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Abstract

Semantic entity recognition is an important task
in the field of visually-rich document under-
standing. It distinguishes the semantic types of
text by analyzing the position relationship be-
tween text nodes and the relation between text
content. The existing document understand-
ing models mainly focus on entity categories
while ignoring the extraction of entity bound-
aries. We build a novel hypergraph attention
document semantic entity recognition frame-
work, HGA, which uses hypergraph attention
to focus on entity boundaries and entity cate-
gories at the same time. It can conduct a more
detailed analysis of the document text repre-
sentation analyzed by the upstream model and
achieves a better performance of semantic in-
formation. We apply this method on the basis
of GraphLayoutLM to construct a new seman-
tic entity recognition model HGALayoutLM.
Our experiment results on FUNSD, CORD,
XFUND and SROIE show that our method can
effectively improve the performance of seman-
tic entity recognition tasks based on the origi-
nal model. The results of HGALayoutLM on
FUNSD and XFUND reach the new state-of-
the-art results.

1 Introduction

With the development of information technology,
documents have become a main information car-
rier nowadays, which contains kinds of informa-
tion type, such as text, table and image. Man-
ual recognition of these documents often requires
plenty of manpower. OCR tools can only help us
to identify the text, layout and other simple infor-
mation in the document. To further understand

*Corresponding author.
†Equal contribution.
This work was supported by the National Natural Science

Foundation of China (No. 62306216, No. 72074171, No.
72374161), the Natural Science Foundation of Hubei Province
of China (No. 2023AFB816), the Fundamental Research
Funds for the Central Universities (No. 2042023kf0133).

documents, Visually-rich Document Understand-
ing (VRDU) (Xu et al., 2020b) is proposed to make
use of visual, textual and other information for
more in-depth analysis.

Semantic Entity Recognition (SER) is an impor-
tant task in the field of VRDU. Its purpose is to
extract and classify the text with special seman-
tic information in documents. Different from text
sequences in traditional natural language process-
ing tasks, the information in documents is not one-
dimensional, single-modal and continuous, but two-
dimensional, multimodal and discrete. It is neces-
sary to analyze not only text information, but also
other modal information such as layout and vision
in the document. Figure 1 shows the difference
between the traditional named entity recognition
(NER) task on a single modal text and the semantic
entity recognition task on a document. Firstly, the
text form of a single modal text task is a fixed text
sequence, while the discrete text in a document is
composed of text nodes in different locations. Sec-
ondly, the named entity recognition task of a single
modal text only needs to consider the semantic re-
lationship between the tokens in the text sequence.
However, the semantic entity recognition task on
the document needs to consider not only the seman-
tic relationship between nodes, but also the position
relationship between nodes. Finally, the span range
of entity tags of NER task is flexible, while the
range of task tags of semantic entity recognition
task on document is affected by nodes. Texts of the
same node in the document share the same label in
most cases.

With the development of pre-training technol-
ogy, document pre-training model has become pop-
ular. LayoutLM (Xu et al., 2020b) is the first
multi-modal pre-trained model to associate text
with layout and vision, achieving leading results
on multiple downstream document understanding
tasks including semantic entity recognition. Subse-
quently, more multi-mode pretraining models, such
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Figure 1: Difference in Document Task.

as LayoutLMv2 (Xu et al., 2020a), BROS (Hong
et al., 2022), ERNIE-Layout (Peng et al., 2022)
and LayoutLMv3 (Huang et al., 2022) have been
proposed successively. By integrating text, lay-
out and visual information, they realize the un-
derstanding and information extraction of docu-
ments. So far, GraphLayoutLM (Li et al., 2023a)
and GeoLayoutLM (Luo et al., 2023) have the
best performance in semantic entity recognition
tasks. GraphLayoutLM achieves the best F1 score
of 94.39 and 93.56 on the FUNSD (Jaume et al.,
2019) and XFUND (Xu et al., 2021) datasets. Geo-
LayoutLM achieves the best F1 score of 97.97 on
the CORD (Park et al., 2019) datasets. However,
these existing methods focus on the upstream doc-
ument understanding part and pay little attention to
the downstream task. GeoLayoutLM has studied
the novel relational extraction head and achieves
great improvement in the relational extraction task.
But it has not done more research on the semantic
entity recognition task. We study the problem of
ignoring the downstream head and classification
method in the semantic entity recognition task in
the existing document intelligence work and pro-
pose a novel improvement scheme.

