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Abstract

Knowledge represented in Large Language
Models (LLMs) is quite often incorrect and
can also become obsolete over time. Updat-
ing knowledge via fine-tuning is computation-
ally resource-hungry and not reliable, and so
knowledge editing (KE) has developed as an
effective and economical alternative to inject
new knowledge or to fix factual errors in LLMs.
Although there has been considerable interest
in this area, current KE research exclusively
focuses on monolingual settings, typically in
English. However, what happens if the new
knowledge is supplied in one language, but
we would like to query an LLM in a different
language? To address the problem of multilin-
gual knowledge editing, we propose Retrieval-
Augmented Multilingual Knowledge Editor
(ReMaKE) to update knowledge in LLMs. Re-
MaKE can be used to perform model-agnostic
knowledge editing in a multilingual setting.
ReMaKE concatenates the new knowledge re-
trieved from a multilingual knowledge base
with users’ prompts before querying an LLM.
Our experimental results show that ReMaKE
outperforms baseline knowledge editing meth-
ods by a significant margin and is scalable to
real-word application scenarios. Our multi-
lingual knowledge editing dataset (MzsRE) in
12 languages, the code, and additional project
information are available at https://github.
com/weixuan-wang123/ReMaKE.

1 Introduction

Large Language Models (LLMs) are being used
as sources of factual knowledge for search engines
and other downstream tasks. Despite their consid-
erable progress, knowledge generated by LLMs
can be incorrect or become obsolete in a chang-
ing world. Pre-training from scratch or fine-tuning
LLMs to adapt them to new knowledge is compu-
tationally expensive and not guaranteed to work.
Knowledge editing (KE) methods (Zhu et al., 2020;
Cao et al., 2021; Mitchell et al., 2022b; Zheng et al.,

2023) have been proposed as effective and eco-
nomic alternatives to fine-tuning when specific fac-
tual knowledge needs to be added or updated. KE
involves either updating the parameters of a model
(Dai et al., 2022a; Mitchell et al., 2022a; Meng
et al., 2022, 2023; Dai et al., 2022b) or adding ex-
tra components to an LLM (Mitchell et al., 2022b;
Zheng et al., 2023; Dong et al., 2022; Hartvigsen
et al., 2022). For example, KE can be used to cor-
rect the answer to this question “Who is the foreign
secretary of the UK?” from “James Cleverly” (true
until mid November 2023) to “David Cameron”,
who had recently been appointed to the post.

Despite significant interest in this problem, cur-
rent research on KE predominantly concentrates
on a monolingual setting, where both the injected
knowledge and the subsequent queries to the LLM
are in English (Mitchell et al., 2022a; Meng et al.,
2022, 2023; Mitchell et al., 2022b; Zheng et al.,
2023). Companies serving a multilingual customer
base need to consider the multilingual KE case,
where KE is done in one language and this propa-
gates to queries and answers in all other languages.
While Wang et al. (2023a) explored the applicabil-
ity of knowledge editing to the English-Chinese
cross-lingual scenario, their primary focus was to
highlight the challenges rather than develop a func-
tional KE approach in a multilingual setting.

Drawing inspiration from in-context learning
(ICL), in-context knowledge editing (IKE) uses
prompts to edit factual knowledge. It is noted
that IKE is so far the only method demonstrating
positive results in the cross-lingual KE task set-
ting (Wang et al., 2023a). However, IKE requires
explicit provision of new knowledge every time an
LLM is used, confining its practicality and scala-
bility in real-world applications. In addition, IKE
suffers when irrelevant facts are included in the
prompt (Wang et al., 2023c) especially in scenar-
ios where a substantial number of facts are being
edited.
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Figure 1: ReMaKE attaches in-context knowledge to an LLM prompt when it is retrieved (red example where the
edited knowledge is in English and a user query is in Spanish) from a customer-defined multilingual knowledge
base. When no edited knowledge is retrieved (green example) the prompt is passed to the LLM unchanged.

In this paper, we propose Retrieval-Augmented
Multilingual Knowledge Editor (ReMaKE) that
integrates multilingual retrieval from a knowledge
base with in-context learning. ReMaKE concate-
nates the retrieved knowledge from an external
database with a user query to create the prompt.
The proposed multilingual retriever grounds Re-
MaKE to the retrieved accurate and up-to-date in-
formation highly relevant to user queries, there-
fore effectively mitigating the contextual interfer-
ence due to irrelevant context. In this way, the
generated prompts are able to guide the LLMs in
producing accurate responses associated with the
injected knowledge. ReMaKE leverages a knowl-
edge base’s ability to scale to further enhance IKE’s
knowledge editing performance in real-world appli-
cation scenarios where large volumes of edits are in
scope. Figure 1 shows the architecture of the pro-
posed retrieval-augmented multilingual knowledge
editor. Our main contributions are listed below:

• Multilingual knowledge editing: ReMaKE
extends the scope of knowledge editing prac-
tices across language boundaries. Given that
the multilingual knowledge base and multilin-
gual retriever operate independently to a spe-
cific LLM, ReMaKE is a plug-and-play tool
applicable to any LLM. It is scalable, capable
of editing a large number of knowledge. Ex-
periments show ReMaKE outperforms base-
line methods by a significant margin in the
average accuracy score (up to +40.53%).

• Multilingual editing dataset: We build a
machine-translated multilingual knowledge

editing dataset (MzsRE) in 12 languages:
English, Czech, German, Dutch, Spanish,
French, Portuguese, Russian, Thai, Turkish,
Vietnamese, and Chinese using the zsRE test-
set (Levy et al., 2017). The dataset is avail-
able to the community from our accompany-
ing GitHub repository.

2 Related Work

Knowledge editing: Monolingual knowledge edit-
ing methods can be categorized into four main
paradigms (Yao et al., 2023; Zhang et al., 2023): 1.
Hypernetwork editors (Cao et al., 2021; Mitchell
et al., 2022a; Hernandez et al., 2023) re-frame
knowledge editing as a learning-to-update problem
with the help of gradient shift, which is predicted
by extrinsic editors. While the research scope ex-
tends beyond a single editing, the success rate of
edits diminishes remarkably when more edits are
executed simultaneously. 2. Locate-and-edit ed-
itors (Dai et al., 2022a; Meng et al., 2022, 2023;
Dai et al., 2022b; Xu et al., 2023; Chen et al., 2023)
are used to locate the parameters related to factual
knowledge and subsequently modify them. It is
worth noting that this method requires an error-
prone analytic step to identify parameters. It is
model-specific and not efficient, as the locations
are unique for each LLM. 3. Plug-in editors (Cao
et al., 2021; Mitchell et al., 2022a; Hernandez et al.,
2023) can be used to add extra components to gen-
erate predictions about new knowledge without im-
pacting on the parameters of the LLMs. Although
this method is less influenced by unrelated inputs,
it often cannot achieve precise editing. 4. Prompt-
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based editors like IKE (Zheng et al., 2023) use
ICL to attach knowledge to the context of a prompt.
Compared with other KE methods, IKE achieves
a considerably stronger editing performance, to-
gether with far fewer side effects. However, IKE
needs explicit provision of new knowledge every
time, limiting its practicality and scalability in real-
world applications.

