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Abstract
Subtitling plays a crucial role in enhancing the
accessibility of audiovisual content and encom-
passes three primary subtasks: translating spo-
ken dialogue, segmenting translations into con-
cise textual units, and estimating timestamps
that govern their on-screen duration. Past at-
tempts to automate this process rely, to varying
degrees, on automatic transcripts, employed di-
versely for the three subtasks. In response to
the acknowledged limitations associated with
this reliance on transcripts, recent research has
shifted towards transcription-free solutions for
translation and segmentation, leaving the direct
generation of timestamps as uncharted territory.
To fill this gap, we introduce the first direct
model capable of producing automatic subti-
tles, entirely eliminating any dependence on
intermediate transcripts also for timestamp pre-
diction. Experimental results, backed by man-
ual evaluation, showcase our solution’s new
state-of-the-art performance across multiple
language pairs and diverse conditions.

1 Introduction

Subtitling aims to facilitate the accessibility of au-
diovisual media, such as movies, TV shows, and
video lectures, by providing users with a textual
translation of spoken content. Subtitles consist of
two components: a textual block, typically encom-
passing one or two lines, and its corresponding
time duration, indicated by start and end times-
tamps. To ensure effective on-screen presenta-
tion and minimize users’ cognitive load, subti-
tles should conform to spatio-temporal constraints
(Bogucki, 2004; Khalaf, 2016). These include re-
strictions on the maximum number of characters
per line and a display duration that guarantees syn-
chronization with the video while granting viewers
sufficient time to read the entire text.

Automating the task involves addressing three
main subtasks: translation of the spoken con-
tent, segmentation of the translated text into

blocks and lines, and estimation of the times-
tamps for each block. Early approaches to au-
tomatic subtitling (AS) adopted a cascade archi-
tecture (Piperidis et al., 2004; Oliver Gonzalez,
2006; Alvarez et al., 2017; Bojar et al., 2021),
i.e. a pipeline of components, including automatic
speech recognition (ASR) and machine translation
(MT) models. In these systems, transcripts served
as the foundational element for all three subtasks,
despite the well-documented limitations of this re-
liance on them, such as error propagation (Sperber
and Paulik, 2020), the loss of useful prosody in-
formation (Lakew et al., 2022; Tam et al., 2022),
inapplicability to source languages lacking written
forms (Lee et al., 2022), and higher computational
and environmental cost (Strubell et al., 2019) due
to the need to run multiple models.

To cope with these limitations, subsequent stud-
ies aimed to streamline the subtitling pipeline by
reducing its dependency on transcripts. In this en-
deavor, direct speech-to-text translation (ST) sys-
tems (Bérard et al., 2016; Weiss et al., 2017), ca-
pable of translating speech without recourse to
intermediate symbolic representations, were suc-
cessfully used by Karakanta et al. (2020a) for the
translation step (subtask ). For subtitle segmenta-
tion (subtask ), efforts focused on adapting MT
(Etchegoyhen et al., 2014; Bywood et al., 2013;
Volk et al., 2010; Matusov et al., 2019; Koponen
et al., 2020b; Cherry et al., 2021) and language
models (Ponce et al., 2023) to directly produce
translations that incorporate block and line bound-
aries as specific tags, also by exploiting audio in-
formation (Papi et al., 2022).

To date, compared to subtasks and , times-
tamp estimation (subtask ) has received much
less attention. This regards not only the elimina-
tion of intermediate transcription steps, the primary
focus of this work, but also evaluation, as there is
still no reliable and informative metric for directly
assessing the quality of the predicted timestamps.
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Figure 1: Architecture of our model.

As for the task itself, current approaches, including
those exclusively based on direct ST models (Papi
et al., 2023a,b; Bahar et al., 2023), still require tran-
scripts for timestamp estimation, which involves i)
generating captions (i.e., segmented transcripts), ii)
estimating timestamps for caption blocks, typically
through a Connectionist Temporal Classification
(CTC) loss (Graves et al., 2006), and iii) projecting
them onto target subtitles. Regarding automatic
evaluation, current metrics (Wilken et al., 2022)
are by design holistic and therefore inadequate to
precisely measure timestamp estimation quality.

To bridge these gaps, we introduce and eval-
uate the first fully end-to-end AS solution1 that
seamlessly produces both subtitles (i.e., segmented
translations) and their timestamps without any re-
liance on intermediate transcripts. This innova-
tion is realized by incorporating into our model
the capability to directly determine the temporal
alignment between the spoken utterances and their
corresponding translation in subtitle form. Along
this direction, our contributions are the following:

• We propose two methods for timestamp esti-
mation (§3), respectively based on applying the
CTC loss directly on translations (Zhang et al.,
2022a), and on estimating the audio-text tempo-
ral alignment from the attention mechanism (Papi
et al., 2023c; Alastruey et al., 2024). Both ap-
proaches are complemented by the joint CTC de-
coding (Watanabe et al., 2017), which yields higher
translation quality and a more precise alignment
between the generated text and the corresponding
audio (Yan et al., 2023);

• We introduce SubSONAR,2 a novel metric for
1All our code and pre-trained models are avail-

able at https://github.com/hlt-mt/FBK-fairseq/ under
Apache Licence 2.0.

2Available at https://github.com/hlt-mt/subsonar/
under Apache License 2.0 and on PyPi (https://pypi.org/
project/SubSONAR/).

evaluating timestamp quality (§4), which is based
on SONAR (Duquenne et al., 2023) and designed
to be sensitive to time shifts, enabling a focused
evaluation of timestamps;
• We validate our approach through compara-
tive experiments (§5) on 7 language pairs, 2 data
conditions, and 4 domains, achieving new state-of-
the-art results on different benchmarks and demon-
strating better performance compared to cascade
architectures for automatic subtitling;
• We verify the efficacy of our model through
manual evaluation (§6), attesting a significant re-
duction in timestamp adjustments of ∼24% com-
pared to the previous state of the art.