Traditional Semantic Entity Recognition. The
traditional document semantic entity recognition
task process is shown in (a) of the Figure 2. In
document understanding process, text nodes are
spliced into text sequences and become text to-
ken sequences of documents after tokenization.
These text nodes will be transformed to the high-
dimensional feature representations after the anal-
ysis of the document understanding model. To
extract semantic information from document to-
ken features, linear layer or multilayer perceptron
(MLP) will be used to convert high-dimensional
features into label probabilities and the training ob-
jective is cross entropy loss. Although this method
can distinguish the node categories in the docu-
ment, it ignores the characteristics of the document
structure and it is difficult to make the classification
layer pay attention to the node span.

Hypergraph Semantic Entity Recognition. In-
spired by Global Pointer (Su et al., 2022), we use
the idea of hypergraph to extract the semantic in-
formation of documents and propose a Hypergraph
Attention(HGA) strategy for document semantic
entity recognition. (b) of the Figure 2 shows us the
process of hypergraph semantic recognition. Differ-
ent from the traditional classification method, the
semantic entity recognition idea of HGA regard the
document token features as graph nodes. The target
entity is the set of nodes with the same hyperedge
and the hyperedge type represents the entity label
type. The process of hypergraph extraction is to
establish hyperedges between token feature nodes.
Besides, we use the span hyperedge encoding to
add the span information of text nodes. Through
the hypergraph and span position, the head can bet-
ter focus on the entity boundary information and
establish the relationship between the document
discrete text span and the entity boundary.

Our main contributions are as follows:

• We construct a novel hypergraph attention
document semantic entity recognition method,
HGA. It transforms the traditional token se-
quence classification problem into a hyper-
graph construction process. By establishing
different types of hyperedges between text
nodes, the head can extract semantic entities.

• We propose a novel span hyperedge position
encoding and balanced hyperedge loss. Span
hyperedge position encoding makes the head
focus more on the same text span prompt dur-
ing hyperedge construction. Balanced hyper-
edge loss can help to solve the problem of ma-
trix sparsity caused by too many hyperedge
types in some scenarios.

• We construct a novel document semantic
entity recognition model HGALayoutLM
based on the HGA method. Our code
will be available at https://github.com/Line-
Kite/HGALayoutLM. The experiment results
show that the model has good performance in
the scene with few types of labels. HGALay-
outLM has obtained the best results on the
FUNSD, SROIE and XFUND datasets.

2 Related Work

In recent years, self-supervised pre-training tech-
nology has become the mainstream trend in the
fields of natural language processing (NLP) and
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Figure 2: Traditional Semantic Entity Recognition and Hypergraph Semantic Entity Recognition.The document
is from FUNSD dataset. Only the text sequence is shown in the figure. The rectangles with different colors in
the figure are text nodes. The colors on the document nodes represent the different class labels. The orange color
represents the label "HEADER". Blue is the label "QUESTION". Green is the label "ANSWER". Pink is the
nonmeaning label, which is "OTHER".

computer vision (CV). BERT (Devlin et al., 2018)
is a classic pre-training model that has shown great
effectiveness in various tasks such as question an-
swering, natural language generation and text clas-
sification. Masked Language Modeling (MLM) is
a significant pre-training task proposed by BERT
that enables models to learn textual representations
by predicting the raw vocabulary ids of randomly
masked word markers based on context. Since
then, a series of mask language models such as
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2019) and XLNet (Yang et al., 2019) have been
proposed successively. These models achieve good
results on natural language understanding tasks.