All above-mentioned editors are limited to a
monolingual setting. For cross-lingual editing, Xu
et al. (2023) and Chen et al. (2023) require training
and manipulating model parameters. They rely on
the masking mechanism, limiting the scope of ap-
plication to a one-word output scenario. Most KE
approaches are designed to process single editing
and, therefore, have limited practicality. Our pro-
posed editor, ReMaKE, addresses these problems
and scales multilingual KE to cover a considerable
amount of knowledge.

Retrieval-augmented in-context learning: Off-
the-shelf search engines are often used to enhance
retrieval-augmented ICL (Gao et al., 2021; Shi
et al., 2023; Liu et al., 2023), attaching seman-
tically similar examples to the context to improve
the performance of LLMs in few-shot learning. In
cross-lingual scenarios, a search engine first uses
a low-resource language input sample as a query
to find the most semantically similar high-resource
language sample in the corpus. The retrieved high-
resource language sample is concatenated with the
input sample to form a prompt for an LLM. For in-
stance, Nie et al. (2023) retrieves semantically sim-
ilar cross-lingual sentences as prompts to improve
the performance of sentiment classification for low-
resource languages. While ICL can be used to sup-
port cross-lingual tasks, using it to edit knowledge
across language boundaries has not been explored.
KE in a cross-lingual setting remains a challenge
(Wang et al., 2023a). To bridge this gap, ReMaKE
leverages ICL and knowledge retrieval to perform
cross-lingual KE.

3 Retrieval-Augmented Multilingual
Knowledge Editing

ReMaKE enables knowledge in an LLM to be
edited in one language and subsequently queried
in multiple languages. ReMaKE consists of two
stages: multilingual knowledge retrieval and multi-
lingual in-context editing.

3.1 Multilingual Knowledge Retrieval
We propose a simple multilingual retrieval model to
search for the most relevant knowledge stored in the
knowledge base for a query. As shown in Figure 1,
the proposed retrieval model initially maps a query
and knowledge base entries to a shared multilingual
semantic space. We train a classifier on top of
these semantic representations to determine if the
knowledge is semantically related to a query. The
classifier is based on a sentence transformer (i.e.,
XLM-R).

More specifically, we finetune the multilingual
retrieval model fθ with a binary classification head
on the multilingual parallel dataset constructed
by translating our English training dataset using
Google Translate. We use the separator token </s>
to concatenate the sentence x and its correspond-
ing translation I(x) to format the input, predict-
ing whether they are semantically related (related:
fθ(x, I(x)) ≥ 0.5 vs. unrelated: fθ(x, I(x)) <
0.5). Negative examples are constructed by pairing
unrelated sentences between languages.

Once trained, the multilingual retriever fθ is
used to map a query xl1 in language l1 to knowl-
edge kl2 in language l2. From a knowledge base
Kl2 = {k0l2 , .., kil2 , ..., kKl2 }, we use the retriever fθ
to score each knowledge item for the query and ei-
ther select the most related knowledge, or an empty
R(xl1):

kl2 = R(xl1) =

{
ki∗
l2

fθ(xl1 , k
i∗
l2
) ≥ 0.5

None fθ(xl1 , k
i∗
l2
) < 0.5

(1)

where i∗ = argmaxifθ(xl1 , k
i
l2
) is the index that

maximizes the relevance fθ(xl1 , k
i
l2
).

The multilingual retrieval model gives a solid
performance on our test set with an average re-
trieval accuracy 99.31%, as shown in Figure 6 (Ap-
pendix A.2). ReMaKE can be extended to accom-
modate a more efficient and performant Informa-
tion Retrieval model for real-world deployment.
We leave this extension as one of our future en-
deavors.

3.2 Multilingual In-context Editing
As shown in Figure 2, ReMaKE can perform zero-
shot and few-shot editing. In zero-shot editing
(ReMaKE-zero), the retrieved result (“new knowl-
edge” in Figure 2) is concatenated with a user’s
query (“test input” in Figure 2) to form a prompt
(“zero-shot prompt” in Figure 2) for an LLM to
predict the output P (yl1 |xl1 , kl2).

337



Figure 2: Zero-shot and few-shot editing with Re-
MaKE. The panels above show two methods of mul-
tilingual KE, in which a knowledge edited in Spanish
is subsequently evaluated using an English question.
“Q_en, A_en” and “Q_es, A_es” are QA pairs in En-
glish and Spanish.

In few-shot editing (ReMaKE-few-bi), bilin-
gual examples S = {(s1l1 , s1l2), ..., (s

q
l1
, sql2)} are

prepended to the “new knowledge” and the “test
input”, where sjl1 and sjl2 are the same statement in
languages l1 and l2, corresponding to the “Q_es:
... A_es: ...” and “Q_en: ... A_en: ...” (“few
examples” in Figure 2). In few-shot editing, we
concatenate “few examples”, “new knowledge”,
“test input” as a prompt (“few-shot prompt” in Fig-
ure 2). The goal of predicting an edited knowl-
edge is P (yl1 |xl1 , kl2 , S). For the few-shot setting,
we follow Zheng et al. (2023) in selecting exam-
ples using an unsupervised method from the cor-
pus based on their cosine similarity to the inputs
(with the all-MiniLM-L6-v2 model1). The selected
examples are included in the context to perform
in-context learning. ReMaKE leveraging a search-
based strategy can significantly outperform that
based on a random selection (see our experiment
in Appendix A.8).

1https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2

4 Metrics, Data and Model

4.1 Metrics
Following Wang et al. (2023a), we evaluate multi-
lingual knowledge editing with the following four
metrics: (1) Reliability evaluates the average accu-
racy of an LLM on all edited instances. In other
words, we update the LLM with new knowledge
and test the accuracy of querying the LLM for this
new knowledge. (2) Generality measures the aver-
age accuracy of an LLM for the paraphrased inputs
for all edited instances. It indicates ReMaKE’s ef-
fectiveness under the prompting frame bias (Wang
et al., 2023c) induced by paraphrasing. (3) Local-
ity assesses the average accuracy of an LLM in
response to queries on irrelevant semantics after
knowledge editing. It tests the knowledge editors’
ability to update only the desired knowledge with-
out affecting other knowledge in the model. (4)
Portability estimates the average accuracy of an
LLM for questions requiring reasoning after knowl-
edge editing. Questions are constructed to test an
LLM’s ability to provide answers requiring it to
reason. Portability can indicate whether KE can
effectively adapt knowledge to support reasoning.