2 Direct Model for Automatic Subtitling

Following previous work on direct ST (Liu et al.,
2020; Xu et al., 2021a, 2023; Wu et al., 2023),
we build a direct autoregressive encoder-decoder
model, where the encoder is composed of three
blocks: i) an acoustic encoder – made of two 1D
convolutions with stride 2 and Na Conformer (Gu-
lati et al., 2020) layers, ii) a length adaptor – a CTC
Compression (Gaido et al., 2021) module that av-
erages the vectors corresponding to the same CTC
prediction, and iii) a semantic encoder – made of
Ns Conformer layers. The encoder output is then
fed to an autoregressive decoder D and, in parallel,
to a CTC on Target (TgtCTC) module (Zhang et al.,
2022a; Yan et al., 2023). The full architecture is
shown in Figure 1.

We train our model with a composite loss (L),
which is a linear combination of a label smoothing
cross-entropy (CE) loss (Szegedy et al., 2016) on
the decoder D, a CTC loss on the TgtCTC module,
and a CTC loss on the CTC Compression module:

L = λ1 CTC(ha, t) + λ2 CTC(hs, y)

+ λ3 CE(D(hs, y), y)
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where λ1,2,3 are the loss weights, ha is the acoustic
encoder output, hs is the encoder output, y is the
target subtitle, and t is the caption. It is noteworthy
that the caption (t), albeit optionally used for train-
ing, is not strictly required by our model. Addition-
ally, captions are neither generated nor utilized
by our novel timestamp estimation methods (§3),
which exclusively rely on the generated subtitles.
Indeed, the auxiliary CTC loss on captions and the
CTC compression module can be entirely omitted,
at the cost of a slight reduction in quality (Zhang
et al., 2022a), and captions can be replaced with
speech units (Hsu et al., 2021; Zhang et al., 2022b)
as the module target. However, we opt to retain the
CTC compression module (as well as the related
auxiliary CTC loss on captions), not only for its
benefits in terms of computational efficiency and
translation quality but, most importantly, to enable
the use of the same model with earlier timestamp
estimation solutions, which require a CTC mod-
ule with captions as the target (Bahar et al., 2023;
Papi et al., 2023a). This allows a direct comparison
between different timestamp estimation methods,
employing the same model and generated subtitles.

At inference time, subtitles are generated by esti-
mating their likelihood with the joint CTC/attention
framework with CTC rescoring (Yan et al., 2023)
through a linear combination of the probabilities of
the TgtCTC module and the decoder:

p = pD(yi|hs, y0,...,i−1) + αpTgtCTC(y0,...,i|hs)

where α is a hyperparameter.

Multilinguality. We experiment both in bilingual
(English to a target language) and in multilingual
(English to many languages) settings. In the latter
case, we prepend a learned language embedding to
the previous output tokens to be fed to the decoder
(Inaguma et al., 2019; Wang et al., 2020a). In ad-
dition, we sum the same learned embedding to all
the vectors of the encoder output (hs) before pro-
cessing them with the TgtCTC module, to inform
the module about the language to generate.3

3We explored alternative solutions: adding the language
embedding at the beginning of the encoder before all Con-
former layers, as per (Di Gangi et al., 2019); adding it to the
vectors obtained after the CTC compression module; multi-
plying the language embedding vector instead of summing it;
using separate learned language embeddings for the decoder
and the encoder. However, none of them led to better results.

3 Estimation of Block Timestamps

In this section, we present novel methods for es-
timating the block timestamps without requiring
the transcripts. These solutions not only avoid er-
ror propagation and are applicable to unwritten
source languages but also exhibit increased speed
compared to current methods, skipping the tran-
script generation step, thereby minimizing signif-
icant overhead. Our methods involve either di-
rectly applying the CTC-segmentation algorithm
(Kürzinger et al., 2020) to the CTC on Target mod-
ule (§3.1) or leveraging the encoder-decoder atten-
tion scores to find the audio-text alignment (§3.2).

3.1 Subtitle CTC-based Estimation

The error propagation and approximations caused
by the cross-lingual Levenshtein alignment pro-
posed by Papi et al. (2023b) can be avoided by
directly estimating the timestamps on the target,
i.e., on the generated subtitles. This is realized by
exploiting the predictions of the TgtCTC module
placed on top of the encoder, which are used by
the CTC segmentation algorithm (Kürzinger et al.,
2020), together with the input audio, to retrieve the
timestamp information. This subtitle CTC-based
method (SubCTC) enables the direct alignment be-
tween the input audio features (representing the
time over the speech sequence) and the boundaries
of the generated subtitle blocks, eliminating the
need for intermediate transcript alignments with
the audio and their projection into the target side.

The SubCTC method builds upon the assump-
tion that the CTC module can learn meaningful
alignments between source audio and target texts,
as it does when predicting transcripts (Sak et al.,
2015; Sainath et al., 2020; Chen et al., 2023)
without direct supervision. However, the valid-
ity of this assumption has not been verified yet.
Rather, related works in non-autoregressive trans-
lation showed the inability of such models to im-
plicitly learn complex word reordering (Chuang
et al., 2021; Ran et al., 2021; Xu et al., 2021b).
Motivated by this potential issue, we devise an al-
ternative method that leverages the cross-attention
matrix to infer source-target alignments.

3.2 Attention-based Estimation

Building on the extensive literature in text-to-text
translation and language modeling discussing the
quality of source-target alignments learned by the
attention mechanism (Tang et al., 2018; Zenkel
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Algorithm 1 Attention-based DTW
1: N,L← nTokens, audioLen
2: B ← blockIdxs ▷ List of block boundary indices
3: A← attnMatrix ▷ A ∈ RN×L

4: A←StdNorm(A, axis = 0) ▷ Column-wise normalize
5: A←MedianFilter(A,width = 7, axis = 1)
6: D ←DTWDistance(−A) ▷ Negated attentions as costs
7: n, l, P, blockT imings← N,L, [(N,L)], [ ]
8: while P [−1] ̸= (0, 0) do ▷ Backtrack best DTW path
9: if n ∈ B then

10: P ← Append(P, (n− 1, l − 1))
11: blockT imings← Append(blockT imings, l)
12: else
13: P ← Append(P, argmin

i∈{n,n−1},j∈{l,l−1}
D[i, j])

14: end if
15: n, l← P [−1]
16: end while
17: return reverse(blockT imings)

et al., 2019; Garg et al., 2019; Chen et al., 2020) and
recent works on speech-to-text (Papi et al., 2023c;
Alastruey et al., 2024), we propose to exploit the
encoder-decoder attention scores to determine sub-
title block timings and devise two different modal-
ities of leveraging this information. For the first
one, we adapt the Dynamic Time Warping (DTW)
algorithm (Sakoe and Chiba, 1978), which is com-
monly used to determine token-level timestamps
in ASR (§3.2.1).4 For the second one, recognizing
that DTW relies on the assumption of monotonic
source-target alignments, which does not always
hold in our case, we introduce a new algorithm
named SBAAM (SPEECH BLOCK ATTENTION

AREA MAXIMIZATION), specifically designed for
subtitles (§3.2.2).

