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Abstract

Large language models (LLMs) have demon-
strated striking reasoning capability. Recent
works have shown the benefits to LLMs from
fine-tuning golden-standard Chain-of-Thought
(CoT) rationales or using them as correct ex-
amples in few-shot prompting. While humans
can indeed imitate correct examples, learning
from our mistakes is another vital aspect of
human cognition. Hence, a question naturally
arises: can LLMs learn and benefit from their
mistakes, especially for their reasoning? This
study investigates this problem from both the
prompting and model-tuning perspectives. We
begin by introducing COTERRORSET, a new
benchmark with 558,960 questions, each de-
signed with both correct and error references,
and demonstrating the types and reasons for
making such mistakes. To explore the effective-
ness of those mistakes, we design two methods:
(1) Self-rethinking prompting guides LLMs to
rethink whether they have made similar previ-
ous mistakes; and (2) Mistake tuning involves
finetuning models in both correct and incor-
rect reasoning domains, rather than only tun-
ing models to learn ground truth in traditional
methodology. We conduct a series of experi-
ments to prove LLMs can obtain benefits from
mistakes in both directions. Our two meth-
ods offer potentially cost-effective strategies
by leveraging errors to enhance reasoning ca-
pabilities, which costs significantly less than
creating meticulously hand-crafted golden ref-
erences. We ultimately make a thorough analy-
sis of the reasons behind LLMs’ errors, which
provides directions that future research needs to
overcome. COTERRORSET will be published
soon on https://github.com/YookiTong/
Learn-from-Mistakes-CotErrorSet.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Zhang et al., 2022; Anil et al., 2023; Tou-
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Figure 1: The overview pipeline of our work includes
(1). Mistake collection and analysis (Section 3). (2)
Two novel methods to instruct LLMs to learn from mis-
takes(Section 4 and Section 5).

vron et al., 2023) have demonstrated strong capabil-
ities across various tasks and applications (Liang
et al., 2022; Chang et al., 2023). To further un-
leash the reasoning abilities of LLMs and align
their thinking process with humans, many recent
studies explored Chain-of-Thought (CoT)-based
prompting (Wei et al., 2022; Wang et al., 2022; Li
et al., 2023a; Tong et al., 2023; Yao et al., 2023;
Besta et al., 2023) to instruct LLMs to solve the
given problem with human-like logic. Besides log-
ical step-by-step thinking, another critical learning
pattern of us humans is to rethink and learn from
our previous mistakes so that avoid repeating the
same mistakes in the future (Mercer, 2008; Reich
et al., 2023). However, few studies have focused
on systematically understanding what kinds of in-
termediate errors occur in making CoT procedures
and whether LLMs can learn from those mistakes.
To address these issues, we aim to explore the po-
tential of LLMs to effectively utilize their previous
mistakes to boost reasoning.
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To enhance the scalability and efficiency of ana-
lyzing and learning from the mistakes of LLMs, we
began by collecting a vast dataset of LLMs’ reason-
ing outputs and built COTERRORSET, which con-
sists of 609,432 questions sourced from 1060 tasks
across diverse domains. Each query in this set is
meticulously structured, featuring both a manually
curated correct reference and the incorrect ratio-
nales collected from PaLM2 (Anil et al., 2023)’s
responses. Furthermore, we prompt the LLMs with
the correct reference and the incorrect responses in
order to make it reflect why making such mistakes.
The introspective responses are also collected and
subsequently utilized in our work. We employ this
data for cluster analysis to identify specific details
of the errors.

With our COTERRORSET, we introduce two in-
novative paradigms, namely mistake tuning and
self-rethinking, aimed at efficiently augmenting
LLMs by leveraging their historical errors during
both tuning and inference stages. Diverging from
the conventional approach of only relying on cor-
rect rationales in traditional supervised fine-tuning,
our mistake tuning strategy incorporates combi-
nations of both correct references and incorrect
rationales. To facilitate the learning process for
LLMs, we introduce the prefixes [CORRECT RA-
TIONALE] and [INCORRECT RATIONALE] be-
fore the corresponding rationales. Intuitively, this
prompt tuning facilitates LLMs to distinguish be-
tween correct and incorrect rationales while avoid-
ing corruption from the incorrect ones with the two
separated prefixes. For self-rethinking, inspired
by contrastive in-context learning (Gao and Das,
2024), we expose LLMs to both correct and in-
correct rationales in demonstration samples. After
obtaining the initial answer output by the LLM, we
iteratively prompt it to rethink and rectify the result
based on the historical mistakes. To manage com-
putational resources and prevent potential loops,
we implement a threshold, limiting the number of
times the model can engage in self-rethinking and
corrections. Figure 1 gives an overview pipeline of
our work.

To substantiate the efficacy of our proposed
methodologies and to delve into the learning ca-
pabilities of LLMs from their mistakes, we under-
take experiments encompassing diverse reasoning
tasks and LLMs of varying sizes. The application
of our methods consistently yields performance
enhancements across a spectrum of tasks, under-
scoring the effectiveness and broad applicability

of our approaches in leveraging LLMs’ mistakes
during both the tuning and inference stages. Addi-
tionally, we conduct thorough analyses of the error
types exhibited by LLMs, offering comprehensive
insights and guidance on mitigating the most preva-
lent errors in these models.