4.2 Data Construction
Zero-Shot Relation Extraction (zsRE) (Levy et al.,
2017) is a monolingual question-answering test
set containing 1,038 samples widely used in the
knowledge editing task. There is a question-answer
pair for each knowledge where the answer is an
alternative counterfactual prediction (Cao et al.,
2021). The counterfactual answer is expected to
be generated by the post-edited LLMs. Addition-
ally, a paraphrased question, an unrelated question,
and a portability question are provided to evaluate
the generality, the locality, and the portability of
the editing. An example of editing knowledge in
Spanish and testing in English for four metrics is
shown in Table 1. We translate the zsRE from En-
glish (EN) to ten languages: Czech (CS), German
(DE), Dutch (NL), Spanish (ES), French (FR), Por-
tuguese (PT), Russian (RU), Thai (TH), Turkish
(TR), and Vietnamese (VI) with Google Translate
and use the Chinese (ZH) zsRE test set (which was
also machine translated from zsRE) from (Wang
et al., 2023a) to construct the multilingual zsRE
test set (MzsRE). As there are multiple counter-
factual answers for the same question in zsRE,
we de-duplicate MzsRE to 743 items to ensure
each question corresponds to a single unique an-
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swer, avoiding conflicting entries in the knowledge
base. Table 5 (Appendix A.1) lists the statistics of
MzsRE.

4.3 Base LLMs
Two representative multilingual LLMs are selected
as backbones for us to test various KE methods in
the experiments: LLaMA2-7b and BLOOMZ-7b1-
mt, where LLaMA2-7b2 (Touvron et al., 2023) is a
foundation model and BLOOMZ-7b1-mt3 (Muen-
nighoff et al., 2023) is an instruction-finetuned
model. We translate a random sample of 10,000
instances from the zsRE training dataset into
the other 11 languages and finetune an XLM-
RoBERTa-base4 (Conneau et al., 2020) on this
multilingual dataset to develop our multilingual
retriever.

4.4 Implementation Details
All experiments are conducted on a single NVIDIA
A-100 GPU (80G). The implementation is based
on the EasyEdit (Wang et al., 2023b) framework.

4.5 Baseline
We choose three top-performing KE methods based
on the LLMs in Wang et al. (2023a) as our baselines
for the experiments. IKE (Zheng et al., 2023) uses
in-context learning for knowledge editing, where
the prompt consists of one explicit piece of knowl-
edge in the editing language, one query in the test
language, and a certain number of examples in
the editing language (16 in this case, following
the setting in Wang et al. (2023a)). We also test a
memory-based KE method SERAC (Mitchell et al.,
2022b)). with a memory size K (K = 10 is the
default parameter in Mitchell et al. (2022b)). The
classifier and counterfactual model in SERAC are
pre-trained on the monolingual dataset in the edit-
ing language. The parameters of the LLM for both
methods mentioned above are frozen. To compare
the effect of parameter-updating KE, We evaluate
the ROME (Meng et al., 2022) method, which lo-
cates the knowledge in the editing language first
and then edits it. After updating the parameters, we
evaluate the performance with a query in the testing
language. For all baselines, we use their original
proposed default parameters and LLaMA2-7b as
the backbone in the experiments. All KE methods
are tested on the multilingual knowledge editing.

2https://huggingface.co/meta-LLaMA/LLaMA-2-7b-hf
3https://huggingface.co/bigscience/bloomz-7b1-mt
4https://huggingface.co/xlm-roberta-base

5 Experimental Results

We define a standard notation (“LANGUAGE 1
(edit) → LANGUAGE 2 (test)”) to refer to the mul-
tilingual KE experiments. For example, “ES (edit)
→ EN (test)” refers to an experiment in which
Spanish is the editing language and English is the
language we tested the knowledge, as shown in
Figure 2. The knowledge base of the experiments
consists of all the above-mentioned multilingual
knowledge instances in the MzsRE test set.

5.1 English-based Multilingual KE

In this subsection, we conduct experiments in
which English is used as either the editing or testing
language, investigating the effects corresponding
to all other languages. The evaluation results of
LLMs on the LLaMA backbone in 12 languages
after editing in English (aka “EN (edit) → ALL
(test)”) are shown in Table 2 (based on Exact Match
(EM)) and Table 9 (based on F1). Experimental
results on the LLaMA backbone obtained from
“ALL (edit) → EN (test)” are shown in Table 3
and Table 10. We examine ReMaKE with LLaMA
backbone in various scenarios, including zero-shot
(“ReMaKE-zero”), monolingual few-shot setting
(“ReMaKE-few-mono”), and bilingual few-shot
settings (“ReMaKE-few-bi”). We compare results
of these settings with those from three baseline
methods and the pre-editing setup (“LLaMA”).

As shown in Table 2, current KE approaches per-
form reasonably well in the monolingual case (see
Reliability for SERAC, IKE, and ROME for “EN
(edit) → EN (test)”) but do not work in the multilin-
gual setting. “LLaMA” fails with poor pre-editing
results (less than 2%) as the knowledge editing test
examples are counterfactual. SERAC scores all ze-
ros in the multilingual case except for the Locality
metric in response to irrelevant queries. ROME per-
forms similarly poorly in the multilingual setting.
The top performer, IKE, shows 100% accuracy for
monolingual KE, which is considerably better than
other baselines. ReMaKE reveals a significant im-
provement over IKE in multilingual language con-
ditions. ReMaKE, although fundamentally similar
to IKE, provides bilingual few-shot examples and
an additional means to filter out irrelevant queries
(by returning null knowledge), leading to signifi-
cant improvements in all four metrics. Furthermore,
the scalability and the precision of the editing are
also improved by an accurate multilingual retriever.

For Reliability (average accuracy), ReMaKE
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Edited Knowledge ¿Qué ciudad fue el lugar de nacimiento de Henning Löhlein? Munich

Metrics Question Answer Ground Truth
Reliability Which city was the birthplace of Henning Löhlein? Munich Bonn
Generality In which city is Henning Löhlein born? Munich Bonn
Locality Who is the lead singer of collective soul? Ed Roland Ed Roland
Portability In which German state was Henning Löhlein born? Bavaria North Rhine

Table 1: An example of editing knowledge in Spanish and testing in English for four metrics. “Answer” represents
the counterfactual post-edited knowledge which the KE model should predict, and “Ground Truth” is the factual
knowledge.

Metrics Edit on EN Test on AVGEN CS DE NL ES FR PT RU TH TR VI ZH

Reliability

LLaMA 1.08 0.13 0.54 0.27 0.13 0.27 0.27 0.40 0.27 0.54 0.13 1.21 0.44
SERAC 91.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.60
ROME 68.91 10.77 16.02 15.48 12.25 10.09 12.11 0.13 0.13 1.21 4.31 1.21 12.72
IKE 100.0 50.34 51.49 44.26 36.45 43.39 38.09 3.86 3.18 39.44 40.02 6.36 38.07
ReMaKE-zero 96.37 61.10 64.87 54.91 52.62 53.43 54.51 27.73 5.92 45.22 48.32 25.44 49.20
ReMaKE-few-mono 100.0 56.26 57.87 49.93 43.47 48.32 45.49 19.78 5.65 43.47 41.72 17.63 44.13
ReMaKE-few-bi 100.0 75.10 81.70 72.68 68.10 73.35 71.20 62.58 32.44 70.79 68.37 54.78 69.26

