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Abstract

The emergence of in-context learning (ICL)
enables large pre-trained language models
(PLMs) to make predictions for unseen inputs
without updating parameters. Despite its po-
tential, ICL’s effectiveness heavily relies on the
quality, quantity, and permutation of demonstra-
tions, commonly leading to suboptimal and un-
stable performance. In this paper, we tackle this
challenge for the first time from the perspec-
tive of demonstration augmentation. Specifi-
cally, we start with enriching representations
of demonstrations by leveraging their deep fea-
ture distribution. We then theoretically reveal
that when the number of augmented copies ap-
proaches infinity, the augmentation is approxi-
mately equal to a novel logit calibration mecha-
nism integrated with specific statistical proper-
ties. This insight results in a simple yet highly
efficient method that significantly improves the
average and worst-case accuracy across diverse
PLMs and tasks. Moreover, our method ef-
fectively reduces performance variance among
varying demonstrations, permutations, and tem-
plates, and displays the capability to address
imbalanced class distributions.

1 Introduction

Large pre-trained language models (PLMs) have
showcased exceptional abilities in in-context learn-
ing (ICL) (Brown et al., 2020; Wang et al., 2023;
Rubin et al., 2022), which assists the model in dis-
cerning the underlying patterns within demonstra-
tions and make more accurate predictions (Chan
et al., 2022; Wu et al., 2023). As a new paradigm,
ICL offers compelling advantages, allowing for nat-
ural language interaction with PLMs (Wei et al.,
2022; Yang et al., 2023), as well as reduced compu-
tational costs (Li et al., 2023a; Rubin et al., 2022).

While promising, ICL’s performance is highly
dependent on provided demonstrations and tem-
plates (Liu et al., 2022; Zhang et al., 2022b;
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Figure 1: Illustration for demonstration augmentation
using semantic directions (vectors) sampled from the
deep feature distribution of demonstration examples.

Sorensen et al., 2022), resulting in subpar and un-
stable performance. This promotes research aimed
at improving the quality (Rubin et al., 2022; Li
et al., 2023b), quantity (Li et al., 2023a; Choi et al.,
2022), and permutations (Lu et al., 2022; Tang
et al., 2023) of demonstrations. Other research av-
enues include prediction adjustment (Zhao et al.,
2021; Han et al., 2023; Fei et al., 2023) and learn-
ing process design (e.g., channel models (Min et al.,
2022a) and meta-training frameworks (Min et al.,
2022b)). Despite ongoing efforts, ICL still strug-
gles with efficiently and reliably capturing suffi-
cient knowledge from context, leaving performance
stability as a persistent bottleneck.

In this study, we propose enriching contextual
knowledge for PLMs by augmenting demonstra-
tions. We first attempt to enhance the representa-
tion of demonstrations by transforming them along
semantic directions sampled from the deep feature
space of demonstration examples, as depicted in
Figure 1. This operation stems from the observa-
tion that the deep features in a network are usually
linearized (Bengio et al., 2013; Cheung and Yeung,
2021; Cho, 2016), implying the existence of nu-
merous semantic directions within the deep feature
space, hence potentially enabling us to incorporate
richer contextual knowledge without extending in-
put length. From this novel perspective, we theo-
retically prove that when the number of augmented
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pieces approaches infinity, its effect approximately
equals a logit adjustment operation. Specifically,
we derive a refined Softmax function that integrates
the statistical properties of demonstrations. Con-
sequently, rather than explicitly executing the aug-
mentation procedure, we can efficiently conduct
implicit demonstration augmentation using the de-
rived prediction function, obtaining an improved
ICL method with theoretical guidance.

We conduct extensive experiments across seven
PLMs and various classification tasks. The empiri-
cal results demonstrate that our approach remark-
ably enhances prediction accuracy and reduces per-
formance variability across different demonstra-
tions, permutations, and templates. Notably, our
method is straightforward, effective, and generaliz-
able, enabling seamless integration with other ICL
methods to enhance their performance.

Our contributions can be summarized as follows:
• We introduce Implicit Demonstration

Augmentation-based ICL (IDAICL), a pio-
neering work that incorporates demonstration
augmentation into ICL. Instead of solely
enhancing demonstration quality, quantity, or
order, our method explores context augmenta-
tion within the deep feature space, offering
a new perspective to enrich demonstrations
bypassing input length limitations.

• We theoretically establish that as the number
of augmented pieces approaches infinity, our
augmentation strategy approximates a logit-
adjusted prediction function that integrates
statistical properties derived from the input
data distribution. Equipped with this function,
IDAICL provides a straightforward yet theory-
guided solution to enhance ICL.

• Extensive experiments conducted across di-
verse tasks and PLMs conclusively illustrate
that IDAICL considerably improves average
and worst-case accuracy compared to exist-
ing ICL methods. Moreover, it effectively
enhances performance stability.

2 Background and Related Work

2.1 In-Context Learning

Brown et al. (2020) showcased the ICL capabil-
ity of PLMs, wherein PLMs generate predictions
solely based on a concatenation of training exam-
ples for few-shot learning without updating param-
eters. Subsequent studies (Holtzman et al., 2021;

Min et al., 2022a,b) have developed this approach,
yielding promising outcomes across various tasks.
Nevertheless, recent research has uncovered cer-
tain limitations. To begin with, the volume of input
knowledge for each query is constrained by the
maximum input length of PLMs (Hao et al., 2022),
and the computational cost increases as the number
of demonstrations grows (Li et al., 2023a), mak-
ing it challenging to integrate significant knowl-
edge from demonstrations to PLMs. Addition-
ally, ICL’s performance is sensitive to the input
of PLMs (Davison et al., 2019; Jiang et al., 2020),
thus exhibiting high variance and poor worst-case
accuracy (Perez et al., 2021; Lu et al., 2022).

Researchers have explored various techniques
to address the biases and instability of ICL.
These techniques encompass learning process de-
sign (Min et al., 2022a,b), demonstration re-
trieval (Rubin et al., 2022; Zhang et al., 2022b),
prompt engineering (Sorensen et al., 2022; Lu et al.,
2022), and prediction calibration (Zhao et al., 2021;
Fei et al., 2023). However, these methods have yet
to fully address the issue of severely limited knowl-
edge transfer from demonstrations to large PLMs.

2.2 Data Augmentation

Data augmentation (Chen et al., 2023), which in-
volves artificially creating training data through
transformations, is a well-established research area
in machine learning. Although data augmentation
techniques have undergone extensive exploration
in diverse machine learning domains (Maharana
et al., 2022; Shorten and Khoshgoftaar, 2019), ap-
plying them to text data poses challenges due to
the complexity of preserving labels during textual
transformations (Kobayashi, 2018). Nonetheless,
data augmentations in the latent space, such as ad-
versarial training (Zhang et al., 2022a; Zhu et al.,
2020; Cheng et al., 2020), interpolation (Chen
et al., 2022b; Wu et al., 2022), and generative tech-
niques (Li et al., 2022; Malandrakis et al., 2019),
have demonstrated notable enhancements when ap-
plied alongside large PLMs.

