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Abstract

The widespread use of large language mod-
els (LLMs) is increasing the demand for meth-
ods that detect machine-generated text to pre-
vent misuse. The goal of our study is to stress
test the detectors’ robustness to malicious at-
tacks under realistic scenarios. We comprehen-
sively study the robustness of popular machine-
generated text detectors under attacks from di-
verse categories: editing, paraphrasing, co-
generating, and prompting. Our attacks as-
sume limited access to the generator LLMs,
and we compare the performance of detectors
on different attacks under different budget lev-
els. Our experiments reveal that almost none of
the existing detectors remain robust under all
the attacks, and all detectors exhibit different
loopholes. Averaging all detectors, the perfor-
mance drops by 35% across all attacks. Further,
we investigate the reasons behind these defects
and propose initial out-of-the-box patches. 1

1 Introduction

LLMs are becoming increasingly adopted in infor-
mation seeking scenarios, assistive writing, transla-
tion, mental health support, and many more (Zhao
et al., 2023a). Their evolving capabilities to gen-
erate human-like and persuasive language raise
wide concerns about misuse, e.g., deception, aca-
demic misconduct, and disinformation (Zellers
et al., 2019; Weidinger et al., 2021; Kumar et al.,
2022; Feng et al., 2024), and it becomes harder
for humans to distinguish machine-generated texts
(MGT) from human-written texts (HWT) (Dugan
et al., 2023). As a result, much recent work focus
on automatic MGT detection to mitigate the risks
(Liu et al., 2022; Mitchell et al., 2023; Kirchen-
bauer et al., 2023a; Mao et al., 2024).

1Code and data are released at https://github.com/
YichenZW/Robust-Det. Yichen Wang and Tianxing He are
the corresponding authors.
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Figure 1: Pipeline of the study. The attacks are carried
out on the machine-generated texts before, during, or
after generation. Each attack is applied with different
perturbation levels, denoted as budgets (§4).

In this work, we focus on potential malicious at-
tacks that attempt to deceive the detector using var-
ious attack strategies. Existing works on this topic
mostly focus on the robustness of specific detec-
tors or particular attack methods. For example, Liu
et al. (2022) specifically evaluate the token editing
attack for model-based detectors, and Zhang et al.
(2023) consider the topic-shifting attack for metric-
based detectors, etc. To the best of our knowledge,
in the literature, there is no thorough comparative
evaluation of robustness of machine-generated text
detectors against malicious attacks, covering a wide
range of detectors and attacks.

With this goal, we study the robustness of 8
prevalent MGT detectors from 3 categories under
12 realistic attacks (§6, Table 1), including edit-
ing, paraphrasing, co-generating, prompting, etc.
The majority of the attacks in this paper are pro-
posed or attempted for the first time. For a fair
comparison across detectors and attacks, we utilize
a series of metrics to measure the perturbation level
of each attack, which we term “budget” (§4). Strik-
ingly, our experiments (§6.1) reveal that almost
none of the existing detectors remains robust un-
der all the attacks, showing a variety of potential
weaknesses or loopholes. For example, about 2 to
6-character editing2 by typo insertion can severely
deceive metric-based detectors, such as DetectGPT

22 to 6-character editing takes up a proportion of 0.35% to
1.06% characters in a text sample on average.
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Attack Category Method Model-Free? Level Access Detailed Descriptions

Editing
(§6.2)
post-generation

Typo Insertion ✓ Character None
Create typos by inserting, deleting, substituting, and
transposing mainly.

Homoglyph Alteration ✓ Character None
Change English characters into visually similar Unicodes,
e.g., Cyrillic characters.

Format Character Editing ✓ Character None
Change or insert formatting characters, including
zero-width whitespace \u200B insertion, and shift
character editing, e.g., \n, \r, \u000B (vertical tab), etc.

Paraphrasing
(§6.3)
post-generation

Synonyms Substitution opt ✓ or ✗ Word None
For model-free (✓) setting, retrieve a synonym from a
static dictionary; for model-based (✗) setting, utilize a
LLM to generate synonyms list given context.

Span Perturbation ✗ Span None
Use a masked LM (Raffel et al., 2020) to rewrite spans of
tokens by masked filling.

Inner-Sentence Paraphrase ✗ Inner-Sent. None
Use Pegasus (Zhang et al., 2020) to paraphrase each
sentence of the text and then join them.

Inter-Sentence Paraphrase ✗ Inter-Sent. None
Paraphrase with Dipper (Krishna et al., 2023), a
paragraph-level paraphraser that can re-order, split, and
merge sentences meanwhile paraphrasing each sentence.

Co-Generating
(§6.4)
on-generation

Emoji Co-Generation ✓ Inter-Sent. Decoding
Compulsorily generate or insert an emoji after finishing
each sentence while recurrent generation and remove all
the emojis after finishing the whole text.

Typo Co-Generation ✓ Inter-Sent. Decoding
Preset character substitution rules and execute the rules
when finishing sampling each token and recover them after
finishing the whole text generation.

Prompting
(§6.5)
pre-generation

Prompt Paraphrasing ✗ Inter-Sent. Prompting
Paraphrase the raw prompt before generation using
Pegasus.

In-Context Learning ✗ Inter-Sent. Prompting
Given the example of HWT and MGT as positive and
negative demonstrations when generating MGT on the
same prompt.

Character-Substituted Generation ✗ Inter-Sent. Prompting
Prompt to ask the model to generate the text with specific
character substitution criteria and recover the output after
finishing the whole generation.

Table 1: Overview of the attacks. ‘Model-Free’ means whether the attacker is free from using any additional
language model or not. ‘Access’ indicates the access to the generator needed when doing the attack (details in §6
and examples in Table 16).

(Mitchell et al., 2023), to perform worse than a
random prediction (§6.2), etc. Hence, we view the
attacks as the stumbling blocks for current MGT de-
tectors toward robustness. Moreover, we interpret
the reasons behind detectors’ weaknesses under at-
tacks and further introduce out-of-the-box patches
with inferior performance in some scenarios.

We build a robustness leaderboard (Table 2, and
the pipeline is illustrated in Figure 1) by averag-
ing results from different attacks. We find that
watermarking (Kirchenbauer et al., 2023a) per-
forms best for robust MGT detection to its ap-
plicable attacks.3 Next, model-based detectors
are more robust than metric-based ones in most
cases. Overall, this study aims to raise awareness
of the detection vulnerabilities and the urgency of
more robust methodologies, thereby turning the
stumbling blocks into stepping stones.

2 Problem Formulation
Threat Model. Figure 1 shows the overall pipeline.
There are three roles in the problem: generator
(§3), detector (§3), and attacker (Table 1, §6). The
task for the detector is to classify whether a given

3Watermarking requires logit-level access to the generator
model and has the risk of negatively impacting text quality.

piece of text is human-written (HWT) or machine-
generated (MGT) from the generator LM. In the
attacked scenario, before the MGT is sent to the
detector, an attacker could tamper with the text or
the generator, attempting to deceive the detector
into classifying the MGT as HWT. We compute the
budget (§4) of each attack to measure its impact on
text quality and semantics.
Scope. For a realistic scenario, we set the scope of
our robustness evaluation under attack as follows:

(i) We assume that the attacker does not have any
knowledge or access to the detectors.

(ii) The attacker only has limited access to the
generators: We assume to have prompting ac-
cess with tunable sampling hyper-parameters
for the following reason: currently, most
top-performing LLMs accessible to users are
closed-source (e.g., GPT-4, Claude), to which
we only have API access or a panel including a
prompt input and sampling settings (OpenAI,
2022a). Due to the same reason, adversarial
attacks (Li et al., 2018; Le et al., 2022) are not
covered in this study.

(iii) For a holistic comparison, we apply each
attack on different perturbation levels (e.g.,
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number of typos), termed as budgets (§4).

3 Generators and Detectors

We select GPT-2 XL (1.5B) (Radford et al., 2019),
GPT-J (6B) (Wang and Komatsuzaki, 2021), and
LlaMA-2 (7B-hf) (Touvron et al., 2023a) as the
representative open-source generators, and Text-
Davinci-003 (OpenAI, 2022b) and GPT-4 (OpenAI,
2023) as the closed-source generator representa-
tives. All the generators shared similar results
under attacks (Appendix F.3). We select GPT-J
(6B) as the default generator to show the results in
§6 if unspecified (we empirically find metric-based
detectors do not perform well on stronger gener-
ative LMs even without attacks). The results of
LlaMA-2 and GPT-4 will be additionally shown in
Appendix F.3 and §6. For closed-source generators,
some of the detectors can not be applied due to the
requirement of white-box parameters.

Current MGT detectors could be classified into
3 high-level categories, as we introduce below. We
include representative detectors from each category
for our evaluation. A detailed introduction of the
detectors is deferred to Appendix B.2.1.

Metric-Based Detector relies on the inferred log-
probability from the generator LLM, and adopts
a threshold for classification.4 Detectors for this
type do not require any training. We include GLTR
(Gehrmann et al., 2019; Solaiman et al., 2019),
Rank and LogRank (Solaiman et al., 2019), and
DetectGPT (Mitchell et al., 2023) as representative
approaches in the category.

Fine-Tuned Detector is trained on a pretrained lan-
guage model (PLM) in a supervised method with
a classification loss. We include OpenAI Detector
(Solaiman et al., 2019), SimpleAI Detector (Guo
et al., 2023), and Fine-tuned DeBERTa as represen-
tative models in the category.