Generality

LLaMA 0.94 0.13 0.94 0.40 0.13 0.13 0.13 0.27 0.13 0.13 0.13 1.48 0.41
SERAC 26.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.23
ROME 56.53 10.90 14.40 11.96 11.71 8.34 9.56 0.13 0.00 1.48 4.17 0.81 10.83
IKE 98.65 49.76 51.49 43.88 35.39 42.91 37.61 3.38 3.18 39.15 39.34 5.98 37.56
ReMaKE-zero 86.81 57.60 62.85 53.16 50.34 50.74 51.01 24.50 6.06 42.66 46.03 23.01 46.23
ReMaKE-few-mono 98.25 55.59 57.34 48.59 43.61 47.64 44.68 18.57 5.52 42.4 41.18 17.23 43.38
ReMaKE-few-bi 98.25 73.76 80.62 71.60 67.97 71.60 70.66 62.45 32.97 70.12 67.83 53.57 68.45

Locality

SERAC 99.46 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.87 99.94
ROME 92.87 84.25 87.48 87.08 88.83 88.56 86.54 84.39 97.31 87.21 95.02 91.92 89.29
IKE 38.48 0.39 5.69 1.54 1.74 0.48 0.48 0.19 1.35 0.96 0.96 0.96 4.44
ReMaKE-zero 99.46 98.65 99.73 99.87 98.52 99.06 99.19 97.58 95.29 97.17 97.71 94.48 98.06
ReMaKE-few-mono 99.46 98.38 99.6 99.73 98.52 99.06 99.19 97.58 95.29 97.04 97.71 94.48 98.00
ReMaKE-few-bi 99.46 98.25 99.60 99.73 98.25 98.92 99.19 97.44 95.29 97.04 97.71 93.94 97.90

Portability

LLaMA 8.48 2.29 3.50 2.83 3.90 2.29 3.10 0.54 0.27 0.94 1.88 1.08 2.59
SERAC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ROME 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
IKE 17.26 1.54 4.63 3.28 1.93 2.51 2.89 0.10 0.10 0.87 1.74 0.10 3.08
ReMaKE-zero 34.59 12.11 18.30 13.73 11.71 12.25 12.92 3.50 0.27 5.38 9.83 3.63 11.52
ReMaKE-few-mono 31.49 6.46 11.57 9.69 10.23 8.48 10.23 2.02 0.13 4.04 5.79 2.42 8.55
ReMaKE-few-bi 31.49 7.67 11.31 9.02 8.61 8.08 9.83 5.79 0.67 3.50 5.25 5.92 8.93

Table 2: Exact Match (EM) results and average score (AVG) on the LLaMA backbone obtained from testing in 12
languages after performing KE on knowledge in English. “ReMaKE-few-bi” means the proposed knowledge editor
leveraging few-shot learning based on 16 bilingual examples concatenated in the context. “ReMaKE-few-mono”
and “IKE” use 16 monolingual (English) examples in the context. “LLaMA” are the results of pre-editing.

averagely outperforms baseline IKE by up to
+31.19%. Take “EN (edit) → ES (test)” as an exam-
ple, SERAC has the worst reliability score (0.00%)
as the counterfactual model (used to generate pre-
dictions about new knowledge) in SERAC is mono-
lingual, and IKE and ROME have reliability scores
of 36.45% and 12.25%, respectively. ReMaKE-
zero achieves a reliability score of 52.62% instead.
When scaled up to a few-shot setting, ReMaKE-
few-mono drops to 43.47% due to the negative
influence of the monolingual context, but adding
bilingual examples to the context makes ReMaKE-
few-bi the most capable KE with a reliability score
of 68.10%.

With regard to the results of “ALL (edit) →
EN (test)”, ReMaKE-few-bi achieves the highest
scores, outperforming baselines by significant mar-
gins (up to +40.53% and +40.40%) in the average
reliability and generality scores5. It records a relia-

5A counterfactual model is required for each language for
SERAC, leading to significant computation overhead. It is not
included in this experiment to this end.

bility score 86.41% in “ES (edit) → EN (test)”.

The discrepancies in ReMaKE scores across lan-
guages reflect the disparate capabilities of multilin-
gual LLMs. After editing knowledge expressed in
English, ReMaKE-few-bi attains the highest cross-
lingual reliability score of 81.70% (“EN (edit) →
DE (test)”) when testing the LLM in German. The
lowest reliability score 32.44% is obtained when
the test language is Thai (TH), indicating the effect
of KE on LLMs is sensitive to language settings.
A similar phenomenon can be observed for the
same KE method (ReMaKE-few-bi) on a different
backbone LLM (i.e., BLOOMZ in Appendix A.3).
The sensitivity may be caused by unbalanced dis-
tributions of training data across languages. It can
be observed that a high-resourced language and a
powerful LLM are preferable choices. Even though
ReMaKE appears sensitive to language settings and
backbone LLMs, it consistently enhances the mul-
tilingual KE performances of baselines.

After knowledge editing, the locality of an LLM
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Metrics Test on EN Edit on AVGCS DE NL ES FR PT RU TH TR VI ZH

Reliability

LLaMA 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08
ROME 16.96 37.55 35.13 32.84 32.57 31.49 1.35 0.00 3.90 4.85 0.94 17.96
IKE 57.67 55.45 50.05 40.21 46.38 43.20 52.36 2.03 40.31 41.85 20.54 40.91
ReMaKE-zero 69.18 65.68 60.97 62.31 66.22 59.76 59.49 9.96 50.47 51.14 44.68 54.53
ReMaKE-few-mono 62.72 61.37 55.05 45.76 56.8 48.72 60.16 2.83 49.93 50.2 41.86 48.67
ReMaKE-few-bi 87.89 90.17 87.21 86.41 86.41 86.68 82.91 49.26 82.10 84.66 72.14 81.44

Generality

LLaMA 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
ROME 16.02 35.53 32.30 30.15 30.15 26.78 1.62 0.00 3.90 3.50 0.81 16.43
IKE 56.41 54.39 49.08 39.25 45.03 42.91 49.47 2.03 39.15 40.89 20.64 39.93
ReMaKE-zero 63.26 62.05 54.37 53.84 61.10 54.64 53.84 9.29 47.51 46.70 40.38 49.73
ReMaKE-few-mono 61.1 60.43 53.3 45.09 56.66 48.32 57.6 2.56 48.86 49.66 42.13 47.79
ReMaKE-few-bi 87.75 88.96 86.00 84.66 84.93 85.60 82.10 48.99 80.35 84.25 69.99 80.33

Locality

ROME 84.66 87.89 86.94 88.83 87.89 85.33 82.37 97.04 90.04 93.54 92.73 88.84
IKE 1.25 1.16 1.16 1.06 1.16 1.25 0.87 0.10 1.16 1.06 0.96 1.02
ReMaKE-zero 98.92 99.06 99.46 98.52 98.92 98.92 98.12 97.58 97.31 98.79 99.33 98.63
ReMaKE-few-mono 99.06 98.52 98.92 98.52 98.65 98.92 98.12 97.04 97.44 98.79 99.06 98.46
ReMaKE-few-bi 98.79 98.38 98.79 98.52 98.79 98.92 97.98 97.17 97.31 98.79 99.19 98.42