Recently, Wang et al. (2019) introduced the con-
cept of implicit data augmentation in the context of
image classification. This approach involves trans-
forming training data within the deep feature space
and boils down to the optimization of a novel ro-
bust loss function. Subsequent studies (Chen et al.,
2022c; Li et al., 2021; Zhou and Wu, 2023a) for
image classification tasks have further improved
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Figure 2: An overview of IDAICL: For each contextual input, our goal is to augment the deep feature of demonstra-
tions for M pieces, using semantic vectors δ drawn from the deep feature distribution N (µ,Σ) of demonstration
examples linked to all queries. When M approaches infinity, we derive a novel prediction function, which incorpo-
rates two modulating factors: M(µ) and N(Σ), to calibrate the original predictions.

upon this approach. This study introduces an al-
gorithm for implicitly augmenting demonstrations
within the realm of ICL.

3 Methodology

3.1 In-Context Learning with PLMs
Considering a PLM G, this study focuses on the
following task: given a query input text x and a can-
didate answer set Y = {y1, y2, · · · , y|Y|}, we aim
to predict the answer ŷ based on m demonstration
examples C={c1, c2, · · · , cm}, where each ci rep-
resents a training example (xi, yi) after template
formulation and m denotes the quantity of demon-
stration examples for each test sample. Formally,
give a model G, we first compute the probability of
each answer yj :

PG (yj | C,x) . (1)

Subsequently, the ultimate prediction ŷ, character-
ized by the highest probability is chosen from the
candidate answer set Y:

ŷ = argmax
yj∈Y

PG (yj | C,x) . (2)

To simplify, the contextual input is denoted as
x̃=[C,x] in the subsequent text. Then, the prob-
ability of answer yj , represented as PG(yj |x̃), is
computed using the Softmax function1:

PG(yj |x̃) := PG(yj |hx̃) =
e
wT

yj
hx̃+byj

∑
k e

wT
k hx̃+bk

, (3)

where hx̃ = G(x̃) signifies the hidden state of the
last block at the final position for x̃. wk and bk
are the weight vector and bias corresponding to the
final fully connected layer for the k-th token.

1We begin by examining situations in which the answer
comprises a single token, and our subsequent analysis is
equally applicable to scenarios involving multiple tokens.

3.2 Demonstration Augmentation

Recognizing the established efficacy of data aug-
mentation in machine learning (Feng et al., 2021),
this study investigates demonstration augmentation
and suggests enhancing the deep features of demon-
strations by transforming them along semantic di-
rections sampled from the deep feature space of
demonstration examples. This strategy is motivated
by the intriguing observation that the deep fea-
tures in networks are often linearized (Bengio et al.,
2013; Chen et al., 2022a). Building on this obser-
vation, we hypothesize that hx̃ lies within the sub-
space spanned by hC and hx: hx̃ = αhC + βhx,
where hC and hx represent the components of hx̃

linked respectively to the demonstrations and the
query. The necessity of this assumption stems from
intricate relationships among token representations
and the exclusive augmentation of the component
related to demonstrations. Notably, this decompo-
sition is not necessary in practical applications. In
the subsequent text, we directly refer to αhC and
βhx as hC and hx.

To augment hC , we randomly sample vectors
from the deep feature space of demonstrations. In
particular, vectors are drawn from a multivariate
normal distribution N (µ,Σ), where µ and Σ de-
note the feature mean and covariance matrix. These
statistical properties are estimated from the deep
features of the demonstration set D, which includes
demonstration examples linked to all queries. The
feature mean µ is computed as

µ =
1

|D|
∑|D|

i=1
hi, (4)

where hi = G(ci) represents the hidden state of the
last block at the final position for the i-th demon-
stration example ci in D, and |D| denotes the size
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of D. The covariance matrix Σ is computed as

Σ =
1

|D|
∑|D|

i=1
(hi − µ)T (hi − µ). (5)

Subsequently, hC is shifted in the extracted se-
mantic vectors, resulting in augmented features,
h̃C , which follows

h̃C ∼ N (hC + λµ, λΣ) , (6)

where λ refers to a positive coefficient controlling
the strength of semantic augmentation. In real-
world applications, it can be directly assigned a
value of 0.5. Sensitivity tests for λ are discussed in
Section 5.4.

3.3 Novel Prediction Function
Selecting the answer with the highest probability is
equivalent to favoring the answer with the lowest
inverse probability. Therefore, the prediction can
be determined by

ŷ = arg min
yj∈Y

PG (yj | hx̃)
−1 . (7)

Assume that each hC is augmented for M times,
resulting in an augmented demonstration feature
set {h̃1

C , · · · , h̃
M
C } with size M. Here, h̃

i
C rep-

resents the i-th augmented feature for hC . Then,
the final prediction for the query x depends on all
augmented features of hC and can be expressed as

PM
yj (x̃) =

1

M
∑M

i=1
PG(yj |h̃

i
C ,hx)

−1, (8)

ŷ = arg min
yj∈Y

PM
yj (x̃). (9)

Given that the performance of ICL benefits
from an increased number of demonstration in-
stances (Liu et al., 2022; Wu et al., 2023), we ex-
plore the scenario of augmenting an infinite number
of times for the deep representation of demonstra-
tions. Subsequently, an easily computable surro-
gate for the expected prediction can be derived,
resulting in a highly efficient implementation. The
whole pipeline of IDAICL is depicted in Figure 2.

As M → ∞, on the basis of the aforementioned
decomposition of hx̃, the expected prediction for
answer yj (denoted as P∞

yj ) within the augmented
feature set can be expressed as follows:

P∞
yj (x̃)=Eh̃C

[
∑

k

e
∆wT

k,yj
(h̃C+hx)+∆bk,yj ], (10)

where ∆wk,yj = wk−wyj and ∆bk,yj = bk−byj .

However, accurately calculating P∞
yj is challeng-

ing. Alternatively, we proceed to derive a surrogate
calculation for it. Applying the linearity of expec-
tation, Eq. (10) can be expressed as:

P∞
yj (x̃)=

∑

k

Eh̃C
[e

∆wT
k,yj

(h̃C+hx)+∆bk,yj ]. (11)

Given that h̃C is a Gaussian random variable
conforming to N (hC + λµ, λΣ), we know that
∆wT

k,yj
h̃C follows the multivariate normal distribu-

tion: N (∆wT
k,yj

(hC + λµ) , λ∆wT
k,yj

Σ∆wk,yj ).
Then, utilizing the moment-generating function

E[etX ] = etµ+
1
2
t2σ2

, X ∼ N (µ, σ2), (12)

Eq. (11) can be derived as

P∞
yj (x̃)=

∑

k

Mk,yjNk,yje
∆wT

k,yj
(hC+hx)+∆bk,yj ,

(13)
where Mk,yj = exp(λ∆wT

k,yj
µ) and Nk,yj =

exp(λ2∆wT
k,yj

Σ∆wk,yj ).
Subsequently, our newly proposed prediction

function, referred to as IDA-Softmax, is defined as

P IDA
yj (x̃) :=

∑

k

Mk,yjNk,yje
∆wT

k,yj
hx̃+∆bk,yj .

