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Abstract

Large language models (LLMs) excel in ab-
stractive summarization tasks, delivering flu-
ent and pertinent summaries. Recent advance-
ments have extended their capabilities to han-
dle long-input contexts, exceeding 100k to-
kens. However, in question answering, lan-
guage models exhibit uneven utilization of their
input context. They tend to favor the initial and
final segments, resulting in a U-shaped perfor-
mance pattern concerning where the answer is
located within the input. This bias raises con-
cerns, particularly in summarization where cru-
cial content may be dispersed throughout the
source document(s). Besides, in summariza-
tion, mapping facts from the source to the sum-
mary is not trivial as salient content is usually
re-phrased. In this paper, we conduct the first
comprehensive study on context utilization and
position bias in summarization. Our analysis
encompasses 6 LLMs, 10 datasets, and 5 evalu-
ation metrics. We introduce a new evaluation
benchmark called MiddleSum on the which we
benchmark two alternative inference methods
to alleviate position bias: hierarchical summa-
rization and incremental summarization1.

1 Introduction

Large language models (LLMs) have drastically
transformed the landscape of NLP recently (Brown
et al., 2020). With instruction tuning (Ouyang
et al., 2022; Chung et al., 2022), LLMs made a
major leap forward in conditional (prompted) con-
tent generation, and can generate satisfying out-
puts without the need to fine-tune on a specific
task. In abstractive summarization specifically, this
approach has arguably opened a new paradigm:
summaries generated by LLMs are highly fluent,
grammatical and relevant (Goyal et al., 2022). De-
spite noticeably lower scores on automatic metrics
such as ROUGE (Lin, 2004) or BERTScore (Zhang

1Our code and data can be found here: https://
github.com/ntunlp/MiddleSum.

et al., 2019), summaries generated by LLMs are
largely preferred by humans over summaries from
state-of-the-art fine-tuned models like BRIO (Liu
et al., 2022b, 2023c). In fact, on XSum, GPT-
3.5 summaries are even on par with re-annotated
human-written summaries, and much better than
the dataset’s original ground-truth, according to hu-
man evaluators (Zhang et al., 2023b). LLMs also
show promising capability in evaluating summaries
generated by other systems, including LLMs (Fu
et al., 2023; Luo et al., 2023; Shen et al., 2023a).

Despite this success, a few major technological
bottlenecks remain with LLMs, including the maxi-
mum length of their context window. The standard
context window length for open-source LLMs is
2k tokens (Brown et al., 2020; Scao et al., 2022;
Penedo et al., 2023; Touvron et al., 2023a), which
drastically limits their usefulness for long-input
summarization (Shaham et al., 2022). Several tech-
niques were proposed to extend the context window,
including ALiBi (Press et al., 2021), LeX (Sun
et al., 2022), position interpolation (Chen et al.,
2023) and YaRN (Peng et al., 2023). While some
of them claim up to 100k+ tokens processing capac-
ity (Peng et al., 2023), it remains unclear how much
such methods help on long-context summarization.

Scaling up context length would only succeed
if a key question gets addressed first: do LLMs
make proper use of their entire context? Recent
work (Liu et al., 2023a) suggested that, surprisingly,
such a simple assumption may not hold: through
experiments on multi-document question answer-
ing and key-value retrieval, the authors find that
LLMs mostly focus on the beginning and end of the
(long) context window. Plotting performance with
regards to the position of the important information
exhibits a U-shape, with performance high at first
(beginning of the source), then dropping, and ris-
ing again at the end. Worryingly, in the middle of
the context window, LLMs’ performance can drop
to even below random chance, calling for greater
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examination of LLMs’ behaviors with regard to the
position of information within the source.

In this work, we investigate in depth how LLMs
use their context window in abstractive summariza-
tion. Unlike in question-answering, mapping facts
in the output to a specific snippet in the source is
not straightforward in abstractive summarization,
due to the high-level of re-phrasing and compres-
sion. We conduct a large-scale study with 6 LLMs,
10 datasets covering many aspects of summariza-
tion, and 5 highly diverse automatic metrics. Our
contributions are threefold:

• We conduct the first large-scale analysis on con-
text utilization in abstractive summarization, and
the impact of the position of salient information
on performance. We show that the U-shape or
middle-curse exhibited by (Liu et al., 2023a) also
holds in abstractive summarization.

• We craft an evaluation dataset (MiddleSum)
where important information is concentrated in
the middle of the context, enabling us to automat-
ically quantify how much LLMs are affected by
the middle-curse.

• We benchmark two alternative methods for infer-
ence on MiddleSum: hierarchical summarization
and incremental summarization, showing their
promise at alleviating the middle curse (espe-
cially in the scientific paper domain).