Portability

LLaMA 8.48 8.48 8.48 8.48 8.48 8.48 8.48 8.48 8.48 8.48 8.48 8.48
ROME 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
IKE 5.69 7.43 5.88 5.50 2.89 5.11 7.62 0.10 2.12 4.34 1.06 4.34
ReMaKE-zero 25.71 27.99 26.65 25.44 24.63 26.11 20.86 11.57 22.48 24.09 19.65 23.20
ReMaKE-few-mono 19.38 23.42 19.65 18.98 20.59 20.59 16.55 3.36 13.73 14.27 16.29 16.98
ReMaKE-few-bi 17.50 21.53 19.92 18.71 19.11 19.25 13.19 13.06 17.77 19.65 16.15 17.80

Table 3: EM (Exact Match) results and average score (AVG) on the LLaMA backbone obtained from testing in
English after performing KE on knowledge in other 11 languages.

Figure 3: Reliability score of multilingual knowledge
editing between all twelve languages.

can be significantly influenced, as shown in Tables
2-3. The locality is calculated by comparing pre-
edit and post-edit predictions to show the degree
an LLM is affected by irrelevant input after edit-
ing. IKE performs poorly in locality, with most
of the EM scores below 1%. It can be observed
that ReMaKE can achieve consistently high local-
ity scores across language settings and backbone
LLMs due to its robustness against contextual in-
terference. The English classifier implemented in
SERAC treats all non-English multilingual queries
as irrelevant information, resulting in abnormally
high scores in the locality metric while producing
a minimal score (0%) in the reliability assessment
(Table 2).

It is expected that all KE methods record notably
low portability, given their limited capability in im-
pacting LLMs’ reasoning capability. Understand-
ing the mechanism responsible for the reasoning
capability of an LLM remains a challenge. We no-
tice that ReMaKE-zero outperforms all other KE
methods and its few-shot counterpart (ReMaKE-
few), possibly due to a reduced level of context
interference imposed on an LLM. We leave this
hypothesis to a future study.

5.2 Multilingual KE between All Languages

The results of the above-mentioned metrics based
on EM are illustrated as heat maps in Figures 3
and 7 (Appendix A.5) for multilingual KE be-
tween all twelve languages (“ALL (edit) → ALL
(test)”). The discrepancies in the reliability and
generality scores between a certain language group
(i.e., ZH, TH, and TR) and the rest of the language
groups are significant. It appears natural segrega-
tion exists between these languages and the rest of
Indo-European languages, probably due to their lin-
guistic characteristics and the language distribution
in the training dataset.

Moreover, the portability scores captured in Fig-
ure 7(c) (Appendix A.5) are below 10%, which
are much lower than those shown in English-based
multilingual KE (Tables 2-3). It is more difficult
for multilingual KE methods to impact the reason-
ing capability of an LLM when English is not in
the loop. Whether we should employ English as a
pivot for multilingual KE to enhance the portabil-
ity score, particularly when the editing and testing
languages are non-English, requires a future study.
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6 Analysis and Discussion

6.1 Ablation Study on Few-shot Editing

(a) Quantity of in-context ex-
ample.

(b) Backbone model scaling.

Figure 4: Effects of the quantity of bilingual examples
(i.e., in a series of 2, 4, 8, 16) and the size of backbone
model on multilingual few-shot knowledge editing.

We have shown that ReMaKE-few-bi outper-
forms ReMaKE-zero significantly on the reliability
and the generality scores. We conduct ablation
studies in this subsection to delve deeper into the
impact of two key factors on the performance of
multilingual KE in few-shot editing: the quantity
of bilingual examples and the size of backbone
model.

The results of ReMaKE in response to the quan-
titative change in bilingual examples are illustrated
in Figure 4(a) for “EN (edit) → ALL (test)”. The
increase in the number of in-context examples is
associated with an observable rise in the reliabil-
ity score. The generality, locality, and portability
scores are shown in Figure 8 in Appendix A.6.

We also analyze the effect of the backbone (i.e.,
BLOOMZ series) with different model sizes on
16-shot editing performance. Figures 4(b) and 12
demonstrate a convincing win of BLOOMZ-7b1
over its siblings with fewer numbers of parameters
in all four metrics. Even though it is hard to dif-
ferentiate the performance of BLOOMZ-1b1 and
BLOOMZ-3b in some specific languages, they out-
perform BLOOMZ-560m in all four metrics. A
scaling pattern is observed between the backbone
model size and multilingual KE performance.

6.2 Ablation Study on Size of Knowledge Base
We conduct an ablation study to investigate the ef-
fects of the size of the knowledge base on a range of
benchmark metrics, including the above-mentioned
four metrics, retrieval accuracy and retrieval time
consumed. A few-shot KE scenario (“EN (edit) →
ZH (test)”) is performed on the LLaMA backbone.

Figure 5: Effects of the size of the knowledge base
on a variety of benchmark metrics when performing
ReMaKE-few-bi editing on “EN (edit) → ZH (test)” on
the LLaMA backbone. The retrieval time consumed is
assessed for the entire test set.

It can be observed in Figure 5 that all benchmark
metrics remain stable except for a minor decrease
(-0.81% Reliability) with the increase in the size
of the knowledge base. This decrease may be at-
tributed to a minor degradation of the retriever’s ac-
curacy (-1.61%) as the knowledge scale increases.

6.3 Computing Cost

Editor IKE SERAC ROME ReMaKE
0shot

ReMaKE
4shot

ReMaKE
8shot

ReMaKE
16shot

time 0.94s 0.46s 5.92s 0.70s 0.85s 1.07s 1.35s

Table 4: Time cost for each knowledge editing method
conducting 1 edit on the LLaMA backbone using 1X
A100 GPU.

We gather the time consumed in KE on “EN
(edit) → ZH (test)” in Table 4 to show the com-
putation cost associated with various editors. It is
noted that the proposed ReMaKE-0shot achieves
the second-best computation efficiency measured
in time. SERAC, the top performer in this test, is
not suitable for multilingual KE, making ReMaKE
the state-of-the-art editor in terms of computational
cost efficiency. ROME requires a substantial time
to train and update the parameters through gradient
calculation and back-propagation, resulting in the
least efficient editor in this category.

7 Conclusion

In this paper, we propose ReMaKE, a retrieval-
augmented multilingual knowledge editor, to up-
date multilingual knowledge in LLMs by lever-
aging prompts composed of retrieved new knowl-
edge and user inputs. To achieve multilingual
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knowledge editing, we automatically construct the
MzsRE dataset to cover 12 languages. ReMaKE is
a model and language-agnostic knowledge editor
not restricted to a specific LLM and language set-
ting. Our experimental results show that ReMaKE
achieves SOTA multilingual knowledge editing per-
formance.