Watermark-Based Detector adds algorithmically
detectable signatures into texts during generation.
Kirchenbauer et al. (2023a) is a representative ap-
proach, which adds a token-level bias in the decod-
ing stage (represented as Watermark afterward).

We follow the recommended configurations for
most detectors. Detailed hyperparameters are in-
cluded in the Appendix B.2.2.

4The setting of threshold largely impacts the detection
accuracy, but it is out-of-the-scope of this paper’s focus. Thus,
we mainly use threshold-free metrics (e.g., AUC ROC and
TPR@FPR) in experiments (detailed in §5).

4 Budget of Attacks
As stated in §2, to measure the perturbation level
of attacks on the generated texts, we utilize a series
of text generation evaluation metrics as the budget
of attacks, covering syntactic- or semantic-level
perturbation. A strong attack should induce large
detection performance degradation with a relatively
small budget.

For the editing attacks, we use Levenshtein Edit
Distance (Levenshtein, 1965) as the major budget,
which is the minimum number of single-character
edits, including insertions, deletions, and substitu-
tions. A larger distance represents a larger attack
budget. Additionally, we also record Jaro Similar-
ity (Jaro, 1989).5

To measure the quality of texts under the attacks
that change the semantic meaning (e.g., prompt-
ing attacks and co-generating attacks), we utilize
Perplexity under LlaMA-7B-hf (Touvron et al.,
2023b) and MAUVE (Pillutla et al., 2021). We
use MAUVE to compare the distribution gap be-
tween MGTs and HWTs. MGTs are used to esti-
mate the model distribution, and HWTs are used
to estimate the target distribution (the setting is ab-
breviated as ‘M2H’). Lower Perplexity or higher
MAUVE (M2H) represents better quality and a
smaller budget. Table 6 shows the unattacked value
for reference.

For the attacks that do not change semantics
meaning, e.g., paraphrasing, we use BERTScore
(Zhang et al., 2019) as the major metric for the
budget. We utilize it to compare the similarity be-
tween MGTs after the attack to MGTs before the at-
tack. In this scenario, attacked MGTs are the candi-
dates for BERTScore, while unattacked MGTs are
the reference (the setting is abbreviated as ‘A2B’).
The BERTScore we used is rescaled. A larger
BERTScore (A2B) value means a smaller budget
in the attack. Besides, we also record BARTScore
(Yuan et al., 2021) and Cosine Similarity, which
shows equivalent results.

See Table 17 for more details on the metrics
for the attack budget. Appendix F.1 shows the
correlation among all metrics, which share highly
similar trends of attacked performance.

5 Experiment Setting

Data Setting. Following the setting of Pu et al.
(2023), we generate News-style texts with a proper

5The edit distance, Jaro similarity, and cosine similarity
are implemented based on the string2string (Suzgun et al.,
2023) package.
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Leaderboard: MGT Detector Robustness

Detector Edit Para. Prompt CoGen. Avg.

Watermark 99.86 97.17 - - 99.99 99.01
SimpleAI Det. 108.1 97.51 81.58 95.04 95.55
OpenAI Det.-Lg 57.77 97.84 105.2 107.2 92.00
Model. Avg. 76.65 92.08 97.57 92.22 89.63
F.t. DeBERTa 104.1 81.49 99.09 64.28 87.24
OpenAI Det.-Bs 36.63 91.46 104.4 102.4 83.71
DetectGPT-1d 74.82 75.32 102.8 66.46 79.85
DetectGPT-10d 62.67 64.40 97.68 49.78 68.63
DetectGPT-10z 56.41 59.73 93.88 43.08 63.28
Metric. Avg. 51.82 61.89 91.26 33.49 59.62
LogRank 41.76 58.38 84.44 11.20 48.95
Rank 36.46 57.68 81.00 20.08 48.81
GLTR 38.82 55.80 87.79 10.32 48.18

Table 2: The overall robustness leaderboard of MGT
detectors by averaging the relative AUC ROC percent-
age across all attack budget levels in §6, ranking down-
wards by the overall average. ‘Metric. Avg.’ and ‘Model.
Avg.’ represent the average performance of metric-based
and model-based detectors. Bolding indicates the best
performance in each detector category, and worse per-
formance with drops larger than 70% are in orange.

sampling strategy for each generator, detailed in
Appendix B.1. Our study can be readily applied
to data from other domains. The prompts used for
MGT generation are the first 20 tokens of HWTs
in the dataset. The setting of the sampling strategy
aims to prevent repetition (Welleck et al., 2019).
The training, evaluation, and testing set size is
8,000, 1,000, and 1,000, respectively, with bal-
anced labels.

Metrics for Detector Performance. The met-
rics we use to evaluate detection performance
are binary classification metrics AUC ROC and
TPR@FPR. AUC ROC is the area under the re-
ceiver operating characteristic curve. TPR@FPR
is the true positive rate when the false positive rate
is at a specific percentage. Under our setting, it
is equivalent to Attack Success Rate (ASR) (Tsai
et al., 2019)7. We mainly show TPR@FPR=5%,
and TPR@FPR=10% and =20% are additionally
recorded in the Appendix F.2. We do not involve
Accuracy and F1-score because those metrics de-
pend on the threshold setting for metric-based de-
tectors, which could be biased in the comparison.

6The x-ticks in format (ZWS) character editing is twice the
ones in typo and homoglyph because the Unicode is 2 bytes
when computing edit distance.

7Under our settings, we define the success of the attack
is to deceive detectors by classifying machine-generated text
into human-written (described in §2). So, (1-TPR) and ASR
are both evaluating the equivalent thing.

Absolute MGT Detector Performance w/o Attack

Detector AUC TF=5 TF=10 TF=20 ACC

GLTR 84.46 39.00 53.40 71.60 76.00
Rank 68.13 22.60 35.60 46.80 63.60
LogRank 87.36 50.00 65.60 78.20 79.00
Entropy 51.84 7.60 14.60 26.40 50.80

DetectGPT-1d 68.66 15.80 27.40 45.80 62.10
DetectGPT-10d 83.12 21.60 43.80 71.20 75.80
DetectGPT-10z 85.16 30.80 50.80 73.20 76.20

OpenAI Det.-Bs 83.12 42.40 56.20 69.00 75.00
OpenAI Det.-Lg 88.55 53.60 65.60 78.00 79.00
SimpleAI Det. 87.98 81.20 82.60 84.60 84.40
F.t. DeBERTa 91.90 5.40 49.20 99.60 88.80

Watermark 99.94 99.80 99.80 99.80 99.99

Table 3: The performance of the detectors in the
unattacked scenario (absolute value). For short,
‘AUC’ is ROC AUC, ‘TF=5’ is TPR@FPR=5%, ‘ACC’
is Accuracy, ‘Det.’ is Detector, and ‘F.t.’ is Fine-tuned.

Notably, we report all the metrics of attacked sce-
narios in relative value to the unattacked perfor-
mance (Table 3) for clearer comparison.

6 Attacks and Results

In this section, we describe the attack methodolo-
gies and results divided by attack category. We
view the degraded performance under attacks of
various detectors as stumbling blocks to robust
MGT detection. Further, we analyze the defects
and propose defense patches in each category to
explore the potential of turning stumbling blocks
into stepping stones. Table 1 is an overview of all
attacks and Table 16 shows some examples.

6.1 Overall Message

For readers who want a high-level overview of our
findings, we show the overall results and messages
ahead here by aggregating results from all types
of attacks covered in our work. We will introduce
and discuss the detailed attacks and results in the
following subsections (§6.2 - §6.4).

Leaderboard. Overall, we build a leaderboard of
detector robustness averaging all the performance
datapoints under attacks. The relative AUC ROC
under attack8 are as shown in Table 2. A high rel-
ative AUC ROC means that the detector is robust
to the attack. According to the leaderboard, water-

8‘Relative AUC ROC under attack’ is the percentage of the
AUC ROC in attacked scenarios divided by the unattacked
AUC ROC, to show the relative performance drop of the de-
tectors under attack. Detailed in §5.
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Figure 2: Performance drop of the detectors under the editing attacks. We show the mixed setting for typo
insertion, and the zero-width whitespace setting (ZWS for short) for format character editing. The budget on the
x-axis is the edit distance at character level (↑ a larger number represents a stronger attack). The color of dashed
lines indicates the category of detectors.6

marking is most robust to its accessible attacks9.
Following, SimpleAI Detector and OpenAI Detec-
tor (large) rank second and third. Moreover, model-
based detectors are more robust than metric-
based detectors in most cases. Additionally, we
report the absolute performance of the detectors
without attacks in Table 3, which should also be
considered while selecting suitable detectors.

Detector Defect Review. We summarize the de-
fect for each detector as follows. GLTR, Rank,
and LogRank have an average performance drop
of 51.35% under all attacks, especially not robust
to editing, paraphrasing, and co-generating attacks.
In comparison, DetectGPT shows better robustness
(average 29.41% drop), especially on paraphras-
ing and co-generating attacks. Among fine-tuned
detectors, the strongest attack method varies. Sim-
pleAI Detector drops performance on paraphrasing
and prompting attacks, OpenAI Detectors drop on
editing, and F.t. DeBERTa performs worse on co-
generating while it keeps decent robust to other
attacks. We empirically find a larger model size of
OpenAI Detectors eases the robustness drawback.
Notably, watermarking is robust to all applicable at-
tacks, but it still fails under larger attack budgets10.
Moreover, it requires decoding-time access to the
generator compared with other detectors.