(14)
Consequently, instead of conducting the augmen-

tation process explicitly, we can directly employ
IDA-Softmax, P IDA

yj , for prediction. IDA-Softmax
essentially utilizes two modulating factors associ-
ated with statistical properties derived from D to
calibrate the sample logits. Previous studies (Min
et al., 2022c; Chan et al., 2022) have underscored
the pivotal role of knowledge about the input data
distribution in predictions made by PLMs. Intu-
itively, PLMs can better capture the patterns and un-
derlying structures within data, such as the spatial
relationships between demonstrations and queries,
ultimately enhancing their prediction performance.

Furthermore, to mitigate the imbalance among
different answer types in demonstrations (Holtz-
man et al., 2021; Zhao et al., 2021), we adopt a
post-hoc adjustment approach inspired by Menon
et al. (2021), which adjusts predictions by consid-
ering the class proportions within D. Thus, the
prediction for answer yj is computed as

P̃ IDA
yj (x̃) = P IDA

yj (x̃) + τ log πyj , (15)

where τ is a positive hyperparameter, and πyj de-
motes the proportion of answer yj in D. In prac-
tical applications, the value of τ can be fixed at 1.
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PLM Method m SST-2 SST-5 MR CR Amazon Subj TREC DBPedia AGNews CB
G

PT
-2

0.
8B

Vanilla ICL
4

57.67.1 30.46.3 59.36.5 56.88.4 32.78.5 57.65.4 34.910.3 40.57.2 44.57.9 35.19.3
IDAICL 86.41.4 38.32.9 82.22.3 78.40.7 46.73.5 77.02.3 47.52.0 81.31.8 73.92.4 41.52.0
Vanilla ICL

8
69.79.0 32.48.6 63.97.7 60.88.1 34.16.2 59.78.7 40.46.3 62.613.6 49.28.4 38.87.6

IDAICL 88.02.3 39.61.9 84.92.4 85.62.5 47.92.6 79.90.8 50.33.3 86.52.9 76.81.7 43.33.4
Vanilla ICL

12
74.78.3 33.77.6 64.49.4 68.79.7 36.06.6 60.77.7 40.57.8 64.55.4 51.18.0 40.48.5

IDAICL 88.52.1 40.12.7 85.23.1 86.81.4 49.62.2 80.42.1 51.41.6 87.32.7 77.92.0 44.62.2
MetaICL

12
80.86.2 35.84.7 75.35.6 77.68.1 48.96.7 73.58.8 48.66.1 80.47.8 66.80.7 43.14.1

+IDAICL 89.31.7 42.62.4 85.81.7 87.91.5 51.70.7 82.62.4 53.72.5 89.44.1 78.31.1 47.92.8
Channel ICL

12
85.23.6 38.44.3 80.84.7 82.04.6 43.65.1 69.89.8 44.18.7 77.612.9 69.56.7 42.45.2

+IDAICL 90.52.3 41.82.7 87.71.6 89.51.2 50.82.4 80.50.9 52.91.6 87.82.4 81.02.5 46.33.3
EPR

12
81.92.1 39.91.8 78.12.4 80.60.6 49.12.4 80.12.2 76.21.1 87.11.0 80.90.8 44.82.3

+IDAICL 90.11.1 43.91.2 86.42.0 88.60.6 52.51.7 83.61.0 79.10.9 90.80.7 83.70.5 46.72.1

G
PT

-2
1.

5B

Vanilla ICL
4

66.38.6 30.38.9 56.56.6 53.48.1 34.77.5 54.25.5 30.88.1 61.98.7 54.69.9 40.87.8
IDAICL 87.41.5 38.81.7 80.91.2 82.12.1 48.10.6 77.83.0 49.51.9 87.42.6 79.21.8 54.12.7
Vanilla ICL

8
57.27.0 30.86.1 64.98.3 57.66.4 38.66.4 57.310.3 39.55.3 67.48.1 56.35.4 47.45.1

IDAICL 89.51.8 40.81.9 82.11.2 84.32.1 50.23.4 80.12.9 51.52.5 89.81.7 80.30.9 55.50.6
Vanilla ICL

12
70.99.6 34.76.7 65.25.6 59.96.7 38.310.2 59.68.1 40.77.5 72.511.6 57.69.5 48.55.7

IDAICL 90.02.8 41.11.3 83.42.3 85.62.4 51.62.9 80.52.5 51.83.6 90.52.7 81.13.0 55.72.1
MetaICL

12
79.17.0 38.63.7 76.46.3 75.34.5 50.57.1 73.97.6 46.76.3 86.87.8 76.45.4 53.11.6

+IDAICL 89.62.2 42.92.3 84.23.4 87.91.1 53.81.2 83.43.2 53.61.3 91.90.9 84.31.4 57.31.5
Channel ICL

12
83.35.9 37.54.6 80.64.1 77.15.5 48.96.7 68.28.3 43.37.2 70.49.3 67.95.5 53.68.9

+IDAICL 91.22.1 40.81.5 86.52.6 88.21.8 52.42.9 82.32.4 50.51.8 88.71.2 82.60.9 56.52.1
EPR

12
82.82.6 40.62.1 79.51.4 74.72.7 50.72.3 83.30.7 82.22.4 91.50.8 83.21.6 54.81.9

+IDAICL 90.51.5 43.81.0 87.40.9 86.51.5 52.91.8 85.80.5 84.71.1 93.52.5 86.42.2 57.51.5

G
PT

-N
eo

MetaICL
12

87.86.7 42.56.1 82.25.9 80.74.8 51.55.3 72.28.2 54.16.8 84.45.5 74.38.2 50.36.4
+IDAICL 92.11.1 44.32.3 88.82.1 88.11.8 53.21.7 84.32.1 64.31.9 94.31.2 86.50.9 53.42.1
Channel ICL

12
83.45.4 39.86.4 79.55.7 79.45.9 50.13.8 70.68.2 50.85.1 78.37.1 72.56.9 48.74.5

+IDAICL 91.52.2 41.61.8 85.41.9 87.22.5 52.72.2 83.71.4 62.80.7 93.53.3 84.63.1 52.01.8
EPR

12
88.21.6 45.72.2 81.81.9 71.82.9 49.91.1 89.42.4 92.32.2 96.11.2 88.81.1 49.40.7

+IDAICL 93.20.8 47.21.3 88.51.2 86.62.0 52.10.4 93.11.2 94.42.4 97.81.5 91.20.7 52.10.5

Table 1: Comparison results of three PLMs. Two numbers indicate the mean accuracy (%) and standard deviation
over different seeds. The best and second-best results per PLM per dataset are highlighted in bold and underlined,
respectively. "+IDAICL" means that the current approach is used in conjunction with IDAICL. The results for
different numbers of demonstration examples (i.e., m values) using the GPT-Neo model are illustrated in Figure 3.