3.2.1 Attention-based DTW for Subtitling
The DTW algorithm is a dynamic programming
algorithm similar to Viterbi (Juang, 1984), which
finds the best path (i.e., the one that minimizes a
distance function) between two temporal sequences
with varying speeds. This algorithm operates under
the assumption that all the elements of the two se-
quences are aligned and that the mapping between
the two sequences is monotonic. In our case, while
the assumption may not be applicable at the token
(or word) level, it remains valid at the block level,
where the order has to be maintained; we therefore
investigate its applicability to our task.

We use the additive inverse of the attention ma-
trix as a distance function and follow the improved

4For example, the DTW is used in the Transform-
ers implementation of Whisper (Radford et al., 2023):
https://github.com/huggingface/transformers/
blob/v4.34.0/src/transformers/models/whisper/
modeling_whisper.py#L1817.

Algorithm 2 SBAAM
1: N,L← nTokens, audioLen
2: B ← blockIdxs ▷ List of block boundary indices
3: A← attnMatrix ▷ A ∈ RN×L

4: A←StdNorm(A, axis = 0) ▷ Row-wise normalize
5: A[A < 0]← −ϵ ▷ ϵ set to 0.01
6: n, l, blockT imings← 0, 0, [ ]
7: for all ib ∈ [0, |B|) do

8:
l← argmax

j∈(l,L−|B|+ib)

(
∑

A[n : B[ib], l : j]+
∑

A[B[ib] + 1 : N, j + 1 : L])

9: blockT imings← Append(blockT imings, l)
10: n← B[ib]
11: end for
12: return blockT imings

DTW algorithm by Yuxin and Miyanaga (2011)
that applies a 1D median filter (Huang et al., 1979)5

over the speech sequence for each text token, af-
ter a standard normalization over the text tokens
(see Alg. 1). After computing the accumulated
DTW distance matrix, we define the best path in
the backtracking phase, with three possible moves:
i) moving to the preceding element of the first se-
quence, ii) moving to the preceding element of the
second sequence, or iii) moving to the preceding
elements of both sequences. In this phase, we force
moving across both (speech and text) sequences
when the block boundary token (<eob>) is encoun-
tered. This decision is based on two observations: i)
a manual inspection of attention matrices revealed
that the attention of <eob> tokens is often unreli-
able (e.g., focused on the last token of the speech
sequence or silence), and ii) we want to ensure that
at least one speech segment (equivalent to 40ms) is
assigned to each block by skipping the <eob> token
in the DTW search (see lines 9-12 of Alg. 1). As
a result, we use the timings assigned to the <eob>
tokens as the temporal boundaries (timestamp) for
the corresponding subtitle blocks.

3.2.2 SBAAM
To relax the constraint of alignment monotonicity,
we devise a new algorithm to estimate the timing of
block boundaries. Intuitively, our method (see Alg.
2) maximizes the attention scores within a rectan-
gular area encompassing the tokens belonging to a
block (i.e. all the tokens between two <eob>) along
one axis, and the assigned span across the temporal
dimension of the speech sequence along the other
axis. For this reason, we named it SPEECH BLOCK

ATTENTION AREA MAXIMIZATION or SBAAM.

5A filter that takes the median value within a pre-defined
window defined as the width of the filter itself.
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Model SubER (↓) SubSONAR (↑)
de es fr it nl pt ro AVG de es fr it nl pt ro AVG

LEV 60.2 47.9 53.7 52.0 49.0 46.1 49.8 51.2 .677 .692 .670 .689 .688 .691 .688 .685
- joint CTC 61.2 49.0 54.7 52.5 49.7 47.1 50.7 52.1 .667 .693 .673 .690 .683 .688 .687 .683

SubCTC 59.9 47.5 53.5 51.7 48.7 45.7 49.4 50.9 .718 .739 .713 .724 .731 .731 .719 .725
ATTN DTW 59.9 47.5 53.4 51.6 48.6 45.5 49.2 50.8 .745 .775 .747 .761 .758 .765 .754 .758
SBAAM 59.8 47.5 53.4 51.6 48.7 45.5 49.3 50.8 .749 .780 .753 .765 .767 .770 .761 .764

Table 1: Results of the timestamp estimation methods in terms of SubER (cased) and subSONAR for all the 7
languages of MuST-Cinema.

The SBAAM algorithm encompasses two steps.
First, the attention matrix is normalized (following
the previous procedure) and all negative values are
set to a small negative value (−ϵ). This is required
as the attention values are typically peaky in the
range [0, 1] due to the softmax, with a few large
values and random fluctuations close to 0 for all
the others. After normalization, some small values
may become very negative, while others may be
closer to 0, even though both indicate low attention.
Despite this, we maintain them as negative values
to penalize the integration of areas with very low
attention. Second, for each generated subtitle block
(i.e., for each <eob>), we iteratively determine the
timing by selecting the splitting point that maxi-
mizes the area of the first block with the audio up
to that point and the rest of the text with the remain-
ing audio. At the end of this process, we obtain the
start and end timing (timestamp) for all blocks.

4 SubSONAR

Since it was proposed, the SubER6 metric (Wilken
et al., 2022) has been used to provide a holistic eval-
uation of subtitles, encompassing translation qual-
ity, block/line segmentation accuracy, and timing.
Specifically, SubER computes the number of word
edits and block/line edits required to match the
reference, where hypothesis and reference words
are allowed to match only within subtitle blocks
that overlap in time. This definition highlights how
SubER is sensitive only to major errors in terms
of timing, as it solely checks whether two blocks
overlap, even if only for a few milliseconds. This
limitation motivates our proposal of SubSONAR, a
new metric designed to be more sensitive to time
shifts and, consequently, more suitable for evaluat-
ing the quality of subtitle timestamps.