6.2 Editing Attacks
The first attack type we explore is the editing at-
tacks, which are applied to the generated texts by
minor editing at the character level without any
change in semantics at the post-generation stage.

9Some prompting attacks can not be applied to watermark
since it is in need of white-box models and compatibility to
the watermarking decoding.

10For example, the inter-sentence paraphrasing attack de-
grades watermarking’s performance to 75.79 AUC ROC.

Thus, editing attacks are at a low granularity. Some
of the attacks might cause the text to lose minor
quality and readability. Below, we will introduce
three attack types.

6.2.1 Approaches

Typo Insertion intentionally adds a few typos into
generated texts. We consider four main kinds of
typos in English keystroke scenarios: insertion,
deletion, substitution, and transposition (Kukich,
1992). Aside from testing on each kind, we propose
a mixed typo insertion to mimic the realistic sce-
nario according to the distribution investigated by
Baba and Suzuki (2012).11 Also, we additionally
take letter frequency into account when selecting
the characters to be attacked (Pavel, 2000).

Homoglyph Alteration uses graphemes, charac-
ters, or glyphs with visually identical or very simi-
lar shapes but different meanings for imperceptible
replacements, first introduced in the cyber security
domain (Gabrilovich and Gontmakher, 2002). We
use VIPER (Eger et al., 2019) (Visual Perturb) Easy
Character Embedding Space (ECES) to get the best
homoglyph alternative of the selected character.

Format Character Editing, also named Discreet
Alteration (Kirchenbauer et al., 2023a), uses spe-
cial escape characters and format-control Unicodes
as human-invisible disruptions to deceive detec-
tors. We consider \n - newline, \r - carriage return,
\v - vertical tab, \u200B - zero-width whitespace,
and \u000B - line tabulation as representatives and
they shared similar results. Specifically, zero-width
whitespace can be inserted between any tokens,
while we only add shift-related characters at the
end of sentences.

11substitution 55.6%, insertion 20.3%, transposition 1.1%,
deletion 23.0%.
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Figure 3: Illustration of the distribution of the metric
value of the metric-based detectors before the attack,
after the attack, and after patching (an out-of-the-box
defense we proposed in §6.2.3). The light-red dotted
lines are the optimal decision boundaries.

We do all the editing on the character level, and
the budget is measured by edit distance. Also, we
do at most one edit per word.

6.2.2 Results and Analysis

As shown in Figure 2, all metric-based detectors
and some fine-tuned ones drop dramatically, while
only SimpleAI-Detector and Fine-tuned DeBERTa
maintain good performance. Specifically, around
2 to 6 characters editing of typos or homoglyph
per text can degrade the performance of most
detectors to be worse than random (The average
length of texts is around 110 tokens). All metric-
based methods show a continuous decrease while
attack budgets increase. In typo and homoglyph
attacks, the decrease can mount up to a total fail-
ure with ROC AUC near 0. In comparison, De-
tectGPT is more robust than the others, e.g., its
drop converges to about 0.5 under homoglyph alter-
ation while GLTR and Log Rank degrade to near
0. However, DetectGPT with fewer perturbed sam-
ples (_1d) is more robust than larger ones (_10d
and _10z), which is counterintuitive.

Among fine-tuned detectors, OpenAI Detectors
show a similar unsoundness as metric-based ones.
And their drops are most significant in format
character editing. SimpleAI Detector and F.t.-
DeBERTa show great robustness to all editing at-
tacks. Moreover, the comparison between two un-
derperforming OpenAI Detectors of different sizes
indicates that larger classification models could be
more robust than smaller ones under editing. The
watermarking method is also very robust to attacks,
i.e., keeping the AUC ROC above 99%.

In addition, all four individual types of typo
share similar negative impacts as the mixed version,
as shown in Appendix E.1. Also, we observe sim-
ilar drops for all format character editing attacks,

Detector Before Att. After Att. w/ Patch

DetectGPT-1d 0.6866 0.4299 0.5111
DetectGPT-10d 0.8312 0.3301 0.6048
DetectGPT-10z 0.8516 0.2735 0.6032

Table 4: Performance of DetectGPT after patching un-
der typo insertion attack in terms of AUC ROC.

while zero-width whitespace is more effective.

Interpretation. Metric-based detectors assume
that HWTs have smaller log probabilities than
MGTs when inferred by the generator model. How-
ever, editing attacks can effectively decrease the
next-token probabilities, leading to indistinguish-
able situations of the distribution curves and even
inverse relative relationships, which cause com-
pletely wrong predictions (ROC AUC near 0) as the
budget increases. Figure 3 shows a detailed illus-
tration, taking GLTR and DetectGPT as examples.
After the attack, a larger overlap of the two curves
(column 2) means more severe indistinguishability,
and the interchange of the relative positions of the
two curves (column 3) leads to wrong predictions.
From this intuition, we attempt to patch the issue
by removing anomalies in the next section. For the
fine-tuned detectors, OpenAI Detectors perform
worse in most cases, while SimpleAI Detector and
F.t.-DeBERTa show great robustness. We surmise
the reason is that OpenAI Detectors is trained on
the GPT-2 corpus, which is outdated compared to
the ChatGPT corpus for SimpleAI Detector and the
GPT-J corpus for F.t.-DeBERTa. The model shows
less robustness under such an out-of-distribution
(OOD) situation.

6.2.3 Out-of-the-box Defense Patch
In this section, we propose a simple patch for the
under-performing DetectGPT approach. As the
editing attacks mainly cause extremely low token
probabilities to deceive the classification, we view
them as anomaly points to filter them out. Specifi-
cally, for each text, the top k% tokens with the low-
est probabilities are prevented from being masked
and perturbed when doing mask-filling. We also do
not take their token probability into the computa-
tion. Table 4 show the patch recovers performance
by 0.2285 AUC ROC on average for 3 settings.

Other potential patches include adversarial train-
ing (Goodfellow et al., 2014), visual character em-
beddings (Wehrmann et al., 2019) for homoglyph,
and preprocessing with grammatical error correc-
tion (Bryant et al., 2022). These approaches are
more costly, and we leave them to future work.
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Figure 4: Performance drop of the detectors under the paraphrasing attacks. We use BERTScore (A2B) as
the budget in the figure.‘A2B’ means we compute BERTScore between unattacked MGTs and attacked MGTs. ↓
Smaller BERTScore value means a larger budget on the attack.

6.3 Paraphrasing Attacks

Paraphrasing attacks aim to rewrite the generated
texts without changing the semantic meanings at
the post-generation stage. Paraphrasing has been
used for robustness evaluation and data augmenta-
tion in many other tasks, e.g., sentiment analysis,
textual entailment (Iyyer et al., 2018), and machine
translation (Merkhofer et al., 2022). Usually, an
extra LLM is used as the paraphraser (Iyyer et al.,
2018; Yang et al., 2022). Krishna et al. (2023) has
reported the attack success of their paragraph-level
paraphraser on some MGT detectors, but a compre-
hensive study across a wider range of paraphrasers
and detectors is missing in the literature. In this
section, we will introduce five attack types that
cover paraphrasing attacks of different granularity,
from word-level to paragraph-level.

6.3.1 Approaches

Synonyms Substitution is to replace some words
with their synonyms to perturb the textual fea-
tures. Inspired by the red teaming setting of Shi
et al. (2023), we design a model-free method and
a model-based method. For the model-free sub-
stitution, we replace the selected words with their
synonyms retrieved from a static dictionary Word-
Net (Miller, 1994).12 However, it does not consider

12We avoid substituting the pronouns and prepositions to
avoid grammatical problems. However, issues like verb tense
still might happen.

the context of the substituted words. In the model-
based method, we use T5-large (Raffel et al., 2020)
to select the words to be substituted and prompt
LlaMA (Touvron et al., 2023b) to get the synonyms
given the context (detailed in Appendix E.2).

Span Perturbation is to rewrite word spans like
phrases or clauses. Compared to synonym substi-
tution, span perturbation is more flexible in that
tokens can be reordered or replaced. Following
the perturbation method of DetectGPT, we first
randomly select spans for masking and then use
T5-large to fill in.

Inner-Sentence Paraphrase is to paraphrase each
sentence separately. We use Pegasus (Zhang et al.,
2020) to process sentences of texts and join them
back to the full texts. To control the budget, we can
adjust the portion of sentences to be paraphrased.

Inter-Sentence Paraphrase uses Dipper (Krishna
et al., 2023) to paraphrase the whole text at once,
which can reorder, merge, and split multiple sen-
tences. We control the lexical diversity and order
diversity to change the budgets.

For budget, we measure the semantic difference
between before- and after-attack with BERTScore.

6.3.2 Results and Analysis
The results are shown in Figure 4. Interestingly,
lower-level perturbations (i.e., word substitu-
tion) show greater attack success than higher-
level perturbations (i.e., sentence-level para-
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Figure 5: Performance drop of the detectors under
the co-generation attacks. We use MAUVE (M2H)
as the budget to evaluate the text quality in the fig-
ure.‘M2H’ means we compute MAUVE between HWTs
and attacked MGTs. The vertically dotted red line is
the score w.o. attack. ↓ Smaller MAUVE (M2H) value
means a larger budget on the attack.

phrases) at the same budget. Metric-based de-
tectors show weakness at all level perturbations,
especially degrading to near 0.0 AUC ROC under
word substitution attacks. Among metric-based
detectors, DetectGPT shows slightly better robust-
ness at word-level perturbation but then loses the
lead at higher levels. For fine-tuned detectors, Sim-
pleAI Detector remains robust under all attacks,
while OpenAI Detectors and F.t.-DeBERTa fail at
some attacks. A surprising result is that in some
cases, fine-tuned detectors’ performance first drops
but then increases as the budget increases, e.g.,
OpenAI Detectors under word substitution and F.t.-
DeBERTa under inter-sentence paraphrase. Finally,
for watermarking, inter-sentence paraphrasing
is the only effective attack.

