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Abstract

Large language models (LLMs) have achieved
impressive performance across various mathe-
matical reasoning benchmarks. However, there
are increasing debates regarding whether these
models truly understand and apply mathemati-
cal knowledge or merely rely on shortcuts for
mathematical reasoning. One essential and fre-
quently occurring evidence is that when the
math questions are slightly changed, LLMs can
behave incorrectly. This motivates us to eval-
uate the robustness of LLMs’ math reasoning
capability by testing a wide range of question
variations. We introduce the adversarial grade
school math (GSM-PLUS) dataset, an exten-
sion of GSM8K augmented with various math-
ematical perturbations. Our experiments on 25
LLMs and 4 prompting techniques show that
while LLMs exhibit different levels of math
reasoning abilities, their performances are far
from robust. In particular, even for problems
that have been solved in GSM8K, LLMs can
make mistakes when new statements are added
or the question targets are altered. We also
explore whether more robust performance can
be achieved by composing existing prompting
methods, in which we try an iterative method
that generates and verifies each intermediate
thought based on its reasoning goal and calcu-
lation result.

1 Introduction

Mathematical reasoning stands as a crucial tes-
tament to the development of artificial intelli-
gence (Lake et al., 2017). It requires rigorous
problem understanding, strategy formulating, and
calculation performing abilities (Baroody, 1987;
Verschaffel et al., 1999). Large language models
(LLMs) (Brown et al., 2020; Touvron et al., 2023a)
have demonstrated strong performance on various
mathematical benchmarks including grade school
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Then he realized that he forgot something at home 
and had to return and increased his speed to 5 miles/
hour. After one more hour, how far is he from home? 
       Answer: 
Step 1: In the first 2 hours, he walks 2 * 4 = 8 miles. 
Step 2: In the third hour, he walks 1 * 5 = 5 miles.
Step 3: Therefore, James is 8 + 5 = 13 miles away 
from home.       (It should be 8 - 5 = 3 miles due to 
“return” yielding the opposite directions.)

Question Context: James leaves home for shopping.  He walks 4 miles/hour in the first 2 hours. 

Then he increased his speed to 5 miles/
hour. After one more hour, how far is he 
from home?
       Answer: 
Step 1: In the first 2 hours, James walks 2 
* 4 = 8 miles. 
Step 2: For the remaining one hour, he 
walks 1 * 5 = 5 miles. 
Step 3: Therefore, James is 8 + 5 = 13 
miles away from home. 

Question 1 Question 2

Figure 1: Comparing the answers of GPT-3.5-Turbo to
a math word question and its variation with additional
constraints, the former answer is correct, while the latter
answer is incorrect (red) due to the misuse of operators.

math GSM8K (Cobbe et al., 2021), high school
math MATH (Hendrycks et al., 2021), and college
math Theoremqa (Chen et al., 2023). Regarding the
widely-used GSM8K benchmark, proprietary mod-
els like GPT-4 and cutting-edge open-source mod-
els have reported accuracy rates exceeding 90%
and 80%, respectively. However, the debate within
the research community regarding whether these
models truly understand and apply mathematical
knowledge or merely solve math word problems
based on superficial patterns (Patel et al., 2021) or
even due to training data leakage (Golchin and Sur-
deanu, 2023) has never ceased. Apparent evidence
supports such concerns. Figure 1 shows an exam-
ple case of GPT-3.5-turbo performing multiple-step
reasoning on the GSM8K dataset, where LLMs
sometimes make simple errors that humans would
not (Zhou et al., 2023b; Shi et al., 2023). Sim-
ply due to the fact that GPT-3.5-turbo struggles
with distinguishing the directions of “leave” and
“return”, resulting in the misuse of an operator.

In response to these issues, we advocate for a
more rigorous and adversarial evaluation bench-
mark that can systematically study the math reason-
ing capability of LLMs. Our benchmark revealed
a gap of up to 20% between the accuracy reported
by the current model and the accuracy observed
in our setting, while human performance remains
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Grade School Math Dataset Parent Set Size Answer Format Annotation Perturbation

ASDiv-A (Miao et al., 2020) N/A 2,305 Equation-formed Human (A.) N/A
GSM8K (Cobbe et al., 2021) N/A 1,319 Open-formed Human (Q.,A.) N/A

SVAMP (Patel et al., 2021)? ASDiv-A 1,000 Equation-formed Human (Q.,A.) P R
MetaMathQA (Yu et al., 2023a) GSM8K, MATH 240K Open-formed GPT-3.5-Turbo R
GSM-HARD (Gao et al., 2023) GSM8K 1,319 Program-formed Codex (Q.A.), Human (A.) D
GSM-IC (Shi et al., 2023)? GSM8K 58,052 Open-formed Human (Q.) P D
GSM8k_robust (Chern et al., 2023)? GSM8K 1,319 Open-formed GPT-4 N
GSM-PLUS (Our)? GSM8K 10,552 Open-formed GPT4, Human (Q.,A.) N D I A R P D C

Table 1: Overview of the grade school math datasets. ?refers to datasets specifically designed to evaluate the
robustness of model performance. Different colors represent different perturbation types: N umerical Substitution;
D igit Expansion; I integer-decimal-fraction Conversion; A dding Operation; R eversing Operation; P roblem
Understanding; D istractor Insertion; C ritical Thinking.

unaffected due to the unchanged inherent difficulty
level of the questions. In this work, we perturb the
most popularly used GSM8K dataset, yielding an
adversarial dataset for grade school math GSM-
PLUS. Motivated by the capability taxonomy for
solving math problems mentioned in Polya’s prin-
ciples (Polya, 2004), we identify 5 perspectives
to guide the development of GSM-PLUS: (1) nu-
merical variation refers to altering the numerical
data or its types (e.g., from integer to decimal).
(2) arithmetic variation refers to reversing or in-
troducing additional operations, such as addition,
subtraction, multiplication, and division, to math
problems. (3) problem understanding refers to
rephrasing the text description of the math prob-
lems. (4) distractor insertion refers to inserting
topic-related but useless sentences to the problems.
(5) critical thinking focuses on question or doubt
ability when the question lacks necessary state-
ments. Based on the 1,319 test questions from
GSM8K, we create eight variations for each ques-
tion, the yielding GSM-PLUS comprises 10,552
question variations. By testing LLMs using each
question and its eight variations, GSM-PLUS can
facilitate the holistic evaluation of LLMs’ robust-
ness in solving math word problems.

We use GSM-PLUS to evaluate the robustness
of 25 LLMs with different model scales and task-
specific fine-tuning, along with 4 popular prompt-
ing techniques to obtain LLMs’ math reasoning
results. Overall, we find that LLMs can accurately
solve the GSM8K questions while struggling with
answering the variations in GSM-PLUS. Our de-
tailed findings are in three folds:

• Task-specific optimization, e.g., math SFT,
usually gives better accuracy on benchmarks, while
the robustness depends more on the selection of the
base model and fine-tuning dataset (§5.1).

• LLMs perform far less well when confronted
with critical thinking, arithmetic variation, and dis-
tractor insertion, but they are relatively resilient to
perturbations in numerical variation and problem
understanding (§5.2).

• All investigated prompting techniques show a
lack of robustness, especially for arithmetic vari-
ation and critical thinking. We further explore a
compositional prompting method by drawing on
advancements in other domains, which involves
iteratively generating and verifying each reasoning
thought, and demonstrates good performance on
both GSK8K and GSM-PLUS (§5.4).
Based on the endeavors and results of this work,
we urge further research on LLMs in math domains
to enhance not only their performance for math
reasoning but also their performance robustness.

2 Related Work

Numerous datasets have been curated to assess
the mathematical reasoning abilities of AI systems.
Early math datasets (Kushman et al., 2014; Ling
et al., 2017, i.a.) focused on basic math prob-
lems with equation-based solutions. Subsequently,
more difficult datasets have been introduced, span-
ning grade-school level (Cobbe et al., 2021; Mishra
et al., 2022), high-school level (Hendrycks et al.,
2021), and college-level datasets (Sawada et al.,
2023; Zheng et al., 2021). Amid this progress,
there has been a surge in the development of LLMs
towards solving those math benchmarks (Ahn et al.,
2024). Despite the substantial difficulties posed
by advanced-level math for LLMs, recent LLMs
has shown huge potential for solving grade school
math (Touvron et al., 2023a).

Supervised fine-tuning (SFT) is a line of work to
effectively adapt language models to mathematics
domains (Luo et al., 2023; Azerbayev et al., 2023;
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Seed Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her
friends every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh duck egg. How much in
dollars does she make every day at the farmers’ market?
Solution: Janet sells 16 - 3 - 4 = 9 duck eggs a day. She makes 9 * 2 = 18 every day at the farmer’s market. Answer: 18

Perturbation Category Question Variation

Numerical
Variation

Num. Sub. 16 → 20 three → five four → six 2 → 3

Digit Exp. 16 → 1600 four → 400

IDF Conv. three → 1/4 2 → 2.5

Arithmetic
Variation

Add. Op. Janet’s ducks lay . . . every day with four. She also uses two eggs to make a homemade hair
mask every day. She sells . . . make every day at the farmers’ market?

Rev. Op.
Janet’s ducks lay 16 eggs per day. She eats three . . . with four. She sells the remainder at
the farmers’ market daily for a certain amount per fresh duck egg. She makes $18 every
day at the farmers’ market. How much does each duck egg cost?

Problem Understanding Janet’s ducks lay 16 eggs daily. She eats three for breakfast and uses four to bake muffins for
her friends. She sells the remaining eggs at the local farmers’ market for $2 per fresh duck
egg. How much money does she make each day by selling eggs at the farmers’ market?

Distractor Insertion Janet’s ducks . . . with four. She also uses two eggs to feed her pet parrot, but her neighbor
gives her two eggs from his own ducks to replace them. She sells . . . at the farmers’ market?

Critical Thinking Janet’s ducks lay eggs per day. She eats three for breakfast every morning and . . . How
much in dollars does she make every day at the farmers’ market?

Table 2: An example of question variations generated using 8 perturbations from 5 perspectives based on a seed
math question. Modifications are marked in green.

Liang et al., 2023; Gou et al., 2023, i.a.). Meta-
Math (Yu et al., 2023a) highlights the efficacy of
question bootstrapping, while MAmmoTH (Yue
et al., 2023) proved the benefits of training LLMs
on various data sources and hybrid rationales.

