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Abstract
Large language models hold significant poten-
tial for integrating various data types, such as
text documents and database records, for ad-
vanced analytics. However, blending text and
numerical data presents substantial challenges.
LLMs need to process and cross-reference enti-
ties and numbers, handle data inconsistencies
and redundancies, and develop planning capa-
bilities such as building a working memory for
managing complex data queries. In this paper,
we introduce four novel tasks centered around
sports data analytics to evaluate the numerical
reasoning and information fusion capabilities
of LLMs. These tasks involve providing LLMs
with detailed, play-by-play sports game descrip-
tions, then challenging them with adversarial
scenarios such as new game rules, longer dura-
tions, scrambled narratives, and analyzing key
statistics in game summaries. We conduct ex-
tensive experiments on NBA and NFL games
to assess the performance of LLMs on these
tasks. Our benchmark, SportsMetrics, intro-
duces a new mechanism for assessing LLMs’
numerical reasoning and fusion skills.

1 Introduction

Large language models (LLMs) are more power-
ful than ever. OpenAI’s GPT-4 Turbo (2023) fea-
tures a 128k context window, allowing it to process
over 300 pages of text in a single prompt. Claude
v2.1 (2023) steps it up with a 200k token window,
equivalent to roughly 150,000 words or more than
500 pages. Mistral AI (2023) has created a sparse
mixture of experts model capable of processing up
to 32k tokens. The developments suggest language
models can now engage with vast amounts of text
content and data, opening doors to exciting new
applications in various domains.

One of the most promising uses of LLMs is in
handling a combination of unstructured texts and
structured data. For example, determining if a pa-
tient can be discharged from the hospital may in-
volve reviewing doctor notes, radiology and pathol-
ogy reports, lab results, and other records that blend
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Play-by-Play Descriptions

Detroit Pistons
Cade Cunningham
Jalen Duren
Alec Burks ...

Chicago Bulls
Zach LaVine
Ayo Dosunmu
Nikola Vucevic ...

Jalen Duren had __ points and __ rebounds as the Detroit 
Pistons overcame a career-high __ points from Zach LaVine to 
beat the Chicago Bulls __-__ on Saturday night.

Team-Player Data

Game Recap

Figure 1: Play-by-plays of an NBA game. We include
timestamps, player actions, team affiliations and a game
recap. Total points for both teams are indicated in dotted
circles and are withheld from LLMs.

text and structured data (Adams et al., 2021; Bard-
han et al., 2022; Cai et al., 2022, 2023; Veen et al.,
2023; Ben Abacha et al., 2023); LLM Assistants for
online shopping need to process product catalogs,
sales transactions, and customer queries (Brynjolf-
sson et al., 2023; Loten, 2023). Yet, summarizing
key details from a mix of unstructured and struc-
tured sources remains a considerable challenge. An
LLM must navigate text descriptions, link entities,
aggregate numbers, handle discrepancies, and be-
yond.

Information fusion focuses on synthesizing in-
formation from multiple textual sources to derive
meaningful conclusions (Barzilay et al., 1999).
Current approaches involve summarizing multiple
text documents, providing concise answers to user
queries, and integrating summarization with natural
language inference to deduce information (Bhaskar
et al., 2023; Caciularu et al., 2023; Sprague et al.,

267



Chicago Bulls

2 Points Field Goal (Inside the Three-Point Line): A player makes 
a basket from inside the three-point line.

Three-Point Field Goal: A player makes a basket from 
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Figure 2: (TOP LEFT) We examine the impact of changing game rules on final scores. For basketball, scoring events
such as free throws, three-pointers, field goals, vary from 1 to 3 points. We ask LLMs to maintain these scoring
events but under a new rule where each is worth only 1 point. (BOTTOM LEFT) We randomly swapped player team
affiliations in the table without altering the game’s play-by-play records. (RIGHT) LLMs are provided with detailed
play-by-play descriptions of a sports game and player team affiliations. Their job is to use this information to update
key game statistics in a JSON format.

2022; Bostrom et al., 2022). The output is often a
short text summary, the quality of which is difficult
to evaluate (Deutsch et al., 2021). In contrast, our
approach emphasizes the numerical aspect of infor-
mation fusion (Geva et al., 2020; Zhu et al., 2021;
Zhao et al., 2023; Reddy et al., 2024). We enable
the LLM to navigate through lengthy texts, gather
crucial statistics, and develop a working memory
to manage complex data queries.