See interpretation in Appendix C.1.

6.4 Co-Generating Attacks

Co-generating attacks perturb the generated tokens
at each sampling step with some designed rules.
Their mechanism shares similarities to the typo in-
sertion attack (§6.2). But for co-generating, the per-
turbed text is cleaned to be grammatically correct
after generation. We will introduce two attacks.

6.4.1 Approaches

Typo Co-Generation is to insert typos during gen-
eration. Different from the typo insertion attack
(§6.2), we introduce typos immediately after the
token is sampled (before the generation of the next
token), following preset typo insertion rules, e.g.,
substitute all ‘a’s into ‘z’s. After the whole gener-
ation is finished, we reverse the inserted typos to
clear the errors. Compared to the typo insertion at-
tack, typo co-generation does not directly damage

AUC% Attack P.-Para ICL CS Gen
Dataset GPT-J GPT-4 GPT-4 GPT-4

PPL unatt. 1.930 2.042 2.042 2.042
MAUVE unatt. 0.944 0.483 0.483 0.483

Budget
PPL attacked 1.867 2.064 2.080 4.971
MAUVE att. 0.963 0.348 0.680 0.056

Detect.

GLTR 105.3 111.3 96.83 16.40
Rank 103.8 114.5 95.15 13.47
LogRank 105.0 111.7 97.37 16.58
DetectGPT-1d 99.64 109.4 98.96 59.68
DetectGPT-10d 99.98 112.9 96.76 31.44
DetectGPT-10z 99.94 112.9 97.15 35.62
OpenAI Det.-Bs 115.9 135.8 96.71 54.04
OpenAI Det.-Lg 110.4 128.1 99.79 57.25
SimpleAI Det. 25.63 33.20 102.64 107.44
F.t. DeBERTa 43.70 98.19 99.70 108.13
Watermark* 99.98 - - - - - -

Table 5: Performance drop of the detectors under the
prompting attacks. The perplexity (abbr. PPL) and
MAUVE (M2H) are as the budgets for quality.13

quality and human imperceptibility.

Emoji Co-Generation is developed in a similar
fashion: We insert emojis at the end of generated
sentences (before the generation of the next sen-
tences) and remove them post-generation.

More approach details in Appendix E.3 to E.4.

6.4.2 Results and Analysis
Figure 5 shows the results. We observe that the
metric-based detectors and F.t.-DeBERTa are not
robust to the co-generation attacks, while OpenAI
and SimpleAI Detectors show minor degradation.
DetectGPT is more robust than other metric-based
methods without perturbation, e.g., it converges at
around 0.5 under typo co-generation while GLTR
and (Log-)Rank converge near 0.1. For all de-
tectors, the further increase in budgets for co-
generation attacks does not cause proportional per-
formance drops.

We feel it is hard for detectors to overcome the
degradation. And there are no related existing
works to the best of our knowledge. See detailed
discussion of interpretation in Appendix C.2.

6.5 Prompting Attacks

Most detectors are trained and tested on data based
on fixed, well-designed prompts, e.g., question
answering (Guo et al., 2023), continual writing

13For short, ‘P.-Para’ is the prompt paraphrasing attack,
and ‘CS Gen’ is the character-substituted generation attack.
Bolding indicates severe performance drop (drops larger than
50% are in red; between 25% and 50% are in yellow). Since
GPT-4 is close-sourced, we can not test the watermark on it.
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(Zellers et al., 2019), etc. But in realistic scenar-
ios, user prompts might be much more diverse, ab-
normal, and even noisy (Zamfirescu-Pereira et al.,
2023). In this section, we introduce three attack
types. Table 5 shows the results.

6.6 Approaches

Prompt Paraphrasing. Instead of paraphrasing
whole texts post-generation (§6.3), paraphrasing
the prompt prior to generation is much cheaper and
low-impact on the output quality. We use Pegasus
paraphraser to rewrite the prompts.14

In-Context Learning (Dong et al., 2022) improves
generation quality by giving only a few examples
in the form of demonstration. To generate more
human-like texts to deceive detectors, we give the
generator a related HWT as a positive example
and a vanilla MGT as a negative example. We fol-
low the prompt design of Super-NaturalInstructions
(Wang et al., 2022).15

Character-Substituted Generation is inspired by
substitution cipher (Spillman et al., 1993) in the
domain of cryptography. We found that recent
LLM, e.g., GPT-4, are able to follow some easy
substitution rule, e.g., replace ‘a’s with ‘z’s,
during generation. Afterward, we substitute the
mapping back to clean the output. Table 7 shows an
example. Notably, we only find GPT-4 maintains
acceptable generation quality under this attack, so
we solely show its result.

6.7 Results and Analysis

Table 5 shows the results. The metric-based detec-
tors severely suffer the character-substituted gener-
ation attack but are robust to prompt paraphrasing
and in-context learning. On the other hand, the fine-
tuned detectors show some drop in prompt para-
phrasing but have great robustness under character-
substituted generation.16

Discussion on interpretation is in Appendix C.3.

14Since the prompts are usually very short, it is hard for us
to control the budget while paraphrasing. Hence, we report
attacked performance under a single budget at Table 5.

15It is also hard to adjust the budget for this attack. One
potential way is to change the demonstration number, but
it shows no clear correlation to the budgets and also might
exceed the generator’s maximum length of the input sequence.

16Note that the budget of character-substituted generation
is larger than other attacks. As a prompting method, it is hard
to control it, so a milder character-substitution method with
an adjustable budget is by controlled generation (§6.4).

7 Future Work

We propose ideas of enhancement for detectors in
Appendix D.1 and three stronger attack categories,
namely sampling attacks, fine-tuning attacks, and
human-involved attacks in Appendix D.2.

8 Related Work

To the best of our knowledge, there is no exist-
ing thorough study on stress testing the robustness
of machine-generated text detection under various
attacks. Some existing works of MGT detectors
evaluate their robustness under some specific at-
tacks. Liu et al. (2022) evaluate the robustness of
their model-based detector CoCo under token edit-
ing. Krishna et al. (2023) stress test detectors on
paragraph-level paraphrase, and further purpose a
retrieval-based method to increase robustness. Hu
et al. (2023) focus on paraphrastic robust model-
based detectors by adopting adversarial learning.
Zhang et al. (2023) purpose that topic shifting drops
the metric-based detectors’ performance. In the wa-
termark domain, Kirchenbauer et al. (2023a) pro-
pose a list of initial attack ideas, including editing,
paraphrasing, and generation strategy. However,
they only experiment on the span perturbation at-
tack for their watermark method. Further, Kirchen-
bauer et al. (2023b) study the watermark robustness
after LLM paraphrase, manual paraphrase, and mix
into a longer document. Zhao et al. (2023b) en-
hance the robustness of the watermarking scheme
against editing and paraphrasing attacks by em-
ploying a fixed group design. And Hou et al. (2023,
2024) propose a semantic watermark at the sen-
tence level for paraphrastic robustness.

To summarize, a thorough and comparative
stress test on the robustness covering a wide range
of detectors and attacks is lacking in the literature,
which motivates our work.

9 Conclusion

This study evaluates the robustness of 8 MGT de-
tectors against 12 realistic attacks, revealing strik-
ing vulnerabilities. Findings show that no detector
consistently withstands all attacks, as some attack
strategies severely compromise detection accuracy.
Among various detectors, watermarking is the most
robust, followed by model-based detectors. We
also suggest combining metric- and model-based
detectors for better resilience. Aiming at robust
MGT detection, we call for awareness of vulnera-
bility and the need for further methods.
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Limitations

We mainly show and discuss the results of represen-
tative generators, detectors, and attack methods in
the main paper following the preset scope §2. Since
our work is a general and reproducible evaluation
pipeline, it is readily applicable to other generators
or detectors.

We mainly focus on English in our work. Most
attacks are able to be generalized to other lan-
guages, but the generation quality might suffer
mainly depending on the generator’s capability, es-
pecially in lower-resource languages. Also, the de-
tection accuracy highly relies on the base model’s
capability in other languages. Some attacks could
have slightly different designs for other languages,
e.g., the homoglyph alteration attack could be more
complex in logographic languages like Chinese,
Japanese (Kanji), and Vietnamese (Chu Nôm), and
it would be interesting to explore in future work.

