoning capabilities of mod-
els of various sizes but also offering guidance on
scaling laws (Kaplan et al., 2020) for specialized
models in these domains.

Format Conversion and Deduplication. Af-
ter collecting all PDF files, we utilize the Math-
pix tool for OCR recognition and convert them
into markdown format. However, no conversion
process is flawless, necessitating manual verifica-
tion by our team members between the original
PDF files and the converted Markdown texts. The
Markdown texts are further structured into a format
akin to "Problem—Solution—Answer", employing
its markup language for text organization. Sub-
sequently, we leverage a specialized small-scale
language model 4 trained on mathematical symbol
corpora for vectorizing the data and performing
deduplication based on cosine similarity.

Classification Labeling. We note that both
mathematics and physics problems predominantly
comprise two types of questions: the open-ended
problems and the theorem proving problems. We
also note that the dataset, enriched by both
Olympiad and national examination questions, cov-
ers a broad spectrum of subfields, as illustrated in
Figure 2. Therefore, we manually annotate each
question with topic and problem type annotations.

3.3 Data Characteristics

In contrast to previous benchmarks, Olympiad-
Bench unveils two unique characteristics within
its dataset: the incorporation of Progressive Prob-

3Clean and correct college entrance exams as well as mock
questions from Wisdom Way AI Lab.

4https://huggingface.co/Laurie/
Bloom1b7-deepspeed-chat-Chinese-math

Physics-COMP&CEE (2,334):

Mechanics, Electromagnetism, 
Thermodynamics, 
Optics, Modern Physics

Maths-COMP (2,133):

Combinatorics, Algebra, 
Number Theory, Geometry

Maths-CEE (4,009):

Derivative, Conic Sections, 
Sequence, Trigonometric 
Functions, Set Theory, Logic, 
Elementary Functions, 
Inequality, Polar Coordinates 
and Parametric Equations, 
Probability and Statistics, 
Plane Geometry, Solid 
Geometry, Complex Numbers

Figure 2: Subfields Distribution of OlympiadBench

Answer type Example
Numeric 1/4
Expression x = (1/2)at2

Equation x2 + y2 = 1
Tuple (x, y, z) = (0, 0, 0)
Interval (−∞,−1) ∪ (1,+∞)

Table 3: Examples of the five answer types

lems in Physics and the categorization of answers
to most open-ended questions into a limited num-
ber of types.

Progressive Problems in Physics. In physics
competitions such as the International Physics
Olympiad (IPhO), problems are often structured
around a common material or scenario, with subse-
quent questions potentially relying on the answers
or information from previous questions. One exam-
ple is given in Figure 10 and Figure 11. This design
characteristic is commonly referred to as "progres-
sive problems". By linking a series of questions to-
gether, progressive problems require participants to
apply their knowledge and skills comprehensively
to gradually solve more complex issues. This type
of question design aims to test students’ depth of
understanding, application capabilities, and innova-
tive thinking, rather than just basic knowledge. To
better utilize this feature, we compile the material,
questions, and their answers into the ’context’ field
for each set of progressive problems.

Answer Type Classification. Whether in mathe-
matics or physics, the answers to problem requiring
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definitive response can largely be categorized into
the following types: numeric, expression, equation,
interval, and tuple. Simple examples of these can
be seen in Table 3.

3.4 Automatic Scoring Pipeline

We design an automated scoring pipeline (see Al-
gorithm 1) to evaluate model-generated answers
across complex fields like mathematics and physics,
where answers vary from numbers to equations.
This method simplifies answers into two categories:
numeric values, handled through floating-point op-
erations, and symbolic expressions, requiring sym-
bolic computation.

For equations, we ensure all terms are on one
side before dividing to check for mathematical
equivalence. Intervals and tuples are compared by
extracting and evaluating each element. Numeric
answers are verified against a small tolerance of
error, defaulting to 1e-8 but adjustable for physics
problems to allow for a specific error margin. For
expressions, we use the SymPy5 library to confirm
if the subtraction of two expressions approaches
zero, indicating correctness.

4 Experiments

4.1 Settings

We conduct evaluations of open-source and closed-
sourced LMMs that have been selected with con-
sideration of their comprehensive capabilities on
OlympiadBench. At the same time, we have se-
lected LLMs with strong mathematical and logical
abilities for evaluation on text-only questions.

As no accurate automatic evaluation method for
theorem proving exists, we run full experiment on
the automatic-scoring-available open-ended prob-
lems with answer type included in the Table 3,
which is discussed in this section. We do manual
sampling check of GPT-4V for theorem proving
problems with analysis reported at Section 5.1.

4.1.1 Prompts
We evaluate the models in a zero-shot setting. Due
to the high difficulty of the OlympiadBench ques-
tions, there should be considerable randomness in
the results when using small batch data as the vali-
dation set, so we directly use a specific prompt tem-
plate for all models instead of conducting prompt-
engineering for each model respectively. The

5https://www.sympy.org

prompt template for English and Chinese open-
ended questions is shown in the figure 3. To ensure
the most complete extraction of the model’s final
results, we explicitly prescribe the types and for-
mats of the answers in the prompt to promote the
accuracy of the machine’s automatic scoring. In
order to test the native mathematical and physical
abilities of the models, the prompts used in the test
do not introduce knowledge points and other ex-
tra information contained in the dataset, but this
information can be applied in subsequent research.
Note that deepseek-math-7B-RL (Shao et al., 2024)
requires the addition of a specific chain-of-thought
prompt at the end of the input, which we adhered
to during the evaluation.