However, the single modal language model (Lan
et al., 2019; Liu et al., 2019; Peng et al., 2023; Li
et al., 2023b) can not understand documents with
complex formats and diverse types well. To fully
understand the content of complex documents, Lay-
outLM (Xu et al., 2020b) adds layout and document
information on the basis of BERT to supplement
the document format missing from plain text. Fol-
lowing LayoutLM, BROS (Hong et al., 2022), Lay-
outLMv2 (Xu et al., 2020a), XYLayoutLM (Gu
et al., 2022), ERNIE-Layout (Peng et al., 2022),
LayoutLMv3 (Huang et al., 2022) and other multi-
modal pre-training document understanding mod-
els have been proposed successively and constantly
make breakthroughs in various tasks in the field
of document understanding. These models under-
stand the document through the fusion of text, lay-
out and vision information. Since document nodes
are suitable to be represented by graph structures,
some works begin to apply graph structures to
document understanding models, such as ERNIE-

mmLayout (Wang et al., 2022), ROPE (Lee et al.,
2021), FormNet (Lee et al., 2022) and GraphLay-
outLM (Li et al., 2023a).

The latest GraphLayoutLM and GeoLay-
outLM (Luo et al., 2023) are both built on the basis
of LayoutLMv3. They have achieved the most
excellent results in several tasks of document infor-
mation extraction. Inspired by some graph based
works (Kipf and Welling, 2016; Velickovic et al.,
2017; Wang et al., 2023), GraphLayoutLM models
the document structure based on the hierarchical
and positional layout of the document and repre-
sents the document layout modeling with a graph
structure. To integrate graph structure informa-
tion into the process of document understanding,
GraphLayoutLM proposes graph reordering and
graph masking strategies, adding graph informa-
tion into the document understanding model in the
form of sequence and self-attention mask. GeoLay-
outLM implements geometric pre-training to enrich
and enhance feature representation through three
specially designed geometry-related pre-training
tasks. In addition, GeoLayoutLM uses a novel re-
lation head in the fine-tuning phase and obtains a
big improvement over LayoutLMv3 in the relation
extraction task. At present, little attention is paid
to the effects of downstream task heads on the per-
formance of various types of tasks. GeoLayoutLM
proposes a novel relational head, but there is still
a lack of research on the downstream task of se-
mantic entity recognition in the field of document
understanding. Most of the current models use a
linear layer and cross-entropy to predict BIO la-
bel probabilities when dealing with semantic entity
recognition tasks, such as LayoutLM, BROS, Lay-
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Figure 3: Semantic Entity Recognition Process Based on Hypergraph Attention. Only the text processing part
of the model is shown in the figure. In the span position generation stage, the span position of the token feature
sequence needs to be created by using the text node range span. The token features will be linearly transformed and
encode the span position into a query vector Q and a key vector V. The multi-head hypergraph attention score is
calculated from Q, V and added with the lower triangle mask. We regard each attention head as a sub-hypergraph
corresponding to each hyperedge type.

outLMv2, etc. LayoutLMv3 and its derived models
utilize a linear layer in the few label case and em-
ploy MLP when number of label types is large.
These approaches are fundamentally the same. Dif-
ferently, UDop (Tang et al., 2023) is a new uni-
fied document intelligent framework, which adopts
encoder-decoder structure. In addition, with the de-
velopment of large language models (LLMs), some
works (Hong et al., 2023; Fujitake, 2024; Luo et al.,
2024) have begun to apply large model technology
to document intelligence. However, the decoder
will cost a large computational cost. Taking inspi-
ration from Global Pointer (Su et al., 2022), we
design a simple hypergraph head that incorporates
document span information to achieve better SER
task performance.