Ethics Statement

The goal of this paper is not to provide a cookbook
for malicious use of attacks to deceive MGT detec-
tors. On the contrary, we want to draw attention to
the potential vulnerabilities of current MGT detec-
tors. Moreover, we call for future MGT detectors
that are robust against the attacks we tested. For
this target, we will open-source all the code and
dataset for easy reproduction of our pipeline of ro-
bustness tests. We also propose and describe some
defense patches for fixing these loopholes.
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A Other Related Works

Study on Adversarial Attack to MGT Detection.
Adversarial attack (Goodfellow et al., 2014), which
exposes optimized regions of the input space where
the model under-performs, first introduced to text
data by Li et al. (2018), is powerful to reveal robust-
ness in text classification (Jin et al., 2020). Shi et al.
(2023) first use adversarial attack on MGT detec-
tors, including OpenAI-Detector, DetectGPT, and
watermarking. They cover adversarial word substi-
tution and prompting, both of which deceive three
detectors. Furthermore, RADAR (Hu et al., 2023)
attempts to improve the robustness of model-based
detectors by adversarial learning on paraphrasing.
We also take inspiration from recent work on the
blind spots of NLG metrics (He et al., 2023a).

However, under realistic scenarios, attackers do
not have detailed knowledge of which detector is
being used (§2). Hence, our work focuses on non-
adversarial attacks, which are under-explored.

Study on Generalization of MGT Detection.
Generalization capability is an important aspect
of robustness in MGT detection. For model-based
detectors, Solaiman et al. (2019) evaluate their Ope-
nAI Detector on generalize through different model
sizes, sampling strategies, and input text length. Pu
et al. (2023) study the generalization ability when
testing on out-of-domain data from different gener-
ators. Pagnoni et al. (2022) analyze the generaliza-
tion on sequence length, decoding strategy, dataset
domain, and generator size. Wang et al. (2023) in-
troduce a multi-generator, multi-domain, and multi-
lingual corpus to train more generalizable detec-
tors. For metric-based detectors, Mireshghallah
et al. (2023) explore the generalization between
different base models and dataset generators on a
perturbation-based metric-based detector.

In comparison, our research focuses not on
the generalization problem but on the robustness
against realistic and malicious attacks.

Unwatermarked Watermarked

PPL MAUVE(M2H) PPL MAUVE(M2H)
1.930 ± 0.386 0.9444 2.119 ± 0.524 0.9639

Table 6: The unattacked value of average Perplexity
and MAUVE (M2H) as the base point. Notably, for
the watermark-based detector, the reference texts for
budget computation are watermarked MGTs instead of
the original unwatermarked MGTs.

B Experiment Settings

The experiments are done on 8 Tesla V100 and 4
Tesla A100 GPUs, taking up a total of around 500
GPU hours.

B.1 Dataset and Generators

We build the dataset based on Pu et al. (2023). The
HWTs are from the News domain of the dataset,
and the MGTs are generated with different tempera-
tures for each generator we selected. Table 8 shows
the sample number of each split in our dataset.

Table 9 shows the number of tokens of each
entry in the dataset from each generator. All of
them are around 110 tokens. The length setting
follows the literature, e.g., 120 tokens in Pu et al.
(2023) (based on RealNews), 200 tokens in Hu et al.
(2023) (based on Xsum, SQuAD, and Reddit Writ-
ingPrompts), 100 words in He et al. (2023b) (based
on Essay, WP, and Reuters), and 100 words in
Chakraborty et al. (2023) (based on Reuters). More-
over, a longer average length would lead to higher
detection accuracy (Bao et al., 2023; Chakraborty
et al., 2023). So, we also aim to control the level
of task difficulty by controlling the length.

For sampling, we use a combination of nucleus
sampling (Welleck et al., 2019) with top-p = 0.96
and a tuned temperature parameter (Caccia et al.,
2020; Nadeem et al., 2020). While smaller temper-
ature gives higher quality, it will also cause repeti-
tion, especially for less capable LMs. So, we tune
the temperature based on the criteria of preventing
repetition, which is < 0.2 in terms of 4-gram du-
plication under metric seq-rep-4 in Welleck et al.
(2019). Table 10 shows the our temperature set-
tings.

Prompt:
Continue 20 words with all ‘a’s substituted
with ‘z’s and all ‘z’s substituted with ‘a’s:

As the sun dipped below the horizon, casting

GPT-4:

Zs the sun dipped below the horiaon, czsting
shzdows zcross the lzndsczpe, z gentle
breeae whispered through the trees, czrrying
with it the sweet zromz of spring flowers ...

Cleaned
Output:

As the sun dipped below the horizon, casting
shadows across the landscape, a gentle
breeze whispered through the trees, carrying
with it the sweet aroma of spring flowers ...

Table 7: A character-substituted generation example.
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Split Train Eval Test

Sample Num. 8,000 1,000 1,000

Table 8: The sample number of each split of the dataset.

B.2 Detectors

B.2.1 Detailed Introduction

Metric-Based Detector relies on the inferenced
log-probability from the generator LLM, and
adopts a threshold for classification.

GLTR (Gehrmann et al., 2019; Solaiman et al.,
2019) using the average of the next-token proba-
bility to determine whether an input text is MGT.
Texts with high average probability are classified
as MGTs.

Rank and LogRank (Solaiman et al., 2019;
Mitchell et al., 2023) using the averaged rank and
log-rank of next-token probability for detection re-
spectively.

DetectGPT (Mitchell et al., 2023) stands as the
pioneering work of using perturbation as a com-
parison to original texts to enhance metric-based
detection. Perturbation here refers to rewriting or
substituting spans of tokens using a mask-filling
LM (i.e., T5-small (Raffel et al., 2020)). It poses
that perturbed MGTs tend to have lower log proba-
bilities compared to the original samples under the
base LM, while perturbed HWTs may be at about
a similar level to the origin. Bao et al. (2023); Su
et al. (2023); Liu et al. (2024); Mao et al. (2024)
further follow up DetectGPT.

We apply the white-box setting to the metric-
based detectors, where full knowledge (e.g., which
LLM generated the texts) and access ( including
the parameters of the generator LLM) are given to
the detectors. The reason is that those detectors
require the generator LLM as the base model to
compute the metrics.

Fine-Tuned Detector is trained on a pretrained
language model (PLM) in a supervised method
with a classification loss.

OpenAI Detector (Solaiman et al., 2019) is a
model to detect GPT-2 generation by fine-tuning
a RoBERTa (Liu et al., 2019) model. We evaluate
both the base size (125M) and the large size (355M)
model.

SimpleAI Detector (Guo et al., 2023) is a detec-
tor mainly for distinguishing ChatGPT, using the
HC3 QA dataset (Guo et al., 2023) to fine-tune a

RoBERTa model.
Fine-tuned DeBERTa is the model we fine-tuned

on our generation data, representing an in-domain
setting. We use DeBERTa-v3-base (He et al., 2021)
as the base model.17

Compared with OpenAI and SimpleAI Detectors
as off-the-shelf models, our fine-tuned DeBERTa is
relatively in-domain since it is solely fine-tuned on
the dataset from the same generator and within the
same topic domain as the test set. All the fine-tuned
detectors are under the black-box setting, which
means they have no knowledge or access to the
generator LLM but only the generated dataset.

Watermark-Based Detector adds algorithmically
detectable signatures into texts during generation.
Kirchenbauer et al. (2023a) is a representative wa-
termarking approach, which adds a token-level bias
in the decoding stage (represented as Watermark
afterward). This work is followed up by Zhao
et al. (2023b); Christ et al. (2023); Kuditipudi et al.
(2023); Hou et al. (2023, 2024). All watermark-
based detectors are under the white box setting,
where they have all the knowledge and access to
the generator LLM.

B.2.2 Detailed Hyperparameters
For all model-based detectors, we use the origi-
nal generator of the test set as the base model to
compute the next-token probability and perplexity.

For DetectGPT, we follow the recommendation
hyperparameter setting. The perturbation word ra-
tio is 15% on 2-spam, the perturbation model is
T5-3B (Raffel et al., 2020), and the sample number
of perturbation is 1 or 10 (indicated in the name
of the legend). In the legend, mode ‘d’ represents
the direct use of the absolute likelihood drop while
mode ‘z’ adds an additional normalization. The
mask-filling in perturbation is with temperature 1
without any sampling strategy (e.g., top-p and top-
k).

For all fine-tuned detectors, we directly use the
logits as the output probability. When fine-tuning
F.t. DeBERTa, we set batch size as 4, learning rate
as 1e-5, weight decay as 0, adam epsilon as 1e-8,
and epoch number as 10.

For the watermark, we follow the setting in
Kirchenbauer et al. (2023a), setting gamma as 0.25,

17We have also tried other base models, e.g., BERT (Devlin
et al., 2018), RoBERTa, ELECTRA (Clark et al., 2020), etc.
The selection of base model does not impact the overall trend
of the findings, and the gap on the absolute detection accuracy
is within 2%.
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Dataset GPT-J GPT-J Watermarked GPT-4 LlaMA-2

# token 109.89 ± 5.33 109.88 ± 7.09 109.46 ± 5.15 110.23 ± 5.33

Table 9: The average token number in the dataset from each generator.

Generator GPT-2 XL GPT-J LlaMA LlaMA-2 DaVinci-003 GPT-4

Temp. 1.5 1.5 1.0 1.5 0.7 0.7

Table 10: The temperature we set for each generator to follow the criteria of avoiding severe repetitions.

seeding scheme as selfhash, and z-score threshold
as 4.0.