In general, our contributions are as follows:

• A large-scale error set, COTERRORSET, is
constructed for scalable analysis and learning
from the LLMs’ mistakes.

• We novelly designed two paradigms for LLMs
to utilize and learn from their previous mis-
takes at both fine-tuning and inference stages.

• With extensive experiments, we validate the
effectiveness of our proposed methods and
provide further hints based on analysis of
LLMs’ error types.

2 Related Work

Human-like Reasoning with LLMs. CoT (Wei
et al., 2022) demonstrate the great potential of
equipping LLMs with human-like reasoning ca-
pability. Following them, various logical and struc-
tural reasoning strategies (Wang et al., 2022; Zhou
et al., 2022; Creswell and Shanahan, 2022; Besta
et al., 2023; Li et al., 2023b; Lightman et al.,
2023) are proposed to align LLMs’ thinking pro-
cesses with humans. These enhanced reasoning ap-
proaches have been adopted in different tasks and
areas, including commonsense reasoning (Geva
et al., 2021; Ahn et al., 2022), logical reason-
ing (Pan et al., 2023; Lei et al., 2023) and mathe-
matical reasoning (Cobbe et al., 2021; Hendrycks
et al., 2021) and achieved promising performance.
In this work, we aim to investigate whether LLMs
can benefit from rethinking and learning from pre-
vious mistakes, which is one of the most important
learning patterns of humans.

Refined Reasoning Errors. Several studies
focus on adjusting their reasoning pathways to ar-
rive at better solutions. Huang et al. (2022) in-
troduce self-improve that employs CoT plus self-
consistency to obtain high-confidence solutions
on a large set of unlabeled questions. The self-
generated content is then used for fine-tuning in
subsequent iterations, thereby further augmenting
its reasoning capabilities. Madaan et al. (2023) pro-
pose a self-refine technique that encourages LLMs
to autonomously correct their outputs without the
need for external data or feedback. However, it
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has been argued by some researchers that LLMs
face challenges in self-correcting their responses in
the absence of external feedback, and under certain
conditions, such attempts might even deteriorate
their performance (Huang et al., 2023). Based on
that, An et al. (2023) suggest fine-tuning LLMs
using pairs consisting of errors and their respective
corrections generated by GPT-4 as a supervisory
mechanism. Nevertheless, our work is pioneering
in highlighting the impact of exposing mistake ex-
amples on in-context learning. Furthermore, our
experiments reveal that in the process of model
tuning, learning from mistakes can inherently en-
hance itself by merely being exposed to correct
examples and errors, without depending on explicit
corrections from teacher models.

3 A Novel Dataset: COTERRORSET

3.1 Dataset Construction

In order to investigate whether incorrect ratio-
nales can also contribute to LLMs’ reasoning
performance, we introduce COTERRORSET, a
novel benchmark based on the source of COT-
COLLECTION (Kim et al., 2023), built upon var-
ious domains, including multiple-choice QA, ex-
tractive QA, closed-book QA, formal logic, natu-
ral language inference, and arithmetic reasoning.
Our dataset’s question and reference are obtained
from the following datasets: QASC (Khot et al.,
2020), AQuA (Ling et al., 2017), GSM8K (Cobbe
et al., 2021), QED (Lamm et al., 2021), Strate-
gyQA (Geva et al., 2021), SenseMaking (Wang
et al., 2019), CREAK (Onoe et al., 2021), e-
SNLI (Camburu et al., 2018) and ECQA (Aggar-
wal et al., 2021). Each task within this collection
is systematically organized to include a question
and a correct reference, followed by an incorrect
response and the demonstrations why making such
mistakes. The errors and demonstrations are both
generated from PaLM2.

COTERRORSET diverges from traditional CoT
datasets by employing PaLM2’s mistakes and the
reasons behind them. We utilized PaLM2 to gen-
erate rationales for each question in the dataset,
focusing specifically on collecting incorrect ratio-
nales. Recent research has demonstrated LLMs’
capability to provide high-quality data (Li et al.,
2024a; Tong et al., 2024; Li et al., 2024b) and feed-
back (Pan et al., 2024; Tan et al., 2024). Following
this idea, we provide PaLM2 with both correct ref-
erences and its incorrect answers to demonstrate

Figure 2: The pipeline to construct COTERRORSET.
By providing PaLM2 with the correct reference and
the incorrect response generated by itself, we prompt
it to introspect and grasp the underlying reasons for its
errors.

and reflect why it makes such mistakes. The steps
of the construction process are shown in Figure 2.
This systematic collection of incorrect rationales
can make COTERRORSET a promising benchmark
in providing future improvements from a different
perspective. One example is shown in Table 1.

Questions: Combine facts and answer this: Which
meridian extends across Europe, the Mediterranean Sea,
Africa, Asia, the Pacific Ocean, North America, and the
Atlantic Ocean?
Target: The Cimarron meridian
Reference: The Cimarron meridian extends across Eu-
rope, the Mediterranean Sea, Africa, Asia, the Pacific
Ocean, North America and the Atlantic Ocean.
Incorrect Rationale: The 180th meridian extends
across Europe, the Mediterranean Sea, Africa, Asia, the
Pacific Ocean, North America and the Atlantic Ocean.
Error Causes: Making mistakes in incorrect rationales,
such as claiming the 180th meridian extends across
various continents and oceans, can lead to significant
misinformation and confusion. This particular error
demonstrates a fundamental misunderstanding of ge-
ography, as the 180th meridian primarily runs through
the Pacific Ocean and does not cross the regions listed.
Such inaccuracies underscore the importance of fact-
checking in educational content to prevent the spread of
misconceptions. Correcting these mistakes not only clar-
ifies the factual information but also serves as a valuable
learning opportunity, emphasizing the need for accuracy
and critical evaluation of information.