Another trend improves LLMs’ math capabilities
by prompting with carefully designed inputs (Yao
et al., 2023; Yang et al., 2023; Zhou et al., 2023a,
i.a.). Chain-of-thought prompting guides models
to generate natural language reasoning steps before
reaching the final answer (Wei et al., 2022; Ko-
jima et al., 2022). Program-of-thought prompting
generates programs as the intermediate steps and
integrates external tools like a Python interpreter
for precise calculation (Gao et al., 2023; Chen et al.,
2022). The promising outcomes made by LLMs, es-
pecially in grade school math, motivate researchers
to study whether they can maintain high perfor-
mance in realistic settings (Bubeck et al., 2023).

In this work, we aim to develop a consolidated
benchmark that systematically examines the robust-
ness of LLMs in solving math word problems. Re-
cent work concerns the robustness of math reason-
ing using different perturbations, such as semantic
substitution (Jin et al., 2020; Li et al., 2020; Wang
et al., 2023; Zhou et al., 2023b), reversal predic-
tion (Berglund et al., 2023; Yu et al., 2023a), and
irrelevant context distraction (Shi et al., 2023; Li
et al., 2023). However, as shown in Table 1, most

existing evaluation settings only cover limited types
of automatically constructed perturbations. In con-
trast, we create eight variations of a single question
by perturbing it with eight different math reasoning
skills. Using GSM-PLUS, we conduct a systematic
evaluation of the LLM’s robustness across vari-
ous reasoning types. For most LLMs, GSM-PLUS

is a challenging benchmark, with GPT-3.5-Turbo
reaching only 61.19% accuracy.

3 The GSM-PLUS Dataset

To comprehensively evaluate the robustness of
LLMs in utilizing math-related skills, we build an
adversarial dataset GSM-PLUS using the GSM8K
dataset as a foundation. Inspired by Polya’s princi-
ples, we design eight types of perturbations from
five different perspectives to test the robustness of
LLMs in math reasoning, as depicted in Table 2.

3.1 Perturbation Categories
Numerical variation tests whether LLMs have
been overfitted by altering the numerical data and
seeing the prediction behaviors. We define three
subcategories of numerical variation below:

• Numerical Substitution: replaces numerical
data with another number that has the same number
of digits, such as replacing “16” with “20”.

• Digit Expansion: increases the number of dig-
its in a number, such as replacing “16” with “1600”.
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• Integer-decimal-fraction Conversion: uses dif-
ferent representation types of numbers instead of
only integers, e.g., converting “2” into “2.5”.
Arithmetic variation focuses on the models’ flexi-
bility in applying arithmetic operations according
to the question requirements. We define two sub-
categories of arithmetic variation as below:

• Adding Operation: increases seed question’s
statements but restricts the operations in addition,
subtraction, multiplication, and division.

• Reversing Operation: transforms a statement
of the seed question into the queried answer in the
generated variation. For example, the statement
“$2 per fresh duck egg” in the seed question is
transformed into the question sentence “How much
does each duck egg cost?”.
Problem understanding rephrases the question
to investigate the potential impact of question-
wording on the model’s understanding.
Distractor insertion introduces topic-related but
useless sentences with numbers to test models’ abil-
ity of statement evaluation.
Critical thinking requires that models can ques-
tion or doubt during the process of mathematical
reasoning, rather than mindless sycophancy (Wei
et al., 2023a). This means that a model should ex-
plicitly specify this issue if an essential statement
is removed from the seed question.

Previous findings indicate that LLMs are typi-
cally robust to numerical variation (Bubeck et al.,
2023) and problem understanding (Zhou et al.,
2023b), but sensitive to distractor insertion (Wei
et al., 2023b). Other perturbations such as arith-
metic variation and critical thinking remain under-
explored in math domains due to annotation diffi-
culties, but all of them are important for humans to
solve problems. Our pilot experiments found that
models struggle to perform well on these pertur-
bations. Our work offers a comprehensive dataset
and evaluation of the math reasoning robustness in
fine-grained eight perturbations.

3.2 Dataset Construction

In previous work (Norberg et al., 2023; Yu et al.,
2023a), GPT-4 has been exclusively used to con-
struct variations. We initially utilize GPT-4’s
question-rewriting capabilities to generate question
variations and then prompt it to generate answer
candidates for these variations. However, we dis-
cover that GPT-4 is not always reliable: it may (i)
fail to incorporate perturbations into the variations,

Seed
Questions

Self-generated
Questions

Human-corrected
Questions

93.25 87.36 85.58

Table 3: Accuracy of GPT-4 on GSM8K seed questions,
self-generated question variations, and human-corrected
variants (i.e., GSM-PLUS).

e.g., for “distractor insertion”, the newly-added
sentences affect the final answer, (ii) include addi-
tional changes beyond the specified perturbations,
(iii) generate invalid questions, (iv) significantly
increase questions’ difficulty, surpassing the grade
school level, or (v) generate incorrect answers.

To ensure data quality, all question variations
and answers produced by GPT-4 are further refined
by human annotators through a rigorous process.
Annotators are first required to annotate 24 varia-
tions as a qualifying exam to ensure the accuracy
of their annotation. To further control annotation
quality, the annotators are assigned workloads in
batches, with each batch consisting of 50 seed ques-
tions. Prompt feedback is provided throughout the
annotation process. Specifically, 10% of the varia-
tions were cross-annotated by at least 3 annotators
with a high inter-annotation consistency rate of
90.02%, demonstrating the reliability of human re-
visions. Overall, human annotators revised 18.85%
of the variations produced by GPT-4, highlighting
the importance of human revision. Detailed statis-
tics across perturbation types are presented in Ta-
ble 7 of the Appendix. Details of human annotation
can be found in Appendix B.2.

Given GPT-4’s involvement in the question-
rewriting process, we further analyze the potential
preference bias that may be introduced towards
question variations. Table 3 shows that GPT-4 ex-
hibits similar performance on question variations
generated by itself and those that are corrected by
humans, suggesting the minimal influence of in-
herent bias on the model’s performance. Despite
successfully generating variations, GPT-4 can still
provide incorrect answers, indicating that GPT-4’s
question-rewriting capabilities do not completely
align with its question-answering capabilities.

3.3 Evaluation Metrics

We adopt the performance drop rate (PDR) met-
ric to measure the relative performance decline on
question variations compared to the performance
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Model Foundation Math-SFT Output Format GSM8K GSM-PLUS PDR (%) ↓ ASP (%) ↑
Human - - NL Rationale 96.77 98.75 -2.05 92.11

closed-source models
GPT-4 - Unknown NL Rationale 93.25 85.58 8.23 81.54
GPT-3.5-Turbo - Unknown NL Rationale 73.62 61.19 16.88 51.36

open-source foundation models (7-70B)
Mistral-7B‡ - No NL Rationale 39.58 26.18 33.86 18.66
LLaMA-2-7B‡ - No NL Rationale 13.42 8.12 39.49 3.97
CodeLlama-7B‡ LLaMA-2 No Program 25.32 15.05 40.56 10.00
LLaMA-2-13B‡ - No NL Rationale 25.40 16.57 34.76 9.96
CodeLlama-13B‡ LLaMA-2 No Program 35.94 21.67 39.71 15.22
CodeLlama-34B‡ LLaMA-2 No Program 45.64 30.00 34.27 22.42
LLaMA-2-70B‡ - No NL Rationale 56.71 40.04 29.40 32.31

open-source models in mathematics (7B)
MetaMath-Mistral Mistral MetaMathQA-395K NL Rationale 77.79 56.25 27.69 50.56
MetaMath LLaMA-2 MetaMathQA-395K NL Rationale 66.72 44.35 33.53 37.91
Abel LLaMA-2 Unreleased NL Rationale 59.51 37.09 37.67 29.64
ToRA LLaMA-2 TORA-CORPUS-16k Program+NL Rationale 67.48 43.60 35.39 37.89
MAmmoTH LLaMA-2 MathInstruct-260K Program 52.84 32.14 39.17 25.63
MAmmoTH-Coder CodeLLaMA MathInstruct-260K Program 59.89 38.73 35.33 32.02
SEGO CodeLLaMA GSM8K+MATH+AQuA Program 68.69 44.71 34.91 40.68

open-source models in mathematics (13B)
MetaMath LLaMA-2 MetaMathQA-395K NL Rationale 70.81 48.58 31.39 41.06
Abel LLaMA-2 Unreleased NL Rationale 66.72 45.39 31.97 37.45
ToRA LLaMA-2 TORA-CORPUS-16k Program+NL Rationale 71.80 47.88 33.31 42.43
MAmmoTH LLaMA-2 MathInstruct-260K Program 62.40 40.82 34.58 34.05
MAmmoTH-Coder CodeLLaMA MathInstruct-260K Program 64.90 43.97 32.25 36.93
SEGO CodeLLaMA GSM8K+MATH+AQuA Program 72.50 49.30 32.00 44.79

open-source models in mathematics (70B)
MetaMath LLaMA-2 MetaMathQA-395K NL Rationale 82.11 59.37 27.69 52.30
Abel LLaMA-2 Unreleased NL Rationale 83.85 59.94 28.52 55.31
MAmmoTH LLaMA-2 MathInstruct-260K Program 75.89 53.41 29.62 47.96

Table 4: Accuracy of current LLMs on GSM8K and GSM-PLUS. Models marked with ‡ indicate their performance
under an 8-shot setting. Math-SFT means whether the model has been fine-tuned on any math reasoning datasets.

on initial questions.

PDR = 1 − ∑(x,y)∈Da
I[LM(x), y]/∣Da∣∑(x,y)∈D I[LM(x), y]/∣D∣ , (1)

where Da and D represent the GSM-PLUS and
GSM8K datasets, respectively. Additionally, we
measure the percentage of accurately solved pairs
(ASP), where the seed question x and its variation
x′ are both correctly answered by a specific LLM.

ASP = ∑x,y;x′,y′ I[LM(x), y] ⋅ I[LM(x′), y′]
N ⋅ ∣D∣ ,

(2)

Each (x, y) sample in D has N sample pairs(x, y;x′, y′) across N perturbations.

4 Experimental Setup

We compare the accuracy of representative LLMs
on the GSM8K and GSM-PLUS datasets, and use
the PRD and ASP metrics to evaluate the robust-
ness in diverse math reasoning.