B.2.3 Under Closed-Source Dataset
For GPT-4 datasets, as we do not have the white-
box generator model, we select an alternative LM
as the base model. According to the conclusion
from Mireshghallah et al. (2023), GPT-2 Small
(Radford et al., 2019) is the best-performed base
model when generalized to GPT-4. Our exper-
iment compares GPT-2 (Small, Medium, Large,
XL), OPT (125M, 350M, 1.3B, 2.7B) (Zhang et al.,
2022), GPT-Neo (125M, 1.3B, 2.7B) (Black et al.,
2021), and GPT-J (6B), and the results align that
GPT-2 Small is the best. Hence, our GPT-4 dataset
results are all under GPT-2 Small as the base model.
Table 12 shows the unattacked performance. Ta-
ble 11 shows the Perplexity and MAUVE (M2H)
as budget of unattacked GPT-4 dataset.

Unwatermarked

PPL MAUVE(M2H)
2.042 ± 0.250 0.4831

Table 11: The unattacked value of average Perplexity
and MAUVE (M2H) of GPT-4 dataset as the base point
budget.

C Interpretation

The watermarked detector adds a signature at each
token, and our editing attacks only change a mini-
mal portion of them. Hence, they show substantial
robustness, maintaining high AUC ROC.

C.1 Paraphrasing Attacks (§6.3)

For metric-based detectors, localized disturbances
from lower-level perturbations cause more de-
creases in next-token probability than high-level
perturbations. While for high-level perturbations,

Detector AUC TF=5 TF=10 TF=20 ACC

GLTR 62.41 2.20 7.20 22.00 60.40
Rank 62.15 11.40 21.20 36.00 59.80
LogRank 65.96 5.00 17.00 32.60 62.00
Entropy 66.40 12.40 23.00 35.80 61.80

DetectGPT-1d 51.22 3.60 6.60 15.20 50.40
DetectGPT-10d 55.61 2.00 4.40 16.20 55.60
DetectGPT-10z 59.53 5.80 11.00 22.20 58.40

OpenAI Det.-Bs 55.72 13.20 20.20 28.60 52.60
OpenAI Det.-Lg 57.70 6.00 12.20 24.60 56.00
SimpleAI Det. 86.81 81.00 82.20 85.40 84.40
F.t. DeBERTa 100.0 99.80 99.80 99.80 99.80

Table 12: The performance of detectors in the
unattacked scenario for the GPT-4 dataset. For short,
‘AUC’ is ROC AUC, ‘TF=5’ is TPR@FPR=5%, ‘ACC’
is Accuracy, ‘Det.’ is Detector, and ‘F.t.’ is Fine-tuned.

the decrease is spread out in wider spans, thus mi-
nor the overall impact. For fine-tuned detectors,
Liu et al. (2022) pose that they concentrate more on
long-form patterns (e.g., commonly used phrases
or sentence structures) from LLM to detect. Hence,
localized disturbances of low-level perturbation di-
rectly interrupt the long-form patterns, while high-
level paraphrasing is milder as it rewrites such pat-
terns but still keeps some of the machine signatures.
Moreover, we surmise that paraphrasing attacks are
not making MGTs more human-like but only mix-
ing the machine signatures. So, sometimes, the
detectors’ performance falls then rises as the bud-
gets increase, during which the dominant machine
signatures switch from the original generator’s to
the paraphraser’s.

C.2 Co-Generating Attacks (§6.4)

The insertion of emojis and typos during recurrent
next-token generation is a disruption for the sam-
pling of LLMs, shifting the generation away from
the generator’s original distribution. Moreover, re-
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moving the emojis and recovering the typos post-
generation disrupt the conditional probability again
for metric-based detectors. For fine-tuned models,
we surmise that when doing in-domain detection
(F.t.-DeBERTa), the detector might focus more on
localized features. Otherwise, out-of-domain mod-
els here (OpenAI and SimpleAI Detectors) focus
on long-term patterns. Thus, the in-domain model
is less robust to the attacks.

We have also attempted emoji co-generation
for watermarking, and it also demonstrates very
strong robustness, similar to the typo case. Inter-
estingly, inserting more emojis did not affect the
budget (MAUVE score) for watermarked genera-
tion. Therefore, we choose not to plot this result in
Table 5 to avoid confusion.

C.3 Prompting Attacks (§6.5)

The character-substituted generation attack is a
more localized perturbation compared with prompt
paraphrasing and in-context learning, which is on
the general level. So, similar to the paraphrasing
attacks, metric-based detectors show a larger vul-
nerability to localized perturbation since it directly
increases the next-token probabilities, which is also
shown as the high perplexity after the attack. How-
ever, fine-tuned detectors focus more on long-term
patterns, which may not impacted by a few substitu-
tions. But, prompt paraphrasing is a form of attack
that shifts the prompt pattern, which can degrade
fine-tuned detectors severely, especially those ones
that are not generalizable.

D Future Work

D.1 Future Work on Defenses

D.1.1 Paraphrasing Attacks (§6.3)

For metric-based detectors, a straightforward way
is to choose a base model that is related to com-
mon paraphrasers’ base models, e.g., T5, Prophet-
Net (Qi et al., 2020), or fine-tune the base model
on some paraphrased corpus. Similarly, data aug-
mentation on paraphrasing and adversarial learning
could be useful for training fine-tuned detectors
(Hu et al., 2023). Moreover, Krishna et al. (2023)
purpose that retrieval on an MGT database can be
the defense, if it is possible to collect enough in-
domain MGT entries. For watermarking, semantic-
level watermarking (Hou et al., 2023) (as opposed
to token-level) has been proposed for paraphrastic
robustness.

D.1.2 Co-Generating Attacks (§6.4)
To the best of our knowledge, there are no re-
lated existing works. We feel it is hard for metric-
based detectors to overcome the defects. Under this
scenario, fine-tuned detectors could be the better
choice. One potential way to enhance fine-tuning
is to adopt some data augmentation, like random
masking on short-term spans. Also, we surmise a
combination of metric-based detectors and model-
based detectors is useful to bypass each other’s
stumbling blocks better when attacked. The ensem-
bling could also ease the impact of other attacks.
Fortunately, the co-generation attacks are still not
widely available now since they need to be on the
white-box models.

D.1.3 Prompting Attacks (§6.5)
To patch the weakness of fine-tuned detectors un-
der prompt paraphrasing, an efficient way is to fine-
tune the classifier on multi-generator, multi-domain
datasets, e.g., M4 by Wang et al. (2023). Other-
wise, using an ensembling system (Pagnoni et al.,
2022) containing both metric-based and fine-tuned
detectors could ease the problem. However, we sur-
mise there is no direct way to patch the character-
substituted generation because it mimics the subop-
timal generation strategy of humans at the root. Yet
current LLMs are not capable of always following
the character-substitution prompts with high text
quality, which could cause unnatural expressions
and extra typos. A way to fix the loophole could be
censoring the prompts and generated texts if they
have weird expressions (Dou et al., 2022; Chiang
and Lee, 2023). Additionally, training detectors
on the MGT corpus from unnatural instructions
(Honovich et al., 2022) could also be considered.

D.2 Future Work on Attacks

Below, we briefly discuss other types of attacks
related to generalization, which are not covered in
this work.

Sampling Attacks. Diverse sampling strategies
(Holtzman et al., 2019) can be adopted when
generating MGTs both by setting different hyper-
parameters. Pagnoni et al. (2022) show that de-
tection performance generally decreases when a
fine-tuned detector is evaluated on a sampling strat-
egy it was not trained on.

Fine-Tuning Attacks. In some scenarios, users
might fine-tune the generator LLM on their spe-
cific domain. Since the detectors have no knowl-
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AUC% Typo Type Mixed Insert Delete Subst. Trans.

Budget Edit Distance 17.68 18.05 18.04 16.76 17.87

Detect.

GLTR 2.14 2.96 6.96 3.17 5.76

Rank 6.81 7.25 13.70 6.67 12.18

LogRank 2.56 3.65 9.74 3.72 7.67

DetectGPT-1d 44.66 44.57 53.38 42.59 58.28

DetectGPT-10d 17.99 15.98 32.62 18.01 25.18

DetectGPT-10z 15.02 14.54 26.24 15.95 20.75

OpenAI Det.-Bs 27.62 27.37 24.00 26.32 25.57

OpenAI Det.-Lg 34.76 29.56 35.11 32.68 33.58

SimpleAI Det. 111.6 111.1 112.1 111.0 111.2

F.t. DeBERTa 108.4 96.80 97.20 96.83 97.48

Table 13: Detectors’ performance drops in terms of
relative AUC ROC % of 4 typo types, namely insertion,
deletion, substitution, and transposition.

edge and access to the customized generator, their
performance might decrease.
Human-Involved Attacks is to manually polish
or replenish MGTs to be more human-like and im-
prove their quality, which could deceive the MGT
detector. Kirchenbauer et al. (2023b) purpose man-
ual paraphrasing and mixing HWTs into MGTs as
an attack to watermarks. And Christ et al. (2023)
describe a manual prefix-specificity scheme to lead
to a more human-like generation. Therefore, a ma-
jor limitation of the current detector technique is
the inability to classify human-LLM-collaborated
texts into binary classes. Future MGT detectors
that are able to measure the portion of LLM in-
volvement in text writing are worth considering as
an answer to this attack genre.

E Attack Details

In this section, we report the details that are not
included in the main paper due to lack of space,
including methodologies and settings.

E.1 Typo Insertion
Table 13 shows the performance drop of four sepa-
rate typo types, i.e., insertion, deletion, substitution,
and transposition. All of them share similar obser-
vations on degradation trends and are close to the
mixed typo type. Therefore, for the figure in the
main text, we show the result of mixed for brevity.