4.1.2 Evaluation Workflow
We first apply each model to generate answers for
questions in OlympiadBench using prompts formed
by prompt template, with open-source models run-
ning on NVIDIA A800 GPUs. Then, we run the
automatic scoring pipeline to judge the correctness
of the answers as described in subsection 3.4. Fi-
nally, we calculate the micro-average accuracy as
the comparing metric. The code of the whole work-
flow is provided in the supplementary material.

4.2 Baselines

In our study, we evaluate the performance of cur-
rent leading bilingual large multimodal models
(LMMs), as well as bilingual large language mod-
els (LLMs) that has strong mathematical and rea-
soning abilities. We take both open- and closed-
source models into consideration, using either the
largest and latest released checkpoints or the best-
performing official APIs available.

For LMMs, we select GPT-4V(GPT-4-
Vision) (OpenAI, 2023b), Gemini-Pro-
Vision (Team, 2023), Qwen-VL-Max (Bai
et al., 2023) for closed-source models, while Yi-
VL-34B (01-ai, 2024) and LLaVA-NeXT-34B (Liu
et al., 2024) for open-source models. For models
that demand compulsory image input, we take
their LMM counterpart (corresponding text-model
API or base LLM) for evaluation. Specifically,
for LLaVA-NeXT-34B, we use its base LLM,
Nous-Hermes-2-Yi-34B (NousResearch, 2023).
The text model corresponding to Yi-VL-34B is
Yi-34B-Chat (01-ai, 2023). Similarly, for the
Gemini-Pro-Vision, we utilize the Gemini-Pro
API interface. To examine the impact of replacing
LMM with base LLM for processing text-only
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以下是中国<subject>竞赛中的解答题。

请根据题目的要求和所提供的信息计算得出答案。解答过程和结果中使
用的变量和公式请使用LaTeX格式表示。
请在最后以

显式给出结果。

The following is a question from an International <subject> competition.

Please calculate the answer according to the given requirements and the 
information provided. Please use LaTeX format to represent the variables and 
formulas used in the solution process and results. Please end your solution with 

- Single answer of the type “tuple” -

The answer of the question should be <ans_type>. Single answer 答案类型为<ans_type>。

The question has multiple answers, each of them should be <ans_type>. Multiple answers of single type 题目有多个答案，答案类型均为<ans_type>。

The question has multiple answers, with the answers in order being 
<ans_type>, …<ans_type>. Multiple answers of the same type 题目有多个答案，答案类型分别为<ans_type>、…<ans_type>。

“So the final answer is \boxed{answer}.” Single answer “所以最终答案是\boxed{答案}。”

“So the final answer is \boxed{multiple answers connected with commas}.” Multiple answers “所以最终答案是\boxed{用英⽂逗号连接的多个答案}。”

and give the result explicitly.

Figure 3: The template of the construction of the prompt for English(left) and Chinese(right) open-ended questions,
among which <subject>, <ans_type>, and whether there are multiple answers can all be obtained from the data
items in OlympiadBench dataset.

data, we subsequently compare the performance
differences between GPT-4V and GPT-4 6 on
text-only questions in OlympiadBench.

For LLMs, we select DeepSeekMath-7B-
RL (Shao et al., 2024) as the primary baseline for
text-only questions, and report the results of the
selected LMMs (or their LLM counterparts) on the
text-only questions for comparison, and addition-
ally evaluate GPT-4 as described above.

4.3 Main Results
The overall experiment result is shown in table 4.
Based on the results, our key findings can be sum-
marized as the following:

OlympiadBench is more challenging than ex-
isting benchmarks, which provides new per-
spective to compare LMMs. As shown in ta-
ble 7, the most advanced model only achieves an
average accuracy of 17.97% on OlympiadBench,
which is much lower than that of existing bench-
marks. Moreover, the gap between the models has
been widened, thereby becoming more significant,
which helps people to compare the differences in
capabilities between different models more accu-
rately.

There still exists a huge difference between
the most powerful closed-source models and
open-source models, but a large model size is
needed. The average accuracy of GPT-4V is
more than 5 times larger than the best-performing
open-source model (Yi-VL-34B). But Gemini-Pro-
Vision, being closed-source models of the second-
tier size, is much less compatible on complicated
tasks such as OlympiadBench, for it achieves an
average accuracy that is only slightly higher than
open-source model.

6The version of GPT-4 is "0125-preview" and GPT-4V is
"1106-vision-preview".

The challenge lies more on question-with-
images, Physics and none-English text. The
model performance on text-only questions is sig-
nificantly above average, showing the challeng-
ing spirit of multi-modal questions. Meanwhile,
Physics questions, especially Physics questions
with images, are more challenging than math ques-
tions, as they require knowledge of the laws of
Physics as well as other world knowledge besides
mathematical abilities such as calculation and rea-
soning. Moreover, LMMs with a focus on bilingual
image-text training data, such as Qwen-VL-Max
and Yi-VL-34B, perform better on Chinese ques-
tions then English questions.

Open source LLMs is catching at fast speed
in the area of maths and physics. Although
with a relatively small size, DeepSeekMath-7B-
RL outperforms or is on par with Gemini-Pro-
Vision and Qwen-VL-Max on the text-only part
of OlympiadBench, especially in Math problems,
showing promising future of open-source model of
pre-training and fine-tuning on fine-grained mathe-
matical and reasoning data.

Multi-modal training slightly hurts perfor-
mance on text-only math and physics tasks,
but may also bring some improvement. The
text-only version GPT-4 performs slightly better
on all datasets of OlympiadBench, except for the
En_COMP dataset. We hypothesis that the im-
provement in the En_COMP dataset shows an en-
hancement of long-context text reasoning capabili-
ties, which is discussed in Appendix B.2.