Table 1: An example in COTERRORSET. The content
of Incorrect Rationale and Error Causes are generated
by PaLM2 as indicated in Figure 2.

3.2 Error Analysis with COTERRORSET

After collecting the COTERRORSET dataset, we
observe that the error types in it are very intricate
and diverse. The intricacy poses obstacles to subse-
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Figure 3: Our pipeline for clustering PaLM2’s mistakes.

quent enhancement efforts. In order to tackle this
issue and gain a more overarching understanding
of LLMs’ error types, we utilize an LLM-based un-
supervised clustering approach shown in Figure 3
to match diverse error types into more general cate-
gories.

To be specific, we begin by extracting the spe-
cific error keywords from each error cause. Subse-
quently, we input all the extracted keywords into
the LLMs and prompt them to generate more gen-
eral categories that encompass the entire spectrum
of error names. Following this automated cluster-
ing process, we manually review each cluster, mak-
ing necessary adjustments to refine the matching
results. Finally, we distill the diverse error types
into several abstract categories, such as calculation
error, numeric error, and logical error in domains
of arithmetic reasoning and logical error, common-
sense error, linguistic error, and context error in
domains of commonsense reasoning. A detailed
definition of each error category is shown in Ap-
pendix C. We put results and analysis in Section 8.

4 Our Methodology: Self-rethinking

Self-rethinking offers an innovative approach to
encourage LLMs to consider if they are repeating
past errors. This method starts with an initial CoT
reasoning. Following this, the model uses the pro-
vided reasoning outputs and a random selection of
examples from COTERRORSET. This step is de-
signed to assess if the model’s most recent response
includes similar inaccuracies. If errors are detected,
it will formulate a new rationale and undergo the
evaluation process again. This cycle continues un-
til the model deems its latest answer to be correct
or it reaches a set limit of evaluation rounds. The
main goal is to empower the LLM to learn from its
errors introspectively and minimize the recurrence
of such mistakes. One example is shown in Table 2.

The core of self-rethinking lies in the backward-
checking stage. In this phase, the LLM reviews its
reasoning chain, but with a specific focus on the
error types it previously identified. This explicit
demonstration of errors, coupled with the question,

golden reference, and incorrect rationales, is instru-
mental in enabling the LLM to recognize specific
types of mistakes it tends to make. This targeted
review helps the LLM to not just correct the ran-
dom errors but to consciously avoid repeating the
same types of mistakes it has made in the past. The
process includes a loop for error correction and
confirmation. If the LLM finds that it has repeated
any of the previously identified mistakes, it revisits
the reasoning process to correct them. Otherwise,
the last response is adopted as the final result.

Moreover, the iterative checking process should
have a crucial repeating boundary, denoted as k
iterations. If the LLM’s error-checking and correc-
tion cycles surpass this predefined threshold and
errors still persist, the process concludes under the
assumption that the issue at hand or the error de-
tection might exceed the LLM’s current capabili-
ties. This constraint prevents the LLM from being
caught in an endless loop of self-rethinking, ensur-
ing the efficiency and practicality of the reasoning
process.

5 Our Methodology: Mistake Tuning

In order to fully investigate the other potential uti-
lization of our principles, we introduce mistake tun-
ing, which demonstrates our motivation is a broad
and pioneering framework not only in the field of
in-context learning. This approach is designed to
finetune LLMs on the combinations of both cor-
rect rationales and incorrect mistakes. By simply
appending prefixes [CORRECT RATIONALE] and
[INCORRECT RATIONALE] before correspond-
ing rationales, mistake tuning can further improve
LLMs’ abilities to distinguish between correct and
incorrect rationale.

Mistake tuning is built upon the foundational mo-
tivations and conclusions of self-rethinking, where
LLMs can learn from the implicit reasons and types
of mistakes they made in CoT reasoning. This pro-
cess can be formulated as:

p = [Q⊕ S ⊕R], (1)

L = −
|p|∑

t=1

logP (pt|p<t), (2)

Where Q, S and R represent the given question,
special prefix and corresponding rationale respec-
tively. ⊕ represents the operation of concatenation.
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Step 1: CoT reasoning
– Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips

did Natalia sell altogether in April and May?
– Answer: Let’s think step by step.
– Response: Natalia sold 48 * 2 = 96 clips in May. Natalia sold 48+96 = 144 clips altogether in April and May.

Step 2: self-rethinking
– Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips

did Natalia sell altogether in April and May?
– Your output: Natalia sold 48 * 2 = 96 clips in May. Natalia sold 48+96 = 144 clips altogether in April and May.
– Do you make similar mistakes with the following examples: ###Error Type 1: Misapplication of Algebraic Identities: ...
– Response: Yes, I make a mistake.