We consider closed-source foundation mod-
els, i.e., GPT-4 (OpenAI, 2023) and GPT-3.5-
Turbo (OpenAI, 2022), open-source foundation

models, i.e., Mistral (Jiang et al., 2023), LLaMA-
2 (Touvron et al., 2023b), and CodeLlama (Roziere
et al., 2023), as well as open-source SFT mod-
els specifically designed for math reasoning, i.e.,
MetaMath (Yu et al., 2023a), Abel (Chern et al.,
2023), ToRA (Gou et al., 2023), MAmmoTH (Yue
et al., 2023), and SEGO (Zhao et al., 2023). The
decoding temperature is set to 0 for deterministic
predictions. Open-source base models are inferred
using 8 demonstrations. Our results on the GSM8K
of the listed LLMs match their previously reported
accuracy. We also establish a human performance
baseline by engaging qualified human annotators
who have successfully passed a qualification exam.
All annotators possess at least a bachelor’s degree.
Further details can be found in Appendix C.1.

5 Experiments

5.1 Overall Results on GSM-PLUS

We first evaluate whether LLMs achieve similar
performance on GSM8K and GSM-PLUS. Results
are shown in Table 4. We observe a substantial
decline in performance on all investigated LLMs.
The ASP of all models is notably lower than their
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accuracy on the GSM8K dataset. GPT-4 exhibits
the highest level of robustness with the smallest
PDR of 8.23%. CodeLlama shows the largest PDR
(40.56%, 39.71%, and 34.27% for 7B, 13B, and
34B), exceeding its foundation model LLaMA-2-
7B (39.49%) and math SFT models fine-tuned on it,
e.g., SEGO-7B (34.91%). The limited robustness
of program-only LLMs suggests the necessity of
natural language guidance and task-specific fine-
tuning for robust math reasoning. We make some
detailed comparisons of the LLMs in the following.

Math SFT models vs. Foundation models.
While the math fine-tuning models achieve bet-
ter performance on both GSM8K and GSM-PLUS

compared to their foundation models, the PDR
of these SFT models is not significantly smaller
than that of their foundation models. For instance,
the PDR of LLaMa-2-13B and LLaMa-2-70B is
34.76% and 29.40%, respectively, whereas the
PDR of the subsequent SFT models, Abel-13B and
MAmmoTH-70B, is 31.97% and 29.62%, showing
the math SFT process may be hard to improve the
model’s math problem-solving robustness.

Comparisons between Math SFT models.
Among Math SFT models, larger models gener-
ally display lower PDR than smaller models. For
instance, the PDR of Abel-7B, Abel-13B, and Abel-
70B stand at 37.67%, 31.97%, and 28.52%, respec-
tively. Notably, good foundation models are helpful
in both the accuracy and robustness of the subse-
quent math SFT models. MetaMath-Mistral-7B
(SFT on Misral-7B with its PDR 33.86%) presents
notable stability (with a PDR of 27.69%) than other
math SFT models of similar or larger sizes, such
as MetaMath-7B (SFT on LLaMa-2-13B with its
PDR 34.76% ) with a PDR of 33.53%. Similarly,
MAmmoTH-Coder-13B (SFT on CodeLLaMA-
13B with its PDR 41.24%) demonstrates lower ac-
curacy drops compared to MAmmoTH-13B (SFT
on LLaMA-2-13B with its PDR 34.76%) (32.25%
vs. 34.58%).

Effectiveness of SFT datasets. Among SFT
models from the same foundation model, there are
noticeable gaps in their performance stability. For
example, after LLaMA-2-7B finetuned on Meta-
MathQA, Abel-data, TORA-CORPUS, and Math-
Instruct datasets, the PDRs are 33.53%, 37.67%,
35.39%, and 39.17% respectively. This shows the
critical impact of SFT datasets.

Human
GPT-4
GPT-3.5-Turbo
Mistral-7B
LLaMA-2-7B
CodeLlama-7B
LLaMA-2-13B
CodeLlama-13B

CodeLlama-34B

LLaMA-2-70B
MetaMath-Mistral

MetaMath-7B
Abel-7B
ToRA-7B
MAmmoTH-7B
MAmmoTH-Coder-7B

SEGO-7B
MetaMath-13B
Abel-13B
ToRA-13B
MAmmoTH-13B

MAmmoTH-Coder-13B

SEGO-13B
MetaMath-70B
Abel-70B
MAmmoTH-70B
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Figure 2: The PDR distribution across 8 perturbation
types. The bars below the line indicate an increase in
performance for the corresponding perturbation com-
pared to the performance on GSM8K.

5.2 Performance of LLMs across Diverse
Question Variations

Next, we evaluate the models’ performance sta-
bility across eight question variations (Figure 2).
Detailed performance drops and specific cases are
provided in Figure 6 and Table C.3 in the Appendix.
All models demonstrate inferior robustness com-
pared to humans in critical thinking (purple), addi-
tion operation and reversing operation from arith-
metic variation (blue), distractor insertion (pink),
and integer-decimal-fraction conversion (orange).
For numerical substitution and problem understand-
ing, models maintain their performance and even
show slight improvements. Program-based mod-
els (e.g. MAmmoTH-Coder-13B with a PDR of
11.80%) exhibit greater robustness in numerical
variation than natural-language-based models (e.g.
Abel-13B with a PDR of 14.03%). Whereas for
non-numerical variations, e.g., distractor insertion,
NL-based models are more stable, the PDR values
of the two models are 23.2% and 16.1%. Detailed
analysis of each variation is provided below.

Critical thinking. Except for humans and closed-
source models, the performance of other models
notably deteriorates (nearly 100% as shown in Fig-
ure 6) when an essential statement is removed from
the problems. In such cases, they may generate a
hallucinated solution instead of acknowledging the
absence of the required information.

Arithmetic variation. For questions with an in-
creased number of statements (adding operation),
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Figure 3: The reasoning transferability of LLMs between the question pairs of GSM8K and GSM-PLUS. The
purple (both correct) and blue (both wrong) bars represent consistent model behavior, while the red (GSM8K
correct&GSM-PLUS wrong) and yellow (GSK8K wrong&GSM-PLUS correct) bars represent the inconsistent
model behavior. The heights of the purple and red bars indicate the number of correctly solved GSM8K questions.

models exhibit limited capacity. Except GPT-4 and
GPT-3.5-Turbo, most models, regardless of size
and output format, experience an accuracy drop
exceeding 40%. Despite the importance of flexi-
ble reasoning from different perspectives, all mod-
els exhibit notable PDR values when reversing the
statements of the questions (reversing operation).
This finding aligns with the observations of Deb
et al. (2023) that model performance significantly
deteriorates when engaging in backward reasoning.

Distractor insertion. Larger models exhibit a
greater capacity to resist disturbances, e.g., Abel-
70B has a lower PDR value than GPT-3.5-Turbo.
Program-based models tend to be sensitive when
inserting distractors. For example, MammoTH-
13B (40.6%) and SEGO-13B (43.9%) have higher
PDRs than NL-based models MetaMath-13B
(39.4%) and Abel-13B (31.8%).

Numerical variations. The model’s performance
shows minimal fluctuations for general numerical
substitution and digit expansion. LLaMA-2-13B
even exhibits a slight improvement (2.1%) on nu-
merical substitution. In contrast, even for program-
based models, integer-decimal-fraction conversions
lead to a significant decline.

Problem understanding. Most LLMs show ro-
bust performances when answering rephrased ques-
tions by GPT-4, which is somewhat surprising as
models are typically sensitive to question wording.

5.3 Mathematical Reasoning Transferability

Previous sections have presented the results ob-
tained from the complete sets of GSM8K and
GSM-PLUS. Here, we partition the entire set based
on whether the questions are answered correctly
or not. This division allows us to study whether
a seed question from GSM8K, when successfully
solved by an LLM, increases the likelihood of cor-

rectly answering its variations in GSM-PLUS, and
vice versa (high ASP value). If this assertion holds,
we can say that LLMs exhibit robust performance
on this specific subset of math problems, even if
not across the entire dataset. In our setup, each
GSM8K question and its variations in GSM-PLUS

are transformed into eight pairs. The distribution
of each partition set is presented in Figure 3.

Among the 6 right-most mathematical models,
Abel-70B stands out with the highest ASP value
(55.31%), even surpassing the ASP for GPT-3.5-
Turbo (51.36%). The existence of the red bars,
where the seed question is solved correctly but its
variations are not, indicates the limited transfer-
ability of most models. While the performance
on seed questions varies (heights of purple and
red bars), their performance transferability shows a
similar level (height of red bars). This implies the
inadequacy of existing benchmarks for accurately
assessing the true ability of models in math rea-
soning. High accuracy alone does not necessarily
indicate strong reasoning robustness.

Notably, a small proportion of seed questions
are not solved, but their variations are correctly
answered (yellow bars). This further implies that
a model’s incapacity to reason mathematically on
some samples not always be implied by failures in
those samples. A holistic evaluation is valuable for
assessing the nuanced performance of the models.

5.4 Prompting to Enhance the Robustness of
LLMs for Math Word Problems?

As reviewed in Section 2, various prompting meth-
ods that require LLMs to generate their explicit rea-
soning steps have demonstrated improvement for
math reasoning, such as Chain-of-thought prompt-
ing, i.e., COT (Wei et al., 2022; Kojima et al.,
2022), and Program-of-Thought Prompting, i.e.,
POT (Gao et al., 2023; Chen et al., 2022). Similarly,
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Figure 4: The accuracy of LLMs across various question variations and GSM8K questions differs based on the
prompting techniques used. Complexity-based CoT and LTM use 8 and 1 in-context examples, respectively.

Least-to-most prompting (LTM (Zhou et al., 2022))
simplifies the problem-solving process by breaking
down a complex problem into a series of subprob-
lems. Besides, complexity-based COT (Fu et al.,
2022) uses examples with a greater number of steps
as in-context demonstrations and enhances LLMs’
reasoning capability. The above progress motivates
us to investigate whether employing a prompting
method can help LLM attain comparable perfor-
mance on both seed questions from GSM8K and
their eight variations from GSM-PLUS.

Which prompts are more robust? We select
four representative LLMs: GPT-4 and GPT-3.5-
Turbo as the highest-performing instruction-tuned
models, LLaMA-2-70B as the best open-source
general model, and MAmmoTH-70B as an SFT-
model fine-tuned on LLaMA-2-70B. Then we ran-
domly select a subset of 120 seed questions and 960
variations to evaluate the performance of different
prompting methods when applied to these LLMs.
Results are shown in Figure 4. Overall, complexity-
based COT shows superior performance for GPT-4,
GPT-3.5-Turbo, and LLaMA-2-70B, while POT ex-
hibits the least effectiveness across all question vari-
ations. COT and LTM exhibit similar patterns, ex-
celling in variations such as problem understanding
and numerical substitution, but performing poorly
on distractor insertion and adding operation. For
MAmmoTH, the performance of the four prompts
is similar due to the task-specific training. None of
the studied prompting techniques are sufficiently ro-
bust to attain consistent performance across all vari-
ations comparable to the performance on GSM8K.