3 Methodology

3.1 Overview

The process of semantic entity recognition based
on Hypergraph Attention is shown in Figure 3. Dif-
ferent from traditional semantic entity recognition
methods, HGA focuses on extracting special enti-
ties. Instead of using BIO annotation method as
the label annotation strategy for model input, we
regard each special label (such as header, question
and answer) as a label type. The entity without
special meaning represented by the Other label in

the BIO annotation will not be labeled as a hyper-
edge type in the hypergraph construction process.
HGA regards token features as unit nodes and the
process of establishing hyperedges between tokens
can realize the extraction of special entities. It is
worth noting that the node referred to here corre-
spond to each token of token sequence. Text nodes,
as mentioned earlier, are discrete pieces of text at
different locations in the document. A text node
corresponds to one or more token feature nodes.
The process of hyperedge extraction can realize the
extraction of special semantic entites and classifi-
cation of different entity labels. Entities that do not
have the meaning of a special label (that is, the en-
tities of the Other label in the BIO annotation) will
not have the connection of any special hyperedge.

To assist the construction of hyperedges, we use
the span of each text node to generate the span po-
sition corresponding to the feature sequence. Then
we use the span position encoding to add span in-
formation to the hypergraph construction process.
In this way, the model can divide the hyperedge
according to the text node span, so as to achieve
more accurate extraction of the special entity range.
In the stage of semantic entity extraction, we use
multi-label classification to determine whether a
node is connected by a hyperedge. Since there may
be more than one type of hyperedges satisfying
the join condition. To ensure the uniqueness of
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the entity type, we select the hyperedge with the
maximum probability to establish the connection
based on multi-label classification result.

3.2 Hypergraph Attention Head
We use the multi-head self-attention matrices to rep-
resent the hypergraph. Consider a hypergraph with
L number of nodes and N class of hyperedges. We
use a multihead attention score of shape N×L×L
as the representation of this hypergraph. Hyper-
edge classes are represented by different heads of
multi-head attention. The attention matrix corre-
sponding to each head represents the distribution
of a type hyperedge.

In the hypergraph, each token corresponds to
a node. Assume the document token sequence is
x = {x1, x2, ..., xn}. After understanding the doc-
ument model, we convert the input token sequence
into a high-dimensional feature representation se-
quence of the tokens:

h = {h1, h2, ..., hn} = Model({x1, x2, ..., xn}),
(1)

where h ∈ RL×H is the high-dimensional feature
representation sequence of the token and Model(·)
is the document understanding model. L indicates
the token sequence length, which also represents
the number of token nodes. H is the feature di-
mension size. Based on h, we can obtain the query
vector q and the key vector k:

q = {qα : Wq,αh+ bq,α},
k = {kα : Wk,αh+ bk,α},

(2)

where α ∈ ZD is one head in multi-head attention,
which can be regarded as a type in D kinds of
hyperedges. With multi-head query vector and key
vector, hypergraphs can be represented by a self-
attention score calculated by q and k:

s = qTk = {sα(i, j) : qTi,αkj,α, i ∈ ZL, j ∈ ZL}.
(3)

sα(i, j) is the attention score at the α type hyper-
edge span with [i, j]. qi,α and kj,α are the start
and end of the span with [i, j] in the α type hyper-
edge matrix. In this way, we implement hypergraph
extraction of semantic entities.

3.3 Span Position Encoding
As we mentioned in Introduction, tokens of the
same text node normally share the same semantic
label in the process of semantic entity recognition
of documents. We hope that the head can consider

this span boundary prompt during entity extrac-
tion. Therefore, we construct the span position of
the token sequence based on the text nodes and in-
corporate span information into the heads through
position encoding. As shown in Figure 3, token
feature sequence h{h1, h2, ..., hn} and text node
sequence N = {N0, N1, ..., Nm} has a surjective
relation. We define this relational mapping as:

f(hi) = Nj , hi ∈ h,Nj ∈ N. (4)

Based on this relation mapping, we construct the
span position. For the same text node Nj , all token
feature nodes that have a mapping relationship with
the same text node Nj share the same position:

pi = Position(f(hi))

= Position(Nj)

= j, hi ∈ h,Nj ∈ N,

(5)

where pi is the span position of token feature
hi, Position is the index of Nj . In this way,
we can obtain the span position sequence p =
{p1, p2, ..., pn}. On the basis of p, we use rotary
position coding (Su et al., 2021) to generate posi-
tion encoding R, which satisfies RT

i Rj = Rj−i.
Then the calulation of multi-head hypergraph score
will be adjust to the following form:

sα(i, j) = (Ripi,α)
T (Rjkj,α)

= pTi,αRT
i Rjkj,α

= pTi,αRj−ikj,α.