5 Analysis

In this section, we conduct analysis on the GPT-
4V’s answers of specific open-ended questions that
have been sampled, as well as giving preliminary
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Models Maths Physics Avg.
En_COMP Zh_COMP Zh_CEE Avg. En_COMP Zh_CEE Avg.

LLaVA-NeXT-34B† 3.98 2.60 4.64 4.30 - 1.36 2.32 2.08 3.65
Yi-VL-34B† 4.22 3.68 4.31 4.23 - 0.91 1.64 1.46 3.42
Gemini-Pro-Vision 6.92 2.59 5.05* 5.14 - 3.19* 2.12 2.45 4.22
Qwen-VL-Max 10.68 13.21* 13.08 12.65 - 3.76* 5.64* 5.09 10.09
GPT-4V 27.18 14.87 21.27 21.70 - 11.42 10.45 10.74 17.97

Experiment with text-only
LLaVA-NeXT-34B 4.15 2.94 8.55 6.29 - 2.12 5.22 3.13 5.87
Yi-VL-34B 4.45 3.68 8.06 6.24 - 0.85 5.22 2.28 5.72
DeepSeekMath-7B-RL 19.44 2.70 22.42 18.09 - 6.78 16.52 9.97 17.02
Gemini-Pro-Vision 7.57 2.94 9.20* 7.63 - 4.66 6.96 5.41 7.34
Qwen-VL-Max 11.57 14.29 25.89 19.70 - 4.24 18.26 8.83 18.27
GPT-4V 28.93 15.93 37.10 31.01 - 12.71 23.48 16.24 29.07
GPT-4 30.42 16.42 37.98 32.00 - 12.29 24.35 16.24 29.93

Table 4: Experimental results. En_COMP: COMP problems in English, Zh_COMP: COMP problems in Chinese,
Zh_CEE: CEE problems in Chinese. For closed-source models, the responses for some problems are not available,
we mark the results with * (all of the proportion of missing answers are less than 1%, except for the result of
Qwen-VL-Max in Physics-En_COMP, where 26 questions exceed maximum input length). The causes are further
described in Appendix B.3. Moreover, LLaVA-NeXT-34B and Yi-VL-34B only accepts input with single image, we
mark results from only one image input with †.

examination of theorem proving questions.

5.1 Examination of Theorem Proving
Questions

For GPT-4V, we do manual sampling check to eval-
uate the mathematical theorem proving questions.
In the questions drawn according to the knowledge
point distribution, GPT-4V only answers 6 out of
81 questions correctly in Math-Zh_COMP, all of
which are relatively simple and classic conclusions
(e.g. AM-GM inequality), or involved only sim-
ple computational derivations, and was basically
unable to complete the proof within the token limi-
tation in Math-En_COMP, indicating that existing
models still cannot effectively solve lengthy rea-
soning and proofs, which is consistent with the
conclusions in existing papers (Trinh et al., 2024).

In solving proof problems, GPT-4V exposes sev-
eral important issues, including: inability to fully
utilize image information (figure 9 as an example);
tending to make mistakes in simplifying and trans-
forming algebraic expressions; proposing simple,
basic incorrect conclusions;struggling with classifi-
cation discussions, etc. Detailed examples can be
found in the Appendix C.

5.2 Mistake Analysis of GPT-4V

We manually sample and check 97 maths (55
for English and 42 for Chinese) and 67 physics
Olympiad-level open-ended problems that GPT-
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Value Calc Error, 0%

Expression
Calc Error
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Conceptual Confusion
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Introducing
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Figure 4: Distribution of the error occurring in GPT-
4V’s solving process of 164 sampled Olympic-level
open-ended problems.

4V fails, and analyze the type of mistakes, the
overall results are shown in figure 4. In maths
problems, the typical errors of GPT-4V include:
insufficient classification discussion, especially in
combinatorial problems; poor performance in prob-
lems requiring large calculations (e.g. conic curve
problems), manifests as a lack of logic in the calcu-
lation process, resulting in the model being unable
to provide a reasonable answer. However, we also
found that GPT-4V has strong abilities in solving
quadratic equations and derivative problems. In
physics problems, GPT-4V tends to fall in con-
ceptual confusion, or introduce unnecessary vari-
ables or concepts, but its capability to simplify and
transform algebraic expressions is stronger than
in purely mathematical situations, with nearly no
numerical calculation errors.
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6 Discussion and Future Work

Here, we discuss the automated evaluation of theo-
rem problems and the future research directions in
advanced disciplines.

Evaluation of Theorem’s Proof Problems. The
inability to automatically evaluate theorem’s proof
problems remains a significant challenge today.
Currently, mainstream methods for the automatic
evaluation of proofs require formalization, neces-
sitating domain expertise and background knowl-
edge. Exploring how to automatically evaluate
natural language proofs represents an important re-
search direction. Our dataset includes expert-level
comprehensive annotations in a fusion of natural
language and LaTeX formats, making it a high-
quality resource for research in natural language
proof problems and fostering further development.

Expansion of Disciplines. Mathematics, much
like physics, serves as a litmus test for artificial
intelligence, requiring a strong foundational knowl-
edge, rigorous high-level computations, and precise
logical reasoning. Currently, large models still face
significant challenges in mathematics and physics,
which are critical hurdles that must be overcome
for the development of AGI. In our future work, we
will integrate additional fields such as geography,
biology, and chemistry to provide a more innova-
tive and comprehensive evaluation of a model’s
reasoning capabilities.