Compositional Prompting. Based on the results
in Figure 4, we want to explore how to enhance ro-
bustness based on existing prompting methods. We
find that LLMs often overlook steps or make errors
in the middle stages of the solution. For the first

Question

Key Premises

Subgoal of Thought 1 Calculation of Thought 1
Subgoal Subresult

Subgoal of Thought N Calculation of Thought N

…

Final Result

Success? Yes

A phone costs for $800. 
Lisa has $500. Her dad 
gave her some money so 
she only needs $160. 
How much money does 
Lisa’s dad give her?  

#1 A phone costs $800.
#2 Lisa initially has $500.
#3 Her dad gave some money
#4 She only needs $160.
#5 How much money does her 
dad give Lisa

Step 1: Calculate the remaining 
amount Lisa needs.

Lisa has $500 saving. The phone costs 
$800. So Lisa needs $800 - $500 = $300.

Step 2: Calculate the amount of 
money Lisa’s dad gives her. Lisa only needs $160. The 

remaining amount Lisa needs is 
$300. So Lisa’s dad gives her 
$300 - $160 = $140. Result: $140

Prompt1

Prompt2

Prompt3

Prompt4

Success?Prompt4 No

Figure 5: Illustration of a compositional prompting
method that alternates between generating a subgoal
and performing the corresponding calculation.

issue, a straightforward strategy is to prompt LLMs
to iteratively decompose complex problems, as
demonstrated in multi-hop-QA (Khot et al., 2022).
To address the second issue, we attempt to have
LLMs provide feedback for each iteration of their
generation, which has proven effective across multi-
ple domains (Madaan et al., 2023; Yu et al., 2023b).
Given these observations, we try to study whether
methods from other domains can be beneficial
for math reasoning, and explore a compositional
prompting method COMP, as shown in Figure 5.

Specifically, the LLM is first prompted to extract
essential premises, particularly those related to
numbers, as auxiliary contexts (PROMPT1). Based
on the question and the premises, LLM is itera-
tively instructed to generate a goal (PROMPT2) and
calculate the goal (PROMPT3) for each reasoning
thought. For each thought, its goal and calcula-
tion and query the LLM to determine if the desired
answer is obtained (PROMPT4). If not, we will
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Method GSM8K GSM-PLUS Num. Var Arith. Var. Crit. Thinking

COT 74.17 62.92 70.33 57.08 40.83
LTM ‡ 74.17 62.60 71.67 54.58 39.17
COMP 76.67 65.52 70.83 58.34 54.17
COT + SC 76.67 66.88 75.83 62.50 40.00
COMP + SC 80.00 69.47 76.64 66.25 55.83

Table 5: Performance of GPT-3.5-Turbo with different
prompting techniques. The COT + SC method aggre-
gates each answer by sampling 5 predictions.

proceed with generating the next thought. The full
prompts are listed in Appendix C.4.

As shown in Table 5, COMP improves the
model’s performance across various variation types
by iterative generation and verification. Compared
to LTM, COMP exhibits a notable improvement of
3.4% on GSM8K and 4.7% on GSM-PLUS. Since
self-consistency (SC) technique (Wang et al., 2022)
can further boost performance with majority vot-
ing, we implement an ensemble-based approach
COMP + SC, which marginalizes over intermediate
thoughts that produce the same subgoal and cal-
culation. When compared to the ensemble-based
COT, i.e., COT + SC, COMP + SC shows remark-
able improvements with compositional prompting.
See Appendix C.7 and Appendix C.8 for accuracy
on eight perturbations and model predictions.

Although compositional prompting improves
performance on seed questions and their variations,
it does not bridge the performance gap of LLMs
between the standard benchmark and the adversar-
ial benchmark. Greater dedication should be given
to the development of robust models.

6 Conclusions and Discussions

In this work, we introduce GSM-PLUS, a bench-
mark designed to systematically analyze the ro-
bustness of LLMs in solving math word problems.
We examine a variety of perturbation types to eval-
uate the performance stability of LLMs in under-
standing and utilizing math-related knowledge, Our
evaluation of 25 prominent models found that com-
pared to their performance on the standard bench-
mark, significant declines are observed in perfor-
mance when perturbations are introduced in math
questions that were successfully solved.

This disparity set a clear direction for future re-
search: (1) the systematic evaluation of models
across diverse math-related skills; (2) the develop-
ment of models capable of consistently and flexi-
bly performing math reasoning while remaining re-
silient to minor variations. Although compositional
prompting can enhance the performance of LLMs,

its impact is limited in terms of both performance
and robustness. It is crucial to acknowledge that
most LLMs, particularly for open-source models,
still fall significantly short of human performance,
particularly in math domains where even small er-
rors can lead to task failure. Overall, GSM-PLUS

aims to facilitate detailed evaluation and under-
standing of LLMs on math reasoning. Dataset and
evaluation suits will be released.

Limitations

The limitations of our work are as follows.

• In this work, we mainly focus on the ro-
bustness of math reasoning at the elemen-
tary school level, given the promising results
achieved by various LLMs, including open-
sourced models. Evaluating the robustness of
math reasoning at other levels of education is
left as future work.

• To assess robustness, we compare the an-
swer accuracy of models on both GSM8K and
GSM-PLUS, along with the utilization of two
customized metrics. However, we do not in-
vestigate the accuracy of solution chains due
to the challenges in designing a reliable metric
for this purpose.

• GSM-PLUS focuses on evaluating the robust-
ness of LLMs in solving math word problems
under various perturbations but does not in-
vestigate the underlying reasons behind the
failures of solving problems.
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A Perturbation Types

Mathematical problem-solving is a complex cog-
nitive process that humans have developed (Ba-
roody, 1987; Verschaffel et al., 1999, i.a.). Polya’s
principles (Polya, 2004) suggest that humans solve
mathematical problems generally in four stages: (1)
identifying variables and relevant context, (2) rep-
resenting the problem’s structure and discovering a
potential pattern, (3) calculating an answer, and (4)
verifying the correctness, which are widely used in
mathematics education (Baroody, 1987; Carpenter
et al., 1989; Verschaffel et al., 1999, i.a.).

Motivated by Polya’s principles, we design eight
perturbation types for testing LLM’s mathemati-
cal reasoning capabilities. The definition of eight
perturbations is shown in Table 6.

B Dataset Construction

B.1 Generating Initial Variations with GPT-4

Prompt for Generating Question Variations
When provided with a specified perturbation and
a seed question-answer pair, GPT-4 is directed to
generate a question variation based on the given
perturbation description.

Example B.1: Generating Question Variation

You are a helpful assistant and good at following
instructions.

Your objective is to rewrite a given math question using the
specified perturbation strategy ({Perturbation Name}). The
rewritten question should be reasonable, understandable,
and able to be responded to by humans.

Perturbation strategy: {Perturbation Description}

The given question: {The Seed Question}

Answer of the given question: {Answer Rationale}

Please rewrite the question using the specified perturbation
strategies while minimizing edits to avoid significant
deviation in the question content. It is important to ensure
that the rewritten question has only one required numerical
answer.

The rewritten question:

Prompt for Generating Answers of Question
Variations Then GPT-4 is required to answer the
question variation generated by itself.

Example B.2: Generating Answers

Your task is to solve a series of math word problems by
providing the final answer. Use the format #### [value]
to highlight your answer. For example, if the answer is
560, you should write #### 560. Make sure to carefully
read and understand each problem before providing your
answer.
{A Question Variant}

B.2 Human Annotation

Before participating in the evaluation of question
variations and answers generated by GPT-4, evalu-
ators are required to complete a qualifying exam:

1. They are first pre-screened with a qualification
study, which involves reading an evaluation
guideline and annotating 24 variations for 3
GSM8K questions.

2. We individually review the submitted evalua-
tions from the qualification study and provide
feedback to clarify any misconceptions about
the task.

3. Evaluators who performed well on the qual-
ification study and demonstrated a thorough
understanding of the evaluation guidelines are
selected to participate in the main round eval-
uation.

Ultimately, we selected 5 evaluators with at least
bachelor’s degrees to participate in dataset qual-
ity evaluation. Throughout the whole process, the
annotators are assigned workloads in batches with
the batch size being 50 seed questions. For every
batch, two seed questions are chosen at random,
and the authors verify the annotations for question
variations and their corresponding answers using
a side-by-side annotation approach. We maintain
constant communication with evaluators to answer
any questions.

Qualified human evaluators are involved to en-
sure that the questions generated by GPT-4 are free
from the errors specified in §3.2. If there are any
errors in the question variations generated by GPT-
4, the annotators will compose a qualified one with
minimal modifications. They then proceed to verify
the correctness and format of GPT-4’s answers.

Taking into consideration the experiment costs,
we randomly selected 1000 question variations, en-
suring that each question was evaluated by at least
3 annotators. For question variations that are as-
sessed by multiple evaluators, the authors manually
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Perturbation Description

Numerical Substitution It involves changing some numerical data while minimizing alterations to the
textual aspects, ensuring the question’s validity remains intact.

Digit Expansion It refers to the process of increasing the number of digits of some numerical
values while minimizing alterations to the textual aspects, ensuring the ques-
tion’s validity remains intact.

Integer-decimal-fraction Conversion It refers to the process of converting some integer numbers into decimal or
fractional representations while trying to keep the textual aspects unchanged,
ensuring that the validity of the question is maintained.

Adding Operation It involves adding extra statements to the original problems, thereby increas-
ing the number of reasoning steps or operations required to solve the rewritten
question. The allowed operations are limited to addition, subtraction, multi-
plication, and division.

Reversing Operation It refers to converting the required answer of the original question into a
known condition and transforming one known variable into the newly desired
answer while avoiding the introduction of additional constraints. As a result,
the rewritten question yields a distinct required answer compared to the
original solution.

Problem Understanding It refers to transforming the original problem into a new problem that uses
different wording or different sentence structures but does not change the
solution of the original problem.

Distractor Insertion involves introducing distracting conditions that have no impact on the final
answer. These introduced conditions should be relevant to the topic of the
original question and preferably include numerical values. However, the
rewritten problem must maintain an identical solution to that of the original
problem.

Critical Thinking refers to eliminating a condition from the original question that is crucial for
solving it while keeping the rest of the content unchanged. The rewritten
problem should no longer have a valid answer, as it lacks the constraint that
was removed.

Table 6: Definitions of eight perturbation categories in GSM-PLUS for robustness evaluation.

review the rewrites in instances of evaluator dis-
agreement. The inter-annotator agreements (IAA)
measured by Krippendorff’s α show a relatively
reliable value of 0.567.