This approach compensates for predictions of mi-
nor classes. When different answers are uniformly
distributed, τ log πyj exerts an equal influence on
all answer types. Consequently, the final prediction
is given by

ŷ = arg min
yj∈Y

P̃ IDA
yj (x̃). (16)

4 Experimental Setup

4.1 Models and Datasets

We evaluated the performance of IDAICL across
seven large PLMs, including GPT-2 (Radford et al.,
2019) (with 0.1B, 0.3B, 0.8B, and 1.5B parame-
ters), GPT-Neo (Black et al., 2021) (with 2.7B pa-
rameters), and LLaMA (Touvron et al., 2023) (with
13B and 33B parameters). Following previous re-
search (Min et al., 2022a; Han et al., 2023; Lu et al.,
2022), our evaluation encompasses ten text clas-
sification datasets. Among these, SST-2 (Socher
et al., 2013), SST-5 (Socher et al., 2013), MR (Pang

and Lee, 2005), CR (Hu and Liu, 2004), and Ama-
zon (McAuley and Leskovec, 2013) are five sen-
timent classification tasks. Subj (Pang and Lee,
2004), TREC (Voorhees and Tice, 2000), DBPe-
dia (Lehmann et al., 2015), and AGNews (Zhang
et al., 2015) cater to subjectivity, question, ontol-
ogy, and news classification tasks, respectively. Ad-
ditionally, CB (De Marneffe et al., 2019) is uti-
lized for natural language inference. Among these
datasets, SST-5, Amazon, TREC, and CB are char-
acterized by imbalanced training data. Details of all
datasets are provided in Section A of the Appendix.

4.2 Compared Baselines

Besides Vanilla ICL, we compared and integrated
IDAICL with three popular ICL algorithms, fo-
cusing on learning process design and demonstra-
tion retrieval. These include MetaICL (Min et al.,
2022b), Channel ICL (Min et al., 2022a), and Effi-
cient Prompt Retrieval (EPR) (Rubin et al., 2022).
Moreover, we compared IDAICL with other ad-
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PLM Method SST-2 SST-5 MR CR Subj TREC DBPedia AGNews CB Avg.
L

L
aM

A
13

B Vanilla ICL 95.67.1 29.56.2 90.05.8 91.47.4 72.96.9 62.89.1 80.97.6 80.25.9 51.58.2 72.8
ConCa 96.75.4 40.36.2 91.77.3 90.84.2 79.69.1 68.25.6 94.34.1 85.27.5 46.65.0 77.0
PROCA 95.43.8 43.45.7 90.39.6 92.13.1 84.82.5 69.92.1 92.54.9 81.63.6 51.44.2 77.9
D-ConCa 96.33.8 42.54.5 92.04.1 90.52.9 82.94.5 73.73.9 87.47.2 82.53.3 52.24.1 77.8
IDAICL 96.72.5 47.11.1 93.01.9 93.30.8 87.82.3 76.02.6 94.91.0 87.72.4 59.41.9 81.8

L
L

aM
A

33
B Vanilla ICL 95.57.2 29.45.6 91.75.4 91.58.1 85.16.0 70.94.4 86.64.5 76.26.1 59.25.3 76.2

ConCa 95.96.5 39.14.4 90.37.2 91.23.6 74.65.7 76.76.2 92.43.9 87.35.7 57.96.0 78.4
PROCA 95.54.2 39.26.3 92.44.1 91.33.5 88.32.2 64.73.8 86.95.1 85.87.1 59.93.8 78.2
D-ConCa 95.43.8 40.74.5 92.14.2 91.02.9 76.43.6 80.22.1 87.64.2 87.74.3 56.53.4 78.6
IDAICL 96.51.1 46.82.4 93.61.3 92.33.3 89.32.4 79.11.5 95.62.3 88.41.9 64.62.8 82.9

Table 2: Comparison results of Macro-F1 for the LLaMA model with 13B and 33B parameters, setting m to 4.

Figure 3: Comparison results between Vanilla ICL and IDAICL across different values of m on the GPT-Neo model.
IDAICL significantly outperforms Vanilla ICL, particularly when the number of demonstration examples is small.

vanced prediction calibration methods: Contextual
Calibration (ConCa) (Zhao et al., 2021), Prototyp-
ical Calibration (PROCA) (Han et al., 2023), and
Domain-Context Calibration (D-ConCa) (Fei et al.,
2023). Introductions to all compared methods and
comprehensive experimental settings are presented
in Sections B and C of the Appendix.

5 Experimental Results

5.1 Main Results

Table 1 displays the comparison results between
IDAICL and four ICL baselines (Vanilla ICL,
MetaICL, Channel ICL, and EPR) across GPT-2
models (with 0.8B and 1.5B parameters) and the
GPT-Neo model. These results lead to three main
findings. Firstly, IDAICL consistently exhibits
high effectiveness across various model sizes and
datasets, highlighting its strong generalization ca-
pacity, even under scenarios involving imbalanced
training data. Compared to Vanilla ICL, IDAICL
outperforms by an average of 17.7% and 18.4%
across diverse datasets and m values for GPT-2
with 0.8B and 1.5B parameters, respectively. Sec-
ondly, in comparison to other ICL baselines like
Channel ICL, MetaICL, and EPR, the integration of

IDAICL consistently delivers notable performance
improvements, emphasizing the efficacy of enhanc-
ing demonstrations for refined predictions. The in-
clusion of IDAICL led to an average performance
boost of 7.3% for MetaICL and 8.2% for Chan-
nel ICL. Lastly, IDAICL notably enhances worst-
case accuracy and diminishes performance vari-
ance across different seeds, showcasing its ability
to improve prediction stability. Additional results
on LLaMA and smaller GPT-2 models are available
in Tables 7 and 8 of the Appendix.

5.2 Comparison with Calibration Methods

We compared IDAICL with three advanced pre-
diction calibration methods (ConCa, PROCA, and
D-ConCa) across three PLMs: GPT-2, GPT-Neo,
and LLaMA. Table 2 presents the comparison re-
sults for the LLaMA models, where IDAICL con-
sistently achieves state-of-the-art performance, ex-
cept for TREC using the LLaMA model with 33B
parameters. These findings suggest that IDAICL
which leverages statistical information derived
from the input data distribution for prediction cali-
bration, generally outperforms methods relying on
estimated biases for correction. Further compari-
son results can be found in Table 9 of the Appendix.
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Figure 4: (a) and (b): Macro-F1 of SST-5 and AGNews datasets using the LLaMA model with 33B parameters
under three demonstration selection settings, setting m to 4. (c) and (d): Accuracy of Vanilla ICL and IDAICL
on the SST-2 dataset using the GPT-2 model with 1.5B parameters across six templates, setting m to 12. IDAICL
demonstrates greater robustness across various demonstration examples and templates compared to Vanilla ICL.

5.3 Stability Analysis

Previous studies (Zhao et al., 2021; Sorensen et al.,
2022; Min et al., 2022a; Zhang et al., 2022b) have
highlighted the considerable variability in ICL’s
performance. In this section, we verified that
IDAICL can effectively enhance performance sta-
bility across diverse scenarios.

Varying numbers of demonstrations We have
presented the results across different numbers of
demonstrations in Table 1. For a clearer depiction,
the outcomes regarding GPT-Neo are illustrated
in Figure 3. As the number of demonstration ex-
amples (represented by m) increases, both Vanilla
ICL and IDAICL exhibit improved performance,
emphasizing the importance of comprehensive sta-
tistical properties of the input data for IDAICL’s
effectiveness. Notably, IDAICL significantly en-
hances performance stability across various num-
bers of demonstrations and consistently outper-
forms Vanilla ICL. The performance improvement
is particularly pronounced when m takes on smaller
values, indicating the efficacy of IDAICL in enrich-
ing the available knowledge for PLMs.