(6)

Because the start is always before the end when the
span of token sequence is extracted. Span extrac-
tion nodes should not appear in the lower triangu-
lar region of the hypergraph attention score. For
the purpose of making the hyperedge construction
more reasonable, we add mtril to the hypergraph
matrix and the final hypergraph score format is as
follow:

sα(i, j) = pTi,αRj−ikj,α +mtril(i, j). (7)

3.4 Balanced Hyperedge Loss
In the process of loss calculation, we collect posi-
tive samples Pα and negative samples Nα respec-
tively for each type of hyperedge α . The positive
sample indicates that there is a α type hyperedge
span with [i, j] in α type hypergraph, while the re-
verse is a negative sample. The formats of Pα and
Nα are as follows:

Pα = {sα(i, j)|lα(i, j) = 1},
Nα = {sα(i, j)|lα(i, j) = 0}, (8)
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where l is the hypergraph label matrix correspond-
ing to s. With the sets of positive and negative
samples,we can get the positive sample loss Lp and
the negative sample loss Ln:

Lp = log


1 +

∑

(i,j)∈Pα

e−sα(i,j)


 ,

Ln = log


1 +

∑

(i,j)∈Nα

esα(i,j)


 .

(9)

Different from Global Pointer (Su et al., 2022), we
gain the final loss with a balance factor b ∈ [0, 1)
to avoid the matrix sparsity caused by too many
label types. The final training loss of hypergraph
attention score can be expressed in the following
form:

L = (1 + b)Lp + (1− b)Ln. (10)

3.5 HGALayoutLM
To verify the performance of the HGA method,
we apply HGA to the latest GraphLayoutLM to
build a novel semantic entity recognition model,
HGALayoutLM. We use GraphLayoutLM as the
base model for feature encoding. According to its
input requirements, we input four multi-modal doc-
ument information of the document: text, layout,
visual and graph to obtain the feature sequence of
the text tokens. Before input, we sort the sequence
of text tokens using the layout graph according to
the reordering strategy of GraphLayoutLM. On the
basis of this graph structure-prompted document
understanding model, we use the hypergraph atten-
tion layer as the head for document semantic entity
recognition. The feature sequence of the token and
the generated span position are used as the head
input. The HGA method is used to help the model
extract and classify semantic entities according to
the text node span prompts.

4 Experiment

4.1 Experimental Setup
Model Settings. The model settings are consis-
tent with those of GraphLayoutLM. The text se-
quence length is 512 and the document image is
resized to 3× 224× 224 dimensions. The image is
cut into 196 patches in the size of 16× 16. Trans-
former self-attention layer scaling factor α is set
to 32. For HGALayoutLMBASE, the hidden layer
dimensions, the number of encoder self-attention

Table 1: Detail Data of Datasets. The nonmeaning label
"OTHER" is not included.

Dataset Label Num Train Dev Test

FUNSD 3 149 - 50
CORD 30 800 100 100
SROIE 4 626 - 347
XFUND 3 149 - 50

Table 2: Finetuning Hyper-parameters. L, M, B and G
refer to learning rate, max steps, batch size and gradient
accumulation steps.

Dataset Model
size Language L M B G

FUNSD BASE English 1e-5 2000 4 1
LARGE 1e-5 2000 4 1

CORD BASE English 5e-5 2000 4 1
LARGE 5e-5 3000 4 1

SROIE BASE English 1e-5 2000 4 1
LARGE 1e-5 2000 4 1

XFUND BASE CHINESE 7e-5 2000 8 4

layers, the number of self-attention heads and in-
termediate dimensions for feed-forward networks
are set to 768,12,12 and 3072, respectively. The
head number of graph mask layer is 6. The hid-
den layer dimension, encoder self-attention layer
number, self-attention head number and interme-
diate dimensions for feed-forward networks of
HGALayoutLMLARGE are set to 1024,24,16 and
4096, respectively. The head number of graph mask
layer is 8. The hidden size of hypergraph attention
layer in both base and large model is set to 64. To
ensure the fairness of the experiment, we convert
the results of hypergraph extraction into the format
of BIO annotations for comparison.