We introduce SportsMetrics, a benchmark de-
signed to assess LLMs’ abilities in numerical rea-
soning and data fusion. This benchmark provides
LLMs with detailed, play-by-play descriptions of
sports games, including timestamps, player actions,
and team affiliations, as illustrated in Figure 1. We
focus on four novel tasks to evaluate LLMs in ad-
versarial scenarios: (a) adapting to new game rules,
(b) handling lengthy game descriptions, (c) manag-
ing scrambled game narratives, and (d) analyzing
critical statistics in game summaries. E.g., an LLM
might be asked to complete a basketball game recap
by inserting missing key statistics, which requires
the development of a working memory for game
stats and reasoning skills.

Our SportsMetrics benchmark presents three
main benefits. First, it leverages sports data, includ-
ing team-player affiliations and play-by-play de-
tails; they are dynamic narratives that LLMs cannot
easily memorize. Second, it allows us to evaluate
LLMs’ ability to track key statistics such as team
points, assists, blocks, steals, and more, while also
offering an overall game efficiency score for direct
LLM comparison. Lastly, its use of widely under-
stood sports terminology makes it more accessible

to researchers than specialized medical language,
making it an ideal benchmarking tool. While our
current focus is on English, SportsMetrics also
holds promise for multilingual applications.

2 Related Work

There is a growing need for a benchmark to evalu-
ate LLMs’ information fusion capabilities, which
offers clear, quantitative scores for comparing var-
ious LLMs. For example, Chatbot Arena (Zheng
et al., 2023) utilizes Elo ratings (Boubdir et al.,
2023), MT-Bench comprises of 80 multi-turn ques-
tions, and MMLU focuses on a model’s multitask
accuracy across 57 tasks (Hendrycks et al., 2021).
Multi-document summarization offers a promising
benchmark (Lebanoff et al., 2021; Huang et al.,
2021; Wang et al., 2022; Xu et al., 2023). How-
ever, developing a summary scoring system poses
challenges due to variables such as summary length,
content coverage, and faithfulness (Cao et al., 2022;
Liu et al., 2023c; Krishna et al., 2023; Hu et al.,
2023; Li et al., 2023; Xu et al., 2024; Joseph et al.,
2024). Sports data, which combines static knowl-
edge with player dynamics, presents an untapped
opportunity for benchmarking LLMs.

Combining information from a blend of textual
and numerical records poses a significant challenge.
In traditional multi-document summarization, the
system creates a concise summary from a set of
topically related documents. Giorgi et al. (Giorgi
et al., 2023) show that this task remains difficult in
an “open-domain” setting, where the document set
is generated by a retriever and may include irrele-
vant information. With the growing popularity of
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Game Score = (Points) 
            + 0.4 x (Field Goals Made) 
             - 0.7 x (Field Goals Attempted)
             - 0.4 x (Free Throws Attempted - Free Throws Made)
             + 0.7 x (Offensive Rebounds) + 0.3 x (Defensive Rebounds)
             + (Steals) + 0.7 x (Assists) + 0.7 x (Blocks)
             - 0.4 x (Personal Fouls) - (Turnovers)

Passing Efficiency = { 8.4 x (Yards) 
             + 330 x (Touchdowns) 
             - 200 x (Interceptions)
             + 100 x (Completions) } / Attempts

Yards = Number of Yards Passing
Touchdowns = Number of Passes for Touchdowns
Interceptions = Number of Passes intercepted
Completions / Attempts = Number of Passes Completed / Attempted

The NBA Game Score, developed by former ESPN writer John Hollinger, provide a 
rough measure of a player's productivity in a basketball game. 

“It takes into account both positive contributions (such as points, rebounds, and 
assists) and negative ones (such as missed shots and turnovers). It's a useful tool for 
quickly comparing players' performances.”

Source: https://www.nbastuffer.com/analytics101/game-score

In 1979, the NCAA created the Passing Efficiency formula with specific scaling factors 
to ensure an average passer would have a rating of exactly 100 for yards-per-attempt 
and completion percentage. 

“The factors 330 (3.3 times touchdown percentage) and 200 (2.0 times interception 
percentage) were selected so that they would balance each other out for an average 
player. While the NCAA and NFL formulas are essentially similar, the NFL's use of 
"caps" makes its formula a bit more complex to calculate.”

Source: https://stassen.com/football/pass-eff/

Passing Efficiency (PE) 

Game Score (GS) 

Figure 3: We adopt the NBA’s Game Score, originally designed for player evaluation, to measure a team’s overall
efficiency. For American football, we apply NCAA’s Passing Efficiency formula.

retrieval-augmented generation (RAG) (Karpukhin
et al., 2020; Liu et al., 2022), there is an increasing
need to accurately fuse information from various
sources. We explore information fusion by examin-
ing how LLMs cross-reference players and actions,
and aggregate data across play-by-play descriptions
to compile key game statistics.