Varying demonstrations To confirm that aug-
menting demonstrations can enhance the robust-
ness of the ICL strategy across various demonstra-
tions, we investigated three distinct demonstration
selection settings. Setting I: Training samples most
similar to the test sample are chosen. Setting II:
Samples are randomly selected from the training
data. Setting III: Training samples exhibiting the
greatest dissimilarity from the test sample are se-
lected. As shown in Figures 4(a) and (b), IDAICL
significantly outperforms Vanilla ICL and demon-
strates greater robustness across the three selection
settings. Additionally, our discoveries suggest that
selecting demonstrations that are more similar to
the test samples leads to better performance than

exclusively selecting dissimilar ones, which aligns
with the findings obtained by Wang et al. (2022).

Varying templates To assess the performance of
IDAICL across various templates, we employed
fifteen templates on the SST-2 dataset following
those outlined by Zhao et al. (2021). The templates
are elaborated in Table 10 of the Appendix. Fig-
ures 4(c) and (d) display the performance of Vanilla
ICL and IDAICL across six templates. Some tem-
plates achieve higher average performance than oth-
ers. Nevertheless, IDAICL consistently enhances
both average and worst-case accuracy, simultane-
ously reducing performance variance across differ-
ent templates. The complete results are available
in Figure 7 of the Appendix.

Impact of imbalance in labels Figures 5(a) and
(b) depict comparison results among Vanilla ICL,
MetaICL, Channel ICL, and IDAICL across dif-
ferent degrees of imbalances. It is evident that the
performance of Vanilla ICL is sensitive to class
imbalance, while that of IDAICL and Channel ICL
exhibit robustness to the imbalance. Moreover,
notable performance improvements are observed
with higher levels of imbalance. Additionally, Fig-
ures 5(c) and (d) illustrate the confusion matrices
for CR and Subj datasets, with the proportion of
one category (i.e., "Negative" and "Subjective")
in demonstrations setting to 0.1 and 0.2. IDAICL
significantly improves the accuracy of the under-
represented classes when compared to Vanilla ICL,
thereby contributing to enhanced fairness among
classes. In the subsequent section, we demonstrate
that the strong performance of IDAICL in handling
imbalanced label distributions stems from both the
statistical properties and the class proportion term.
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Figure 5: (a) and (b): Accuracy comparison of the SST-2 and MR datasets, where the proportions of the negative
class in demonstrations (denoted as p) are varied from 0.1 to 0.5. (c) and (d): Confusion matrices for the CR and
Subj datasets, representing scenarios where the proportions of one category in demonstrations are set to 0.1 and 0.2.
The analysis is conducted using the GPT-2 model with 1.5B parameters, with m setting to 12. IDAICL demonstrates
greater robustness in handling imbalanced class distributions within demonstrations.

Figure 6: Accuracy across different λ and τ values,
using GPT-2 with 0.8B parameters, setting m to 12. λ=
0 and τ=0 signify that the two modulating factors and
the class proportion term are not utilized, respectively.

5.4 Sensitivity and Ablation Studies

We conducted ablation studies on IDAICL to inves-
tigate the influence of the two modulating factors
and the class proportion term. The parameters λ
and τ govern the augmentation strength and the
impact of the class proportion term, respectively.
In Figure 6(a), a significant performance drop is
observed when predictions are not calibrated us-
ing statistical properties derived from the demon-
strations. Additionally, optimal performance is
achieved when λ equals 0.5.

Figure 6(b) showcases the accuracy of SST-2
and MR datasets with the negative class propor-
tion in demonstrations setting to 0.1. Results indi-
cate that solely leveraging statistical properties (i.e.,

Dataset 0-shot 1-shot 4-shot IDAICL

SST-2 63.2 61.39.4 57.67.1 76.3
SST-5 25.0 27.37.9 30.46.3 33.5
MR 58.9 54.36.8 59.36.5 71.2
Subj 48.9 47.18.3 57.65.4 67.3

Table 3: Accuracy comparison between Vanilla ICL and
IDAICL based solely on statistical properties, using the
GPT-2 model with 0.8B parameters.

τ equals 0) enhances performance under imbal-
anced demonstrations, with further improvements
observed upon the inclusion of the class proportion
term. Additionally, optimal performance is attained
when τ equals 1. Consequently, we recommend
setting λ to 0.5 and τ to 1 for practical applications.
More results are presented in Appendix F.

5.5 Further Discussion

To further investigate the effect of statistical proper-
ties within demonstrations on model performance,
we exclusively employed queries along with statis-
tical information for inference, excluding the inclu-
sion of demonstrations for each test sample. These
statistics were estimated using deep features of all
training samples. As shown in Table 3, IDAICL
relying solely on statistical properties distinctly out-
performs Vanilla ICL across scenarios with zero,
one, and even four demonstrations. This empha-
sizes the crucial role of prior statistics obtained
from training data in PLMs’ predictions. This phe-
nomenon is understandable as statistical proper-
ties inherently encompass richer global information
compared to individual demonstrations.

6 Conclusion

This study introduces IDAICL, a novel ICL ap-
proach designed to enhance demonstrations by uti-
lizing semantic directions sampled from the deep
feature distribution of demonstration examples.
Our augmentation strategy enriches the knowledge
available to PLMs without extending the context
length. A new prediction function is then theoret-
ically established considering the number of aug-
mented pieces approaching infinity. This elimi-
nates the need for explicit augmentation and allows
for direct utilization of this derived function for
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predictions. Our extensive experiments, spanning
various tasks and PLMs, demonstrate that IDAICL
significantly enhances both prediction accuracy and
stability when compared to other ICL baselines.

Limitations

While IDAICL proves to be competitive in few-shot
learning, there are limitations that open up avenues
for future research. First, due to the necessity of ac-
cessing the parameters of the final fully connected
layer in PLMs, IDAICL is exclusively suitable for
open-source models. Future research is expected
to develop alternative augmentation strategies tai-
lored for black-box PLMs. Second, our evaluation
of IDAICL focused on seven PLMs and ten text
classification tasks. We defer further explorations
involving other PLMs and non-classification tasks
for future work. Additionally, IDAICL relies on a
small set of demonstrations to estimate the feature
mean and covariance matrix. If such a collection
is unavailable or extremely scarce, IDAICL may
need to be used in conjunction with demonstration
generation methods.

Other avenues for future work involve exploring
more effective augmentation distributions. This
entails exploring finer-grained distributions, such
as category-level or sample-level distributions, to
emphasize the unique characteristics of individ-
ual categories or samples, and extending these dis-
tributions beyond the constraints of training data.
Furthermore, given the effectiveness of data aug-
mentation in model training, future research could
explore the utilization of our derived prediction
function in both the training and fine-tuning phases
of large PLMs.
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A Details of Applied Datasets

Table 4 presents comprehensive statistics for all
datasets utilized in this study. The information in-
cludes task descriptions, average sentence lengths,
class counts, and details on class imbalance. Ad-
ditionally, Table 5 provides sample instances and
label names for each of the datasets.

B Details of Compared Baselines

The compared methods are described as follows:

• Vanilla ICL: We use the PLMs as they are and
implement ICL by conditioning it on a con-
catenation of m training examples, following
the approach outlined by Brown et al. (2020).