Datasets. We select four commonly used doc-
ument information extraction datasets. Three of
these datasets are in English, including FUNSD,
CORD and SROIE. The other is the Chinese
dataset, XFUND. The current XFUND task seman-
tic entity recognition task of comparative experi-
ment results is less and there is almost no LARGE
version experiment results. We only choose the
BASE version of the model for our experiments.
Detailed dataset information and finetuning hyper-
parameters settings can be viewed in Tables 1 and
2, respectively.

Baselines. We choose the classical natural lan-
guage processing model BERT (Devlin et al., 2018)
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Table 3: Precision, Recall and F1 Score of Results on FUNSD, CORD, SROIE Datasets. Model labeled with "†"
indicate that its results are obtained through replication in our experiments. The grey score of LayoutLMv3 on
the SROIE dataset indicates that some of LayoutLMv3’s predictions on the web based on the SROIE dataset were
completely correct and we did not successfully reproduce its results. So we do not use it as a comparison.

Model Head FUNSD CORD SROIE
P R F P R F P R F

BERTBASE Linear 54.69 67.10 60.26 88.33 91.07 89.68 90.99 90.99 90.99
LayoutLMBASE Linear 75.97 81.55 78.66 94.37 95.08 94.72 94.38 94.38 94.38
BROSBASE Linear 81.16 85.01 83.05 - - 96.50 - - 96.28
LayoutLMv2BASE Linear 80.29 85.39 82.76 94.53 95.39 94.95 96.25 96.25 96.25
LayoutXLMBASE Linear - - 79.40 - - - - - -
XYLayoutLM Linear - - 83.35 - - - - - -
LayoutLMv3BASE Linear/MLP 90.82 91.55 91.19 96.35 96.71 96.53 100 100 100
GraphLayoutLMBASE Linear/MLP 92.46 93.85 93.15 97.02 97.53 97.28 - - 99.30

GraphLayoutLM†
BASE Linear/MLP 93.62 93.25 93.43 96.87 97.38 97.13 98.40 99.58 98.99

HGALayoutLMBASE HGA 94.84 93.80 94.32 97.89 97.16 97.52 99.58 99.48 99.53

BERTLARGE Linear 61.13 70.85 65.63 88.86 91.68 90.25 92.00 92.00 92.00
LayoutLMLARGE Linear 75.69 82.19 78.95 94.32 95.54 94.93 95.24 95.24 95.24
BROSLARGE Linear 82.81 86.31 84.52 - - 97.28 - - 96.62
LayoutLMv2LARGE Linear 83.24 85.19 84.20 95.65 96.37 96.01 99.04 96.61 97.81
ERNIE-LayoutLARGE Linear - - 93.12 - - 97.21 - - 97.55
LayoutLMv3LARGE Linear/MLP 91.51 92.70 92.10 97.45 97.52 97.49 - - -
UDop Decoder - - 92.08 - - 97.58 - - -
GeoLayoutLM Linear/MLP - - 92.86 - - 97.97 - - -
GraphLayoutLMLARGE Linear/MLP 94.49 94.30 94.39 97.75 97.75 97.75 - - -

GraphLayoutLM†
LARGE Linear/MLP 94.37 93.95 94.16 97.32 97.68 97.50 99.27 99.58 99.42

HGALayoutLMLARGE HGA 95.67 94.95 95.31 97.97 97.38 97.67 99.69 99.53 99.61

Table 4: Precision, Recall and F1 Score of Results on
XFUND Datasets. Model labeled with "†" indicate that
its results are obtained through replication in our experi-
ments.