Limitations

As we extend the initial zsRE test set to implement
a multilingual knowledge base of the proposed Re-
MaKE, the volume of the knowledge base is lim-
ited to 743 entries. Although ReMaKE can be eas-
ily scaled up to cope with real-world applications,
the implication of implementing a large-capacity
knowledge base on the proposed key metrics war-
rants a future study. A predefined question-and-
answering template is used to define multilingual
knowledge contained in the knowledge base. Fu-
ture work will focus on developing a formal tem-
plate to accommodate a more comprehensive scope
of tasks. We found KE methods, in general, have
low portability scores, indicating their limitations
to impact knowledge that requires an LLM’s rea-
soning capability. How to perform multilingual
knowledge editing to secondary associated knowl-
edge needs further investigation.
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A Appendix

A.1 Statistics of MzsRE
We list the statistics of MzsRE in 12 languages in
Table 5.

A.2 Retriever Accuracy
We further investigate the accuracy of the multi-
lingual retriever of ReMaKE using sampled sen-
tence pairs in the MzsRE dataset. The results
are captured in Figure 6. The retriever achieves
an accuracy of over 94% for all languages. The
sub-optimal retrieval accuracy for some languages
(i.e., Chinese, Russian) may contribute to the sub-
optimal performance of multilingual KE results in
these languages.

Figure 6: The retrieval accuracy among 12 languages
evaluated on the MzsRE dataset reliability subset.

Furthermore, we evaluate the retriever for the dif-
ferent test subsets (reliability, generality, locality,
and portability) as shown in Table 6. The results
demonstrate that the retrieval accuracy of portabil-
ity subset is lower than other subsets, which means
that the retriever lacks reasoning ability.

A.3 Exact Match Scores of ReMaKE with
BLOOMZ Backbone

In order to compare the results of ReMaKE with dif-
ferent base LLMs, we implement ReMaKE on the

BLOOMZ backbone, and the exact match scores
are show in Table 7 and Table 8.

A.4 Results of English-based multilingual KE
with F1

We demonstrate the F1 scores of editing in English
and testing in other languages and vise versa on the
LLaMA and BLOOMZ backbones in Table 9 and
Table 10.

A.5 Supplemental Results Multilingual KE
We supplement the experimental results (General-
ity, Locality, Portability) of multilingual knowledge
editing on ReMaKE-16shot-bi on the LLaMA back-
bone based on “ALL (edit) → ALL (test)” editing
in Figure 7.

A.6 Effects of the Quantity of In-context
Examples

We supplement the experimental results (General-
ity, Locality, Portability) of few-shot learning on
ReMaKE-few-bi on the LLaMA backbone in Fig-
ure 8. We reach a similar conclusion with the find-
ing obtained in subsection 5.1, in which ReMaKE-
zero takes the lead instead in the portability score
as few-shot examples tend to introduce contextual
interference to the KE process.

We supplement the comparison results of
ReMaKE-few-bi on the BLOOMZ backbone under
the 0-shot, 2-shot, 4-shot, 8-shot, 16-shot settings
with editing in English and testing in other lan-
guages in Figure 9. Also we conduct the same
setting with editing in other languages and testing
in English in Figure 10 and Figure 11. From the re-
sults, it proves that few-shot learning could greatly
improve the performance compared to zero-shot
for the reliability and generality.

A.7 Supplemental Results of Model Size
We supplement the experimental results (General-
ity, Locality, Portability) of different model sizes
on ReMaKE-16shot-bi on the BLOOMZ backbone
in Figure 12 with editing in English and testing in
other languages.

A.8 In-context Examples Selection Method
Liu et al. (2022) has demonstrated that the search-
based examples selection approach consistently
outperforms the random selection baseline. All the
above few-shot experimental results are conducted
with the unsupervised prompt searching method.
We compare the results of random selection and
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Lang Reliability
Question

Generality
Question Answer Locality

Question
Locality
Answer

Portability
Question

Portability
Answer

EN 7.89 2.01 7.69 11.11 3.68 12.74 2.87
CS 6.62 1.90 6.58 7.29 3.38 10.76 2.68
DE 7.21 1.86 7.23 8.39 3.56 12.12 2.69
NL 7.55 1.91 7.54 8.83 3.80 12.60 2.75
ES 7.94 2.28 7.87 9.69 4.21 13.19 3.13
FR 9.12 2.17 9.04 9.71 4.11 14.24 3.11
PT 7.98 2.23 7.88 9.27 4.04 12.57 3.04
RU 6.21 2.02 6.18 7.10 3.51 10.10 2.59
TH 31.72 11.06 31.76 32.06 17.82 52.29 14.99
TR 5.58 1.90 5.55 6.65 3.22 8.95 2.62
VI 8.66 2.71 8.63 11.02 4.94 14.98 3.78
ZH 19.46 6.05 19.61 16.90 9.05 27.16 7.05

Table 5: Statistics of sentence length (in word count) of MzsRE. Lang: language, EN: English, CS: Czech, DE:
German, NL: Dutch, ES: Spanish, FR: French, PT: Portuguese, RU: Russian, TH: Thai, TR: Turkish, VI: Vietnamese,
ZH: Chinese.

Subsets EN CS DE NL ES FR PT RU TH TR VI ZH
Reliability 100 100 99.86 99.87 99.87 100 100 99.46 99.87 99.87 99.87 97.85
Generality 99.87 99.19 99.33 99.33 99.73 99.46 99.73 98.38 99.33 99.06 99.06 96.1
Locality 100 100 100 100 100 100 100 100 100 100 100 100
Portability 91.79 88.16 89.23 89.5 89.64 89.77 89.23 81.43 85.6 89.23 89.23 84.25

Table 6: Retrieval accuracy for different test subsets. We evaluate retriever for the reliability, generality, locality,
portability test part in MzsRE for editing in English and testing in other languages.

search-based strategy for examples in Table 11. It
follows the conclusion of Liu et al. (2022) that
search-based selection could increase the perfor-
mance (reliability score), such as from 41.45% to
67.97% on “EN(edit) → ES (test)”.
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Metrics Edit on EN Test on
EN CS DE NL ES FR PT RU TH TR VI ZH

Reliability
BLOOMZ 1.88 0.13 0.40 0.13 0.40 1.21 0.81 0.00 0.00 0.13 0.40 1.75
ReMaKE-zero 69.04 29.21 34.59 28.26 25.03 27.59 25.98 0.13 4.44 21.53 28.80 18.98
ReMaKE-few-bi 71.20 44.55 52.76 44.68 41.59 42.53 40.65 24.50 7.54 40.65 46.30 37.28

Generality
BLOOMZ 1.35 0.13 0.27 0.13 0.27 0.81 0.67 0.00 0.00 0.13 0.27 1.88
ReMaKE-zero 63.26 28.67 33.24 27.59 24.63 26.65 25.30 0.13 4.71 21.27 27.05 17.50
ReMaKE-few-bi 65.81 43.47 51.14 43.07 39.70 41.32 39.84 23.28 7.13 38.63 44.01 35.94

Locality ReMaKE-zero 99.19 98.25 99.60 99.73 97.85 98.92 99.19 97.44 95.29 97.04 97.44 94.62
ReMaKE-few-bi 99.19 98.25 99.60 99.73 97.85 99.06 98.92 97.44 95.29 97.04 97.44 94.62

Portability
BLOOMZ 6.59 0.13 1.35 0.13 2.29 2.15 2.15 0.00 0.00 0.00 2.29 4.58
ReMaKE-zero 12.65 0.40 2.29 0.94 4.44 4.98 4.71 0.00 0.13 0.40 3.77 7.67
ReMaKE-few-bi 7.81 0.54 1.62 1.08 4.71 4.04 4.04 0.54 0.13 0.54 2.83 6.86

Table 7: Exact Match (EM) results on the BLOOMZ backbone obtained from testing in 12 languages after
performing KE on knowledge in English. “ReMaKE-few-bi” means the proposed knowledge editing method
leveraging few-shot learning based on 16 bilingual examples concatenated in the context. “BLOOMZ” are the
results of pre-editing.