Our work relates to numerical reasoning, which
uses arithmetic reasoning to tackle mathematical
word problems. Prior datasets in this area include
MathQA (Amini et al., 2019), GSM8k (Cobbe
et al., 2021), SVAMP (Patel et al., 2021), TAT-
QA (Zhu et al., 2021), FinQA (Chen et al., 2022),
MATH (Liu et al., 2023d), DocMath-Eval (Zhao
et al., 2023), TABMWP (Lu et al., 2023) and more,
many allowing models to generate answer explana-
tions. The problems typically have brief descrip-
tions, with the challenge lying in creating an expres-
sion tree and applying arithmetic knowledge. In
contrast, our approach focuses on assessing LLMs’
ability to track key statistics across extremely long
contexts.

Sports data has been utilized in various natural
language tasks, including data-to-text generation
for sports games (Lareau et al., 2011; Zhang et al.,
2016; Wiseman et al., 2017; van der Lee et al.,
2017; Puduppully et al., 2019), real-time game sum-
marization from live commentaries (Edouard et al.,
2017; Huang et al., 2020); and other aspects such
as sports commentator bias (Merullo et al., 2019).
Beyond sports, there’s significant interest in anno-
tating and analyzing large-scale game-related cor-
pora, such as reviews and gameplay logs, and sum-
marizing gameplay commentaries (Lukin, 2020;
Kicikoglu et al., 2020; Gu et al., 2022; Furman
et al., 2022). We anticipate that insights from our
SportsMetrics benchmark will benefit these areas,
enhancing our understanding of game narratives
and player dynamics.

3 The SportsMetrics Benchmark

We collect NBA and NFL play-by-play data from
ESPN.com. The descriptions capture the essence of
each game. They are typically written by ESPN’s
sports journalists, who are experts in their respec-
tive sports. We reached out to ESPN as necessary to
ensure adherence to their data policies. In Figure 1,
we use “time” to indicate the exact moment of each
action on the game clock, while “play” details the
actions occurring at those times. Scoring actions,
which change the game’s score, are identified but
not disclosed to LLMs during our experiments, as
are team points. Additionally, we collect data on
players’ team affiliations and the game’s box scores
for our analysis.

Our task requires LLMs to track key stats across
thousands of play-by-play records, which is a non-
trivial effort. An ideal LLM needs to associate each
action with the right player and their team in order
to calculate team-level statistics. It must also moni-
tor multiple key statistics simultaneously, such as
field goals, free throws, rebounds, assists, blocks,
steals, personal fouls, and turnovers in a basketball
game. We believe an LLM’s ability to summarize
key details and fill in the missing statistics in game
summaries demonstrates its capabilities in data fu-
sion and numerical reasoning.

We need a comprehensive scoring metric to eval-
uate LLMs’ ability to monitor key game statistics.
Simply reporting individual metrics such as team
points, rebounds, assists, and blocks for each team
is inefficient and does not provide a holistic view of
game analysis. To address this, we employ expert-
developed team statistics formulas, as illustrated in
Figure 3. We adopt the NBA’s “Game Score” by
John Hollinger, originally for player evaluation, to
measure a team’s overall effectiveness in basket-
ball. It considers both positive (points, rebounds,
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You are a helpful assistant tasked with analyzing sports games. You have been given play-by-play breakdowns of a basketball game between two teams.

The "Time" column shows the exact time on the game clock when each play took place. The game clock counts down, so this column displays times in a descending order.

The "Play" column describes the action that happened at the respective times. It provides details of specific plays, movements, and outcomes on the court.

Team players are listed in two rows, each row representing one of the two basketball teams involved in the game.

Your task is to fill in the missing key statistics from a basketball game recap. Each missing statistic is marked 
with '___'.

Game Recap: ```Jalen Duren had ___ points and ___ rebounds as the Detroit Pistons overcame a career-
high ___ points from Zach LaVine to beat the Chicago Bulls ___-___ on Saturday night.```

First, create an internal memory as a JSON object. Initially, this JSON object only has placeholders for team 
points, like this:

Initial Memory: {"Chicago Bulls": {"points": null}, "Detroit Pistons": {"points": null}}

Next, add the necessary key game or player statistics to the working memory to complete the missing 
information. These statistics might include categories such as 'field goals made', 'field goals attempted', 
'free throws made', 'free throws attempted', 'rebounds', 'assists', 'blocks', 'steals', 'points' and others. This 
JSON object will later be populated with relevant data that will be used to fill in the blanks.