• MetaICL: The fundamental concept underly-
ing MetaICL is to utilize a multi-task learning
framework across a diverse range of meta-
training tasks (Min et al., 2022b).

• Channel ICL: It employs a noisy channel
approach for language model prompting in
few-shot text classification (Min et al., 2022a).

• EPR: It employs language models to au-
tonomously label examples that are suitable
as effective prompts and subsequently trains
a prompt retriever based on this acquired sig-
nal (Rubin et al., 2022).

• ConCa: It assesses the model’s inclination
towards specific answers by introducing a
dummy test input that lacks content (Zhao
et al., 2021).

• PROCA: The prediction of PROCA is cali-
brated based on the likelihood of prototypical
clusters (Han et al., 2023).

• D-ConCa: It initially assesses the impacts of
various label biases by employing randomly
sampled words from the task corpus. During
inference, it utilizes the estimated label bias to
calibrate the model’s output probabilities (Fei
et al., 2023).

C More Details of Experimental Settings

The entire implementation is conducted utiliz-
ing PyTorch (Paszke et al., 2019) and Transform-
ers (Wolf et al., 2020). We follow the parameter
configurations and details specified in previous re-
search (Min et al., 2022a). The number of demon-
strations is primarily set to m = 12, but we also ex-
plore m values of {1, 4, 8, 12, 16} in the ablations,
with the specific settings detailed in the respective
sections. Demonstration examples for each test
sample are randomly selected from the training
data, unless specific methods employ a specially
designed selection method, such as EPR (Rubin
et al., 2022). The values of the feature mean and
covariance matrix are estimated from the demon-
stration set containing demonstration examples cor-
responding to all test samples. We depart from the
assumption made in previous studies, which pre-
supposes an equal distribution of training examples
across all classes (Gao et al., 2021; Logan IV et al.,
2022), in order to facilitate a more realistic and
demanding evaluation.

Each experiment is repeated under five differ-
ent random seeds. The batch size is set to 32,
and the sequence length is configured to 128
for datasets with shorter texts, including SST-
2 (Socher et al., 2013), SST-5 (Socher et al., 2013),
MR (Pang and Lee, 2005), CR (Hu and Liu, 2004),
and TREC (Voorhees and Tice, 2000). On the
other hand, for datasets with longer input texts,
including AGNews (Zhang et al., 2015), DBPe-
dia (Lehmann et al., 2015), Subj (Pang and Lee,
2004), CB (De Marneffe et al., 2019), and Ama-
zon (McAuley and Leskovec, 2013), a batch size
of 16 and a sequence length of 256 are employed.
Regarding the hyperparameters in IDAICL, the val-
ues of λ and τ are fixed at 0.5 and 1, respectively,
except in sensitivity tests. The settings used for
the compared methods adhere to those specified
in the original papers (Min et al., 2022a,b; Rubin
et al., 2022; Zhao et al., 2021; Han et al., 2023;
Fei et al., 2023). Accuracy serves as the primary
evaluation metric, alongside the provided values of
Macro-F1 for the LLaMA model. For each task,
a specific template is utilized for inference, as de-
tailed in Table 6. Additionally, we also examine the
impact of different templates on the performance
of IDAICL following those outlined by Zhao et
al. (2021), which include question-answer tem-
plates, conversation-style templates, prompts re-
sembling web pages, and variations on label names,
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Dataset Task Avg. length Classes Balanced

SST-2 (Socher et al., 2013) Sentiment analysis 12.4 2 Yes
SST-5 (Socher et al., 2013) Sentiment analysis 23.1 5 No
MR (Pang and Lee, 2005) Sentiment analysis 25.7 2 Yes
CR (Hu and Liu, 2004) Sentiment analysis 22.1 2 Yes
Amazon (McAuley and Leskovec, 2013) Sentiment analysis 78.5 5 No
Subj (Pang and Lee, 2004) Subjectivity classification 28.9 2 Yes
TREC (Voorhees and Tice, 2000) Question classification 11.6 6 No
DBPedia (Lehmann et al., 2015) Ontology classification 65.5 14 Yes
AGNews (Zhang et al., 2015) News classification 53.8 4 Yes
CB (De Marneffe et al., 2019) Natural language inference 69.7/8.4 3 No

Table 4: Statistical information of ten datasets. The average length is calculated based on the GPT-2 sentence-piece
length. For tasks involving sentence pairs, we provide the average length for each individual sentence.

Figure 7: Comparison results between Vanilla ICL and IDAICL across fifteen templates. The evaluation is
conducted using the GPT-2 model with 1.5B parameters. The performance of IDAICL exceeds that of Vanilla ICL
and demonstrates greater robustness across various templates.

Figure 8: Results of sensitivity tests for two hyperpa-
rameters within IDAICL, i.e., λ and τ , using the GPT-2
model with 0.8B parameters, with m setting to 12. Opti-
mal performance is achieved when λ ≈ 0.5 and τ ≈ 1.

as listed in Table 10.

D More Comparison Results

The comparison results between Vanilla ICL and
IDAICL on LLaMA models with 13B and 33B pa-
rameters across various datasets are presented in
Table 7. Additionally, the corresponding results
for GPT-2 models with 0.1B and 0.3B parameters
are outlined in Table 8. It is evident that IDAICL

consistently outperforms Vanilla ICL across all
datasets and different model sizes, highlighting the
high generalization capability of IDAICL. Addi-
tionally, IDAICL showcases reduced performance
variance and significantly enhances the worst-case
performance. Based on the findings presented in
Table 9, IDAICL generally outperforms other pre-
diction calibration methods, demonstrating the sig-
nificance of statistical properties derived from the
input data distribution in the predictions of PLMs.

E More Results for Varying Templates

The comparison results between Vanilla ICL and
IDAICL under all fifteen prompt templates are pre-
sented in Figure 7, illustrating that IDAICL consis-
tently enhances both average and worst-case accu-
racy across all templates. Furthermore, the perfor-
mance variance of IDAICL among different tem-
plates is notably smaller when compared to Vanilla
ICL, highlighting the robustness of IDAICL’s per-
formance across diverse templates.
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Dataset Instances Label names

SST-2 1. This movie is amazing! (Label = "Positive")
2. Horrific movie, don’t see it. (Label = "Negative")

Positive, Negative

SST-5
1. A pretensions – and disposable story — sink the movie. (Label =
"Great")
2. Apparently reassembled from the cutting-room floor of any given
daytime soap. (Label = "Terrible")

Terrible, Bad, Okay, Good, Great

MR 1. Lame sweet home leaves no southern stereotype unturned. (Label
= "Negative")
2. Not so much farcical as sour. (Label = "Negative")

Negative, Positive

CR 1. It takes excellent pics and is very easy to use, if you read the
manual. (Label = "Negative")
2. Bluetooth does not work on this phone. (Label = "Negative")

Negative, Positive

Amazon
1. Don’t waste your money if you already have 2003... There isn’t
one reason to get this update if you already have MS Money 2003
Deluxe and Business. (Label ="Terrible")
2. The game was in perfect condition! came before it said it should
have by 2 days!! I love the game and I suggest it to a lot of my
friends! (Label ="Great")