7 Conclusion

We create OlympiadBench, an Olympiad-level
bilingual multimodal scientific benchmark to as-
sess the capabilities of large models in mathematics
and physics reasoning. Each problem is detailed
with expert-level annotations for step-by-step rea-
soning. In our benchmarking, we provide a de-
tailed analysis of model performance, pinpointing
prevalent error types and potential areas for en-
hancement. This significant and challenging effort
fills a notable void, and we intend to open-source
the benchmark to advance AGI and scientific rea-
soning research. Future efforts will focus on gath-
ering more challenging questions and broadening
the range of subjects to further develop rigorous
scientific benchmarks.
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Ethical Considerations

In this paper, we introduce OlympiadBench, a
highly challenging bilingual, multimodal scien-
tific benchmark aimed at evaluating the mathe-
matical and physical reasoning of large models
now and AGI in the future. The paper outlines
the dataset construction, including data gathering,
OCR processing, cleansing, deduplication, and de-
tailed annotation. OlympiadBench’s data, derived
exclusively from official sources, substantially re-
duces the likelihood of pre-training data leakage.
We offer precise annotations for each problem
and have implemented an exhaustive evaluation
script for more accurate model performance assess-
ment. Additionally, being bilingual and providing
expert-level reasoning annotations for every ques-
tion, OlympiadBench serves as a crucial resource
for propelling AGI’s prowess in scientific reason-
ing. Committed to environmental sustainability,
we intend to release the dataset and accompanying
scripts publicly to cut down on unnecessary car-
bon footprint. In experiments, we comply with all
licenses for models and data.

Limitations

In pursuit of understanding the logical reasoning
abilities of LLMs and LMMs within the multi-
modal domains of mathematics and physics, we
develop OlympiadBench, a challenging bilingual
multimodal scientific benchmark. Despite filling
a notable void, this work acknowledges inherent
limitations. First, in the OlympiadBench, some
questions feature answers that require categorical
discussions or textual descriptions, such as proofs,
which currently cannot be assessed using regular
expressions or tools like SymPy at the code level
and necessitate manual review. However, this data
holds significant research value. Secondly, the au-
tomated scoring system we propose cannot per-
form specific analysis based on the particulars of
each question. It makes logical judgments solely
based on the two symbols or numerical expres-
sions inputted, without integrating any special con-
straints that may exist within the actual problem
context. What’s more, the development of datasets
for multimodal scientific reasoning requires exten-
sive manual effort in gathering and annotating data,
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which constrains the diversity and difficulty of mul-
timodal scientific challenges. As a result, this ham-
pers AI’s capacity to learn from and address more
intricate scenarios.
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A Dataset Details

A.1 Data Sources
Our data sources can be split into the following
three parts:

1. Global Mathematics and Physics Olympiad
Problems. The Mathematics and Physics
Olympiad problems are globally recognized
for their complexity and quality. These prob-
lems often require multiple methods of solu-
tion and the ability to integrate sub-disciplines
from within the broader fields of mathematics
and physics. The participants in these compe-
titions represent some of the most proficient
individuals worldwide in logical reasoning
within mathematics and physics. This not only
sets a high standard for problem-solving but
also fosters a diverse set of analytical skills
that are crucial for the advancement of large
models.

2. Regional and National Chinese Mathemat-
ics Competitions. In addition to maintaining
a high level of difficulty, regional competi-
tions and the CMO introduce elements spe-
cific to the Chinese context. This inclusion
is instrumental in furthering the development
and research of Chinese-oriented and multilin-
gual large models. By encompassing a wide
array of mathematics and physics problems,
these competitions provide a unique oppor-
tunity to develop models that are adaptable
and proficient across different mathematical
queries, enhancing their versatility and effec-
tiveness.

3. Gaokao Mock Questions for Mathematics
and Physics. Given that the resolution of
Olympiad-level problems typically necessi-
tates models with substantial parameter sizes,
we also incorporate Gaokao simulation prob-
lems to evaluate smaller models’ capabili-
ties in answering free-form mathematics and
physics questions.

The integration of data from Gaokao simulation
problems, regional and national competitions, to
the global Olympiads constructs a smooth difficulty
transition curve. This methodology not only dis-
tinguishes the mathematical and physical problem-
solving capabilities of different models but also
provides guidance on the scaling laws for models
specialized in these domains.

3839

http://arxiv.org/abs/2104.01112
http://arxiv.org/abs/2104.01112
http://arxiv.org/abs/2311.16502
http://arxiv.org/abs/2311.16502
http://arxiv.org/abs/2311.16502
https://doi.org/10.18653/v1/2023.acl-long.411
https://doi.org/10.18653/v1/2023.acl-long.411
http://arxiv.org/abs/2401.13601
http://arxiv.org/abs/2401.13601
http://arxiv.org/abs/2401.13601
http://arxiv.org/abs/2401.11944
http://arxiv.org/abs/2401.11944
http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2109.00110
http://arxiv.org/abs/2109.00110
http://arxiv.org/abs/2308.07921
http://arxiv.org/abs/2308.07921
http://arxiv.org/abs/2308.07921


Subject Source Coverage Years Number

Maths

IMO 2006-2022 509
RMM 2011, 2013, 2015-2019, 2021, 2023 53
ARML 2009-2014, 2019, 2023 505
EMC 1998-2023 364

EGMO 2013, 2015-2023 64

Physics

IPhO 1984, 1986-1990, 2008-2012, 2014-2016, 2018-2019, 2021 381
APhO 2013-2015 200
EPhO 2019-2022 17

USAPhO 2017-2021 113
PUPC 2020-2022 65
OPhO 2020-2023 132

Table 5: Summary of Problems in Math and Physics Competitions, with full acronyms listed in the Table 6

A.2 Data Curation Process

Our initial step involves a comprehensive survey of
well-known Olympiad competitions, and the list of
which is accessible through the AoPS community
platform 7. We cataloged these competitions based
on several criteria: difficulty level, volume of ques-
tions, availability of materials in public domains,
language, discipline, and coverage years. Follow-
ing the design principles outlined in Section 3.1,
we meticulously select specific contests and years
that not only adhere to our dataset design criteria
but also try to span the widest possible range of
years (Table 5).