Model Head XFUND
P R F

LayoutXLMBASE Linear - - 89.24
XYLayoutLM Linear - - 91.76
LayoutLMv3BASE Linear 89.80 94.35 92.02
GraphLayoutLMBASE Linear 91.80 95.38 93.56

GraphLayoutLM†
BASE Linear 92.30 94.69 93.48

HGALayoutLMBASE HGA 92.79 95.70 94.22

as the single modal document understanding com-
parison model and select several classical mul-
timodal document understanding models, such
as LayoutLM (Xu et al., 2020b), BROS (Hong
et al., 2022), LayoutLMv2 (Xu et al., 2020a) and
LayoutXLM (Xu et al., 2021). We also include
the latest works in document understanding for
comparison, such as ERNIE-Layout (Peng et al.,
2022), LayoutLMv3 (Huang et al., 2022), Geo-
LayoutLM (Luo et al., 2023), GraphLayoutLM (Li
et al., 2023a) and UDop (Tang et al., 2023). It is

Table 5: F1 Score of Different Head.

Head FUNSD CORD SROIE XFUND

Linear 93.48 96.98 98.99 93.03
MLP 93.58 97.13 99.28 93.48
HGA 94.32 97.52 99.53 94.22

worth noting that according to the code design of
LayoutLMv3 and GraphLayoutLM, different heads
are selected under different conditions of the num-
ber of label types. Specifically, the model uses lin-
ear layer as the classification head when there are
less than 10 types of labels (e.g. FUNSD, SROIE,
XFUND). On the contrary, when the number of
labels is greater than or equal to 10 (e.g. CORD),
the MLP is selected as the classification head.

4.2 Main Results

The English datasets experiment results are shown
in Table 3. The BASE version of HGALayoutLM
using hypergraph attention layer as the head has
achieved the best results on FUNSD and SROIE
datasets (94.32 on FUNSD and 99.53 on SROIE),
even when compared to the LARGE versions of
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Figure 4: Position Encoding Comparison Line Chart.
In order to highlight the contrast effect, we omit the
results for the first 300 steps when the model has not
converged.
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Figure 5: Further Study of Balance Factor.

models. Compared with GraphLayoutLMBASE us-
ing linear classification, HGALayoutLM achieves
improvements of 0.89, 0.39 and 0.54 on FUNSD,
CORD and SROIE datasets, respectively. The
LARGE version of HGALayoutLM has achieved
F1 scores of 95.31 and 99.61 on FUNSD and
SROIE respectively, further updating the best
performance on these datasets. Compared with
GraphLayoutLM in the LARGE version, HGALay-
outLM has F1 score 1.15 and 0.19 higher on
FUNSD and SROIE datasets, respectively. This
demonstrates the effectiveness of HGA on the task
of less labels.

However, we can find that the performance of
HGA is not outstanding on the CORD dataset. We
think this is because the CORD dataset has a large
number of label categories. The number of labels

Table 6: Analysis of Time and Space Complexity.

Model Head Params Flops

GraphLayoutLM Linear 88.02M 63.03G
GraphLayoutLM MLP 88.61M 63.45G
HGALayoutLM HGA 88.31M 63.24G

in CORD is an amazing 30, compared with the 3
or 4 label categories in other datasets. Since in the
process of constructing the hypergraph, different
types of hyperedges are built separately. Plenty
of label categories will make the effective span
nodes of hypergraph matrix sparse, which is not
conducive to semantic entity recognition. However,
by comparing GraphLayoutLM, we can find that
HGA head can still improve the performance.

The experiment results of Chinese dataset,
XFUND, are shown in Table 4. We can find that
our HGALayoutLM has achieved the state of the
art in XFUND (Precision 92.79, Recall 95.70 and
F1 94.22). This further verifies the effectiveness of
HGA head.

4.3 Ablation Study

To verify the effectiveness of our Span Position
Encoding. We conduct ablation study on FUNSD.
We can see from Figure 4 that the entity extrac-
tion effect without position encoding (w/o pos) is
much worse than that with position encoding. In
addition, we also compare the performance of our
span position encoding (w/ span pos) with that of
traditional position encoding (w/ pos). We can find
that the performance of our span position encoding
is obviously better than that of traditional position
encoding.This demonstrates the effectiveness of
our span position encoding with span prompt.