To this aim, we leverage the multimodal and mul-
tilingual SONAR model (Duquenne et al., 2023),
designed to generate sentence embeddings within a

6In this work, we compute SubER-cased unless specified
otherwise as per (Papi et al., 2023b).

shared multimodal (text and audio) semantic space
for all languages. Specifically, we calculate the
cosine similarity between the SONAR embeddings
of the text within a subtitle block and its corre-
sponding audio, determined by the timestamp of
the block. Subsequently, we average the similarity
scores across all subtitle blocks, which results in
a single score in the [−1, 1] range. Being SONAR
trained to capture both text and audio semantics,
higher SubSONAR scores indicate better alignment
between text and audio content, which is influenced
by both translation quality and timestamp accuracy.
Nevertheless, as revealed by the empirical valida-
tion presented in the following sections (§5,6), Sub-
SONAR exhibits higher sensitivity to timing accu-
racy than to translation quality.

5 Automatic Evaluation

In this section, we evaluate our solutions auto-
matically through comparative experiments in dif-
ferent resource conditions and language settings.
First, we validate the adoption of the joint CTC
rescoring and compare the timestamp estimation
methods introduced in §3 using a multilingual
system trained and tested on all the 7 language
pairs (en→{de,es,fr,it,nl,pt,ro}) of MuST-Cinema
(Karakanta et al., 2020b) (§5.1). Then, we confirm
their strength by comparing two bilingual systems
(en-de and en-es) trained in the high resource condi-
tions of the IWSLT 2023 subtitling track (Agarwal
et al., 2023) with the results reported for the current
state of the art in direct AS and production tools
on several test sets (§5.2). Lastly, we demonstrate
that our solutions close the gap with the cascade
approach, outperforming the best IWSLT cascade
models on the 4 publicly available validation sets
(§5.3). Full experimental settings and details about
training data are given in Appendix A to ensure the
reproducibility of our work.
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decoding de es fr it nl pt ro AVG
standard 20.9 34.3 27.9 28.6 30.9 35.1 30.1 29.7
joint CTC 21.8 35.2 28.6 28.9 31.1 35.7 30.8 30.3

Table 2: Translation quality results measured by AS-
BLEU (↑) with and without joint CTC decoding for all
the 7 languages of MuST-Cinema.

5.1 Timestamp Estimation Methods
Table 1 shows the results of our multilingual system
with the proposed timestamp estimation methods,
comparing them to the Levenshtein-based approach
(LEV) of Papi et al. (2023a). Notice that we em-
ploy the same model for all rows, meaning that
the outputs vary solely in terms of block timings,
except for the ablation row (- joint CTC) where we
analyze the impact of the joint CTC rescoring on
the subtitle quality.

First of all, we notice a notable SubER decrease
with joint CTC rescoring (-0.9 on average), while
the different timing strategies have a lower impact
on it (improvements remain below 0.4 on average),
with the two attention-based methods (ATTN DTW
and SBAAM) achieving the same scores. On the
contrary, SubSONAR is not significantly affected
by the decoding strategy but exhibits increasingly
higher scores as block timings become more ac-
curate. The substantial gains (>6% relative im-
provement) of SubCTC over LEV underscore the
importance of directly estimating timestamps on
the subtitle blocks, thereby avoiding inherent er-
ror propagation of mapping them from the caption
blocks (as done in LEV). Consistently with the
SubER scores, the attention-based methods lead
to superior scores, with SBAAM emerging as the
best timestamp estimation strategy, outperforming
ATTN DTW by a limited, yet consistent, margin
across all languages. Overall, SBAAM improves
SubSONAR by 11.8% over the current state of the
art (LEV) for direct subtitling.

In addition to certifying the effectiveness of our
solutions, these results demonstrate that SubER
is more sensitive to translation quality than times-
tamp accuracy. Comparing the results in Table 1
with those in Table 2, it is evident that the sub-
stantial gains achieved through joint CTC rescor-
ing are proportional to the improvements in terms
of AS-BLEU,7 which measures the pure transla-
tion quality. Notably, the languages exhibiting the

7AS-BLEU, computed with SubER tool (AppTek, 2022),
is calculated with the popular sacreBLEU metric (Post, 2018)
after aligning blocks of the hypothesis and reference with the
minimum Levenshtein distance method (Matusov et al., 2005).

smallest decrease in SubER coincide with those
where BLEU scores are closer (it and nl), while the
language with the highest BLEU increase (es) also
demonstrates the widest margin in terms of SubER.
Conversely, timestamp accuracy shows limited ef-
fects on SubER scores, despite the important differ-
ence between methods, as attested by SubSONAR
scores and validated by our manual analysis (§6).

Lastly, we verify the effect of the proposed so-
lutions in terms of subtitle conformity, namely the
percentage of blocks that respect character-per-line
(CPL) and character-per-second (CPS) limits. Such
limits, respectively set to 42 and 21 in TED guide-
lines,8 ensure that subtitles can be understood by
users without excessive cognitive effort. As it has
been demonstrated that the joint CTC rescoring
solves the end detection problem of purely atten-
tional models and promotes hypotheses with cor-
rect length (Yan et al., 2023), we hypothesized that
its use could improve both CPL and CPS metrics.
However, inconsistent outcomes across various set-
tings and languages (shown in Appendix B) dispute
this hypothesis, whereas the attention-based tim-
ing methods consistently improve the CPS, with
SBAAM being superior also in this respect.

5.2 High-Resource Conditions
To further validate the robustness of our findings,
we experiment in high-resource conditions with
bilingual systems (en-de and en-es) and compare
our solutions with the state of the art. To cover dif-
ferent domains and data conditions besides MuST-
Cinema, we leverage two additional test sets: Eu-
ropean Commission (EC) Short Clips (Papi et al.,
2023a), made of multi-speaker short informative
videos about various topics with background mu-
sic, and European Parliament (EP) Interviews (Papi
et al., 2023a), interviews with non-verbatim sub-
titles. The results of our solution are reported in
Table 3 and compared with the current best scores
published on these test sets.