Working Memory Example: {"Jalen Duren": {"points": null, "rebounds": null}, "Zach LaVine": {"points": null}, 
"Chicago Bulls": {"points": null}, "Detroit Pistons": {"points": null}}

Now, you will be given a new game recap. Your goal is to create a working memory as a JSON object, which 
can be used to fill in the missing key statistics in the Game Recap. 

Game Recap: ```{GAME-RECAP}```

Can this working memory, represented as a JSON object, 
effectively complete the missing key statistics for the given game 
recap? If yes, just respond with the working memory. If not, 
improve the memory structure. Do not take into account or modify 
the NULL value.

Game Recap: ```Franz Wagner scored 24 of his ___ points in the 
second half, Paolo Banchero added ___ points, and the Orlando 
Magic overcame Nikola Jokic's triple-double Wednesday night to 
record their fifth straight victory, ___-___ over the Denver 
Nuggets.```

Initially, you are given a JSON object where all values are set to 
null. Based on the provided play-by-play breakdown and team-
player data, you will update these key statistics in JSON format.

{"Jalen Duren": {"points": null, "rebounds": null}, "Zach LaVine": 
{"points": null}, "Chicago Bulls": {"points": null}, "Detroit Pistons": 
{"points": null}}

Your task is to complete the missing key statistics from a basketball game recap. You'll fill in the blanks using only information from the working memory, which is represented as a JSON 
object containing the essential game or player statistics. Here's an example:

Working Memory Example: {"Jalen Duren": {"points": 23, "rebounds": 15}, "Zach LaVine": {"points": 51}, "Chicago Bulls": {"points": 102}, "Detroit Pistons": {"points": 102}}

Game Recap:  ```Jalen Duren had ___ points and ___ rebounds as the Detroit Pistons overcame a career-high ___ points from Zach LaVine to beat the Chicago Bulls ___-___ on Saturday 
night.```

Output: ```Jalen Duren had 23 points and 15 rebounds as the Detroit Pistons overcame a career-high 51 points from Zach LaVine to beat the Chicago Bulls 118-102 on Saturday night.```

Now, you will be given a new game recap and its working memory, represented as a JSON object. 

Working Memory: {WORKING-MEMORY}    Game Recap: ```{GAME-RECAP}```    Output: 

SY
ST

EM
BU

IL
D

IN
G

 A
 W

O
R

K
IN

G
 M

EM
O

R
Y

K
EY

 S
TA

TS

R
EF

LE
C

TI
N

G
TR

AC
K

IN
G

Figure 4: An LLM fills in missing key statistics in game summaries through a three-step process. Initially, the LLM
creates an internal JSON object as its memory. It then enriches this memory by adding necessary game or player
statistics, where all values are set to null, and further reflects on whether this memory is sufficient to accomplish the
task. Lastly, the LLM uses detailed play-by-play and team-player data to update the JSON object’s values; it finally
utilizes this updated memory to fill in the blanks in the game summary.

assists) and negative (missed shots, turnovers) fac-
tors. For American football, we apply NCAA’s
“Passing Efficiency” formula, as the NFL rule is
more complex. In the following sections, we evalu-
ate LLMs under different adversarial scenarios to
assess their robustness.

3.1 Long-Form Game Narratives

We begin by examining LLMs’ ability to reason
over long contexts. For example, Liu et al. (2023b)
introduced two tasks, multi-document QA and key-
value retrieval, which require the model to identify
relevant information within long contexts. They
found that LLMs’ performance significantly deteri-
orates when they have to access relevant informa-
tion in the middle of long contexts. Our study goes
a step further, requiring LLMs to not only identify
relevant actions but also accurately track statistics
throughout long-form game narratives.

In this task, each LLM is provided detailed play-
by-play descriptions of a sports game, including
timestamps and specific actions. The players’ team
affiliations are listed in two rows, representing each
team. The LLM’s task is to use the play-by-plays
to update key game statistics within a JSON object,
initially filled with null values. For long-context
LLMs such as GPT-4 Turbo, Claude 2.1, and Gem-
ini Pro (Anil et al., 2023), we provide the entire
game’s data at once for processing. For LLMs with

4k or 8k tokens context, we break the game down
into four quarters. The LLM gathers statistics quar-
ter by quarter. It generates a JSON object that holds
values from each quarter. These are then added up
to derive game-level statistics.

We use comprehensive, expert-devised formulas
to evaluate LLMs in tracking game statistics. For
NBA games, we monitor 11 key statistics: team
points, field goals made, field goals attempted, free
throws made, free throws attempted, offensive re-
bounds, defensive rebounds, steals, assists, blocks,
and personal fouls.1 Moreover, we calculate ‘Game
Score’ to measure a team’s overall effectiveness in
basketball. For NFL games, we track passing yards,
touchdowns, interceptions, and pass completions
and attempts. These additional stats allow for the
computation of ‘Passing Efficiency.’