Step 3: correction (if they think they make mistakes)
– So the correct answer is:
– Response: Natalia sold 48/2 = 24 clips in May. Natalia sold 48+24 = 72 clips altogether in April and May.

Table 2: One example of interactive prompting and responses for self-rethinking. Black texts are the prompting
while the red content serves as LLMs’ response example.

Mistake tuning presents a cost-effective, straight-
forward, and efficient alternative. Previous work
has proven pretraining with some controlled sig-
nals based on human feedback can result in LLMs’
better ability to generate more satisfactory con-
tents (Korbak et al., 2023; Keskar et al., 2019).
Hence, incorporating fixed prefixes in finetuning
LLMs in the field of reasoning can also help models
differentiate information from golden references
and mistakes. Our results also demonstrate its ef-
fectiveness for promoting LLMs’ reasoning abili-
ties without additional costs similar to annotating
golden reasoning references.

6 Experiments

In this section, we conducted a series of exper-
iments to compare the proposed self-rethinking
methods with the existing approach on both arith-
metic and commonsense reasoning benchmarks.

6.1 Experiment Setup

We conduct comparisons between self-rethinking
and several other baselines on multiple bench-
marks.

Baselines: We select the following reason-
ing baselines to evaluate our framework, self-
rethinking’s performance.

• Standard prompting (Brown et al., 2020): the
basic reasoning promptings with prefixes as
question and answer.

• Chain-of-Thought (CoT) (Madaan et al.,
2023): a technique that enhances large lan-
guage models’ ability to perform complex and
multi-step reasoning by guiding them through

a problem-solving process step by step, signif-
icantly improving their performance on tasks
that require deeper cognitive processing.

• Self-refine (Madaan et al., 2023): an approach
that enables LLMs to iteratively improve their
initial outputs by providing feedback to them-
selves and refining their responses.

• Self-consistency (Wang et al., 2022): a decod-
ing strategy that enhances CoT prompting in
LLMs by sampling multiple reasoning paths
and selecting the most consistent answer.

Benchmarks: We consider the following ex-
isting math problems benchmarks designed with
human rationale reference.

• GSM8K benchmark of math word prob-
lems (Cobbe et al., 2021).

• AQuA dataset of algebraic math prob-
lems (Ling et al., 2017).

• MathQA benchmark of multiple-choice math
problems (Amini et al., 2019).

• Openbook benchmark modeled after open
book exams for assessing human understand-
ing of a subject (Mihaylov et al., 2018).

• LogiQA dataset sourced from expert-written
questions for testing human logical reason-
ing (Liu et al., 2020).

• Critical Reasoning in MARB benchmark of
several graduate admission tests, highlighting
the reasoning to assumptions, conclusions and
paradoxes in arguments (Tong et al., 2023).

Models: In order to evaluate self-rethinking’s
effects, we choose PaLM2 (Anil et al., 2023)
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Methods GSM8K AQuA MathQA OpenbookQA LogiQA CR
Standard Prompting (Brown et al., 2020) 17.06 22.40 27.57 80.92 41.21 24.45

CoT (Madaan et al., 2023) 56.29 32.11 30.89 82.66 41.05 51.98
Self-refine (Madaan et al., 2023) 34.74 39.92 54.01 28.75 35.99 12.28

Self-consistency (Wang et al., 2022) 58.38 42.80 41.37 87.61 42.88 22.58
Self-rethinking (Ours) 65.13 44.72 43.95 87.71 49.12 54.53

Table 3: PaLM2’s accuracy on the existing baselines and our methods, self-rethinking prompting. Self-rethinking
shows consistent improvements but uses less inference time compared with self-consistency.

Methods GSM8K AQuA MathQA LogiQA
8-shot CoT 64.56 30.65 36.21 29.57

8-shot self-rethinking 70.15 34.80 40.56 33.64

Table 4: PaLM2’s accuracy results on few-shot Chain-
of-Thought(CoT) and our methods, self-rethinking. We
select 8-shot examples from the corresponding trainset.
Then we collect PaLM2’s incorrect rationales of those
8 examples. The part of the original correct reference
is CoT’s demonstrations. Those generated incorrect
rationales serve as demonstrations for the rethink stage.

Methods GSM8K AQuA OpenbookQA CR
CoT 97.93 88.98 93.21 78.92

Self-rethinking 98.02 91.03 95.07 81.37

Table 5: GPT4’ results on zero-shot Chain-of-Thought
(CoT) and our methods, self-rethinking.

and GPT4 (OpenAI, 2023) as the baseline model.
PaLM2 is a dense left-to-right, decoder-only lan-
guage model. It is pre-trained on a high-quality
corpus of 780 billion tokens with filtered webpages,
books, Wikipedia, news articles, source code, and
social media conversations. GPT4 is a large-scale
multi-modal state-of-the-art model that exhibits
human-level performance on various tasks. We
use PaLM2’s TEXT-BISON-001 and GPT4’s GPT-4
models provided in their APIs.

For mistake tuning, we choose two different-
sized Flan T5 (Chung et al., 2022), which are
specifically designed for instruction tuning strate-
gies. This model excels in understanding and gen-
erating human-like text, demonstrating remarkable
performance across a wide range of natural lan-
guage processing tasks.

Training Details: All of the following experi-
ments were designed with a common setting, em-
ploying a random seed of 42, learning rate=1e-4.
Considering the vast number of data in AQuA, we
only randomly select 10,000 of them to represent
the differences in tuning on two different domains.