Terrible, Bad, Okay, Good, Great

Subj
1. This is a story about the warm relationship between a little girl
and her father despite the difficult conditions they have to live in.
(Label = "Objective")
2. Too slow, too boring, and occasionally annoying. (Label =
"Subjective")

Subjective, Objective

TREC 1. When did the neanderthal man live? (Label = "Number")
2. How do you get a broken cork out of a bottle? (Label = "Descrip-
tion")

Description, Entity, Expression,
Human, Location, Number

DBPedia
1. CMC Aviation is a charter airline based in Nairobi Kenya. (Label
= "Company")
2. Dialectica aemula is a moth of the Gracillariidae family. (Label =
"Animal")

Company, School, Artist, Athlete,
Politics, Transportation, Building,

Nature, Village, Animal, Plant,
Album, Film, Book

AGNews
1. Walk in park for Yankees Drained by a difficult week, the New
York Yankees needed an uplifting victory. (Label = "Sports")
2. NASA Mountain View claims world’s fastest computer. (Label =
"Technology")

World, Sports, Business,
Technology

CB

1. It was a complex language. Not written down but handed down.
One might say it was peeled down.
The language was peeled down.
(Label = "True")
2. “Do you mind if I use your phone?” Ronni could see that Guido’s
brain was whirring.
Guido’s brain was whirring.
(Label = "True")

True, False, Neither

Table 5: Examples and label names from all datasets.

F More Sensitivity and Ablation Studies

We performed sensitivity tests on two hyperparam-
eters within IDAICL: λ and τ . These values govern
the strength of implicit augmentation and the in-
fluence of the class proportion term, respectively.
As depicted in Figure 8, optimal performance is
achieved when λ≈0.5 and τ≈1 for both datasets.
Furthermore, Figures 9(a) and (b) illustrate the av-
erage performance of ten datasets across different
hyperparameter settings. Much like the earlier find-
ings, the best average performance is identified at
λ = 0.5 and τ = 1. Consequently, setting λ as
0.5 and τ as 1 is recommended for real applica-
tions. Furthermore, the performance remains sta-

ble within the ranges of λ ∈ {0.25, 0.5, 0.75} and
τ ∈ {0.5, 1, 1.5}, indicating that adjustments can
be made within these stable ranges.

G More Results for Imbalanced Labels

The imbalanced label distribution in the training
data has a significant impact on the classification
performance of the model (Zhou and Wu, 2023b;
Zhou et al., 2022). We depicted the confusion ma-
trices for the SST-2 and MR datasets under two im-
balance levels in Figures 9(c) and (d), in which the
proportion of the negative class in demonstrations
is set to 0.1 and 0.2. These results manifest that
IDAICL significantly enhances the performance
of the underrepresented classes in comparison to
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Dataset Template Label mapping

SST-2 Review: {Sentence}
Sentiment: {Label} Positive / Negative

SST-5 Review: {Sentence}
Sentiment: {Label} terrible / bad / okay / good / great

MR Review: {Sentence}
Sentiment: {Label} Positive / Negative

CR Review: {Sentence}
Sentiment: {Label} Positive / Negative

Subj Input: {Sentence}
Type: {Label} objective / subjective

TREC Question: {Sentence}
Type: {Label} description / entity / expression / human / location / number

Amazon Review: {Sentence}
Sentiment: {Label} terrible / bad / okay / good / great

AGNews Input: {Sentence}
Type: {Label} world / sports / business / technology

DBPedia Input: {Sentence}
Type: {Label}

company / school / artist / athlete / politics / transportation
building / nature / village / animal / plant / album / film / book

CB
Premise: {Sentence}
Hypothesis: {Sentence}
Prediction: {Label}

true / false / neither

Table 6: Prompt templates and label mappings for each dataset.

PLM Method m SST-2 SST-5 MR CR Subj TREC DBPedia AGNews CB Avg.

13B

Vanilla ICL 4 95.67.1 29.56.2 90.05.8 91.47.4 72.96.9 62.89.1 80.97.6 80.25.9 51.58.2 72.8
IDAICL 96.72.5 47.11.1 93.01.9 93.30.8 87.82.3 76.02.6 94.91.0 87.72.4 59.41.9 81.8
Vanilla ICL 8 96.77.1 39.45.6 92.36.2 92.24.8 70.85.1 71.29.1 83.74.2 79.56.3 52.43.7 75.4
IDAICL 96.92.1 49.21.9 93.41.6 92.91.9 87.53.0 79.92.1 93.60.9 88.01.7 62.42.5 82.6

33B

Vanilla ICL 4 95.57.2 29.45.6 91.75.4 91.58.1 85.16.0 70.94.4 86.64.5 76.26.1 59.25.3 76.2
IDAICL 96.51.1 46.82.4 93.61.3 92.33.3 89.32.4 79.11.5 95.62.3 88.41.9 64.62.8 82.9
Vanilla ICL 8 96.87.3 34.35.4 93.45.8 92.76.4 83.55.5 66.94.8 84.16.2 84.75.5 62.05.2 77.6
IDAICL 96.92.3 50.31.5 93.92.2 93.01.4 89.01.0 83.11.7 95.92.0 88.01.2 70.41.8 84.5

Table 7: Comparison results of Macro-F1 between Vanilla ICL and IDAICL under varying values of m on the
LLaMA models with 13B and 33B parameters.

Vanilla ICL, thus proving its capability to address
the class imbalance in demonstrations.

H Varying Demonstration Permutations

Research has substantiated that the performance
of ICL is sensitive to the permutation of demon-
strations (Lu et al., 2022; Zhao et al., 2021). We
assessed the performance of IDAICL under varying
demonstration permutations. Specifically, we se-
lected ten different sets of twelve training examples
from the SST-2 datasets. For each set of examples,
we shuffled the order ten times and calculated the
accuracy for each permutation. The findings are
depicted in Figure 10, indicating that IDAICL ex-
hibits relatively stable performance across different
demonstrations and permutations, while Vanilla
ICL demonstrates high variance.
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PLM Method m SST-2 SST-5 MR CR Amazon Subj TREC DBPedia AGNews CB

G
PT

-2
0.

1B

Vanilla ICL
4

56.37.1 28.48.8 55.47.4 54.26.2 30.88.4 52.97.9 32.25.1 44.36.2 42.89.3 42.19.6
IDAICL 69.52.6 35.31.1 66.42.3 67.22.7 39.32.9 57.22.6 44.31.8 62.22.3 65.52.7 49.21.9
Vanilla ICL

8
60.88.3 30.66.9 57.59.7 56.05.1 33.67.8 53.75.6 33.010.7 52.15.8 45.69.1 45.46.2

IDAICL 71.41.8 36.12.9 67.61.8 68.62.2 40.00.7 58.52.5 45.61.9 63.61.1 66.91.6 50.62.7
Vanilla ICL

12
64.56.0 30.87.1 59.35.6 59.18.4 33.95.5 56.68.9 35.87.1 52.311.4 47.46.0 47.47.7

IDAICL 72.21.1 36.72.2 70.11.7 69.31.8 40.81.2 60.91.5 47.02.7 65.51.9 67.82.2 51.23.3
Vanilla ICL

16
64.36.1 33.57.1 59.96.6 61.77.5 34.66.9 56.16.2 36.95.7 54.17.2 47.98.0 48.97.7

IDAICL 72.92.5 38.02.4 69.71.3 69.92.1 41.70.9 60.61.1 46.61.9 65.92.6 65.71.0 51.82.2

G
PT

-2
0.