3.2 The Impact of Changing Game Rules
It is important to understand LLMs’ ability to make
decisions under changing world rules. LLMs pos-
sess extensive knowledge from pretraining on the
Internet, books, and other texts. This knowledge,
held in their parametric memory, might not always
align with the external evidence given to the model.

1We exclude turnovers from tracking due to limitations
in the data. Play-by-play descriptions may not capture every
turnover, making it difficult for the model to track them accu-
rately. When necessary, we rely on the ground-truth Turnover
count from the box score to calculate the Game Score.
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Model Release Date Context Len Input Output Organization
Claude-2.1 11.21.2023 200,000 $.008 $.024 Anthropic
GPT-4-1106-preview 11.06.2023 128,000 $.01 $.03 OpenAI
Gemini-Pro 12.06.2023 32,000 $.001 $.002 Deepmind
GPT-3.5-Turbo-1106 11.06.2023 16,385 $.001 $.002 OpenAI
Mistral-7B-Instruct-v0.1 09.27.2023 8,000 — — Mistral
GPT-3.5-Turbo-0613 06.13.2023 4,096 $.0015 $.0015 OpenAI
Llama-2-13B-Chat 07.18.2023 4,096 — — Meta

Table 1: LLMs used in this study. Prices are per 1,000 tokens. Llama-2 and Mistral-7B are free and open-source.

Therefore, LLMs need to adjust to changing rules.
Xie et al. (2023) highlight the importance of know-
ing when to trust a model’s own knowledge. Meng
et al. (2023) explored finetuning LLMs to alter
specific knowledge, but such changes are often ir-
reversible. Here, we propose two tasks to evaluate
LLMs’ abilities in adapting to new game rules.

New Scoring Rules We examine the impact of
changing game rules on final scores. For basketball,
scoring events such as free throws, three-pointers,
field goals, vary from 1 to 3 points. We ask LLMs
to maintain these scoring events but under a new
rule where each action is worth only 1 point. This
contradicts LLMs’ existing knowledge, challeng-
ing them to recalibrate game scores accordingly.
Ground-truth scores under this rule are obtained
by counting the total number of scoring actions to
determine each team’s total points.

Player Swapping We randomly swapped player
team affiliations in the table without changing the
game’s play-by-play records, as illustrated in Fig-
ure 2. Ground-truth team scores for this task are cal-
culated by summing individual player scores under
their new affiliations. This task allows us to vary
the degree of conflict between the model’s existing
knowledge and the provided evidence. Swapping
more players increases the task’s difficulty.

3.3 Robustness Against Noise

Shuffling Play-by-Plays We present an adver-
sarial challenge where we shuffle basketball game
play-by-play descriptions and then ask LLMs to
track the total points of each team. We choose
basketball because adjacent actions in this context
do not show strong causal relationships. Changing
the sequence of scoring actions does not affect the
teams’ total points. We anticipate that long-context
LLMs will produce consistent or similar final game
scores. To avoid confusing the model, we maintain
the original order of timestamps.

We can also adjust the frequency of scoring plays

{
  "Denver Nuggets": {
    "points": "victory_score"
  },
  "New York Knicks": {
    "points": "defeat_score"
  },
  "Ty Lawson": {
    "points": "Lawson_score"
  },
  "Randy Foye": {
    "points": "Foye_score"
  }
}

{
  "Denver Nuggets": {
    "points": null
  },
  "New York Knicks": {
    "points": null
  },
  "Ty Lawson": {
    "points": null
  },
  "Randy Foye": {
    "points": null
  }
}

{
  "Ty Lawson": {
    "points": 25,
    "assists": 7
  },
  "Randy Foye": {
    "points": 18,
    "rebounds": 5
  },
  "New York Knicks": {
    "points": 98,
    "rebounds": 42
  },
  "Denver Nuggets": {
    "points": 103,
    "rebounds": 45
  }
} GPT-4 TurboClaude-2.1 LLaMA-2

Figure 5: Effective working memory is key in this task.
The variance in memory structure arises because we
allowed each LLM to generate its JSON object as work-
ing memory, without enforcing a uniform schema. This
step allows us to explore how each model organizes its
memory to complete the task. Note that Claude’s ‘null’
values represent an initial state rather than an inability
to aggregate information.

in a game, making it more or less challenging for
LLMs to process the narrative. By choosing a
probability p from a set of values {-50%, -20%, 0,
+20%, +50%}, we can either duplicate non-scoring
plays (thereby decreasing scoring play density and
extending the game narrative) or remove them (in-
creasing scoring play density). Further, to test the
LLM’s inherent knowledge, we randomly select
players from each team in NFL games and assign
them new names, such as characters from science
fictions. This approach evaluates the model’s abil-
ity to adapt to changes in player identities. These
alterations do not introduce new players or change
the total points scored in the game; it simply varies
the narrative’s complexity.