6.2 Self-rethinking Results

Table 3 presents PaLM2’s evaluation results on
chosen benchmarks. In this experiment, we set

our method, self-rethinking’s k equal to 1 to trade
between the accuracy and computing resources.
In order to align the commuting budget with our
methods, we set the times of inference in self-
consistency to 3. Our approach involves an initial
zero-shot CoT inference, then rethinking whether
this rationale has made similar errors. This leads to
the final answer if no errors are found. If inaccura-
cies are detected, it combines a demonstration and
the previously suspected erroneous answer for a
third inference to arrive at the final answer. Hence,
the overall inference times in our methods are be-
tween 2 and 3 times per question, which is still
lower than self-consistency here.

With the considered computational settings,
the self-rethinking method shows superior perfor-
mance with significant improvements, especially in
GSM8K, AQuA, MathQA, and LogiQA, clearly
outperforming self-consistency under a similar
computing cost. However, while our method sur-
passes CoT in performance on the MathQA dataset,
it falls short of achieving self-refine results. It’s
important to note that this dataset is specifically
tailored towards operation-based arithmetic prob-
lems rather than general questions, aiming to gauge
the models’ proficiency in tackling complex is-
sues (Amini et al., 2019). This suggests that the
nature of the MathQA dataset may inherently be
more suitable for self-refine. In contrast to our ap-
proach, which aims to amend responses by identify-
ing and addressing typical errors. Table 5 compares
GPT4’s performance of CoT and self-rethinking.
The results demonstrate a notable improvement
when using our self-rethinking method over CoT.
These findings suggest that self-rethinking is a
more effective approach for enhancing GPT-4’s
performance.

Table 4 presents the 8-shot examples of CoT
and self-rethinking, using the PaLM2 model across
four different tasks: GSM8K, AQuA, MathQA,
and LogiQA. A key part of the process involved
collecting PaLM2’s incorrect rationales for these
examples, which were then used as learning demon-
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strations to rethink. The results show a clear advan-
tage of the self-rethinking method over the standard
8-shot CoT approach. These results highlight the
efficacy of the self-rethinking method in improving
accuracy in few-shot learning scenarios for com-
plex problem-solving tasks.

Notably, self-refine shares our basic motivations
about self-refining or self-correcting their answers
but without utilizing any mistake samples. The
result shows that our self-rethinking outperformed
self-refine by a considerable margin across most of
the datasets. This indicates the importance of our
proposal for utilizing previous mistake examples.
While self-refine demonstrates improvements in
three arithmetic reasoning datasets, it concurrently
exhibits substantial performance drops in common-
sense reasoning datasets. By contrast, our self-
rethinking consistently outperforms the standard
method in various domains. This further implies
the introduction of previous mistakes can stabilize
the refinement and rethinking process.

In conclusion, our self-rethinking method
achieved remarkable accuracy improvements in
most tests, particularly in scenarios that demand
high logical rigor and offer the opportunity to learn
from errors by identifying fixed logical patterns,
especially in arithmetic reasoning tasks. It indi-
cates self-rethinking effectiveness in tasks requir-
ing strong logic and prone to minor errors. Addi-
tionally, the self-rethinking method proves partic-
ularly beneficial in assisting LLMs in identifying
and rectifying low-level mistakes or misunderstand-
ings that are within the model’s capabilities but
have been previously overlooked. This capability
indicates that self-rethinking can serve as a valu-
able tool in refining the accuracy and reliability of
responses in LLMs, especially in complex problem-
solving contexts.

Models Methods GSM8K MathQA AQuA
Flan-T5-large Standard finetuning 14.28 42.79 13.10

(780M) Mistake tuning 18.36 48.95 18.07
Flan-T5-xl Standard finetuning 23.81 47.24 17.81

(3B) Mistake tuning 24.29 52.22 20.99

Table 6: Accuracy of Standard finetuning models (with
only correct rationales) vs. our methods, mistake tuning
(combined correct and incorrect rationales). Mistake
tuning shows consistent and superior performance com-
pared with only fine-tuned correct rationales.

6.3 Mistake Tuning Results

Table 6 showcases the performance of the Flan-T5
models in the context of mistake tuning, highlight-

ing the impact of combining correct and incorrect
rationales. The data presented in Table 6 reveals
significant insights into the performance of Flan-
T5 models under mistake tuning, which involves
integrating both correct and incorrect rationales.
This approach is evident across different model
scales, whether it’s the smaller 780M version or
the larger 3B variant. Notably, in the MathQA do-
main, Flan-T5-large(780M) tuned by our methods
demonstrates superior performance compared to
PaLM2, achieving an accuracy of 48.95% versus
41.37%. This phenomenon suggests that LLMs
can benefit from engaging with incorrect reason-
ing, thereby enhancing their problem-solving and
reasoning capabilities. It extends beyond merely
bolstering the model’s grasp of correct CoT, to also
encompassing the ability to identify and learn from
incorrect rationales.

Furthermore, the expense of obtaining ground
truth or hand-crafted references is significantly
higher compared to generating and collecting in-
correct rationales. This cost disparity underscores
the practical value of our approach, offering a more
cost-effective solution without compromising the
quality of training data for machine learning mod-
els. All mentioned provides a direction for further
work of reasoning, which involves not only en-
hancing the model’s understanding and learning
of correct CoT but also the ability to identify and
learn from incorrect rationales.