Upon comparing rows 1 and 3, we observe that
our baseline model, even without joint CTC rescor-
ing and replicating the LEV method, outperforms
previous results across nearly all test sets, with the
sole exception of MuST-Cinema en-es, affirming
its competitiveness and reinforcing our findings.
Furthermore, we observe consistent trends and sim-
ilar improvements as in the previous section when
applying joint CTC rescoring and employing the

8https://www.ted.com/participate/translate/
subtitling-tips
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Model align. joint
SubER (↓) SubSONAR (↑)

MSTCIN ECSC EPI AVG MSTCIN ECSC EPI AVGde es de es de es de es de es de es
Papi et al. (2023a) LEV 59.9 46.8 59.9 52.7 80.3 72.3 62.0 - - - - - - -Best Production* na na 61.5 51.3 59.0 49.7 78.1 68.6 61.4

This work LEV 58.0 48.6 59.6 49.9 78.5 70.2 60.8 .656 .707 .691 .713 .670 .697 .689
56.5 45.1 58.9 49.0 77.6 69.7 59.5 .668 .712 .693 .722 .676 .701 .695

DTW 56.3 44.7 58.5 48.9 77.3 69.7 59.2 .733 .780 .742 .778 .733 .763 .755
SBAAM 56.2 44.7 58.6 48.9 77.3 69.6 59.2 .728 .781 .740 .785 .734 .770 .756

Table 3: SubER (cased) and SubSONAR results of our high-resource models with and without joint CTC generation
(joint) and with the LEV, DTW or SBAAM timestamp alignment methods (align.), compared with previous work
and production tools on MuST-Cinema (MSTCIN), EC Short Clips (ECSC) and EP Interviews (EPI) en-de and
en-es. * Best results of the production tools reported by Papi et al. (2023a) for every language and test set.

en-de

Model
TED EPTV ITV PELOTON AVG

SubER SubER SubER SubER SubER
cased uncased cased uncased cased uncased cased uncased cased uncased

Best Cascade - 63.0 - 78.7 - 83.6 - 87.6 - 78.2
Best Direct 69.4 - 80.6 - 83.7 - 79.1 - 78.2 -
This work 61.6 62.1 78.7 78.3 80.0 80.7 75.6 78.2 74.0 74.8

en-es

Model
TED EPTV ITV PELOTON AVG

SubER SubER SubER SubER SubER
cased uncased cased uncased cased uncased cased uncased cased uncased

Best Cascade - 48.8 - 70.2 - 82.1 - 79.0 - 70.0
Best Direct 52.5 - 73.7 - 82.2 - 80.3 - 72.2 -
This work 49.5 47.5 73.1 71.0 79.1 79.5 79.3 80.8 70.2 69.7

Table 4: SubER (↓) comparison with the best cascade (AppTek) and direct (FBK) models trained on constrained
conditions from the IWSLT 2023 Evaluation Campaign on automatic subtitling for en-de and en-es validation sets.

attention-based DTW and SBAAM methods for
timestamp estimation. On average across all lan-
guages and test sets, joint CTC rescoring decreases
the SubER by 1.3 with negligible effects on Sub-
SONAR, while SBAAM and DTW yield limited
improvement (0.3) in SubER but a substantial rel-
ative increase in SubSONAR, which amounts to
8.8% in the case of SBAAM that confirms to be
the best method overall.

In fact, our proposed solution (last row) emerges
as the best one on all test sets, except for EP In-
terviews en-es, where the best production system
reported by Papi et al. (2023a)9 has a better SubER
(-1.0). On average, our model is 2.2 SubER better
than cherry-picking the best production system for
each test set and language, and 1.6 SubER better
than our baseline. To further confirm its strength,
in the next section, we compare it with the best
systems of the last IWSLT campaign.

5.3 Is the Gap with Cascade Systems Closed?
In this section, we compare our high-resource mod-
els with the best direct (FBK – Papi et al. 2023b)

9Note that, as we did not test such production systems,
they may have been improved at the time of writing this paper.

and the best cascade (AppTek – Bahar et al. 2023)
systems of the last IWSLT campaign (Agarwal
et al., 2023), in the constrained data condition,
meaning the models are trained on the same data as
ours. As the references for the official test sets are
not public, we present the results on the 4 valida-
tion sets released for the campaign in Table 4. For
the sake of a fair comparison, we report the SubER
with and without casing and punctuation, as Bahar
et al. (2023) report the latter.

Even in this testing condition, our systems con-
sistently outperform the others, surpassing even the
top-performing cascade model on both language
pairs. The superiority of our solution is particularly
pronounced in en-de, where it achieves the lowest
SubER in all conditions by a large margin (-3.4
SubER on average over the best cascade and -4.2
over the direct). On en-es, our solution and the cas-
cade are, instead, close, with our models emerging
on TED and ITV, whereas the cascade models are
better on on EPTV and PELOTON. On average,
however, our solution results slightly superior in
this language pair with a 0.3 SubER reduction. All
in all, our experiments evidence that our proposed
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solution can effectively close the gap between cas-
cade and direct subtitling systems for the first time.

6 Manual Evaluation

To corroborate the findings from our automatic
evaluation, we conducted the first-ever manual eval-
uation of timestamp quality in subtitling. This
evaluation was specifically conducted on the two
language pairs addressed in our high-resource ex-
periments (en-de, en-es).

To focus only on timestamp quality, we com-
pared different timestamp estimation techniques
on the same automatic translations. Specifically,
we selected the outputs of our high-resource sys-
tems with joint CTC rescoring and confronted the
baseline LEV method and our proposed SBAAM.

For each language pair, the manual evaluation set
– on which the two systems were run – is composed
of subsets of the EC Short Clips and MuST-Cinema
test sets, for a total of 22 videos corresponding to
approximately 1 hour of audio (see Appendix C.1
for details on the selected videos).