3.4 Planning for Complex Data Queries

In this task, LLMs fill in missing key statistics from
game summaries (e.g., from ESPN). The process
unfolds in three steps, illustrated in Figure 4. First,
the LLM creates an internal JSON object memory,
initially with placeholders for team points. Next,
it enriches this memory by adding crucial game or
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System ∆GScore ∆Points ∆NewRule ∆Swap ∆Shuffle
Long-Context GPT-3.5-Turbo-1106 33.50 9.45 14.10 13.53 9.89
(16k+ Tokens) Gemini-Pro 32.30 17.62 25.99 17.78 14.85

GPT-4-1106-preview 51.97 25.17 14.55 39.91 49.57
Claude-2.1 55.16 21.73 22.28 17.12 31.11

Standard GPT-3.5-Turbo-0613 114.28 94.34 18.22 88.25 89.11
(4k to 8k Tokens) Mistral-7B-Instuct 123.49 73.53 26.79 70.69 103.24

Llama-2-13B-Chat 110.69 70.77 83.04 53.98 81.09

Table 2: Average absolute difference between model predictions and the actual scores on NBA data for tracking a
team’s total points (Points) and all key game statistics (GScore). Moreover, we evaluate LLMs’ performance in
three adversarial scenarios: ∆NewRule, ∆Swap and ∆Shuffle.

player statistics. During a self-reflection phase, the
LLM evaluates if its JSON memory can accurately
complete the missing statistics for the given game
recap. If it can, it responds with this memory; if not,
it further refines the memory structure. Finally, us-
ing the detailed play-by-play and team-player data,
the LLM updates the key statistics in the JSON for-
mat, then uses this information to fill in the blanks
in the game summary. Figure 5 illustrates various
LLM attempts building a memory.

Our task is inspired by several studies on LLM
planning. Unlike LLM+P which uses the Planning
Domain Definition Language (PDDL) for problem-
solving (Liu et al., 2023a), we simplify the process
by requiring only a valid JSON object for working
memory. Relevant studies such as Reflexion (Shinn
et al., 2023), ReAct (Yao et al., 2023b), and Tree-
of-thought (Yao et al., 2023a) have also influenced
our approach. Sumers et al. (2023) have developed
a framework for integrating planning into LLM
agents. Prior studies have focused on ALFWorld’s
interactive TextWorld environments. Our method
are focused on sports, which involves masking key
statistics in game recaps by sports journalists, then
converting them into task data points for LLMs. We
assess LLMs by their accuracy in filling in missing
key statistics from game summaries.

4 Experiments

We evaluate various LLMs in our SportsMetrics
benchmark. These models are listed in Table 1 and
split into two categories: long-context LLMs, ca-
pable of processing over 16k tokens, and standard
LLMs, handling 4k to 8k tokens. Our evaluation
focuses on their ability to accurately track a team’s
total points (Points) and all key game statistics
(GameScore). We measure the average absolute
difference (deviation) between the models’ predic-
tions and the actual box scores, denoted as ∆Points

and ∆GScore, respectively.2

Our dataset comprises 28,492 NBA games and
5,867 NFL games spanning two decades from 2002
to 2023, available through ESPN’s archives. We
randomly selected 100 games from each sport for
our test set. On average, NBA games contain 466
plays and NFL games 173 plays. An average NBA
game includes 6,229 tokens, while an NFL game
has 6,166 tokens, with maximum lengths reaching
7,322 and 7,659 tokens, respectively.

LLMs’ ability to integrate information is tested
under three adversarial scenarios: (a) ‘NewRule,’
which assigns every scoring action just one point,
regardless of the move, (b) ‘Swap’ which randomly
selects two players from each team to swap their
affiliations in the team-player table, (c) ‘Shuffle,’
which duplicates any non-scoring action with a
20% chance (p=0.2) before shuffling the play-by-
plays. We assess LLMs’ performance in these sce-
narios and report the deviation of predicted team
points from actual scores as ∆NewRule, ∆Swap
and ∆Shuffle.