In the format conversion phase, we also man-
ually annotated the subfield of each question in
maths or physics, with their distribution detailed in
Table 9.

A.3 Example of Progressive Problem in
Physics

Figures 10 and 11 present a sequential challenge
from the International Physics Olympiad (IPhO)
2021, illustrating the intricacies of progressive
problem-solving in a competitive context. This
particular problem set exemplifies a common trait
in advanced physics competitions: the dependency
of many questions on the solutions and materials of
preceding ones. These dependencies are sometimes
explicit, but most are implicit, weaving a complex
web of interconnected knowledge and reasoning.

An explicit instance of this dependency can be
observed in problem C.2, where the prompt directly
requires the use of the symbol β defined in B.1 for
the calculation of an unknown quantity. This re-

7https://artofproblemsolving.com/community/c13

quirement not only tests the participants’ ability to
understand and apply physical concepts but also as-
sesses their skill in navigating through and linking
various parts of a problem set. Such explicit instruc-
tions are crucial for guiding participants through
the logical progression of the problems, yet the ma-
jority of dependencies remain implicit, demanding
a deeper level of comprehension and integration of
the material.

This structure of problem-solving reflects a re-
alistic scientific inquiry, where discoveries and so-
lutions often rely on previously established knowl-
edge. The explicit mention of β in C.2 as de-
rived from B.1 is emblematic of this educational
approach, aiming to foster a holistic understand-
ing and the ability to build upon existing informa-
tion to solve complex problems. It underscores the
importance of thorough comprehension of earlier
sections for successful problem-solving in later sec-
tions, simulating real-world scientific challenges
where new solutions are often predicated on a foun-
dation of established knowledge.

B Evaluation Details

B.1 Details of the Evaluated Models

B.1.1 LMMs
We have selected current mainstream LMMs that
have performed the best on past scientific multi-
modal datasets for evaluation.

The closed-source models include: GPT-
4V (OpenAI, 2023b), developed by OpenAI, which
is currently the most powerful multimodal model.
Gemini (Team, 2023) is the LMM series devel-
oped by Google Deepmind, with Gemini-Ultra-
Vision being purported to have surpassed GPT-4V
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Subject Acronym Full name

Maths

IMO International Mathematical Olympiad
RMM Romanian Master of Mathematics
ARML American Regions Mathematics League
EMC Euclid Mathematics Competition

EGMO European Girls’ Mathematical Olympiad

Physics

IPhO International Physics Olympiad
APhO Asian Physics Olympiad
EPhO European Physics Olympiad

USAPhO USA Physics Olympiad
PUPC Princeton University Physics Competition
OPhO Online Physics Olympiad

Table 6: Full names of all competitions’acronyms used in this paper

on datasets like MMMU. However the unavail-
ability of Google’s API for Gemini Ultra, we test
the accessible Gemini-Pro-Vision as an alternative.
Qwen-VL-Max (Bai et al., 2023), developed by Al-
ibaba, is the largest LMM, and stands on par with
GPT-4V and Gemini-Ultra in multi-modal tasks.
Due to the large proportion of Chinese data used in
its training, Qwen-VL-Max has a certain advantage
in Chinese language ability.

The open-source models include: Yi-VL-
34B (01-ai, 2024) is the first open-source 34B
multi-modal model that has demonstrated satisfy-
ing performance on several latest datasets. With
Chinese text-image pairs included in the train-
ing process, Yi-VL-34B offers adequate multi-
lingual support. LLaVA-NeXT-34B (Liu et al.,
2024) claims to be the strongest open-source LMM,
with enhancements in reasoning, OCR, and world
knowledge. Despite being trained exclusively with
English multi-modal data, it demonstrates an emer-
gent zero-shot Chinese multi-modal capability on
Chinese benchmarks.

It should be noted that an image must be passed
for Gemini-Pro-Vision, LLaVA-NeXT, and Yi-VL
during inference. Therefore, for the text-only ques-
tions in OlympiadBench dataset, we use the corre-
sponding text-model api (for closed-source mod-
els), or their base LLM (for open-source models).
To examine the impact of replacing LMM with
base LLM for processing text-only data, we subse-
quently compare the performance differences be-
tween GPT-4V and GPT-4 on text-only questions
in OlympiadBench.

B.1.2 LLMs
The field of LLM starts early in scientific areas such
as mathematics and physics, with models specifi-
cally trained occurring. We select DeepSeekMath-
7B-RL (Shao et al., 2024) as the primary base-
line for text-only questions. DeepSeekMath-7B-
RL is pre-trained on 120B math-related data and
enhanced chain-of-thought (CoT) reasoning capa-
bilities using reinforcement learning, in the result
scoring close to GPT-4 and Gemini-Ultra on the
MATH (Hendrycks et al., 2021) dataset. We report
the results of the selected LMMs (or their LLM
counterparts) on the text-only questions for com-
parison, and additionally evaluate GPT-4 in order
to compare with GPT-4V 8.