7 Further Studies

Figure 4: Accuracy of different re-thinking iterations(k).
As the value of k increases, the overall prediction accu-
racy improves.

7.1 Hyperparameter Analysis of Rethinking
Iteration Times

In this section, we conduct experiments to assess
the impact of different rethinking iterations, de-
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noted as k, on the performance of our framework.
We evaluate it on two mainstream benchmarks in
the field of mathematics and commonsense rea-
soning, GSM8K and LogiQA. Figure 4 represents
the detailed trend under varying re-thinking times.
Notably, as k increases from 1 to 24, GSM8K rep-
resents a growth of 8.11% and 12.37% in LogiQA.
It is evident as k increases, both LLMs’ arithmetic
and commonsense reasoning accuracy exhibit an
upward trend. This trend suggests a positive corre-
lation between the number of rethinking iterations
and the overall reasoning abilities. These observa-
tions indicate self-thinking’s potential benefits with
more inference time.

CAT. DEM. COR. INC. GSM8K LogiQA
✓ 64.30 50.21
✓ ✓ 62.70 48.57
✓ ✓ ✓ 65.70 51.01
✓ ✓ ✓ ✓ 65.13 49.21

Table 7: Impact of Component Combinations. CAT.
stands for the previous mistakes’ type name, DEM. are
the reasons for making such mistakes, and COR. and
INC. mean corresponding correct and incorrect rationale
examples. All components here are generated by LLM
itself before reasoning.

7.2 Ablation Study on Rethinking Process

In this ablation study, we examined the impact of
various component combinations in promptings to
guide LLMs to self-rethinking . Table 7 shows the
performance of different components. The results
indicate that the inclusion or exclusion of differ-
ent components has varying effects on PaLM2’s
accuracy in domains of GSM8K and LogiQA. How-
ever, the overall performance across various com-
ponents is relatively similar. It performs similarly
well regardless of the specific combination of com-
ponents, indicating good generalizability of the
method. This study suggests our method’s flexibil-
ity and stability in future usage.

8 Unveiling LLM’s Reasoning Errors

In this section, we delve into the detailed types and
underlying reasons that lead to mistakes in LLMs’s
inference process. We sample mistake examples
from GSM8K and LogiQA to conduct an in-depth
analysis of both arithmetic and commonsense rea-
soning. We put some examples in Appendix B.

For commonsense reasoning, we find errors
like the misinterpretation of facts or concepts usu-
ally arise due to the model’s limitations in under-

Context

48%

Linguistics

13%

Commonsense

13%

Logical

26%

Context Linguistics Commonsense Logical

(a) Commonsense Reasnoing

Calculation

59%

Numeric

7%

Logical

34%

Calculation Numeric Logical

(b) Arithmetic Reasoning

Figure 5: PaLM2’s error type distribution in the com-
monsense and arithmetic reasoning task.

standing and applying context accurately. This
reveals current LLMs may still fall short of consis-
tently recalling precise factual knowledge within
a given context. Consequently, this underscores
the imperative to advance toward the develop-
ment of Retrieval-Augmented Generation(RAG)
systems (Guu et al., 2020; Mallen et al., 2022),
as they hold the promise of yielding more faithful
and contextually aligned results. Additionally, er-
rors stemming from logical fallacies or incorrect
inferences reveal LLMs’ reliance on pattern recog-
nition over logical reasoning, sometimes leading
them to make logically inconsistent or unsupported
connections by the given facts.

As shown in Figure 5, the most errors made by
LLMs in arithmetic reasoning are about calculation.
This can be attributed to the different nature of
LLMs compared to other tools like calculators. To
address this issue, Chen et al. (2022)’s suggestion
using Program-of-Thought (PoT) is a promising
approach to instruct LLMs to generate a segment
of code to solve the given problem, resulting in
more accurate calculation results. Furthermore,
it’s important to note that logical error is also a
type of error that LLMs always suffer from. Com-
pared with calculation errors and numeric errors,
the causes of logical errors are more complicated
and nuanced. For instance, errors like misinterpret-
ing given data or misapplying arithmetic operations
reveal a lack of depth in understanding mathemati-
cal relationships. This can result from the model’s
limitations in comprehending the nuances of math-
ematical concepts or its inability to correctly infer
the needed function from the context of the ques-
tion. In the future, more fine-grained analysis and
methods are needed to address such complex logi-
cal errors in arithmetic reasoning.
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9 Conclusions and Future Work

In this work, we explore whether LLMs can learn
from their mistakes. In order to investigate LLMs’
abilities to differentiate and learn from mistakes,
we introduce COTERRORSET, a novel benchmark
collecting both correct and incorrect CoT rationales
across various domains and designed with demon-
strations for making errors. We propose two possi-
ble solutions to expose the effects of mistakes from
different perspectives: self-rethinking and mistake
tuning. Both of them have achieved consistent and
significant improvements, which demonstrates the
potential benefits of learning from reasoning er-
rors. In the last, we conduct a comprehensive and
detailed analysis of LLMs’ common mistakes in
both arithmetic and commonsense reasoning. The
findings will provide a clear direction for future
improvements.