Metrics Test on EN Edit on
CS DE NL ES FR PT RU TH TR VI ZH

Reliability
BLOOMZ 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88
ReMaKE-zero 34.05 39.43 30.55 33.65 34.05 32.71 23.82 5.38 27.86 36.47 23.55
ReMaKE-few-bi 48.32 55.99 49.53 52.89 48.86 53.43 36.74 14.00 46.16 54.91 45.76

Generality
BLOOMZ 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35
ReMaKE-zero 32.44 36.34 28.80 32.57 32.71 31.36 21.27 5.11 25.84 33.38 21.27
ReMaKE-few-bi 46.70 54.91 48.99 51.68 48.18 51.95 34.86 13.73 44.82 52.49 42.93

Locality ReMaKE-zero 98.52 98.38 98.52 98.38 98.38 98.52 97.71 97.17 96.64 98.52 98.92
ReMaKE-few-bi 98.52 98.38 98.52 98.38 98.52 98.52 97.71 97.31 96.77 98.52 98.92

Portability
BLOOMZ 6.59 6.59 6.59 6.59 6.59 6.59 6.59 6.59 6.59 6.59 6.59
ReMaKE-zero 9.02 9.69 9.69 9.96 10.90 11.57 7.67 6.19 7.54 9.29 8.88
ReMaKE-few-bi 5.79 7.27 6.33 6.19 7.81 6.73 5.38 4.98 6.33 7.40 5.38

Table 8: Exact Match(EM) results on the BLOOMZ backbone obtained from testing in English after performing KE
on knowledge in other languages. “ReMaKE-few-bi” means the proposed knowledge editing method leveraging
few-shot learning based on 16 bilingual examples concatenated in the context. “BLOOMZ” are the results of
pre-editing.

Metrics Edit on EN Test on
EN CS DE NL ES FR PT RU TH TR VI ZH

Reliability

SERAC 96.25 19.38 18.08 18.32 16.61 17.78 17.33 19.91 4.01 15.59 12.68 10.01
IKE 100.0 74.62 74.16 70.91 64.55 70.24 65.16 55.83 43.89 65.18 73.60 42.25
ROME 83.80 37.00 43.56 42.47 36.99 39.15 38.40 18.10 2.72 23.25 22.59 11.18
ReMaKE-zero-BLOOMZ 89.69 49.41 57.23 50.17 52.18 56.39 52.50 19.91 23.01 43.75 58.17 55.64
ReMaKE-zero-LLaMA 98.05 79.91 82.43 75.81 71.99 75.13 74.13 67.37 48.91 69.23 76.28 68.53
ReMaKE-few-BLOOMZ 91.43 68.58 74.47 67.88 69.11 71.44 70.71 49.47 46.32 66.92 72.60 70.08
ReMaKE-few-LLaMA 100.0 87.61 90.45 85.99 82.86 86.99 85.25 84.28 69.77 84.38 86.42 80.23

Generality

SERAC 54.25 19.14 18.28 18.52 16.69 17.27 17.30 19.61 3.91 15.54 12.66 10.33
IKE 99.10 73.85 73.94 70.42 63.81 69.62 64.62 55.11 44.21 64.63 73.32 42.11
ROME 68.91 36.35 41.83 40.73 36.98 37.67 35.97 17.82 2.97 23.52 22.56 10.66
ReMaKE-zero-BLOOMZ 85.02 48.83 56.05 49.42 51.28 55.28 51.53 19.77 23.30 43.13 56.00 53.82
ReMaKE-zero-LLaMA 92.48 78.03 80.38 74.37 70.55 72.71 71.84 65.04 49.23 67.22 75.14 66.36
ReMaKE-few-BLOOMZ 87.16 67.72 73.21 66.46 67.72 70.41 68.96 48.62 46.06 66.06 71.10 68.63
ReMaKE-few-LLaMA 99.07 87.02 89.77 85.24 82.67 85.98 84.91 83.74 69.75 83.83 86.00 79.44

Locality

SERAC 99.80 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.98
IKE 67.50 32.71 38.60 33.96 34.41 32.94 33.26 34.88 53.54 34.04 41.32 45.65
ROME 97.83 95.46 95.99 95.94 97.20 96.32 96.20 95.72 97.53 95.57 97.91 97.80
ReMaKE-zero-BLOOMZ 99.50 98.46 99.63 99.82 98.55 99.34 99.40 97.91 97.38 97.43 98.14 96.53
ReMaKE-zero-LLaMA 99.76 99.15 99.84 99.94 99.03 99.51 99.50 98.49 97.79 98.26 98.67 97.17
ReMaKE-few-BLOOMZ 99.39 98.48 99.63 99.78 98.51 99.46 99.24 97.68 97.34 97.37 98.05 96.43
ReMaKE-few-LLaMA 99.76 98.97 99.71 99.80 98.71 99.47 99.47 98.14 96.73 98.01 98.49 96.60

Portability

SERAC 10.06 2.52 4.65 4.82 4.44 4.78 6.11 4.31 0.74 1.02 0.47 0.67
IKE 51.96 35.51 38.48 36.57 34.74 37.87 37.23 39.55 30.60 28.44 44.83 23.83
ROME 9.28 3.10 5.61 4.73 4.46 5.02 5.73 4.32 0.75 1.13 0.61 0.73
ReMaKE-zero-BLOOMZ 44.06 12.83 20.21 14.22 30.23 32.77 28.65 6.14 17.19 13.65 32.07 43.19
ReMaKE-zero-LLaMA 64.07 45.38 49.08 45.42 44.25 45.90 45.17 44.39 32.14 34.18 51.41 47.75
ReMaKE-few-BLOOMZ 37.63 12.73 19.55 14.70 29.92 30.45 28.74 8.44 20.47 14.50 30.21 42.47
ReMaKE-few-LLaMA 62.27 42.89 44.03 41.84 41.70 43.41 42.71 44.64 33.45 33.37 47.00 50.23