Category Subcategory Pass Rate

Numerical
Variation

Numerical Substitution 91.51

Digit Expansion 92.60

Integer-decimal-
fraction Conversion

84.24

Arithmetic
Reasoning

Adding Operation 75.75

Reversing Operation 29.76

Problem Understanding 97.49

Distractor Insertion 88.25

Critical Thinking 87.77

Table 7: The pass rate of human annotators for the
question variations generated by GPT4.

Effectiveness of GPT-4 Rewriting Table 7
presents the percentages of questions generated
by GPT-4 that satisfy all criteria. GPT-4 excels in
generating question variations involving numerical

substitution, digit expansion, and problem under-
standing with high pass rates. For “reversing opera-
tion” perturbation, human involvement is necessary
to ensure variation validity. As the generation of
question variations relies on the question rewrit-
ing capabilities of GPT-4, it is important to note
that this process is not directly related to its math
reasoning abilities. During manual checking, we
found that generating qualified variations does not
necessarily guarantee correct answers.

C Experiments

C.1 Human Performance
We randomly selected 50 seed questions from
GSM8K and combined them with their correspond-
ing variations from GSM-PLUS to create a subset
of 450 questions. This suggests that the randomly
selected subset is close to the distribution of the
whole test set.

We utilized the Tencent crowdsource platform1

for selecting three qualified human annotators to
1https://aidata.tencent.com/
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Model GSM8K GSM-PLUS8 ∆ PDR (%)8 ↓ ASP (%)8 ↑ GSM-PLUS7 ∆ PDR (%)7 ↓ ASP (%)7 ↑
Human 96.77 98.75 -2.05 92.11 97.65 -0.91 92.11

closed-source models
GPT-4 93.25 85.58 8.23 81.54 88.16 5.46 84.12
GPT-3.5-Turbo 73.62 61.19 16.88 51.36 63.18 14.18 53.60

open-source general models (7-70B)
Mistral-7B‡ 39.58 26.18 33.86 18.66 29.12 26.43 21.08
LLaMA-2-7B‡ 13.42 8.12 39.49 3.97 9.28 30.85 4.54
CodeLlama-7B‡ 25.32 15.05 40.56 10.0 17.20 31.66 11.43
LLaMA-2-13B‡ 25.40 16.57 34.76 9.96 18.89 25.63 11.37
CodeLlama-13B‡ 35.94 21.67 39.71 15.22 24.14 32.83 17.26
CodeLlama-34B‡ 45.64 30.00 34.27 22.42 29.97 47.11 17.86
LLaMA-2-70B‡ 56.71 40.04 29.40 32.31 45.72 19.38 36.90

open-source models in mathematics (7B)
MetaMath-Mistral 78.01 56.25 27.69 50.56 61.22 21.52 56.55
MetaMath 66.79 44.35 33.53 37.91 48.95 26.71 62.79
Abel 59.51 37.09 37.67 29.64 42.25 29.00 33.81
ToRA 67.48 43.60 35.39 37.89 49.83 26.16 43.14
MAmmoTH 52.84 32.14 39.17 25.63 36.73 30.49 29.30
MAmmoTH-Coder 59.89 38.73 35.33 32.02 44.27 26.08 36.60
SEGO 68.69 44.71 34.91 40.68 51.10 25.61 46.50

open-source models in mathematics (13B)
MetaMath 70.81 48.58 31.39 41.06 53.70 24.32 46.77
Abel 66.72 45.39 31.97 37.45 51.62 22.63 42.63
ToRA 71.80 47.88 33.31 42.43 54.72 23.79 48.29
MAmmoTH 62.40 40.82 34.58 34.05 46.65 25.24 38.91
MAmmoTH-Coder 64.90 43.97 32.25 36.93 50.25 22.57 42.20
SEGO 72.50 49.30 32.00 44.79 56.34 22.29 51.19

open-source models in mathematics (70B)
MetaMath 82.41 59.37 27.69 52.30 64.23 22.07 59.53
Abel 83.85 59.94 28.52 55.31 68.08 18.81 62.86
MAmmoTH 75.89 53.41 29.62 47.96 61.04 19.57 54.81

Table 8: Accuracy of current LLMs on GSM8K and GSM-PLUS, with (GSM-PLUS8) and without (GSM-PLUS7)
“critical thinking” variation.

evaluate human performance on math reasoning.
To ensure the quality of the results, each human
annotator is required to have a track record of com-
pleting over 1,000 HIT tasks and must successfully
pass a qualification exam consisting of 9 questions
before commencing the problem-solving annota-
tion. Their annotation time for each answer is
recorded for reference.

C.2 Model Performance on GSM8K and
GSM-PLUS

Table 8 presents the model performance on GSM-
PLUS and their overall robustness. We can see that
the most challenging perturbation, critical thinking,
significantly contributes to the substantial decrease
in model performance.

C.3 Cases on Diverse Question Variations

Critical Thinking. We present two examples
where one model (GPT-4) successfully detects the
absence of a statement issue (Example C.1), while
another model (ToRA-13B) fails to do so (Exam-
ple C.2).

Example C.1: Critical Thinking (GPT-4)

GSM8K Question: Mike plays ping pong for 40 minutes.
In the first 20 minutes, he scores 4 points. In the second
20 minutes, he scores 25% more points. How many total
points did he score?
Correct Answer: In the second 20 minutes, Mike scores
4*0.25=1 more points in the second 20 minutes. Thus, in
the second 20 minutes, he scores 4+1=5 points. In total,
Mike scores 4+5=9 points.
GSM-PLUS Question: Mike plays ping pong for 40 min-
utes. In the first 20 minutes, he scores 4 points. In the
second 20 minutes, he scores more points. How many
total points did he score?
Correct Answer: The problem does not provide the num-
ber of points Mike scored in the second 20 minutes. There-
fore, it is impossible to determine the total points he scored.
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Example C.2: Critical Thinking (ToRA-13B)

GSM8K Question: Mike plays ping pong for 40 minutes.
In the first 20 minutes, he scores 4 points. In the second
20 minutes, he scores 25% more points. How many total
points did he score?
Correct Answer:
def total_points():

"""Mike plays ping pong for 60 minutes. In the first
30 minutes, he scores 6 points. In the second 30 minutes,
he scores 50% more points. How many total points did he
score?"""

total_minutes = 60
first_half_minutes = total_minutes / 2
second_half_minutes = total_minutes / 2
first_half_points = 6
second_half_points = first_half_points * 1.5
total_points = first_half_points + second_half_points
return total_points

total_points = total_points()
“‘output 15.0 ”’
GSM-PLUS Question: Mike plays ping pong for 40
minutes. In the first 20 minutes, he scores 4 points. In the
second 20 minutes, he scores more points. How many
total points did he score?
Wrong Answer:
def total_points():

"""Mike plays ping pong for 40 minutes. In the first
20 minutes, he scores 4 points. In the second 20 minutes,
he scores more points. How many total points did he
score?"""

total_time = 40

first_half_time = 20

second_half_time = total_time -

first_half_time

first_half_points = 4

second_half_points = first_half_points * 2

total_points = first_half_points +

second_half_points

return total_points

total_points = total_points()

print(total_points)

“‘output 12 ”’
Correct answer: None. The question does not provide
information about the specific increase in points
during the second 20 minutes. The model generates
a fabricated response, “first_half_points * 2” without
any factual basis.

Adding Operation. Example C.3 shows an ex-
ample of failure for GPT-3.5-Turbo, where it fails
to consider one condition (text in green) in the
GSM-PLUS question.

Example C.3: Adding Operation

GSM8K Question: A raspberry bush has 6 clusters of 20
fruit each and 67 individual fruit scattered across the
bush. How many raspberries are there in total?
Correct Answer: The number of fruit in the clusters is 6 *
20 = 120 fruit. [1] Adding the number of individual fruit,
we have 120 + 67 = 187 fruit. [2] (simplification)
GSM-PLUS Question: A raspberry bush has 6 clusters of
20 fruit each and 67 individual fruit scattered across the
bush. If a bird eats 15 raspberries from one of the clusters
and a squirrel takes away 3 clusters, how many raspberries
are left on the bush?
Wrong Answer: The total number of raspberries in the
clusters is 6 * 20 = 120. [1] Next, we subtract the 15
raspberries that the bird ate from one of the clusters: 120 -
15 = 105. [2] Finally, we need to subtract the 3 clusters that
the squirrel took away. Each cluster has 20 raspberries, so
the total number of raspberries in the 3 clusters is 3 * 20 =
60. [3] Therefore, there are 105 - 60 = 45 raspberries left in
the bush. [4] (simplification) Correct answer: 112. The
condition highlighted in green, which was overlooked
by the model, should be considered after step [1] and
before step [2].

The given example highlights the concern regard-
ing the performance robustness of current LLMs,
as they struggle to maintain consistent performance
across questions with varied conditions.

Distractor Insertion. Example C.4 showcases a
failure of MAmmoTH-13B, where the interference
condition (a book for $30) is incorporated into the
solution, leading to the wrong answer:
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Example C.4: Distractor Insertion
GSM8K Question:Jack had $100. Sophia gave him 1/5 of
her $100. How many dollars does Jack have now?
Correct Answer:
jack_initial_amount = 100

sophia_initial_amount = 100

sophia_gave_jack = sophia_initial_amount/5

jack_final_amount =

jack_initial_amount+sophia_gave_jack

print(jack_final_amount)

# 120

GSM-PLUS Question: Jack had $100. Sophia, who gave
Jack 1/5 of her $100 and just bought a book for $30 from
her remaining money (Interference). How many dollars
does Jack have now?
Wrong Answer:
initial_amount = 100

given_amount = 1/5

book_cost = 30

remaining_amount = initial_amount-given_amount

final_amount = remaining_amount-book_cost

print(final_amount)

# 69.8

Correct answer: 120. The program erroneously in-
cludes irrelevant inference conditions in its calculations,
which impacts the accuracy of the final answer.

The generated program indiscriminately treats
all the conditions mentioned in the GSM-PLUS

question as program variables, without making any
distinction among them.

Reversing Operation. Example C.5 illustrates
the performance of GPT-4 on GSM8K and GSM-
PLUS. While it successfully answers the total flour
needed for a two-day cookie bakery, it fails to cal-
culate the cookie requirement for a single day when
the problem is reversed.