E.2 Synonym Substitution
Table 14 shows the prompt design for LlaMA to do
the model-based synonym generation with the con-
text. After the generation, we have an additional
step to ask LlaMA double check and correct the
grammar of the substituted sentences.

${sentence}\n Synonyms of the word “${word}"
in the above sentence are:\n a)

Table 14: Prompt for LlaMA to generate synonyms
based on the context for substitution attack.

E.3 Typo Co-Generation
The results reported in the main text using the typo
substitution rule switching ‘c’s and ‘k’s. We have
also tried other rules, e.g., ‘a’s and ‘z’s. The differ-
ent rules cause different budgets depending on the
character appearance frequency in the texts. We
select a rule that has a comparable budget interval
to other attacks, but our system also supports other
rules.

E.4 Emoji Co-Generation
Emojis are widely used in web texts, especially
social media (Ayvaz and Shiha, 2017). However,
emojis are usually excluded from the training cor-
pus of fine-tuned detectors and are situated at the
long tail of distribution for metric-based detectors.
Thus, they have a similar effect as the insertion
of typos (§6.2). We insert a random emoji from
Gemoji18 when LLM finishes a sentence and let
the LLM generate the next sentence recurrently.
We control the budgets by tuning the probability
of inserting an emoji after a sentence. We clean
the output texts after generation by removing all
emojis to hide the trace of the attack. Note that
the distribution shift caused by emoji during sam-
pling will still embodied in the text and deceive the
detectors.

F Additional Results

F.1 Across Budgets
The design of the budget considers the alignment
of different metrics’s indications, especially for the
ones on the same aspects.

Figure 6 to Figure 10 and Figure 11 to Figure 15
show the performance drop in terms of BERTScore,
BARTScore, Cosine Similarity, Jaro Similarity, and
Edit Distance for paraphrasing attacks. Figure 16
to Figure 17 show the editing attacks, and Figure 18
to Figure 21 show the co-generating attacks. The
line charts illustrate a similar trend for performance
drop of MGT detectors under attacks, which cross-
validate our results and conclusion. Also, they sup-
port the reasonability of the design of our budget.

18A package of emoji collections: https://github.com/
wooorm/gemoji.
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Figure 6: Performance drop under the paraphrasing attacks with BERTScore (A2B) as budget (x-axis). (Row 1)

Figure 7: Performance drop under the paraphrasing attacks with BARTScore (A2B) as budget (x-axis). (Row 1)

F.2 Across Metrics
Figure 22 to Figure 27 shows the performance drop
of the detectors in terms of different metrics, in-
cluding ROC AUC, PR AUC, accuracy (ACC),
TPR@FPR=20%, =10%, and =5%. The similar
drop trends show the correlation between all met-
rics involved in our study. Here, we show editing
attacks as examples and omit others for brevity.

F.3 Across Generators
In this section, we report the results of the main test
on LlaMA-2 (Touvron et al., 2023a) as the genera-
tor. As we have mentioned, due to larger LLMs not
having good detection capability for metric-based
detectors (Mireshghallah et al., 2023), the trend re-
sults might be noisy and unclear compared with the
GPT-J main results in §6. However, the results and
conclusion align well across generations at a high
level. Table 15 and Figure 28 - Figure 28 show the
results.

Detector AUC TF=5 TF=10 TF=20 ACC

GLTR 84.09 29.60 52.20 72.00 76.40
Rank 67.15 17.80 29.20 42.80 64.60
LogRank 87.25 40.20 62.60 78.60 79.20
Entropy 46.96 6.20 10.00 21.80 47.80

DetectGPT-1d 57.83 5.00 12.60 26.00 54.20
DetectGPT-10d 66.26 15.40 22.20 38.40 61.00
DetectGPT-10z 72.91 16.20 33.00 52.00 66.40

OpenAI Det.-Bs 74.40 30.20 40.60 53.40 68.20
OpenAI Det.-Lg 79.62 31.40 41.00 62.60 72.60
SimpleAI Det. 88.26 82.00 83.40 85.80 84.80

Table 15: The performance of detectors in the
unattacked scenario for the LlaMA-2 dataset. For
short, ‘AUC’ is ROC AUC, ‘TF=5’ is TPR@FPR=5%,
‘ACC’ is Accuracy, ‘Det.’ is Detector, and ‘F.t.’ is Fine-
tuned.
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Figure 8: Performance drop under the paraphrasing attacks with Cosine Similarity as budget (x-axis). (Row 1)

Figure 9: Performance drop under the paraphrasing attacks with Jaro Similarty as budget (x-axis). (Row 1)

Figure 10: Performance drop under the paraphrasing attacks with Edit Distance as budget (x-axis). (Row 1)
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Figure 11: Performance drop under the paraphrasing attacks with BERTScore (A2B) as budget (x-axis). (Row 2)

Figure 12: Performance drop under the paraphrasing attacks with BARTScore (A2B) as budget (x-axis). (Row 2)

Figure 13: Performance drop under the paraphrasing attacks with Cosine Similarity as budget (x-axis). (Row 2)
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Figure 14: Performance drop under the paraphrasing attacks with Jaro Similarty as budget (x-axis). (Row 2)

Figure 15: Performance drop under the paraphrasing attacks with Edit Distance as budget (x-axis). (Row 2)

Figure 16: Performance drop under the editing attacks with Edit Distance as budget (x-axis).
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Figure 17: Performance drop under the editing attacks with Jaro Similarty as budget (x-axis).

Figure 18: Performance drop under the co-generating attacks with MAUVE (M2H) as budget (x-axis).

Figure 19: Performance drop under the co-generating attacks with MAUVE (A2B) as budget (x-axis).
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Figure 20: Performance drop under the co-generating attacks with Cosine Similarity as budget (x-axis).

Figure 21: Performance drop under the co-generating attacks with Perplexity as budget (x-axis).

Figure 22: Performance drop under the editing attacks with relative ROC AUC as performance metrics (y-axis).
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Figure 23: Performance drop under the editing attacks with relative PR AUC as performance metrics (y-axis).

Figure 24: Performance drop under the editing attacks with relative accuracy as performance metrics (y-axis).

Figure 25: Performance drop under the editing attacks with relative TPR@FPR=20% as performance metrics
(y-axis).
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Figure 26: Performance drop under the editing attacks with relative TPR@FPR=10% as performance metrics
(y-axis).

Figure 27: Performance drop under the editing attacks with relative TPR@FPR=5% as performance metrics
(y-axis).

Figure 28: LlaMA-2 dataset: Performance drop under the editing attacks with Edit Distance as budget (x-axis).
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Prompt A new poll reveals that more Americans would choose the Internet as their only
news source than TV, radio

HWT

A new poll reveals that more Americans would choose the Internet as their only
news source than TV, radio and newspapers combined, and Internet reports are
considered much more reliable that other media. It also shows only 1 in 200
people surveyed believes newspapers will be a dominant source of information in
2014. The survey discovered 56 percent of adults nationwide would pick the
Internet if they were allowed just one source for their news, while television,
newspapers and radio earned the support of 41 percent – together. Among
Republicans, 56 percent would choose the Internet for their news, while among
Democrats that figure was 50 percent.

unattacked MGT

A new poll reveals that more Americans would choose the Internet as their only
news source than TV, radio or newspapers. And it’s true: only a third of
Americans get their news from newspapers, TV or radio. In a new Pew Research
Center poll, only 37 percent of Americans said they get their news from
newspapers. That’s down from 44 percent who said they got news from newspapers
in 2010. TV news was a distant second in the poll. Only 23 percent of Americans
said they get their news from TV. That’s down from 26 percent in 2010.

unattacked
watermarked MGT

A new poll reveals that more Americans would choose the Internet as their only
news source than TV, radio, newspapers or magazines. The poll, conducted by the
News Literacy Project, found that 42 percent of American adults say they rely
exclusively on the Internet for news. That’s up from 33 percent in 2008. At the
same time, the number of people relying on television for information has
declined since the poll began asking this question in 2003. In 2003, 47 percent
of Americans said they used TV exclusively for news. That’s down to 38 percent
in 2008 and 34 percent today.
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typo insertion
(mixed)

Description: Create typos by a mixture method of inserting, deleting, substituting, and transposing.
Config: Insert typo in 20% of tokens, one edit per selected token.
A new poll reveals that more Americans would choose the Internet as their only
news source than TV, rapio or newsbapers. And it’s true: only a third of
Ameyicans get their news from newspapers, TV or radio. In a now Pew Research
Center poll, only 37 percent of Americans said they ges their nws fro
newspapers. Bhat’s down rrom 4 percent who aid hthey got nelws from newspapers
in 2010. TV news wae a distant secod in the poll. Only 23 percent of Americans
said hey get their news fdom TV gThat’s down from 26 percent in 2010.

homoglyph
alternation

Description: Change English characters into visually similar Unicodes.
Config: Change 20% of tokens, one homoglyph character per selected token.
A new poll reveals thaτ more Americans would choose the Internêt as their only
news source than TV radio or newspapers. And it’s true: oňly a third of
Americans get their news from newspapers, TV or radio. In a new Pew Research
Ceňter poll, only percent of Americans said they get their neωs from newspapers.
Thât’s down from 44 percent who said they gôt news from newspapers in 2010. TV
newŝ was a distant second în the poll. Only 23 peřcent of Amêricans said they
get their nêws from TV. Thaτ’s down from 26 percenτ in 2010.

format character
editing (zero-width
whitespace)