In Table 2, we present our findings from the NBA
section of our dataset. With ∆ representing the gap
between predictions and actual scores, smaller val-
ues are preferable. We find that long-context LLMs
significantly outperform standard LLMs across all
tasks. GPT-3.5-Turbo-1106 leads in performance
in every task except for ∆GScore, where Gemini-
Pro has a slight edge. Long-context models have
been released recently in late 2023. These results
demonstrate their remarkable ability in identifying
relevant actions from game play-by-plays, attribut-

2∆GScore consistently shows higher values compared to
∆Points because it goes beyond counting a team’s points. It
offers a full game analysis by requiring the LLM to consoli-
date key statistics such as points, rebounds, steals, assists and
more into an overall score. Considering only team points is
insufficient, especially in sports like soccer where scoring is
rare. When necessary, we can convert GameScore to points
by zeroing out other stats.
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System ∆Yards ∆ATT ∆COMP ∆TD ∆INT ∆PE
Long-Context GPT-4-1106-Preview 34.77 4.44 2.96 0.17 0.13 14.33
(16k+ Tokens) Claude-2.1 52.53 5.43 3.75 0.29 0.22 17.53

GPT-3.5-Turbo-1106 64.87 7.80 4.73 0.49 0.30 18.43
Gemini-Pro 85.14 12.68 6.87 0.83 0.52 26.17

Standard GPT-3.5-0613 105.68 24.11 15.80 1.09 0.60 89.56
(4k to 8k Tokens) Llama-2-13B-Chat 244.48 22.37 19.66 1.47 1.03 191.76

Mistral-7B-Instuct 119.31 17.64 9.05 1.23 0.69 202.07

Table 3: Discrepancies between model predictions and actual scores on NFL stats, including yards (Yards), attempts
(ATT), completions (COMP), touchdowns (TD), interceptions (INT) and passing efficiency (PE).
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Figure 6: We organize games based on the length of
their play-by-plays, with the x-axis showing the games
and the y-axis the deviation scores; lower scores indicate
better performance. GPT-3.5-Turbo-1106 and Gemini-
Pro stand out here, maintaining nearly flat curves.

ing each action to the right player and team, and
aggregating numerical data to compute final team
points and GameScore. This requires a level of
numerical reasoning that humans are adept at but it
is still new territory for LLMs.

In Figure 6, we organize games based on the
length (number of tokens) of their play-by-play de-
scriptions, with the x-axis showing the games and
the y-axis the deviation scores from various LLMs,
where lower scores indicate better performance.
We perform a regression analysis to demonstrate
each LLM’s trend in handling games of increas-
ing length. GPT-3.5-Turbo-1106 and Gemini-Pro
stand out, maintaining nearly flat curves, which cor-
responds with their superior performance as shown
in Table 2. By contrast, GPT-4-1106-Preview does
well in shorter games but face difficulties in aggre-
gating key statistics for longer games. Additionally,
79% its returned JSON objects contain zeros or null
values, contributing to its unsatisfying performance
on this task.

We note that basketball teams typically score
between 100 to 120 points. Our findings show that
the smallest prediction gap for ∆Points is 9.45,
while the largest can exceed 100. This indicates the
difficulty in accurately tracking key game statistics
over long contexts, as standard LLMs can produce
predictions significantly off from actual scores due
to hallucinations. Among the three adversarial
scenarios, the New Rule is relatively simpler as it
requires LLMs to assign one point to every scoring
action, focusing on counting these actions instead
of distinguishing between types (3-pointers vs. free
throws) and adding them up for a team’s score. In
this scenario, Llama-2-13B-Chat scores lower than
all other LLMs.

In Table 3, we present NFL data findings. Amer-
ican football’s play-by-plays have demonstrated a
sequential nature, we cannot apply tests like New
Rule, Swap, or Shuffle as with basketball games.
Instead, we measure how model predictions deviate
from actual scores on key game statistics, including
yards (∆Yards), attempts (∆ATT), completions
(∆COMP), touchdowns (∆TD), and interceptions
(∆INT). We also combine them into Passing Ef-
ficiency (∆PE) for a holistic game analysis. Our
results suggest that long-context LLMs greatly sur-
pass standard models, with GPT-4-1106-Preview
taking the lead, followed by Claude-2.1 and GPT-
3.5-Turbo-1106.

Particularly, passing yards are vital in the NFL
games, often leading to scoring opportunities like
touchdowns and field goals. On average, NFL
teams average 200 to 250 passing yards per game.
We find that the top model, GPT-4-1106-Preview,
exhibits a 34.77-yard discrepancy in passing yards
prediction, while the open-source Llama-2-13B-
Chat lags significantly in comparison. This high-
lights the difficulty of tracking passing yards, a task
even more challenging than summarizing basket-
ball points, with most models struggling to accu-
rately aggregate such data.
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Figure 8: Accuracy of various LLMs in filling missing
key statistics from basketball game recaps. Claude-2.1
shows strong performance, while Mistral-7B-Instruct
achieves the highest accuracy among standard LLMs.