In order to prove that Balanced Hyperedge Loss
can solve the problem of sparse hyperedge matrix
caused by too many entity types. We conduct exper-
iment statistics on different value of balance factor
on CORD dataset with plenty of entity types and
present the results in Figure 5. We can see that the
performance of the unbalanced model (b = 0) is
not ideal, even worse than the performance of the
MLP head. However, proper balance factor allow
the model to pay more attention to the hyperedge
entities and achieve better results. For example, the
performance when b is 0.4 exceeds the performance
when the MLP is used as the head.
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Table 7: Comparison with LayoutLLM. The results on FUNSD and CORD are F1.

Model FUNSD CORD Params Flops

HGALayoutLMLARGE 95.3 97.7 307.7M 218.95G
LayoutLLM 95.3 98.6 6914.38M 8654.62G

4.4 Anaysis of Different Head

To analyze the effects of different head, we adopt
GraphLayoutLMBASE and HGALayoutLMBASE as
the base model to conduct comparative experiments
on three different heads: linear layer, MLP and
HGA. The experiments are carried out on FUNSD,
CORD, SROIE and XFUND datasets.

The experiment results are shown in Table 5. As
the simplest network structure, the linear layer has
the worst classification effect. The MLP increases
the number of linear layers on top of the linear
layer. It also joins activation layers and dropout
layers to linear layers. The more complex network
structure makes MLP slightly better than the se-
mantic entity recognition of a single linear layer
on most datasets. As our proposed hypergraph at-
tention method, HGA performs significantly better
than the other two classifiers,which shows the effec-
tiveness of HGA, which demonstrates the superior
performance of HGA.

To test the complexity of HGA, we compare
HGALayoutLM with the model with traditional
heads. The PyTorch-OpCounter tool is used to cal-
culate the time and space complexity. The number
of entity types is set to 3. As we can see from Table
6, HGA does not bring a large cost of time and
space calculation and HGA is even less costly than
MLP in terms of time and space computation. This
indicates that our performance improvement is not
due to the increase in the number of parameters.

4.5 Comparison with Large Language Model

We conduct a comparative analysis of our HGALay-
outLM with the latest document multimodal large
language model, LayoutLLM (Luo et al., 2024), to
analyze the advantages and disadvantages of the
models. LayoutLLM, which uses LayoutLMv3 as
encoder and Llama as decoder, has so far achieved
the state of the art results on several document in-
telligence tasks. We show the comparison results
in Table 7. We can see that our HGALayoutLM
slightly underperforms compared to the profession-
ally fine-tuned document large language model.

https://github.com/Lyken17/pytorch-OpCounter

However, under the premise of similar performance
to large language models, our model parameters
and computational consumption are much lower
than the existing large language models. This fully
demonstrates the advantage of our method.

5 Conclusion

In this work, we propose a semantic entity recog-
nition method (HGA) based on hypergraph atten-
tion. This method extracts semantic information
from documents by establishing different hyper-
edges between feature nodes. On the basis of the
hypergraph, we design span position encoding and
balanced hyperedge loss to enhance the entity ex-
traction capability of the hypergraph attention head.
We use the HGA method to build a novel seman-
tic entity recognition model HGALayoutLM based
on GraphLayoutLM. This model has good perfor-
mance in SER tasks. Experiments show that our
method achieves the state of art on semantic en-
tity recognition tasks on the FUNSD and XFUND
datasets.

6 Limitation

The HGA method can achieve good performance
on semantic entity recognition tasks, but there is
still a lot of work for us to improve. On the one
hand, when there are more types of semantic enti-
ties, the cost of improvement from HGA becomes
higher. The number of superedge matrices in-
creases because of more semantic entity categories.
This not only leads to sparse label matrices, but
also to more model parameters. How to solve the
matrix sparsity and parameter growth caused by the
number of label types is the future work we need to
study. On the other hand, since our proposed head
is currently targeted at semantic entity recognition
tasks in the document domain. In the future, we
will explore more general head to adapt to diverse
document task types.
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