The evaluation was carried out by two annota-
tors per language pair, who are proficient in English
(C1) as well as native speakers or very proficient
(C2) in the target language (German or Spanish).10

We instructed the annotators with ad-hoc guidelines
(described in Appendix C.2) to adjust the start, end,
or both timestamps when the generated subtitles
are not synchronized with the speech. To collect
this information, we used ELAN (Wittenburg et al.,
2006), an audio/video annotation tool commonly
employed in the literature (Sloetjes and Witten-
burg, 2008). To cope with the inherent assessors’
subjectivity (i.e. being more aggressive/tolerant in
deciding whether a timing is acceptable or has to
be edited) the outputs of the two timestamp estima-
tion methods were randomly assigned to the two
annotators, ensuring that each one worked on all 22
audios and annotated half of the outputs from both
methods. To prove the quality of the manual eval-
uation and better understand the difficulty of the
task, for each language pair, 25% of the test set was
double-annotated. We calculated Cohen’s Kappa
(Cohen, 1960) to measure the inter-annotator agree-
ment on whether a start/end timestamp has to be
edited or not. The resulting values – 0.65 for en-de
and 0.61 for en-es – indicate a “substantial” agree-
ment (Landis and Koch, 1977), confirming both

10The annotators were paid 22C/h gross, in accordance with
the average salary of data annotators (https://www.talent.
com/salary?job=data+annotator).

en-de

model time shift (ms) % edited ts
start end avg

LEV 544 ± 718 38.47 40.74 39.61
SBAAM 321 ± 453 18.43 18.81 18.62

en-es

model time shift (ms) % edited ts
start end avg

LEV 520 ± 626 38.01 39.45 38.73
SBAAM 347 ± 570 11.17 12.89 12.03

Table 5: Results of the manual evaluation in terms of
time shift in milliseconds (mean and standard variation),
and percentage of the number of edited timestamps (di-
vided in start and end timestamp, and their average).

the feasibility of this new evaluation task and the
reliability of its outcomes.

Table 5 shows the results of the manual analysis
in terms of start/end time shifts (in milliseconds)
and percentage of modified timestamps. The su-
periority of SBAAM over LEV is evident across
all metrics, domains, and language pairs. The per-
centage of modified timestamps is less than half in
en-de and 3 times lower in en-es. Given that cor-
recting automatic timestamp errors is a major con-
cern for professionals in their subtitling experience
with AI-based systems (Koponen et al., 2020a),
the reduced error rates of SBAAM are likely to
significantly alleviate post-editing effort. Further-
more, SBAAM exhibits a notably lower average
time shift (33-40%), indicating not only less fre-
quent but also less severe errors. The lower average
time shift is complemented by a significantly lower
standard deviation, which further evidences that
SBAAM errors are less likely to be large.

Lastly, in Appendix C.3 we present the results
of this manual analysis after excluding edits under
120 ms. This evaluation caters to user experience,
as users typically perceive audio-visual stimuli un-
der 120 ms as instantaneous (Efron, 1970), while
the annotators – aided by ELAN that shows the
text and waveform – made numerous fine-grained
timestamp edits (even <20 ms). This evaluation ac-
centuates the differences between the two methods
and shows that SBAAM requires editing for only
12% of timestamps in en-de and 9% in en-es.

We can conclude that our manual analysis not
only confirms the results obtained through the au-
tomatic SubSONAR metric, but also further high-
lights the efficacy of our proposed timestamp esti-
mation method and its substantial superiority over
previous solutions.
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7 Conclusions

In recent years, research on automatic subtitling
has shifted toward direct models that do not rely on
the transcription of the input audio. The potential
advantages of a transcription-free approach have
motivated the use of direct models for the transla-
tion and segmentation steps, leaving unexplored
the direct generation of timestamps on the target
text. In this paper, we filled this gap by introducing
the first direct system that does not require the gen-
eration of transcripts/captions in any phase of the
process, including subtitle timestamp estimation.
With the introduction of a new metric, SubSONAR,
dedicated to evaluating timestamp quality, and ex-
periments on different domains and 7 language
pairs, we demonstrated the effectiveness of our so-
lution, which was further validated by a dedicated
manual evaluation. Lastly, we showed that our
model closed the gap with the cascade paradigm,
approaching and even outperforming the best cas-
cade architectures from the last IWSLT campaign,
thereby setting a new state of the art for most of the
publicly available benchmarks.

Limitations

While our direct AS model achieves significant
advancements, there are still some limitations or
problems that have not been addressed in this work
and should be the focus of further research on the
topic.

First of all, although our models are easily ap-
plicable to unwritten languages (the only required
change is either to use speech units as targets for
the CTC compression module or to remove the
module itself), our experiments have not included
unwritten languages due to the lack of available
benchmarks. Moreover, for the same reason, we
have not experimented with source languages dif-
ferent from English. Despite this, we do not foresee
any specific problem that could arise in this condi-
tion, except for a slight drop in translation quality
if the CTC compression and its auxiliary loss are
removed (Zhang et al., 2022a).

Another limitation of this work regards the
model compliance with constraints posed on CPL
and CPS. While our model is trained on subtitles
that mostly adhere to spatio-temporal requirements,
no specific strategies are adopted for their actual
fulfillment. Modifying the model or the training
strategy to consistently meet these constraints, es-
pecially in complex audiovisual content, should be

the topic of future works.
Regarding SubSONAR, its language coverage is

currently limited to the languages supported by the
SONAR speech encoder.

Lastly, due to the large computational costs re-
quired and for the sake of a fair comparison with
previous works, we did not experiment with us-
ing our proposed method on top of large founda-
tional ST models such as SeamlessM4T (Seamless
Communication et al., 2023) and Whisper (Rad-
ford et al., 2023), although the latter can not be
tested in our settings as it does not support trans-
lating from English into other languages. To adopt
these models for the subtitling task, line and block
boundary tokens should be added to their vocab-
ulary and these models should be then fine-tuned
on subtitling data (i.e. translations with line and
block boundaries). No other modification is needed
as SBAAM requires only looking at the cross-
attention. Optionally, a CTC on Target module has
to be trained on top of their encoder for the joint
CTC rescoring. This line of research represents a
natural next step of this work.
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A Experimental Settings

A.1 Data

For the multilingual model, we leverage all the 7
language pairs of MuST-Cinema v1.1 (Karakanta
et al., 2020b), namely: English to German, Spanish,
French, Italian, Dutch, Portuguese, and Romanian.
These texts already contain line and block segmen-
tation, i.e., <eol> and <eob> tags are present in
both transcripts and translations.