For future work, we envision proposing corre-
sponding algorithms or loss functions to learn im-
plicit information from mistakes. The primary in-
tent of this work is to provide a new paradigm
so there are still a lot of improvements that can
be down following this work. For example, in-
corporating contrastive learning to differentiate
correct references and errors is intuitive to make
more improvements. Also, some memorization and
retrieval-augmented skills can help models benefit
from mistakes similar to each question.

Limitations

In addition to the noted challenge of fine-tuning
commercial LLMs, we recognize several other
specific limitations in our study that require at-
tention. Primarily, our self-rethinking methodol-
ogy may not be entirely suitable for tasks where
a distinct, objective label is not readily available,
such as in machine translation or dialogue gener-
ation. These areas pose a unique challenge as the
correctness of outputs can often be subjective or
context-dependent, making it difficult to apply our
approach effectively. Moreover, our utilization of
the COTERRORSET collection for mistake tuning
necessitates a ground truth label for each sample,
posing a potential impediment to the applicability
of our method in low-resource scenarios. In the
future, we will continually improve our method
and bring the concept of learning from mistakes
to wider scenarios and applications. Thanks again
for your thoughtful insights and informative com-
ments.
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A Algorithm for self-rethinking

Algorithm 1 self-rethinking
Mistakes = {...}
Correct & Incorrect Examples = {...}
ErrorCounter← 0
Prompt: Why you made the mistakes?
Mistakes← Error Type, Demonstrations, Examples.
Stage1 Prompt: Let’s think step by step.
Stage2 Prompt: Do you make the same mistakes in Mistakes?
while ErrorCounter < k do

if Yes then
go to Step2
ErrorCounter← ErrorCounter + 1

else if No then
get the answer
break

end if
end while
if ErrorCounter == k then

Assume: Problem or error detection exceeds the model’s capabilities.
end if
Prompt: So the final answer is:

B Reasoning Mistake Examples
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Error name: Misinterpretation of Given Data
Error type: Logical

– Example: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips
did Natalia sell altogether in April and May?

– Correct Answer: Natalia sold 48/2 = 24 clips in May. Natalia sold 48+24 = 72 clips altogether in April and May.
– Incorrect Rationale: Natalia sold 48 * 2 = 96 clips in May. Natalia sold 48+96 = 144 clips altogether in April and May.
– Demonstration: Mistaking multiplication for division led to a significant overestimate of the total clips sold.

Error type: Overlooking Details
Error type: Logical

– Example: Mark has a garden with flowers. He planted plants of three different colors in it. Ten of them are yellow, and
there are 80% more of those in purple. There are only 25% as many green flowers as there are yellow and purple flowers.
How many flowers does Mark have in his garden?

– Correct Answer: There are 80/100 * 10 = 8 more purple flowers than yellow flowers. So in Mark’s garden, there are 10 +
8 = 18 purple flowers. Purple and yellow flowers sum up to 10 + 18 = 28 flowers. That means in Mark’s garden there are
25/100 * 28 = 7 green flowers. So in total Mark has 28 + 7 = 35 plants in his garden.

– Incorrect Rationale: There are 80/100 * 10 = 8 more purple flowers than yellow flowers. So in Mark’s garden, there are
10 + 8 = 18 purple flowers. That means in Mark’s garden there are 25/100 * 18 = 4.5 green flowers. So in total Mark has
10 + 18 + 4.5 = 32.5 plants in his garden.

– Demonstration: Neglecting to consider both yellow and purple flowers in the green flower calculation led to a significant
underestimation of the total number of flowers in Mark’s garden.

Error name: Misapplication of Arithmetic Operation
Error type: Calculation

– Example: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she
earn?

– Correct Answer: Weng earns 12/60 = $0.2 per minute. Working 50 minutes, she earned 0.2 x 50 = $10.
– Incorrect Rationale: Weng earns 12/60 = $2 per minute. Working 50 minutes, she earned 2 x 50 = $100.
– Demonstration: Confusing the rate per hour with the rate per minute led to a substantial overestimation of earnings.

Error name: Numerical
Error type: Numeric

– Example: The chicken crossed the road to get to the other side twice for the thrill of it. The first time, it had to dodge
23 speeding cars. The second time, a person tried to catch it and accidentally pulled out twice as many feathers as the
number of cars the chicken had dodged. The chicken had 5263 feathers before its thrill-seeking road crossings. How
many feathers did it have afterward?

– Correct Answer: The chicken lost 23 * 2 = «23*2=46»46 feathers on its second road crossing.Thus, it had 5263 - 46 =
«5263-46=5217»5217 feathers after crossing the road twice.

– Incorrect Rationale: The chicken lost 23 * 2 = «23*2=46»46 feathers on its second road crossing. Thus, it had 5263 - 46
= «5263-52=5211»5211 feathers after crossing the road twice.

– Demonstration: 1. The correct answer is 5217, while your answer is 5211. 2. Your answer is wrong because you
subtracted 52 instead of 46. 3. The type name of the incorrect answer is numerical.