B.2 Detailed Experiment Result
The comparison of the performance of mainstream
closed-ended models on different datasets are
shown in Table 7.

Benchmark GPT-4(V) Qwen Gemini
VL-Max Pro

MATH 52.9 - 32.6
MathVista(testmini) 49.9 50.0 45.2
OlympiadBench 17.97 10.09 4.22

Table 7: Comparison of Performance on Different
Benchmarks. The values for MATH and MathVista
are obtained from Gemini and Qwen’s report.

To further discuss the performance difference
between GPT-4 and GPT-4V on the Physics-
En_COMP, we split the En_COMP dataset into
two sub-datasets, with normal-PhO being normal

8The version of GPT-4 is "0125-preview" and GPT-4V is
"1106-vision-preview".

3841



PhO questions, and long-PhO being PhO questions
that show in a relational series, therefore having
long context. As shown in table 8, GPT-4 keeps
performing slightly better on normal-PhO, but
lags much behind on long-PhO, which may indi-
cate improvement of long-context text reasoning
capabilities after multimodal training.

long-PhO
(157)

normal-PhO
(74)

GPT-4V 18.47 1.35
GPT-4 14.92 4.05

Table 8: Average accuracy of GPT-4V and GPT-4 for
the En_COMP dataset

B.3 Unavailable Responses for Closed-Source
Models

As described in table 4, the response for some prob-
lems are not available, the main causes are as fol-
lows:

1. Exceeding input limit: Some of the context
of the problems are too long, which exceed
the input token limitation for the API. This
case mainly occurs in Physics-En_COMP that
contains long-context problems of over 6,000
tokens.

2. Inappropriate response: Some problems trig-
ger inappropriate response, which are banned
by the API to return.

3. No response: Some problems continuously
get no or empty response from the API.

4. Request timed out: Some problems continu-
ously fail to get a response.

We removed the problems with unavailable re-
sponse when calculating the accuracy.

C Additional Analysis and Examples

C.1 Performance analysis of GPT-4V
We analyzed GPT-4V’s performance (accuracy
on open-ended problems) on different knowl-
edge points based on the knowledge point labels
in OlympiadBench, the results can be found at Fig-
ure 5.

For Math problems, GPT-4V has poor perfor-
mance in geometry, with the lowest scoring knowl-
edge points being almost exclusively geometry-
related. This may show the need of improving the

ability of understanding and imaging plane or 3d
situations. GPT-4V also performs poorly on knowl-
edge points that are more computationally intensive
such as conic curves; and struggles to give a com-
plete and comprehensive classification discussion,
therefore prone to making mistakes on combina-
torial problems. However, GPT-4V is stronger in
knowledge related to derivatives and complex num-
bers.

As for Physics problems, none of the knowledge
points surpass an accuracy of 16%, and GPT-4V
struggles more in thermodynamics and mechanics.

C.2 Detailed Description of the Error Types
in GPT-4V’s solving or proving process

The error types are as follows:

1. Question Misunderstanding: GPT-4V some-
times misunderstands the intention or settings
of the question.

2. Value Calculation Error: GPT-4V make sim-
ple calculation mistakes sometimes, such as
outputting b

2 + 7 = b+7
2 , these mistakes ap-

pears more in Chinese and Math contents.

3. Expression Calculation Error: Similar to value
calculation error, but happens when transform-
ing between two expressions.

4. Logical Reasoning / Induction Error / Concep-
tual Confusion: GPT-4V sometimes makes
false reasoning or induction, as well as en-
counters conceptual confusion (see Figure 7
for example).

5. Introducing Unnecessary variables or con-
cepts: GPT-4V sometimes suddenly introduce
variables or try to use concepts that have no
contribution to solving the problem, which not
only makes the output longer, but also may
confuse GPT-4V itself and leads to incorrect
output.

6. Conclusion Hallucination: GPT-4V some-
times hallucinates for a conclusion that is not
reached in former output, or hallucinates a
theorem that does not really exist (for exam-
ple, when solving geometric proving problem,
GPT-4V always mention "The Power Theo-
rem", which does not exist, and all the proof
thereafter will lost their logic).

7. Unfinished Answering: GPT-4V sometimes
says the question have confliction in settings
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Figure 5: An analysis of GPT-4V’s accuracy on different knowledge points, blue for Math and red for Physics.

(which is not true), or degenerates after some
tokens.

8. Insufficient Classification Discussions: When
doing classification discussion, GPT-4V may
miss some possible situation, or have over-
lapped discussion (see Figure 6 for example).

9. Incorrect Judging: Sometimes GPT-4V gives
the right answer, but is judged as incorrect
due to the limitation of the automated scor-
ing system: One important problem is that
many problems, especially Physics problems,
accept answers that fall in a specific range
due to rounding up, rather than a fixed nu-
merical answer, so a precision is needed for
automatically calculating the range, which
was not given in many cases. Using relative
precision (such as a percentage of 1%), may
leads to accepting answers with unacceptable
error when the origin answer is big, so we
manually decide the precision for Olympiad-
Bench problems if there is no official pre-
cision given, which may leads to incorrect
judging. For example, in a Physics ques-
tion (Physics-En_COMP#995), the precision
is manually set as 1e1, with the official an-
swer being

√
2 × 3970 ≈ 5614.43. GPT-

4V calculates the answer as
√
2 × 3970 ≈

1.414 × 3970 ≈ 5615.88, which falls out
of the acceptable range, but is actually cor-
rect. Another problem is the current auto-
mated scoring system can’t judge the equality
between expressions such as a

√
b and

√
a2b

with a ≥ 0. These flaws call for future work
such as automatically deciding required preci-
sion of the answer, and automatically judging
equality between expressions.