Description: Insert formatting characters, i.e., zero-width whitespace \u200B.
Config: Insert \u200B at the end of 20% of tokens.
A new poll reveals that more Americans would choose the Internet as their only
news source than TV, radio or newspapers. And it’s true: only a third of
Americans get their news from newspapers, TV or radio. In a new Pew Research
Center poll, only 37 percent of Americans said they get their news from
newspapers. That’s down from 44 percent who said they got news from newspapers
in 2010. TV news was a distant second in the poll. Only 23 percent of Americans
said they get their news from TV. That’s down from 26 percent in 2010. [Note:
zero-width whitespace can not be displaced in LATEX.]

synonyms
substitution
model-free

Description: Retrieve synonym from a static dictionary to substitute.
Config: Substitute 10% words.
A new poll reveals that more American English would choose the Internet as their
only news source than TV, radio, newsprint or magazines. The crown, conducted
by the news show Literacy Project, found that 42 percent of American English
adults say they rely exclusively on the Internet for news. That’s up from 33
percent in 2008. At the same clock, the bit of people relying on television for
info has declined since the poll began asking this interrogative sentence in
2003. In 2003, 47 percent of American English said they used TV exclusively for
news show. That’s down to 38 percent in 2008 and 34 percent today.

synonyms
substitution
model-based

Description: Utilize an LLM to generate a synonym list given context.
Config: Substitute 10% words using LlaMA with temperature 1.
A new poll reveals that more Americans would choose the Internet as their only
news source than TV, depend on solely newspapers or magazines. The poll,
conducted by the News Literacy Project, found that 42 percent of American
adults say they rely exclusively on radio Internet for news. That’s survey from
33 percent in 2008. At the same time, the number of people relying on
television solely information has declined since the poll began asking this
question in 2003. In yesterday, 47 percent of Americans said they used TV
exclusively for news. That’s down to 38 percent in 2008 and 34 percent today.

span perturbation

Description: Use a masked LM (Raffel et al., 2020) to rewrite spans of tokens by masked filling.
Config: Rewrite 30% of 2-spans.
A new poll reveals that more people choose the Internet as their primary news
source than TV, radio, newspapers or magazines. The survey, conducted by The
Media Literacy Project, found 73 percent of American poll respondents said they
rely exclusively on the Internet for news. It’s up from 33 percent in 2008. At
the same time, the number of people relying on television for news has declined
since the poll began asking questions in 2007. In 2003, 47 percent of Americans
said they used TV exclusively to get their news. That’s down to 38 percent in
2009, and 34 percent today.

inner-sentence
paraphrasing

Description: Use Pegasus (Zhang et al., 2020) to paraphrase each sentence of the text and then join
them.
Config: Paraphrase 80% of the sentences.
A new poll shows that more Americans would prefer the internet to TV, radio,
newspapers or magazines. The poll, conducted by the News Literacy Project, found
that 42 percent of American adults say they rely exclusively on the Internet
for news. It was up from 33 percent in 2008. At the same time, the number of
people relying on television for information has declined since the poll began
asking this question in 2003. Almost half of Americans used TV exclusively for
news in 2004. In 2008 it was 38 percent and today it is 34 percent.
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inter-sentence
paraphrasing

Description: Paraphrase with Dipper (Krishna et al., 2023), a paragraph-level paraphraser that can
re-order, split, and merge sentences.
Config: Lexical (L) diversity 60 and Order (O) diversity 60.
Most Americans get their news from television, radio, and old-fashioned
newspapers. In a recent poll by the Pew Research Center only 37 percent
reported that they get news from newspapers. And that’s true. More Americans
would now use the Internet to get their news than would do so newspapers, radio,
or the Americanized news service. In the survey, “American View” was the second
most favored channel, with 23 percent, and the Americanized news service was
the third most favored with 13 percent. In 2010, 44 percent of Americans said
they would get their news from newspapers. Now that’s just 33 percent. Down
from the old-fashioned 32 percent in 2010.

prompt
paraphrasing

Description: Paraphrase the raw prompt before generation using Pegasus.
Config: -
More Americans would choose the internet as their only news source, according
to a new poll released recently. The survey shows a significant shift in how
people consume news, with a growing preference for digital platforms over
traditional media like television or newspapers. Respondents cited the
convenience, immediacy, and accessibility of online sources as key reasons for
this shift. However, concerns about misinformation and fake news persist,
emphasizing the need for diligent fact-checking and critical evaluation of
digital content. The study underscores the significant influence of the
internet on shaping public opinion and the rapidly changing media landscape.

in-context learning

Description: Given the example of HWT and MGT as positive and negative demonstrations when
generating MGT on the same prompt.
Config: 1 positive demonstration + 1 negative demonstration.
A new poll reveals that more Americans would choose the Internet as their only
news source than TV, radio, and print media. The survey further indicates that
60% of the respondents rely on social media for daily news updates,
highlighting the increasing importance of platforms like Facebook, Twitter, and
Instagram in news dissemination. The trend is particularly prominent among the
younger demographic, with 70% of those aged 18-34 choosing the internet as
their primary news source. Despite this, concerns about the spread of fake news
and misinformation online persist, stressing the need for digital literacy and
fact-checking mechanisms.

character-
substituted
generation

Description: Prompt to ask the model to generate the text with specific character substitution criteria
and recover the output after finishing the whole generation.
Config: Substitute ‘c’s and ‘k’s using GPT-4.
A new poll reveals that more Americans would choose the Internet as their only
news source than TV, radio or newspapers. This shift in preferenae highlights
the growing influence of the Internet and digital technologa in shaping public
opinion. It’s not surpriaing, given the ezae of access to information online.
Yet, some raise concern over the increasing relianae on the web for news, as it
makes it easier to spread misinformation. With fake news becoming a common
issue, there’s a growing need for digital literacy and critical thinking skills
to discern fact from fiction.

typo co-generation

Description: Preset character substitution rules and execute the rules when finishing sampling each
token and recover them after finishing the whole text generation.
Config: Substitute ‘c’s and ‘k’s with 50% probability.
A new poll reveals that more Americans would choose the Internet as their only
news source than TV, radio or newspapers. The results 73 percent are reported
by Pew Research that were conducted on an average of views based on discussions
and polls around the Internet, and express popular ingestion vivid facts. The
majority of Americans choose fer the Internet as their source of faksual
information rather than TV news or radio news, reports Pew. About half online
respondents (52%), for example, say they go there when they need information
they likely folllow upwere.
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emoji
co-generation

Description: Compulsorily generate or insert an emoji after finishing each sentence while recurrent
generation and remove all the emojis after finishing the whole text.
Config: Insert 1 emoji at the end of 20% sentence.
A new poll reveals that more Americans would choose the Internet as their only
news source than TV, radio or any print publication. A new study by social
analytics firm Altimeter Group confirms what has been obvious to most consumers
since 2017 We are a far more information-driven species, and are blown away
with the freely available, POV-polling and influence-mongering power of the
Internet perspective Quinnipiac University Polls conducted during April and May
2018 reveal that an astounding eight in ten voters say they trust internet
polls in deciding important battles, versus an abysmal 49 in 2016.

Table 16: Example of the attacks with description and configs.
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Metric Scale Definition

Levenshtein Edit Distance
(Levenshtein, 1965)

≥ 0 ↑ The minimum number of single-character edits (insertions, deletions or
substitutions).

Jaro Similarity (Jaro, 1989) ≥ 0 ↓ A similarity metric based on matching characters and transpositions in two
strings.

Perplexity (PPL) > 0 ↔ Apply Llama-7B-hf (Touvron et al., 2023b).

MAUVE
(Pillutla et al., 2021)

M2H (0, 1] ↔
MGTs to estimate the model distribution Q and HWTs to estimate the target
distribution P . For attacked scenarios, the closer value to the unattacked
scenario is favored.

A2B (0, 1] ↓ MGTs (attacked) to estimate the model distribution Q and MGTs (unattacked)
to estimate the target distribution P .

Cosine Similarity [−1, 1] ↓ Utilize BART embedding (Lewis et al., 2020) to compare the similarity of texts
after the attack to before the attack.

BERTScore
(Zhang et al., 2019)

M2H [0, 1] ↔ MGTs as the candidates ∧
x and HWTs as the reference x. For attacked

scenarios, the closer value to the unattacked scenario is favored.

A2B [0, 1] ↓ MGTs (attacked) as the candidates ∧
x and MGTs (unattacked) as the reference

x.

BARTScore
(Yuan et al., 2021)

M2H < 0 ↔ MGTs as the source x and HWTs as the target y. For attacked scenarios, the
closer value to the unattacked scenario is favored.

A2B < 0 ↓ MGTs (attacked) as the source x and MGTs (unattacked) as the target y.

Semantics Human Eval [0, 1] ↓ Pairing attacked MGTs with the unattacked, asking humans to judge whether
they are semantic-similar.

Quality Human Eval [0, 1] ↓ Pairing attacked MGTs with the unattacked, asking humans to judge which one
is more high-quality.

Table 17: The metrics considered to evaluate the budget of attacks. ↑ means a larger number represents a more
significant attack on the raw texts. ↔ means the value closer to the value of unattacked texts is favorable. ‘M2H’ is
‘MGT to HWT,’ and ‘A2B’ is ‘After to Before Attack’ for short. Metrics in grey are not distinguishable enough
empirically that we do not show in the paper, but are also implemented and reported in our code and data repertory.
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