3B

Vanilla ICL
4

60.87.5 26.66.8 50.57.1 52.36.1 30.55.2 53.28.3 32.88.1 50.54.8 41.35.9 42.77.1
IDAICL 78.41.7 33.12.5 66.60.9 70.32.3 40.11.5 69.41.7 45.63.3 66.22.1 62.83.7 50.41.8
Vanilla ICL

8
58.98.7 29.46.1 52.48.9 54.88.2 32.77.9 53.56.7 34.08.2 59.19.7 43.86.4 46.97.6

IDAICL 80.81.7 34.81.9 69.51.1 71.50.8 41.51.7 70.32.6 46.22.2 68.11.7 63.32.1 51.52.5
Vanilla ICL

12
62.914.4 30.67.8 55.26.2 56.16.7 34.27.5 56.87.1 36.29.8 58.07.3 46.59.3 48.66.6

IDAICL 82.22.3 36.11.8 68.92.4 72.01.5 43.70.6 71.42.4 48.31.3 70.51.9 65.22.2 52.91.4
Vanilla ICL

16
67.46.3 31.77.1 57.68.6 56.65.2 34.76.2 57.05.3 38.16.9 59.38.2 45.27.6 49.48.7

IDAICL 81.52.8 36.81.2 70.41.7 72.92.1 43.11.3 71.92.7 48.71.1 70.92.9 65.81.2 52.41.8

Table 8: Accuracy comparison between Vanilla ICL and IDAICL under varying values of m on the GPT-2 models
with 0.1B and 0.3B parameters.

PLM Method SST-5 MR AGNews TREC SST-2 Subj DBPedia Avg.

GPT-2 1.5B

Vanilla ICL 30.86.1 64.98.3 57.56.7 40.45.1 57.27.0 57.310.3 67.67.5 53.7
ConCa 32.87.1 74.55.1 62.76.1 45.82.5 73.98.6 68.37.4 75.04.0 61.9
PROCA∗ 36.54.4 80.86.4 75.53.2 46.02.5 88.01.3 80.23.3 89.40.7 70.9
D-ConCa 31.73.3 80.93.7 77.04.1 47.12.8 86.54.4 76.85.2 86.16.3 69.4
IDAICL 40.81.9 82.11.2 80.82.4 52.02.5 89.51.8 80.12.9 91.02.5 73.8

GPT-Neo

Vanilla ICL 31.56.4 70.68.1 71.96.8 53.06.9 74.98.3 57.96.3 78.56.5 62.6
ConCa 33.94.3 78.25.3 73.63.8 55.97.2 82.09.5 71.36.4 90.03.6 69.3
PROCA∗ 39.44.0 77.813.9 78.92.5 56.03.6 91.91.2 81.33.8 92.01.5 73.9
D-ConCa 32.94.1 84.62.8 81.23.9 57.64.7 91.65.3 70.92.9 85.73.1 72.1
IDAICL 42.22.5 85.91.6 83.11.9 61.41.7 91.22.4 82.33.1 93.01.5 77.0

Table 9: Accuracy comparison between IDAICL and other prediction calibration approaches using the GPT-2 (with
1.5B parameters) and GPT-Neo models, with m setting to 8. The templates used align with those utilized by Han et
al. (2023). ∗ indicates that the results were derived from the original paper.

Figure 9: (a) and (b): Average accuracy across ten datasets for various values of λ and τ . Optimal average
performance is attained when λ = 0.5 and τ = 1. (c) and (d): Confusion matrices for the SST-2 and MR datasets
under two levels of imbalance, where the proportions of the negative class in demonstrations are set to 0.1 and
0.2, respectively. When compared to Vanilla ICL, IDAICL improves the performance of the minor class. These
experiments are conducted on the GPT-2 model with 1.5B parameters, setting m to 12.
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Figure 10: Comparison results between Vanilla ICL and IDAICL across various demonstrations and permutations.
The GPT-2 model with 0.8B parameters is employed for this analysis, setting m to 12. IDAICL exhibits smaller
performance variance across different demonstrations and permutations compared to Vanilla ICL.
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Format ID Prompt Label names

1

Review: This movie is amazing!
Answer: Positive
Review: Horrific movie, don’t see it.
Answer:

Positive / Negative

2

Review: This movie is amazing!
Answer: good
Review: Horrific movie, don’t see it.
Answer:

good / bad

3

My review for last night’s film: This movie is amazing! The critics agreed that this movie
was good
My review for last night’s film: Horrific movie, don’t see it. The critics agreed that this
movie was

good / bad

4

Here is what our critics think for this month’s films.
One of our critics wrote "This movie is amazing!". Her sentiment towards the film was
positive.
One of our critics wrote "Horrific movie, don’t see it". Her sentiment towards the film was

positive / negative

5

Critical reception [ edit ]
In a contemporary review, Roger Ebert wrote "This movie is amazing!". Entertainment
Weekly agreed, and the overall critical reception of the film was good.
In a contemporary review, Roger Ebert wrote "Horrific movie, don’t see it". Entertainment
Weekly agreed, and the overall critical reception of the film was

good / bad

6

Review: This movie is amazing!
Positive Review? Yes
Review: Horrific movie, don’t see it.
Positive Review?

Yes / No

7

Review: This movie is amazing!
Question: Is the sentiment of the above review Positive or Negative?
Answer: Positive
Review: Horrific movie, don’t see it.
Question: Is the sentiment of the above review Positive or Negative?
Answer:

Positive / Negative

8

Review: This movie is amazing!
Question: Did the author think that the movie was good or bad?
Answer: good
Review: Horrific movie, don’t see it.
Question: Did the author think that the movie was good or bad?
Answer:

good / bad

9

Question: Did the author of the following tweet think that the movie was good or bad?
Tweet: This movie is amazing!
Answer: good
Question: Did the author of the following tweet think that the movie was good or bad?
Tweet: Horrific movie, don’t see it
Answer:

good / bad

10 This movie is amazing! My overall feeling was that the movie was good
Horrific movie, don’t see it. My overall feeling was that the movie was good / bad

11 This movie is amazing! I liked the movie.
Horrific movie, don’t see it. I liked / hated

12 This movie is amazing! My friend asked me if I would give the movie 0 or 5 stars, I said 5
Horrific movie, don’t see it. My friend asked me if I would give the movie 0 or 5 stars, I said 0 / 5

13

Input: This movie is amazing!
Sentiment: Positive
Input: Horrific movie, don’t see it.
Sentiment:

Positive / Negative

14

Review: This movie is amazing!
Positive: True
Review: Horrific movie, don’t see it.
Positive:

True / False

15

Review: This movie is amazing!
Stars: 5
Review: Horrific movie, don’t see it.
Stars:

5 / 0

Table 10: The templates employed for examining the influence of formats on the SST-2 dataset, following those
outlined by Zhao et al. (2021). An example from the training data is used for illustration.
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