C.3 Other Observation for Open-Ended
Problems

1. Given a simple solution, GPT-4V may choose
a more complex method to solve the problem
(see Figure 8).

2. Models may give correct answers with a false
process. Mainly observed for problems with
a simple answer, such as the variables takes 0
as the answer.

3. GPT-4V may success in giving correct overall
idea, but fail in calculation (such as solving
quadratic equations with extra negative signs),
which leads to a wrong answer.
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Question GPT-4V’s Solution
A die, with the numbers 
1,2,3,4,6, and 8 on its six 
faces, is rolled. After this 
roll, if an odd number 
appears on the top face, 
all odd numbers on the 
die are doubled. If an 
even number appears on 
the top face, all the even 
numbers are halved. If 
the given die changes in 
this way, what is the 
probability that a 2 will 
appear on the second roll 
of the die?

Let's first determine the possible outcomes after the first roll and the corresponding changes 
to the die.
If an odd number appears on the top face after the first roll (which can be either 1, 3, or 6), 
all odd numbers are doubled. So the new faces of the die will be:
- If 1 appears, it becomes 2. (3 should also be doubled.)
- If 3 appears, it becomes 6. (1 should also be doubled.)
- The number 6 is even, so it remains unchanged. (Incorrectly classifying 6 into odd
numbers, which leads to failure in thorough discussion of even numbers below.)
If an even number appears on the top face after the first roll (which can be either 2, 4, or 8), 
all even numbers are halved. So the new faces of the die will be:
- If 2 appears, it becomes 1. (Same problem.)
- If 4 appears, it becomes 2.
- If 8 appears, it becomes 4.
Now, let‘s calculate the probability of getting a 2 on the second roll based on the first roll:
- If the first roll is 1, the die will have faces 2, 2, 6, 4, 6, 8. The probability of rolling a 2 is

!
".

……
- If the first roll is 8, the die will have faces 1, 2, 3, 2, 3, 4. The probability of rolling a 2 is

!
".

Now, we need to calculate the total probability of rolling a 2 on the second roll. Since each 
face has an equal probability of appearing on the first roll, we can average the probabilities:

Total probability 
#
"×

!
" +⋯+ !

" = ⋯ = #
$ .

So the final answer is \boxed{
#
$}.

Answer
!
%	(Full solution omitted,

see Math-
En_COMP#2355 if
needed.)

Figure 6: An example of GPT-4V making insufficient classification discussions in a combinatorial problem. The red
text is the wrong part of GPT-4V’s answer, and the purple text is our further illustration.

4. GPT-4V may not fully utilize the information
from the image (see Figure 9).

D Automatic Scoring Pipeline

The pipeline workflow is shown in Algorithm 1.
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Algorithm 1: Auto Scoring Judge

Input: GroundTruth, ModelOutput;
Output: Boolean value indicating match;

Preprocess GroundTruth and ModelOutput;
if GroundTruth equals ModelOutput then

return True;
else

if GroundTruth and ModelOutput are intervals or tuples then
if GroundTruth equals ModelOutput as intervals or tuples then

return True;
else

return False;
end

else
if GroundTruth equals ModelOutput numerically then

return True;
else

if Both GroundTruth and ModelOutput contain "=" then
return EquationEqual(GroundTruth, ModelOutput);

else
return ExpressionEqual(GroundTruth, ModelOutput);

end
end

end
end
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Figure 7: An example of GPT-4V getting confused between the concept of "vertical to the plane" and "vertical(to
the ground)".

Question GPT-4V’s Solution

已知正数 !, #	满⾜: ! + # = 1. 
求

!
" +

#
$的最小值.

由已知条件 ! + # = 1，我们可以将
!
" +

#
$表达为	!	和	#	

的函数。首先，我们将	#	用	!	表示出来，即	# = 1 − !。然后将	#	
代⼊	 !" +

#
$中，得到：

!
" +

#
$ = 

!
" +

#
!%"

为了找到这个表达式的最小值，我们可以使用微分法。首先，我们对

上述表达式求导：
&
&"

!
" +

#
!%" = !

"! +
#

(!%")! .
为了找到极值点，我们令导数等于零：…. 解这个⽅程，…我们得到：
3!) + 2! − 1 = 0. 这是⼀个⼆次⽅程，我们可以使用求根公式来解它：

! = %*± *!%#,-
), ,	其中- = 3, . = 2, / = −1，代⼊求根公式得到：! =

⋯ = %)±#
. . 我们得到两个解，分别是：! = !

/或! = −1.
由于 !	是正数，我们排除 !	 = 	−1	的解，所以 ! = !

/ . 将 ! 的值代⼊
# = 1 − !，得到…。

现在我们可以计算
!
" +

#
$的值：

!
" +

#
$ =

!
"
#
+ #

!
#
= ⋯ = 9.

所以最终答案是 9。

Standard Solution

由 - + . −
2 -. = - − . )≥ 0,故	- +
.	 ≥ 	2 -..所求

!
" +

#
$ =

!
" +

#
$ ! + # = 1 + 4 + $

" +
#"
$ ≥ 5 + 2 $

" ·
#"
$ = 9, 等号在

! = !
/ , # =

)
/处取到, 故最小值为

	9.