For the bilingual models, we use the same
datasets of (Papi et al., 2023b), encompassing
most of the training data admitted by the IWSLT
2023 Evaluation Campaign on automatic subtitling.
We collect all the available ST corpora, namely
MuST-Cinema, EuroParl-ST (Iranzo-Sánchez et al.,
2020), and CoVoST v2 (Wang et al., 2020b). Also,
we leverage most of the available ASR datasets
(CommonVoice (Ardila et al., 2020), LibriSpeech
(Panayotov et al., 2015), TEDLIUM v3 (Hernandez
et al., 2018), and VoxPopuli (Wang et al., 2021)),
by automatically translating the transcripts into the
two target languages (German and Spanish) using
the NeMo MT models.11

<eol> and <eob> tags are added to both tran-
scripts and translations of all datasets, except for
MuST-Cinema that already include them, using the
multimodal segmenter by Papi et al. (2022).

A.2 Model and Training

Our systems are implemented with fairseq-ST
(Wang et al., 2020a) using the default settings un-
less specified otherwise. The input comprises 80
Mel-filterbank audio features extracted every 10
milliseconds, employing a sample window of 25.
The input features are then preprocessed with two
1D convolutional layers with stride 2, reducing in-
put length by a factor of 4.

The model architecture follows an encoder-
decoder design, consisting of a Conformer encoder
(Gulati et al., 2020) and a Transformer decoder
(Vaswani et al., 2017), with a total number of
133M for both multilingual and bilingual models.
The vocabularies are based on unigram Sentence-
Piece (Kudo, 2018), with size 8,000 for the English
source and 16,000 for the target (either German,
Spanish, or multilingual). Specific hyperparame-
ters are presented in Table 6.

11Publicly available at: https://docs.nvidia.com/
deeplearning/nemo/user-guide/docs/en/main/nlp/
machine_translation/machine_translation.html

Encoder
Layer type Conformer

Total number of layers 12
Na layers 8
Ns layers 4

Embedding dimension 512
FFN dimension 2,048

Convolutional Module kernel 31size (point- and depthwise)
Decoder

Layer type Transformer
Nd layers 6

Embedding dimension 512
FFN dimension 2,048

Table 6: Hyperparameters for the proposed model.

Optimizer AdamW
Optimizer Momentum β1, β2 = 0.9, 0.98

Source CTC weight (λ1) 1.0
Target CTC weight (λ2) 2.0

CE weight (λ3) 5.0
CE label smoothing 0.1

Learning Rate scheduler Noam
Learning Rate 2e-3
Warmup steps 25,000
Weight Decay 0.001

Dropout 0.1
Clip Normalization 10.0

Training steps 200,000
Maximum tokens 40,000
Update frequency 2

Table 7: Model detailed training settings. The total
batch size (in number of tokens) is obtained by multi-
plying maximum tokens for update frequency.

Label-smoothed CE is computed after the de-
coder, target CTC loss is computed on the output of
the semantic encoder (full encoder), and the source
CTC loss is computed on the output of the acoustic
encoder. The values of the weights for all three
losses (λ1, λ2, λ3) are set to (1.0, 2.0, 5.0) accord-
ing to (Yan et al., 2023). Utterance-level Cepstral
Mean and Variance Normalization (CMVN) and
SpecAugment (Park et al., 2019) are applied during
training and segments longer than 30 seconds are
filtered out (fairseq-ST default) to avoid excessive
VRAM requirements. All model checkpoints are
obtained by averaging the last 7 checkpoints ob-
tained from the training. All trainings are executed
on 4 NVIDIA Ampere GPU A100 (64GB VRAM).

For the multilingual case, we train the model
in one step on all the MuST-Cinema languages by
pre-pending the language tag to the subtitle texts,
as already explained in §2. For the bilingual case,
we first train the model on the ST and the machine-
translated ASR datasets without <eol> and <eob>
tags, and then we continue the training starting
from the averaged checkpoint by including <eol>
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decoding de es fr it nl pt ro AVG
standard 89.6 94.7 91.7 88.7 84.1 89.1 92.0 90.0
joint CTC 90.1 94.6 91.0 89.3 85.1 89.4 93.7 90.5

Table 8: Results of the CPL conformity (↑) in percentage
(%) with and without joint CTC decoding for all the 7
languages of MuST-Cinema.

decoding MSTCIN ECSC EPI AVGde es de es de es
standard 88.2 95.3 85.0 90.9 82.3 90.8 88.8

joint CTC 88.3 94.6 84.0 91.1 82.2 89.7 88.3

Table 9: CPL conformity results (↑) in percentage (%)
of our high-resource models with and without joint CTC
generation on MuST-Cinema (MSTCIN), EC Short
Clips (ECSC) and EP Interviews (EPI) en-de and en-es.

and <eob> tags in the texts. For both cases (and
steps, in the case of bilingual models), we use the
training settings provided in Table 7.

For inference, we set the beam size to 5 and,
according to (Yan et al., 2023), the joint CTC de-
coding weight α to 0.2. For the SBAAM timestamp
estimation method, we extract the cross-attention
from the 4th layer and average the scores across the
attention heads, following (Papi et al., 2023c).

B CPL and CPS Conformity

Table 8 and 9 report the CPL conformity of, respec-
tively, our multilingual and bilingual models with
and without the joint CTC decoding strategy. As
we can see, the results are very close and no clear
and coherent trend across the different languages
and test sets emerges. We can conclude that the de-
coding strategy does not significantly impact CPL
conformity.

Switching to analyze the CPS conformity, Table
10 and 11 show the related percentages for the
multilingual and bilingual models. In this case,
we do not only study the decoding strategy but
also the timing estimation method used, as CPS
is influenced both by the generated subtitles and
the assigned timestamps. While also in this case
the difference between the decoding strategies is
limited, on average the joint CTC rescoring leads
to a lower conformity in both cases. Looking at the
differences between the timing estimation methods
(Table 10), we notice that SubCTC is by far the
worst method (with a ∼7% degradation). ATTN
DTW and SBAAM, instead, lead to subtitles with
higher conformity than the LEV baseline, although
SBAAM is consistently slightly superior in all
languages. The benefits of SBAAM over LEV

model de es fr it nl pt ro AVG
LEV 74.1 77.4 68.7 76.9 79.2 79.8 84.1 77.2

- joint CTC 73.6 75.8 67.5 77.8 77.5 79.8 83.9 76.6
SubCTC 68.3 70.6 63.7 69.6 72.9 72.8 77.1 70.7
ATTN DTW 75.6 79.3 71.3 78.0 80.5 81.4 83.8 78.6
SBAAM 75.7 79.7 72.5 78.5 81.7 82.1 84.0 79.2