Example C.5: Reversing Operation

GSM8K Question: Two cups of flour are needed to make
a dozen cookies. Carla is making 36 cookies today and
30 cookies tomorrow. How many cups of flour will Carla
need to bake the cookies today and tomorrow?
Correct Answer: Since 2 cups of flour are needed for 12
cookies, then 2/12 = 1/6 cup of flour is needed for one
cookie. The total number of cookies Carla is 36 + 30 = 66
cookies. So, 66 * 1/6 = 11 cups of flour. So, Carla will
need 11 cups of flour. (simplification)
GSM-PLUS Question: Two cups of flour are needed to
make a dozen cookies. Carla has 11 cups of flour. If she
bakes 36 cookies today, how many cookies can she bake
tomorrow without needing more flour? (The question
corresponds to the known condition of GSM8K ques-
tion.)
Wrong Answer: 2 cups of flour makes a dozen cookies.
For 36 cookies (which is 3 dozen), Carla used 2*3 = 6 cups
of flour. So, 11 - 6 = 5 cups of flour are left for tomorrow.
Since 2 cups of flour are needed for a dozen cookies, with
5 cups of flour, Carla can bake 5/2 = 2.5 dozen cookies.
Since we can’t have half a dozen cookies, we round
down to 2 dozen. So, Carla can bake 2 dozen of cookies
tomorrow: 2*12 = 24 cookies. (simplification) Correct
answer: 30. Instead of inferring 2.5 dozen as an equal
value of 30, the model approximates it as 2 dozen.

Integer-decimal-fraction Conversion. Below
are two examples from program-based SEGO-13B
and NL-based Abel-13B:

Example C.6: IDC Conversion
GSM8K Question: Paul has 52 marbles. His friend gave
him 28 marbles. Then, he lost 1/4 of his marbles. How
many marbles does Paul have left?
Correct Answer:
marbles = 52

marbles += 28

marbles -= marbles * (1/4)

return marbles

GSM-PLUS Question: Paul has 52.0 marbles. His friend
gave him 28.0 more. Then, he lost 0.25 of his total marbles.
How many marbles does Paul have left?
Wrong Answer:
marbles = 52.0

marbles += 28.0

marbles -= 0.25

return marbles

Correct answer: 60. The program statement becomes
incorrect when the fraction 1/4 is changed to its decimal
representation, 0.25.
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Example C.7: IDC Conversion
GSM8K Question: Betsy and Donovan made a meal to-
gether. Betsy’s part took 18 minutes longer than Dono-
van’s part. The meal was made in 98 minutes. How many
minutes long was Betsy’s part?
Correct Answer (SEGO):
total_time = 98

x = (total_time - 18) / 2

betsy_part = x + 18

return betsy_part

Correct Answer (Abel): Let’s assume Donovan’s part
took x minutes, so Betsy’s part took x + 18 minutes. The
total time for the meal was 98 minutes: x + (x + 18) = 98.
Then we get 2x + 18 = 98, 2x = 80, x = 40. Betsy’s part
took x + 18 = 40 + 18 = 58 minutes.
GSM-PLUS Question: Betsy and Donovan made a meal
together. Betsy’s part took 1.8 times longer than Dono-
van’s part. The meal was made in 9.8 hours. How many
hours long was Betsy’s part?
Wrong Answer (SEGO):
x = 4.5

betsy_time = 1.8 * x

return betsy_time

Wrong Answer (Abel): Let’s say Donovan’s part took x
hours. Betsy’s part took 1.8 times longer, so it took 1.8x
hours. The total time for the meal was 9.8 hours. So, x +
1.8x = 9.8. We get 2.8x = 9.8, x = 3.5 Therefore, Betsy’s
part took 1.8x = 1.8 * 3.5 = 6 hours.
Correct answer: 6.3. The reasoning chain of SEGO be-
comes meaningless, and Abel’s calculation is incorrect.

When we modified the numerical values of
the original GSM8K question, the program-based
model exhibited a complete shift in reasoning be-
haviors and produced hallucinatory results. On the
other hand, the NL-based models faltered due to
calculation errors.

Problem Understanding Example C.8 illus-
trates a scenario involving MetaMath-Mistral,
which provides an incorrect answer to the GSM8K
question but correctly responds to the rephrased
version of the same question on GSM-PLUS, gen-
erated by GPT-4.

Example C.8: Problem Understanding

GSM8K Question: Duncan’s age eight years ago was two
times Adam’s age four years ago. If Duncan’s age is 60
now, how old will Adam be in 8 years?
Wrong Answer: If Duncan’s age is 60 now, then 8 years
ago his age was 60 - 8 = 52. Let’s represent Adam’s age 4
years ago as A. Duncan’s age 8 years ago was two times
Adam’s age 4 years ago, so we can write the equation:
52 = 2(A + 4). We get: 52 = 2A + 8, 44 = 2A, A = 22. If
Adam’s age 4 years ago was 22, then his current age is 22
+ 4 = 26. In 8 years, Adam will be 26 + 8 = 34 years old.
Correct answer is 38. The model makes a reasoning
error by considering “4 years ago” as A, which conflicts
with the equation 52 = 2(A + 4).
GSM-PLUS Question: Eight years prior, Duncan was
twice as old as Adam was four years in the past. Given
that Duncan is currently 60 years old, what will be Adam’s
age eight years from now? (the rephrased version of the
GSM8K question)
Correct Answer: If Duncan is currently 60 years old, then
eight years ago he was 60 - 8 = 52 years old. Eight years
ago, Duncan was twice as old as Adam was four years in
the past, so Adam was 52 / 2 = 26 years old four years ago.
If Adam was 26 years old four years ago, currently he is
26 + 4 = 30 years old. Eight years from now, Adam will
be 30 + 8 = 38 years old.

C.4 Prompt for COMP Method

Prompt for Key Premise Extraction The fol-
lowing is the exact prompt used to distill the essen-
tial premises from a given math problem, specifi-
cally focusing on numerical-related conditions, re-
ferred to as PROMPT 1 in Figure 5.

Example C.9: Generating Key Premises from a
Math Problem

Question:
James gets 10 new CDs. Each CD cost $15. He gets them
for 40% off. He decides he doesn’t like 5 of them and sells
them for 40. How much money was he out?

Answer:
First, let us rewrite the question with labels.
#1. James gets 10 new CDs.
#2. Each CD cost $15, and he gets them for 40% off.
#3. He sells 5 of them for 40.
#4. How much money was he out?

Question:
{A Math Problem}

Answer:
First, let us rewrite the question with labels.

Generating the Reasoning Goal of Each
Thought The below prompt corresponds to
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PROMPT 2 in Figure 5 for generating the subgoal
of the initial thought.

Example C.10: Generating the Subgoal of the
First Reasoning Thought

Solve the math question step by step. Please start each step
with “Step :” and split steps with “\n”. There are a few
things you should be aware of:

- Opt for the most straightforward approach to perform
each reasoning step.
- Carefully process the numerical variables in the question
and perform each calculation sequentially.
- Carefully consider each key information provided and
incorporate them systematically into your solution.
- Discern any distractions that are irrelevant to the queried
answer.
- If there is no valid answer, please conclude with "So the
answer is None" at the end of the output.

This is a math question:
Question: James gets 10 new CDs. Each CD cost $15. He
gets them for 40% off. He decides he doesn’t like 5 of
them and sells them for 40. How much money was he out?

The following is key information extracted from the
question:
#1. James gets 10 new CDs.
#2. Each CD cost $15, and he gets them for 40% off.
#3. He sells 5 of them for 40.
#4. How much money was he out?

Step 1: Calculate the price of each CD after the 40%
discount.
- Since the original price per CD is $15 and the discount is
40% off, the price per CD after discount is $15 * (1 - 0.40)
= $15 * 0.60 = $9
- Result: $9

This is a math question:
Question: {A Math Problem}

The following is key information extracted from
the question:
{Key Premise}

The following prompt corresponds to PROMPT 2
of Figure 5 for generating the subgoal of the second
and subsequent thoughts (Prompt C.11).

Example C.11: Generating the Subgoal of the
Secondary or Subsequent Rea-
soning Thought

Solve the math question step by step. Please start each step
with “Step :” and split steps with “\n”. There are a few
things you should be aware of:

- Opt for the most straightforward approach to perform
each reasoning step.
- Carefully process the numerical variables in the question
and perform each calculation sequentially.
- Carefully consider each key information provided and
incorporate them systematically into your solution.
- Discern any distractions that are irrelevant to the queried
answer.
- If there is no valid answer, please conclude with "So the
answer is None" at the end of the output.

This is a math question:
Question: {A Math Problem}

The following is key information extracted from
the question:
{Key Premise}

The following are the first few steps in a solution to the
problem:
{Previous Thoughts, including Subgoals and Calculations}

After generating the subgoal of the initial
thought, GPT-3.5-Turbo proceeds to generate the
remaining calculations, which serve as a reference
for conducting the calculation for this subgoal.

Prompt for Performing Calculation of a Speci-
fied Goal Prompt C.12 is used to guide the LLM
in performing calculations for a given subgoal of
thought 1, which corresponds to PROMPT 3 in Fig-
ure 5.
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Example C.12: Calculating the Subgoal for the
Initial Reasoning Thought

Solve the math question step by step. Please start each step
with “Step :” and split steps with “\n”. There are a few
things you should be aware of:

- Opt for the most straightforward approach to perform
each reasoning step.
- Carefully process the numerical variables in the question
and perform each calculation sequentially.
- Carefully consider each key information provided and
incorporate them systematically into your solution.
- Discern any distractions that are irrelevant to the queried
answer.
- If there is no valid answer, please conclude with "So the
answer is None" at the end of the output.

This is a math question:
Question: {A Math Problem}

The following is key information extracted from the
question:
{Key Premise}

The following is the first reasoning step. Carefully review
each item in the first reasoning step.
{Subgoal of Thought 1}
{A Reference for Calculation}

If you have a strong belief that errors exist in the above
reasoning step, explain why and regenerate this step. Oth-
erwise, output “Pass”.

We utilize Prompt C.13 to guide the LLM in
performing calculations for a specific subgoal in
the second thought or subsequent thoughts.

Example C.13: Calculating Subgoals for Sec-
ondary or Subsequent Reason-
ing Steps

Solve the math question step by step. Please start each step
with “Step :” and split steps with “\n”. There are a few
things you should be aware of:

- Opt for the most straightforward approach to perform
each reasoning step.
- Carefully process the numerical variables in the question
and perform each calculation sequentially.
- Carefully consider each key information provided and
incorporate them systematically into your solution.
- Discern any distractions that are irrelevant to the queried
answer.
- If there is no valid answer, please conclude with "So the
answer is None" at the end of the output.