Figure 8: An example of GPT-4V giving a solution that is much complex than that of the standard solution, although
reaching the correct answer eventually.
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Figure 9: An example of GPT-4V’s failure in utilizing image information from Math-Zh_COMP. GPT-4V starts
proving with "we have ∠DEF = ∠FBC = 59◦", which is an error that can evidently be identified from the image,
showing insufficient comprehension of the given plane geometry figure.
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Subset Subfield Number

CEE Math

Derivative 334
Conic Sections 350

Sequence 258
Trigonometric Functions 236

Set Theory 22
Logic 3

Elementary Functions 158
Inequality 138
PC&PE 80

Probability and Statistics 758
Plane Geometry 790
Solid Geometry 1322

Complex Numbers 8

COMP Math

Combinatorics 369
Algebra 525

Number Theory 256
Geometry 535

CEE&COMP Physics

Mechanics 1010
Electromagnetism 714
Thermodynamics 248

Optics 153
Modern Physics 209

Table 9: Statistics of subfield in Mathematics and Physics. PC&PE stands for Polar Coordinates and Parametric
Equations.
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Theory

Q2-1
English (Official)

Electrostatic lens (10 points)
Consider a uniformly charged metallic ring of radius 𝑅 and total charge 𝑞. The ring is a hollow toroid of
thickness 2𝑎 ≪ 𝑅. This thickness can be neglected in parts A, B, C, and E. The 𝑥𝑦 plane coincides with the
plane of the ring, while the 𝑧-axis is perpendicular to it, as shown in Figure 1. In parts A and B you might
need to use the formula (Taylor expansion)

(1 + 𝑥)𝜀 ≈ 1 + 𝜀𝑥 + 1
2𝜀(𝜀 − 1)𝑥2, when |𝑥| ≪ 1.

Figure 1. A charged ring of radius R.

Part A. Electrostatic potential on the axis of the ring (1 point)

A.1 Calculate the electrostatic potentialΦ(𝑧) along the axis of the ring at a 𝑧 distance
from its center (point A in Figure 1).

0.3pt

A.2 Calculate the electrostatic potential Φ(𝑧) to the lowest non-zero power of 𝑧, as-
suming 𝑧 ≪ 𝑅.

0.4pt

A.3 An electron (mass 𝑚 and charge −𝑒) is placed at point A (Figure 1, 𝑧 ≪ 𝑅). What
is the force acting on the electron? Looking at the expression of the force, deter-
mine the sign of 𝑞 so that the resultingmotionwould correspond to oscillations.
The moving electron does not influence the charge distribution on the ring.

0.2pt

A.4 What is the angular frequency 𝜔 of such harmonic oscillations? 0.1pt

Part B. Electrostatic potential in the plane of the ring (1.7 points)
In this part of the problem you will have to analyze the potential Φ(𝑟) in the plane of the ring (𝑧 = 0)
for 𝑟 ≪ 𝑅 (point B in Figure 1). To the lowest non-zero power of 𝑟 the electrostatic potential is given by
Φ(𝑟) ≈ 𝑞(𝛼 + 𝛽𝑟2).

B.1 Find the expression for 𝛽. You might need to use the Taylor expansion formula
given above.

1.5pt

Figure 10: An example illustrating the first section of Problem 2 in IPhO 2021.
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Theory

Q2-2
English (Official)

B.2 An electron is placed at point B (Figure 1, 𝑟 ≪ 𝑅). What is the force acting on the
electron? Looking at the expression of the force, determine the sign of 𝑞 so that
the resulting motion would correspond to harmonic oscillations. The moving
electron does not influence the charge distribution on the ring.

0.2pt

Part C. The focal length of the idealized electrostatic lens: instantaneous charging (2.3
points)
One wants to build a device to focus electrons—an electrostatic lens. Let us consider the following con-
struction. The ring is situated perpendicularly to the 𝑧-axis, as shown in Figure 2. We have a source that
produces on-demand packets of non-relativistic electrons. Kinetic energy of these electrons is𝐸 = 𝑚𝑣2/2
(𝑣 is velocity) and they leave the source at precisely controlled moments. The system is programmed so
that the ring is charge-neutral most of the time, but its charge becomes 𝑞 when electrons are closer than
a distance 𝑑/2 (𝑑 ≪ 𝑅) from the plane of the ring (shaded region in Figure 2, called “active region”). In
part C assume that charging and de-charging processes are instantaneous and the electric field "fills the
space" instantaneously aswell. One can neglectmagnetic fields and assume that the velocity of electrons
in the 𝑧-direction is constant. Moving electrons do not perturb the charge distribution on the ring.

Figure 2. A model of an electrostatic lens.

C.1 Determine the focal length 𝑓 of this lens. Assume that 𝑓 ≫ 𝑑. Express your an-
swer in terms of the constant 𝛽 from question B.1 and other known quantities.
Assume that before reaching the "active region" the electron packet is parallel
to the 𝑧-axis and 𝑟 ≪ 𝑅. The sign of 𝑞 is such so that the lens is focusing.

1.3pt

In reality the electron source is placed on the 𝑧-axis at a distance 𝑏 > 𝑓 from the center of the ring.
Consider that electrons are no longer parallel to the 𝑧-axis before reaching the "active region", but are
emitted from a point source at a range of different angles 𝛾 ≪ 1 rad to the 𝑧-axis. Electrons are focused
in a point situated at a distance 𝑐 from the center of the ring.

C.2 Find 𝑐. Express your answer in terms of the constant 𝛽 from question B.1 and
other known quantities.

0.8pt

Figure 11: An example illustrating the second section of Problem 2 in IPhO 2021.

3850