Table 10: Results of the timestamp estimation methods
in terms of CPS conformity (↑) in percentage (%) for
all the 7 languages of MuST-Cinema.

align. joint MSTCIN ECSC EPI AVGde es de es de es

LEV 78.8 81.7 82.3 83.7 74.1 77.4 79.7
77.8 76.0 82.8 85.2 74.6 76.6 78.8

SBAAM 76.7 77.5 82.0 87.4 73.4 78.7 79.3

Table 11: CPS conformity results (↑) in percentage (%)
of our high-resource models with and without joint CTC
generation (joint) and with the LEV or SBAAM times-
tamp alignment methods (align.) on MuST-Cinema
(MSTCIN), EC Short Clips (ECSC) and EP Interviews
(EPI) en-de and en-es.

are confirmed also by the bilingual systems, where
SBAAM has a 0.5% higher compliance on average,
although the gains are not coherent across the two
language pairs.

We can conclude that we can reject the hypoth-
esis about the potential benefits of the joint CTC
rescoring in producing outputs of the correct length.
The better timings assigned by the timestamp esti-
mation methods, instead, provide little benefits in
terms of CPS conformity.

C Human Evaluation

C.1 Audio Selection
Table 12 lists the audios included in the manual
evaluation carried out by the annotators.

C.2 Guidelines for Subtitle Timestamps
Evaluation

The following italic text has been given to the an-
notators as guidelines for their work.

You are asked to check if the source language
speech and its corresponding translated subtitles
are synchronized, that is if the subtitle remains on
screen for the right amount of time with respect to
the corresponding speech.

If the timing is wrong, move the timestamp of
each subtitle such that the timing of the subtitle
matches the timing of the audio. The timestamp
can be adjusted at the beginning by changing the
start timestamp, at the end by changing the end
timestamp, or both. Change the timestamp only
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Test Set Audio Name Duration

ECSC

I118982 0:02:38
I200637 0:01:30
I203453 0:01:38
I205895 0:01:31
I207338 0:01:29
I207340 0:01:35
I207805 0:01:52

I212173* 0:03:01
I207806 0:02:00
I207807 0:01:54
I207810 0:01:59
I207813 0:02:21
I207814 0:01:58
I209528 0:02:08
I211037 0:01:58

I212173* 0:03:01

MSTCIN

13518 0:05:23
20008 0:05:03

28521* 0:04:41
22979 0:05:02
23129 0:05:35

28521* 0:04:41
1:02:58

Table 12: Audio selection for the manual analysis from
EC Short Clips (ECSC) and MuST-Cinema (MSTCIN).
* Repeated two times for computing the inter-annotator
agreement for the two methods.

when the content is not aligned or only partially
aligned. Please notice that the content of the subti-
tles, even if not correct, must not be changed. Only
modifications to the timestamps are allowed.

To summarize, please follow these guidelines:

• Adjust the timestamp such that the subtitle is
synchronized with the corresponding audio:
for this purpose, you can adjust the timestamp
either at the beginning, at the end, or both;

• Make only necessary changes to align the par-
tially or completely misaligned subtitle with
the audio;

• Make only necessary changes to align the par-
tially or completely misaligned subtitle with
the audio;

• Do not change the subtitle content.

You will be given 22 videos to annotate and
the work consists of around 6 hours of annotation.
Please annotate the audio following the given or-
der (from 1 to 22). To carry out your evaluation
work at best, you should work on around 5 minutes
of audio without interruptions. Then, you should
take a break of around 5 minutes. We suggest to
take a break after file numbers: 03, 06, 08, 11, 14,
16, 17, 18, 19, 20, 21, 22.

en-de

model time shift % edited ts
start end avg

LEV 606 ± 743 33.18 36.58 34.88
SBAAM 422 ± 503 12.95 13.52 13.24

en-es

model time shift % edited ts
start end avg

LEV 629 ± 1015 28.56 33.43 31.00
SBAAM 460 ± 632 8.31 9.65 8.98

Table 13: Results of the manual evaluation in terms of
time shift in milliseconds (mean and standard variation),
and percentage of the number of modified timestamp
(divided by start and end timestamp, and their average)
with filtered shifts under 120 milliseconds.

It can happen that you have to annotate an audio
that you have already annotated, please annotate
it as if it were the first time.

In addition, specific guidelines on the usage of
the annotation tool, ELAN, were provided (Figure
2 shows the interface). An initial training day, con-
ducted with all the annotators and consisting of 3
hours of work, was held to explain the guidelines to
the annotators, annotate a pilot audio, and discuss
the results and common questions. This, with the 6
hours of annotation, resulted in 9 hours of work.

C.3 Results with perception filtering

As works in the field of human perception (Efron,
1970; Venezia et al., 2016) have demonstrated that
humans perceive acoustic and visual stimuli with
duration inferior to 120ms as instantaneous, we
re-compute the statistics of the manual analysis by
filtering out time shifts of less than 120 ms. With
this change, the resulting inter-annotator agreement
increases to a Cohen’s Kappa of 0.71 for en-de, and
0.68 for en-es, which is again “substatial” in both
languages but higher than the one obtained in §6.

The results of the two timestamp estimation
methods (LEV and SBAAM) with the filtered
shifts are shown in Table 13. First of all, we notice
that the time shift mean of SBAAM is 2

3 of LEV,
with important differences also in terms of the stan-
dard deviation, resulting in a reduction of 240ms
for en-de and 383ms for en-es. Therefore, with
filtered shifts, the gap between the two methods is
more exacerbated than that shown in Table 5, al-
though with similar conclusions. Regarding the per-
centage of edited timestamps, we observe a relevant
decrease in the number of edits for both methods,
with SBAAM achieving less than 9% of edited
timestamps in en-es. Also in this case, the superior-
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ity of the SBAAM method over LEV is widened,
as the number of edits for LEV is slightly less than
3× those for SBAAM in en-de, and nearly 3.5×
in en-es.
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Figure 2: ELAN interface.
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