This is a math question:
Question: {A Math Problem}

The following is key information extracted from the
question:
{Key Premise}

The following are the first few steps in a solution to the
question:
{Previous Thoughts, including Subgoals and Calculations}

The next step is as follows. Carefully review each item in
the next reasoning step.
{Subgoal of the Current Thought}
{A Reference for Calculation}

If you have a strong belief that errors exist in the above
reasoning step, explain why and regenerate this step. Oth-
erwise, output “Pass”.

Verifying the Completion Status of the Final An-
swer Once each thought is completed, we merge
the subgoals and calculations of the current thought
and previous thoughts (PROMPT 4). Then we query
the LLM to determine if we have achieved the de-
sired answer for the question.
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Example C.14: Verifying the Model’s Acquisi-
tion of the Final Answer

This is a math question:
Question: {A Math Problem}

The following is key information extracted from the
question:
{Key Premise}

{Previous Thoughts, including Subgoals and Calculations}

Does the goal of last step “{Last Subgoal}” meets up the
target of the math question “{Queried Answer}”? If yes,
please output “So the answer is [VALUE]”. Otherwise,
please output “No” and explain why.

We consider the final sentence of the math prob-
lem as the “queried answer”. If the model’s self-
verification process yields a response of “No”,
COMP proceeds with subgoal generation for the
subsequent thoughts (Prompt C.11). However, if
the responses include the phrase “So the answer
is”, COMP terminates the iteration and arrives at
the final answer.

C.5 Accuracy of LLMs Across Various
Perturbation

We present the model’s performance on eight dis-
tinct mathematical perturbations in Figure 6.

C.6 Answer Extraction for Questions
Rewritten with the Rule of Removed
Necessary Constraints

Question variations that are rewritten using the
“critical thinking” perturbation lack certain contexts
and therefore do not have valid answers. In such
cases, we have observed that the LLM tends to
decline providing answers in various expressions.

To extract the expressions, we regard the model’s
solution as correct if it contains any of the follow-
ing expressions: does not provide enough infor-
mation, does not specify, does not provide, can’t
provide, can not provide, don’t know, do not know,
doesn’t specify, not specify, not mention, doesn’t
mention, don’t have enough information, do not
have enough, not provide, doesn’t provide, cannot
calculate, can’t calculate, can’t determine, cannot
determine, missing necessary information, none.

C.7 Accuracy of Compositional Prompting
for Various Question Variations

Table 9 reports the accuracy scores for both the
GSM8K questions and their corresponding vari-

GSM8K
Num. Sub.

Digit Exp.
IDF Conv.

Add. Op.
Rev. Op.

Prob. Underst.
Dist. Ins.

Crit. ThinkingHuman
GPT-4GPT-3.5-TurboMistral-7BLLaMA-2-7BCodeLlama-7BLLaMA-2-13B

CodeLlama-13B
CodeLlama-34BLLaMA-2-70B

MetaMath-MistralMetaMath-7B
Abel-7B
ToRA-7BMAmmoTH-7B

MAmmoTH-Coder-7B
SEGO-7BMetaMath-13B
Abel-13BToRA-13B

MAmmoTH-13B

MAmmoTH-Coder-13BSEGO-13BMetaMath-70B
Abel-70B

MAmmoTH-70B

96.8 92.9
(4.0)

100.0
(-3.3)

100.0
(-3.3)

87.5
(9.6)

100.0
(-3.3)

100.0
(-3.3)

100.0
(-3.3)

100.0
(-3.3)

93.2 89.8
(3.7)

90.5
(3.0)

89.0
(4.5)

79.5
(14.7)

83.7
(10.2)

93.9
(-0.7)

90.8
(2.7)

67.5
(27.6)

73.6 69.5
(5.6)

70.4
(4.4)

62.3
(15.3)

48.5
(34.2)

55.2
(25.0)

74.2
(-0.8)

62.2
(15.6)

47.3
(35.7)

39.6 35.2
(11.1)

35.9
(9.2)

29.9
(24.5)

14.4
(63.6)

21.8
(45.0)

38.7
(2.3)

28.1
(29.1)

5.5
(86.0)

13.4 13.0
(3.4)

10.0
(25.4)

10.4
(22.6)

3.0
(77.4)

7.0
(47.5)

13.9
(-4.0)

7.6
(43.5)

0.0
(100.0)

25.3 22.3
(12.0)

23.8
(6.0)

19.1
(24.5)

8.6
(66.2)

9.3
(63.1)

25.9
(-2.4)

11.4
(55.1)

1.4
(94.3)

25.4 25.9
(-2.1)

22.9
(9.8)

17.7
(30.2)

9.5
(62.7)

13.4
(47.2)

27.4
(-7.8)

15.4
(39.4)

0.3
(98.8)

35.9 29.6
(17.7)

29.9
(16.7)

28.2
(21.5)

14.6
(59.5)

15.4
(57.2)

34.6
(3.6)

16.7
(53.6)

4.4
(87.8)

45.6 41.2
(9.6)

42.6
(6.6)

34.5
(24.4)

23.7
(48.0)

19.6
(57.1)

48.1
(-5.5)

28.8
(36.9)

1.4
(96.8)

56.7 53.3
(6.0)

53.1
(6.4)

42.1
(25.8)

31.5
(44.4)

36.6
(35.4)

56.6
(0.3)

46.9
(17.4)

0.3
(99.5)

77.8 71.0
(8.7)

70.0
(10.0)

61.9
(20.4)

45.1
(42.0)

58.1
(25.2)

77.5
(0.4)

55.6
(28.5)

10.6
(86.4)

66.7 59.1
(11.4)

58.8
(11.9)

49.7
(25.6)

30.9
(53.8)

49.7
(25.6)

64.9
(2.7)

36.7
(45.0)

5.2
(92.3)

59.5 56.1
(5.7)

51.0
(14.4)

38.6
(35.1)

24.6
(58.6)

33.5
(43.7)

58.7
(1.4)

33.3
(44.1)

1.0
(98.3)

67.5 62.0
(8.1)

64.8
(3.9)

54.1
(19.8)

32.2
(52.2)

41.4
(38.7)

68.2
(-1.1)

26.0
(61.5)

0.0
(100.0)

52.8 45.2
(14.5)

49.3
(6.7)

38.2
(27.7)

21.5
(59.4)

26.8
(49.4)

51.8
(2.0)

24.4
(53.8)

0.0
(100.0)

59.9 54.8
(8.5)

56.6
(5.4)

45.8
(23.5)

29.0
(51.5)

31.5
(47.5)

58.5
(2.4)

33.7
(43.8)

0.0
(100.0)

68.7 60.4
(12.1)

64.3
(6.4)

51.7
(24.7)

35.9
(47.8)

41.0
(40.3)

67.2
(2.1)

37.2
(45.8)

0.0
(100.0)

70.8 61.5
(13.2)

64.3
(9.2)

53.1
(24.9)

36.3
(48.7)

53.9
(23.9)

71.7
(-1.2)

42.9
(39.4)

4.9
(93.0)

66.7 62.4
(6.5)

59.7
(10.5)

50.0
(25.1)

34.8
(47.8)

41.6
(37.6)

67.3
(-0.9)

45.5
(31.8)

1.8
(97.3)

71.8 65.3
(9.0)

67.8
(5.5)

56.7
(21.0)

39.9
(44.5)

45.8
(36.2)

72.7
(-1.3)

34.7
(51.6)

0.0
(100.0)

62.4 54.9
(12.0)

58.5
(6.2)

48.7
(22.0)

31.4
(49.7)

34.1
(45.3)

61.9
(0.8)

37.1
(40.6)

0.0
(100.0)

64.9 59.4
(8.5)

62.0
(4.4)

50.3
(22.5)

36.9
(43.1)

36.2
(44.3)

63.8
(1.6)

43.2
(33.4)

0.0
(100.0)

72.5 65.5
(9.7)

68.5
(5.5)

58.6
(19.2)

43.6
(39.9)

45.9
(36.6)

71.6
(1.3)

40.6
(43.9)

0.0
(100.0)

82.1 74.9
(8.8)

74.5
(9.2)

65.0
(20.9)

51.0
(37.9)

58.0
(29.4)

79.6
(3.0)

61.9
(24.6)

10.0
(87.8)

83.8 76.7
(8.6)

76.9
(8.3)

63.6
(24.1)

53.1
(36.6)

60.0
(28.4)

81.4
(2.9)

64.8
(22.7)

3.0
(96.5)

75.9 67.4
(11.2)

71.7
(5.6)

59.2
(22.0)

47.8
(37.1)

49.1
(35.3)

75.5
(0.5)

56.6
(25.4)

0.0
(100.0)

Figure 6: LLMs’s performance across various types of
question variations. Darker cell colors indicate larger
performance decay rates under corresponding question
variations. The value in parentheses represents PDR
values in performance compared to the performance on
GSM8K. The cell in purple indicates a slight increase
in performance for the corresponding question variation
compared to the original GSM8K test set. The majority
of models struggle to indicate the absence of statements
when confronted with critical thinking variations.

ations in GSM-PLUS. The results suggest that
COMP is significantly effective in variations regard-
ing general numerical substitution, problem under-
standing, adding operation, and critical thinking.
COMP serves as a valuable method for iteratively
inferring the subgoal of each reasoning thought and
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Numerical Variation Arithmetic Variation
Method GSM8K GSM-PLUS Num. Sub. / Digit Exp. / IDF Conv. Add. Op. / Rev. Op. Prob. Underst. Dist. Ins. Crit. Thinking

COT 74.17 62.92 70.00 / 75.83 / 66.67 50.83 / 63.33 72.50 63.33 40.83
LTM ‡ 74.17 62.60 68.33 / 75.00 / 71.67 45.83 / 63.33 72.50 65.52 39.17
COMP 76.67 65.52 75.00 / 75.00 / 62.50 52.50 / 64.17 78.33 62.50 54.17
COT + SC 76.67 66.88 80.00 / 80.00 / 67.50 59.17 / 65.83 80.83 61.67 40.00
COMP + SC 80.00 69.47 75.83 / 82.50 / 71.67 60.83 / 71.67 78.33 70.83 55.83

Table 9: Fine-grained performance of GPT-3.5-Turbo on GSM8K and GSM-PLUS with different prompting
techniques. The methods listed in the upper half of the table evaluate the pass@1 accuracy, whereas the methods
presented in the lower half of the table employ ensemble-based decoding to determine a result from multiple
candidates.

performing the corresponding calculations.
The COMP method benefits from repeated at-

tempts, leading to improved performance on ques-
tions with inserted distractors. We have not ob-
served a substantial improvement in questions re-
lated to “numerical variation” as COMP + SC pri-
marily emphasizes subgoal optimization and may
encounter similar calculation errors without the use
of external tools or ensemble-based approaches.