Table 9: F1 results obtained from testing in 12 languages after performing KE on knowledge in English. “ReMaKE-
few” means the proposed knowledge editing method leveraging few-shot learning based on 16 bilingual examples
concatenated in the context.
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Metrics Test on EN Edit on
CS DE NL ES FR PT RU TH TR VI ZH

Reliability

IKE 76.58 75.06 72.94 64.87 67.62 66.74 72.03 4.27 64.38 60.42 42.94
ROME 50.18 66.81 66.78 61.67 64.70 65.76 26.88 4.36 37.05 27.93 13.00
ReMaKE-zero-BLOOMZ 60.77 65.55 58.36 60.26 60.77 59.46 46.07 23.23 54.48 61.93 49.76
ReMaKE-zero-LLaMA 83.71 81.11 78.45 78.63 81.67 77.57 76.91 33.64 70.14 71.41 67.56
ReMaKE-few-BLOOMZ 73.49 78.54 74.50 76.67 75.91 77.24 61.49 35.62 71.65 77.49 71.07
ReMaKE-few-LLaMA 93.76 94.59 92.83 92.38 92.53 92.78 90.52 67.22 89.85 91.14 84.15

Generality

IKE 75.19 74.38 71.77 63.82 66.57 65.60 70.00 4.38 63.24 59.53 43.34
ROME 48.80 65.89 65.62 60.11 62.19 61.57 26.93 5.03 36.75 27.49 12.74
ReMaKE-zero-BLOOMZ 59.11 63.78 56.71 58.95 59.88 58.18 44.22 22.51 52.40 60.16 47.51
ReMaKE-zero-LLaMA 79.30 78.57 74.19 73.05 78.05 73.60 72.87 32.44 67.90 67.69 63.53
ReMaKE-few-BLOOMZ 72.21 78.17 73.86 75.71 74.72 75.78 60.04 33.86 69.98 75.84 68.80
ReMaKE-few-LLaMA 93.44 94.00 92.22 91.23 91.61 91.70 89.62 66.81 88.49 90.70 82.52

Locality

IKE 36.39 36.35 36.18 35.72 35.37 36.70 37.69 3.46 35.49 33.59 36.13
ROME 95.47 96.35 96.06 97.20 96.16 95.60 95.19 97.65 96.30 97.66 97.71
ReMaKE-zero-BLOOMZ 98.78 98.93 98.91 98.93 98.69 99.01 98.16 98.00 97.57 98.87 99.28
ReMaKE-zero-LLaMA 99.30 99.51 99.69 99.36 99.48 99.46 98.82 98.54 98.60 99.42 99.59
ReMaKE-few-BLOOMZ 98.80 98.98 98.96 99.00 98.77 98.98 98.09 98.05 97.78 98.82 99.15
ReMaKE-few-LLaMA 99.09 99.25 99.34 99.35 99.18 99.31 98.78 98.26 98.44 99.42 99.46

Portability

IKE 41.42 43.34 41.74 41.90 38.64 41.45 42.30 2.26 36.81 36.67 32.50
ROME 3.23 5.80 4.72 4.46 5.03 5.72 4.26 0.77 1.46 0.57 0.85
ReMaKE-zero-BLOOMZ 38.42 39.80 39.52 40.49 41.01 41.40 34.56 31.81 37.30 39.35 38.04
ReMaKE-zero LLaMA 57.57 59.04 57.45 57.01 56.89 57.10 52.87 41.94 54.61 55.28 49.87
ReMaKE-few-BLOOMZ 34.30 35.97 34.83 35.21 36.70 35.65 31.39 31.00 34.71 34.93 34.34
ReMaKE-few-LLaMA 52.39 55.25 54.32 53.68 54.03 53.75 48.41 44.70 51.70 53.67 49.96

Table 10: F1 results obtained from testing testing in English after performing KE on knowledge in other languages.

Edit on EN Test on
EN CS DE NL ES FR PT RU TH TR VI ZH

ReMaKE-random-BLOOMZ 41.32 35.67 37.15 30.28 32.17 36.47 36.34 3.63 4.98 31.22 35.4 26.78
ReMaKE-search-BLOOMZ 70.93 44.41 52.62 44.55 41.45 42.40 40.51 23.82 7.40 39.97 45.9 37.01
ReMaKE-random-LLaMA 54.64 61.91 79.04 59.89 55.85 61.91 61.24 43.88 8.48 52.22 55.59 34.05
ReMaKE-search-LLaMA 99.33 75.10 81.16 72.54 67.97 73.08 71.06 61.78 32.17 69.99 67.97 53.70

Table 11: The reliability scores base on EM comparison of ReMaKE-16shot-bi between selected examples with an
unsupervised method (ReMaKE-search) and random examples (ReMaKE-random) in “EN (edit) → ALL (test)”
editing.
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(a) Generality score of multilingual knowledge editing
between all twelve languages.

(b) Locality score of multilingual knowledge editing
between all twelve languages.

(c) Portability score of multilingual knowledge editing
between all twelve languages.

Figure 7: Metrics based on “ALL (edit) → ALL (test)” editing, where “ALL” represents 12 languages.
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(a) Generality score of ReMaKE-few-bi with different quanti-
ties of examples.

(b) Locality score of ReMaKE-few-bi with different quantities
of examples.

(c) Portability score of ReMaKE-few-bi with different quanti-
ties of examples.

Figure 8: Effects of the quantity of bilingual in-context examples on the LLaMA backbone with editing in English
and testing in 12 languages.
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(a) Reliability score of ReMaKE-few-bi with different quanti-
ties of examples.

(b) Generality score of ReMaKE-few-bi with different quanti-
ties of examples.

(c) Locality score of ReMaKE-few-bi with different quantities
of examples.

(d) Portability score of ReMaKE-few-bi with different quanti-
ties of examples.

Figure 9: Effects of the quantity of bilingual demonstrations on the BLOOMZ backbone with editing in English and
testing in 12 languages.
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(a) Reliability score of ReMaKE-few-bi with different quanti-
ties of examples.

(b) Generality score of ReMaKE-few-bi with different quanti-
ties of examples.

(c) Locality score of ReMaKE-few-bi with different quantities
of examples.

(d) Portability score of ReMaKE-few-bi with different quanti-
ties of examples.

Figure 10: Effects of the quantity of bilingual demonstrations on the LLaMA backbone with editing in other
languages and testing in English.
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(a) Reliability score of ReMaKE-few-bi with different quanti-
ties of examples.

(b) Generality score of ReMaKE-few-bi with different quanti-
ties of examples.

(c) Locality score of ReMaKE-few-bi with different quantities
of examples.

(d) Portability score of ReMaKE-few-bi with different quanti-
ties of examples.

Figure 11: Effects of the quantity of bilingual demonstrations on the BLOOMZ backbone with editing in other
languages and testing in English.
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(a) Generality score of ReMaKE-few-bi with different model
sizes.

(b) Locality score of ReMaKE-few-bi with different model
sizes.

(c) Portability score of ReMaKE-few-bi with different model
sizes.

Figure 12: Effects of the model sizes with the ReMaKE-16shot-bi on the BLOOMZ backbone with editing in
English and testing in 12 languages.
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