Table 8: Examples of Error Types in Arithmetic Reasoning. All contents are generated by PaLM2 itself.
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Error name: Logical Fallacy or Incorrect Inference
Error type: Logical

– Example: "When standing miles away from Mount Rushmore"
– Correct Rationale: Objects appear smaller when viewed from a greater distance.
– Incorrect Rationale: "The mountains do not look smaller when standing miles away from Mount Rushmore. They look

larger." (Logical fallacy)
– Demonstration: 1. The correct rationale is that objects appear smaller when viewed from a greater distance, whereas the

incorrect rationale states the opposite. 2. This is a logical fallacy as it contradicts a basic principle of perception. 3. The
type name of the incorrect rationale is logical.

Error name: Incorrect Assumptions or Generalizations
Error type: Logical

– Example: "Poison causes harm to which of the following?"
– Correct Rationale: Poison affects living organisms.
– Incorrect Rationale: "Robots do not get hurt by poison." (Incorrect generalization about the effects of poison)
– Demonstration: 1. The correct rationale is that poison affects living organisms, but the incorrect rationale generalizes

that robots are immune to poison. 2. This is an incorrect generalization because robots, being non-living entities, are not
subject to biological effects. 3. The type name of the incorrect rationale is logical.

Error name: Misunderstanding Literal vs. Metaphorical Language
Error type: Linguistics

– Example: "When food is reduced in the stomach"
– Correct Rationale: Digestion involves the breakdown of food by stomach acid.
– Incorrect Rationale: "Choice D is incorrect because it is not a fact." (Misunderstanding metaphorical language)
– Demonstration: 1. The correct rationale is about the literal process of digestion, whereas the incorrect rationale

misinterprets the metaphorical language. 2. This demonstrates a misunderstanding of metaphorical language. 3. The type
name of the incorrect rationale is linguistics.

Error name: Factual Inaccuracy
Error type: Commonsense

– Example: "You can make a telescope with a"
– Correct Rationale: A telescope requires specific optical elements to function.
– Incorrect Rationale: "A telescope needs a lens and a magnifying glass is a lens, so glass is a good choice." (Factually

inaccurate about how telescopes are made)
– Demonstration: 1. The correct rationale is that a telescope requires specific optical elements, whereas the incorrect

rationale assumes any lens, like a magnifying glass, can make a telescope. 2. This shows a factual inaccuracy in
understanding how telescopes are constructed. 3. The type name of the incorrect rationale is commonsense.

Error type: Misunderstanding Context or Relevance
Error type: Context

– Example: "an inherited characteristic found on all mammals is"
– Correct Rationale: Inherited characteristics in mammals include features like fur.
– Incorrect Rationale: "Shoes are not found on all mammals" (Misunderstanding the context of biological characteristics)
– Demonstration: 1. The correct rationale focuses on relevant inherited physical traits like fur. 2. This error illustrates a

clear lack of understanding of the context. 3. The type name of the incorrect rationale should be context.

Table 9: Examples of Error Types in Commonsense Reasoning. All contents are generated by PaLM2 itself.
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C More Details about LLM-based Clustering Approach

Input

Please generate several keywords to cover all the following error types, and
assign each keyword to an error type category. Output in the following format:
[Specific Error Category1]: [keyword1], [keyword2]
[Specific Error Category2]: [keyword3], [keyword4]
Keywords: {keywords}

Output

Mathematical: {keywords cluster1}
Numerical: {keywords cluster2}
Arithmetic: {keywords cluster3}
Calculation: {keywords cluster4}

Table 10: Detailed input and output of our LLM-based clustering method.
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Error Type Definition
Calculation Mistakes or inaccuracies that occur during the process of performing math-

ematical calculations. These errors can arise from various sources and can
occur at any stage of a mathematical problem-solving process.

Numeric Numeric errors in the context of mathematical reasoning refer to inaccura-
cies that arise from the representation and manipulation of numerical values.
These errors can occur at various stages of mathematical computations and
can result from limitations in the precision of the representation of real
numbers or mistakes in handling numerical data.

Logical Logical errors involve mistakes in the overall reasoning or strategy used to
solve a mathematical problem. This type of error may not be immediately
apparent during the calculation process but can lead to incorrect final results.
It could include using an incorrect formula or assumptions, misunderstand-
ing the problem statement, or applying the wrong concept.

Linguistics Errors in linguistics involve inaccuracies or mistakes in the use of language.
These can include grammatical errors, misuse of vocabulary, incorrect syn-
tax, or problems in semantics. Linguistic errors may arise from a lack of
understanding of the rules of a language, misinterpretation of meaning, or
the inability to effectively convey a message in a given language. Such
errors can affect the clarity, coherence, and overall effectiveness of commu-
nication.

Commonsense Commonsense errors refer to mistakes or inaccuracies that occur in the
application of general world knowledge or everyday reasoning. These errors
can arise from misconceptions, flawed logic, or misunderstandings of basic
principles that are widely accepted as common knowledge. Commonsense
errors often lead to conclusions or decisions that, upon closer examination,
are illogical or inconsistent with general understanding of the world.

Context Errors of misunderstanding context or relevance occur when there is a
failure to correctly interpret or apply the relevant information in a given
scenario. This type of error typically involves overlooking key aspects of
a context, making inappropriate generalizations, or failing to distinguish
between literal and metaphorical language. These errors can significantly
alter the intended meaning or relevance of a response in reasoning tasks.

Table 11: PaLM2’s Understanding and Definitions for Error Types. All contents are generated by itself after
providing its mistakes and corresponding golden-standard references.
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