C.8 Sample Predictions on GSM8K and
GSM-PLUS

We show example questions and predictions by
different techniques (Tables 10 and Tables 11).
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Method Original GSM8K Question GSM-PLUS (Reversing Operation)
Adam wants to eat some sliced apples. A large apple can
be sliced into 5 pieces, and a small apple can be sliced
into 3 pieces. Adam decides to slice 3 large and 5 small
apples and then eats 15 slices. How many apple slices are
left?

Adam wants to eat some sliced apples. A large
apple can be sliced into 5 pieces, and a small apple
can be sliced into 3 pieces. Adam decides to slice 3
large and some small apples and then eats 15 slices.
After eating 15 slices, he counts and finds that he
has 15 slices left. How many small apples did he
originally have?

COT Adam slices 3 large apples into 3 * 5 = 15 slices. Adam
slices 5 small apples into 5 * 3 = 15 slices. In total, Adam
slices 15 + 15 = 30 apple slices. Adam eats 15 slices, so
there are 30 - 15 = 15 apple slices left. #### 15 ✓

First, let’s calculate the total number of slices from
the large apples. Since each large apple can be
sliced into 5 pieces, and Adam sliced 3 large apples,
the total number of slices from the large apples is 5
* 3 = 15 slices.
Next, let’s calculate the total number of slices from
the small apples. Since each small apple can be
sliced into 3 pieces, and Adam has 15 slices left
after eating, the total number of slices from the
small apples is 15 - 15 = 0 slices. (reasoning error)
Since Adam originally sliced some small apples,
the total number of slices from the small apples
must be greater than 0. Therefore, Adam did not
slice any small apples. So, the answer is #### 0. ✗

LTM 1. How many slices can be made from the large apples? 2.
How many slices can be made from the small apples? 3.
How many slices were made in total? 4. How many slices
are left?
1. A large apple can be sliced into 5 pieces, so 3 large
apples can be sliced into 3 x 5 = 15 slices.
2. A small apple can be sliced into 3 pieces, so 5 small
apples can be sliced into 5 x 3 = 15 slices.
3. In total, 15 slices were made from the large apples and
15 slices were made from the small apples, so there were
15 + 15 = 30 slices in total.
4. Adam ate 15 slices, so there are 30 - 15 = 15 slices left.
The answer is: 15. ✓

1. How many slices did Adam have before eating?
2. How many slices did Adam have after eating?
3. How many slices did Adam eat? 4. How many
small apples did Adam originally slice?
1. Adam had 15 slices left after eating, so before
eating he had 15 + 15 = 30 slices.
2. Adam ate 15 slices, so after eating he had 30 - 15
= 15 slices.
3. Adam had 15 slices left after eating, so he ate 30
- 15 = 15 slices.
4. A large apple can be sliced into 5 pieces, so
Adam sliced 3 large apples into 3 x 5 = 15 slices.
Since Adam had 15 slices left after eating, he must
have originally sliced 15 - 15 = 0 small apples. The
answer is: 0. ✗ (reasoning error)

COMP Step 1: Calculate the total number of slices from the large
apples.
- Since each large apple can be sliced into 5 pieces, the
total number of slices from the 3 large apples is 3 * 5 =
15 slices. Result: 15 slices
Step 2: Calculate the total number of slices from the small
apples.
- Adam slices 5 small apples, each sliced into 3 pieces.
The total number of slices from the small apples is 5 * 3 =
15 slices. Result: 15 slices.
Step 3: Calculate the total number of slices Adam left.
- Adam has 15 slices from the large apples. Adam also has
15 slices from the small apples. Adam has a total of 15
+ 15 = 30 slices. Adam eats 15 slices, so the number of
slices left is 30 - 15 = 15 slices. Result: 15 slices.
So the answer is 15 slices. ✓

Step 1: Calculate the total number of slices from
the large apples.
- Since each large apple can be sliced into 5 pieces,
the total number of slices from the 3 large apples is
3 * 5 = 15 slices. Result: 15 slices.
Step 2: Calculate the total number of slices from
the small apples.
- Let’s assume the number of small apples Adam
sliced is “x”. Since each small apple can be sliced
into 3 pieces, the total number of slices from the
small apples is x * 3 = 3x slices. Result: 3x slices.
Step 3: Calculate the total number of slices Adam
had before eating.
- The total number of slices is the sum of the slices
from the large apples and the slices from the small
apples. So, the equation is 15 slices (from the large
apples) + 3x slices (from the small apples) = 30
slices. Result: 15 + 3x = 30
Step 4: Solve the equation to find the value of x.
- Subtract 15 from both sides of the equation: 15 +
3x - 15 = 30 - 15. Simplify: 3x = 15. Divide both
sides of the equation by 3: 3x/3 = 15/3. Simplify: x
= 5. So the answer is 5. ✓

Table 10: Prediction example for different prompting techniques, on a GSM8K question and a corresponding
question variation based on “reversing operation” rewriting. While all techniques provide accurate answers to the
original GSM8K question, it is only our proposed method, COMP, that consistently produces the correct answer for
the modified question in GSM-PLUS.
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Method Original GSM8K Question GSM-PLUS (Adding Operation)
Anne purchased a box of sweets that contains 15 packs,
and each pack has 60 pieces. She kept two packs and gave
the rest to her 10 friends equally. How many pieces of
sweets did each of her friends receive?

Anne purchased a box of sweets that contains 15
packs, and each pack has 60 pieces. She kept
two packs for herself and gave one pack to her
brother. She then divided the remaining packs
equally among her 10 friends. After a day, each
of her friends gave back 10 pieces of sweets to her.
How many pieces of sweets did each of her friends
end up with after returning some to Anne?

COT Anne kept 2 packs of sweets, so she gave away 15 - 2 =
13 packs of sweets to her friends. Each pack contains 60
pieces of sweets, so Anne gave away a total of 13 * 60 =
780 pieces of sweets to her friends. Anne has 10 friends,
so each of her friends received 780 / 10 = 78 pieces of
sweets. Therefore, each of Anne’s friends received ####
78 pieces of sweets. ✓

First, Anne purchased a box of sweets that contains
15 packs, and each pack has 60 pieces. So, the
total number of sweets in the box is 15 * 60 = 900
pieces. Anne kept two packs for herself, so she has
2 * 60 = 120 pieces. Anne gave one pack to her
brother, so her brother has 1 * 60 = 60 pieces. The
remaining packs are 15 - 2 - 1 = 12 packs. Anne
divided the remaining packs equally among her 10
friends, so each friend received 12 / 10 = 1.2 packs.
Since we can’t have a fraction of a pack, we need
to round down to the nearest whole number. Each
friend received 1 pack. (missing reasoning step:
conversion from “1.2 pack” to “72 piece”)
Each of her friends gave back 10 pieces of sweets.
So, each friend has 60 - 10 = 50 pieces. #### 50. ✗

LTM 1. How many packs of sweets did Anne give to her
friends? 2. How many pieces of sweets are in each pack?
3. How many pieces of sweets did each friend receive?
1. Anne purchased a box of sweets that contains 15 packs.
She kept two packs, so she gave 15 - 2 = 13 packs to her
friends.
2. Each pack has 60 pieces of sweets.
3. Each friend received 60 pieces of sweets per pack, so
each friend received a total of 60 x 13 / 10 = 78 pieces of
sweets.
Each of Anne’s friends received 78 pieces of sweets. ✓

1. How many packs of sweets did Anne keep for
herself? 2. How many packs of sweets did Anne
give to her brother? 3. How many packs of sweets
did Anne divide among her friends? 4. How many
pieces of sweets did each friend receive? 5. How
many pieces of sweets did each friend return to
Anne? 6. How many pieces of sweets did each
friend end up with after returning some to Anne?
1. Anne kept 2 packs of sweets for herself.
2. Anne gave 1 pack of sweets to her brother.
3. Anne divided the 15 - 2 - 1 = 12 packs of sweets.
4. Each friend received 12 / 10 = 1.2 packs of
sweets.
5. Each friend returned 10 pieces of sweets to Anne.
6. Each friend ended up with 60 pieces - 10 pieces
= 50 pieces of sweets after returning some to Anne.
The answer is: 50 pieces of sweets. ✗ (omission of
the 4th reasoning result)

COMP Step 1: Calculate the total number of packs Anne gave to
her friends.
- Anne purchased 15 packs of sweets. She kept 2 packs
for herself. So, she gave 15 - 2 = 13 packs to her friends.
Result: 13 packs
Step 2: Calculate the total number of pieces of sweets in
the packs Anne gave to her friends.
- Each pack has 60 pieces of sweets. Anne gave 13 packs
to her friends. So, the total number of pieces of sweets
in the packs Anne gave to her friends is 60 * 13 = 780
pieces.
Step 3: Calculate the number of pieces of sweets each of
Anne’s friends received.
- Anne gave 780 pieces of sweets to her 10 friends equally.
To find out how many pieces each friend received, divide
the total number of pieces by the number of friends. 780
pieces / 10 friends = 78 pieces.
Step 4: Calculate the total number of pieces of sweets
each friend received. So the answer is 78. ✓

Step 1: Calculate the total number of pieces of
sweets in the box.
- Since each pack has 60 pieces and there are 15
packs, the total number of pieces of sweets in the
box is 60 * 15 = 900 pieces.
Step 2: Calculate the number of packs Anne kept
for herself and gave to her brother.
- Anne kept two packs for herself and gave one pack
to her brother, so she kept a total of 2 + 1 = 3 packs.
Step 3: Calculate the number of packs Anne had
left after keeping some for herself and giving one
to her brother.
- Anne divided the remaining 12 packs equally
among her 10 friends, so each friend received 12 /
10 = 1.2 packs.
Step 4: Calculate the total number of pieces of
sweets each friend received.
- Since each pack has 60 pieces, each friend received
1.2 * 60 = 72 pieces.
Step 5: Calculate the number of pieces of sweets
each friend had after returning some to Anne.
- Each friend returned 10 pieces of sweets. So the
answer is 72 - 10 = 62 pieces of sweets. ✓

Table 11: Prediction example for different prompting techniques, on a GSM8K question and a corresponding
question variation based on “adding operation” rewriting. While all techniques provide accurate answers to the
original GSM8K question, it is only our proposed method, COMP, that consistently produces the correct answer for
the modified question in GSM-PLUS. 2984