Our results suggest that the difference in perfor-
mance between GPT-3.5-Turbo-1106 and GPT-4
across basketball and football games stems from
the scoring frequency in each sport. Basketball’s
frequent scoring presents a challenge for GPT-4-
1106-Preview to track all actions, while football,
with less frequent scoring, is somewhat easier for
the model to track. GPT-4-1106-Preview is opti-
mized for handling extremely long contexts and it
is less accurate in tracking frequent scoring. This
distinct characteristic accounts for the varied per-
formance of both models.

In Figure 7, we test LLMs’ robustness against ad-
versarial conditions. In the left subfigure, we vary
the difficulty of identifying scoring events by either
dropping or duplicating non-scoring events. E.g.,
at probability p=-0.5, we eliminate any non-scoring
event with a 50% chance; at p=0.2, we duplicate
any non-scoring event with a 20% chance, before
shuffling the entire game description. The y-axis

measures the deviation from the actual box score,
with smaller values indicating better model perfor-
mance. We observe that GPT-3.5-Turbo-1106 and
Gemini-Pro perform the best, whose curves are
quite flat, indicating their robustness to a varying
level of noise in the play-by-plays. Overall, LLMs
perform well when non-scoring events are removed,
yet their performance drops as more non-scoring
events are added, akin to searching for a needle in
a larger haystack.

Further, we randomly swapped n players’ af-
filiations in the team-player table and replaced n
players’ names with science fiction characters, all
without changing the play-by-play texts. Our find-
ings are shown in the middle and right subfigures.
We find that Claude-2.1, Gemini-Pro, and GPT-3.5-
Turbo-1106 are the top performers. Interestingly,
renaming players significantly decreases all mod-
els’ performance. This suggests LLMs may use
familiar basketball player names from their pre-
training to guess team scores, rather than analyz-
ing the actual play-by-plays. GPT-4-1106-Preview
is the least adaptable to these adversarial conditions
among the long-context LLMs. We also observe a
notable performance disparity exists between open-
source and proprietary LLMs.

We assess the accuracy of various LLMs in com-
pleting missing key statistics from basketball game
recaps. The types of missing data include a player’s
total points, team scores, assists, rebounds, and
other stats. An LLM must understand the recap’s
context to precisely estimate the missing statistic.
To do this, LLMs create a JSON object as its work-
ing memory. They then calculate the needed statis-
tics using play-by-play and team-player data and
use this memory object to fill in the blanks.

Figure 8 presents the results of this task. Claude-
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2.1 shows strong performance, while Mistral-7B-
Instruct achieves the highest accuracy among stan-
dard LLMs. This task requires that LLMs possess
strong instruction-following capabilities to build
an effective working memory. Figure 5 provides
sample working memories from various LLMs. Al-
though complex structures are possible, they in-
crease the risk of errors when populating values.
Models such as GPT-4-1106-Preview and Llama-
2-13B-Chat face difficulties in creating a working
memory. They hallucinate field values or fail to
accurately fill fields with aggregated values from
play-by-play data. By contrast, Claude-2.1’s mem-
ory structure is the best in terms of efficiency, focus-
ing on essential game statistics. Our task crucially
evaluates LLMs’ memory management skills when
handling complex data queries.

5 Conclusion

We introduce SportsMetrics, a novel benchmark
designed to evaluate LLMs in sports data analytics.
It assess LLMs’ numerical reasoning and fusion
abilities through challenges such as new game rules,
lengthy descriptions, scrambled narratives and key
stats analysis in game summaries. SportsMetrics
highlights LLMs’ potential in fields such as multi-
player gaming and collaborative workspaces.

6 Limitations

Our research focuses on NBA and NFL games,
which are major sports with rich datasets. We are
interested in exploring the generalizability of our
findings to other sports. For example, soccer and
cricket have distinct play styles and rules, which
might challenge LLMs in unique ways. Our study
has explored multiple adversarial scenarios, such
as new game rules and scrambled game narratives.
Such drastic changes might be uncommon in real-
world conditions, and the models’ ability to handle
these scenarios might not translate to improved
performance in other analytical tasks. Finally, our
scoring system’s effectiveness in assessing LLMs’
numerical reasoning capabilities in different con-
texts, such as multiplayer online gaming or collab-
orative workspaces, remains to be validated. This
study explores LLMs’ potential in sports analytics.
It is important to recognize these limitations when
applying our findings to broader contexts.
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