2 Experimental Setup

Datasets We cover a broad set of diverse abstrac-
tive summarization tasks, varying length and do-
main. We include 5 datasets of standard length
(source is below 2k tokens, which always fits in the
context window): (i) CNN/DailyMail (Hermann
et al., 2015), (ii) XSum (Narayan et al., 2018), (iii)
Reddit-TIFU (Kim et al., 2019), (iv) SAMSum
(Gliwa et al., 2019), and (v) Multi-XScience (Lu
et al., 2020). We also include another 5 long-input
summarization datasets: (i) Arxiv and (ii) PubMed
(Cohan et al., 2018), (iii) GovReport (Huang et al.,
2021), (iv) SummScreenFD (Chen et al., 2022),
and (v) Multi-News (Fabbri et al., 2019). A high-
level view of each dataset is shown in Table 1, and
detailed statistics are presented in Appendix A. For
all datasets, we run experiments on the test set, sub-
sampling 1,000 data points if its size is greater than
1,000, or using the entire test set otherwise.

Models We experiment with 6 popular and high-
performing LLMs:

Input length # Documents In Flan?
Dataset Standard Long Single Multi Yes No

CNN/DM (Hermann et al., 2015) ✓ ✓ ✓

XSum (Narayan et al., 2018) ✓ ✓ ✓

Reddit-TIFU (Kim et al., 2019) ✓ ✓ ✓

SAMSum (Gliwa et al., 2019) ✓ ✓ ✓

Multi-XScience (Lu et al., 2020) ✓ ✓ ✓

Arxiv (Cohan et al., 2018) ✓ ✓ ✓

PubMed (Cohan et al., 2018) ✓ ✓ ✓

GovReport (Huang et al., 2021) ✓ ✓ ✓

SummScreenFD (Chen et al., 2022) ✓ ✓ ✓

Multi-News (Fabbri et al., 2019) ✓ ✓ ✓

Table 1: Summarization datasets under study. In standard
length datasets, the context and summary fit within a 2k tokens
LLM context window.

• Flan-UL2 is a 20B parameters encoder-decoder
model pre-trained on 1T tokens. It is based on the
UL2 20B model (Tay et al., 2022), with the addi-
tion of Flan-T5 (Chung et al., 2022) instruction
fine-tuning. The context window is 2k tokens.

• Llama-2 (Touvron et al., 2023b) is a recently
introduced powerful decoder-only model pre-
trained on 2T tokens, ranging from 7B to 70B
parameters, and with a 4k tokens context window.
We use the 7B and 13B models.

• Xgen-7B (Nijkamp et al., 2023) is a 7B decoder-
only model pre-trained on up to 1.5T tokens. It
supports an 8k tokens context window.

• Mistral-7B (Jiang et al., 2023a) is also an 8k-
context 7B decoder-only model, with perfor-
mance slightly better than Llama-2-13B.

• GPT-3.5 (gpt-3.5-turbo-0125), which is
known to be good at generating summaries and
has a 16k tokens context window.2

We analyze the open-source models through
HuggingFace transformers library (Wolf et al.,
2020), and use the OpenAI API for GPT-3.5. We
use the instruction-tuned (or chat) checkpoints
for Llama-2, Xgen-7B and Mistral-7B. Note
that popular instruction-tuning datasets such
as Flan (Wei et al., 2021) include some of the
datasets we study: CNN/DM, XSum, SAMSum
and Multi-News. To run inference, we use the
following prompt: Read the following
text and summarize it: [text].
Summarize the above text in [n]
sentences. Summary: where n is set to an
average number of target sentences per dataset (see
Appendix A). We infer all models in bfloat16 and
sample summaries with top-k sampling (Fan et al.,
2018) using k = 50 and temperature T = 0.3.

2To reduce cost, we subsample 300 data points when using
GPT-3.5. Our total API cost is inferior to 300 USD.
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Figure 1: Distribution of the relative location of summary bigrams within the source. We split each source document into 20
bins of the same number of words, and plot the distribution of summary bigrams over source bins.

Evaluation Measures Summarization evaluation
is especially challenging in the LLM era, as most
automatic metrics poorly correlate with human
preferences (Goyal et al., 2022; Liu et al., 2023b).
To get a broad picture of performance, we eval-
uate with metrics as diverse as possible. First,
we consider reference-based metrics: ROUGE-
2 (Lin, 2004), which measures bigram overlap,
BERTScore (Zhang et al., 2019), which mea-
sures semantic similarity with BERT (Devlin et al.,
2019) embeddings, and A3CU (Liu et al., 2023c),
which extracts facts in the form of Atomic Con-
tent Units (ACUs) (Liu et al., 2023b), and checks
the presence of ACUs between prediction and ref-
erence. As reference-free metrics, we include
SummaC (Laban et al., 2022), a leading factual
consistency evaluation metric relying on entail-
ment scores between pairs of source and summary
sentences. We also leverage GPT-3.5 again (still
gpt-3.5-turbo-0125), this time as a summa-
rization evaluator, which is proven to be a strong
natural language generation evaluator (Wang et al.,
2023a; Shen et al., 2023a; Jain et al., 2023). We
prompt the model with the source and generated
summary (which fits in GPT-3.5’s 16k context win-
dow) and ask to output a score on a likert scale
from 1 to 5. We refer to Appendix B for the full
prompt template.3

We report the performance of LLMs on all 10
datasets, alongside a comparison to SOTA, in Ap-
pendix C. FLan-UL2 dominates on standard-length

3We also subsample 300 data points when using GPT-3.5
as an evaluator, to reduce API cost.

datasets, but GPT-3.5 has the upper hand on the
long-input ones. Performance itself is not our fo-
cus in this paper, but rather which position-related
factors influence it. We discard Flan-UL2 on long-
input datasets due to very poor performance.

3 Experiments

In this section, we describe a series of experiments
aimed at understanding how LLMs treat informa-
tion in their input depending on the position.

3.1 RQ1: Where in the source do LLMs take
their information from?

We first investigate summaries generated by LLMs,
and map them to specific parts of the input. Unlike
in question-answering or extractive summarization,
mapping salient information from a summary to the
source is not trivial in abstractive summarization.

We follow the approach used in (Kim et al., 2019;
Zhao et al., 2022a) and compute the relative posi-
tion of bigams from generated summaries within
the source documents, as a proxy for the position
of salient information. We only use unique bigrams
from summaries, and for each bigram, find all its
occurrences within the source, if there are any. We
then split the source into 20 bins of the same num-
ber of words, and compute the fraction of matched
bigrams found in each bin. On top of the LLMs de-
scribed above, we include the position of bigrams
from reference summaries, and a uniform baseline.

As seen in Fig. 1, all summarization datasets
except XSum, and Reddit-TIFU show some lead
bias: salient bigrams from the reference (orange
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Figure 2: Distribution of relative location of input context sentences aligned with sentences from summaries. X-axis corresponds
to the source sentence bin, y-axis to the fraction of aligned sentences in each bin.

curves) are more likely to be found at the begin-
ning of the source. However, LLMs show a signifi-
cantly stronger lead bias on all datasets: bigrams
from LLMs summaries are much more likely to be
found in the first 20% words of the source. It is
especially striking on XSum (except for Flan-UL2),
Reddit-TIFU, Arxiv, PubMed and GovReport. On
XSum, Flan-UL2 closely matches the reference dis-
tribution, which we attribute to its better instruction
tuning. Results in Appendix D confirm that bigram
distribution for LLMs and references are statisti-
cally different (p-value of Kolmogorov-Smirnov
test (Massey Jr, 1951) inferior to 0.001) in all but
4 out of the 55 (dataset, LLM) setups: Flan-UL2
on XSum and SAMSum, Llama-2-7B on SAM-
Sum and GPT-3.5 on SAMSum. We conclude that
LLMs focus on contents at the beginning of the
source document(s).

3.2 RQ2: Where do LLMs look at within
their context window?

In the previous experiment’s design, LLMs may
not see the entire source in long-input summariza-
tion datasets, due to their limited context window,
which is shorter than the source on the long-input
datasets. We now focus on input information ac-
cessible to LLMs, and only consider salient infor-
mation if it falls within the context window. Be-
sides, since the same bigram may occur multiple
times throughout the source, we adjust the method-
ology for saliency estimation. We align sentences
in generated summaries to sentences in the con-
text, following the procedure described in (Zhou
et al., 2018) and also used in (Adams et al., 2023).
Specifically, we greedily select source sentences
(among the ones fitting in context window) until
the ROUGE-1 F1 score between the set of selected
source sentences and the summary stops increas-
ing. The resulting set of source sentences forms a
proxy of the visible salient input information being

rephrased by the model when summarizing. We
split each truncated source document into 10 bins
of the same number of sentences, and map each
aligned source sentence to its bin. Note that bins
are not directly comparable across models, as con-
text length varies across models.

As we can see in Fig. 2, sentences from the first
10% or last 10% of the input context are much
more represented than others. A clear U-shape
emerges on PubMed and SummScreenFD for all
LLMs. This is intriguing knowing that the LLMs
have different context window lengths, and the last
10% of each context window may contain content
of varying saliency. In other words, LLMs seem
to be mostly re-phrasing information from the
beginning or the end of their context window.

Results in Appendix E confirm an even stronger
position bias with base models.

3.3 RQ3: Does LLMs performance depend on
the position of salient information?

Results from the last experiment raise the ques-
tion of whether LLMs’ summarization performance
changes depending on where salient information
is located within the input. As an approximation
for salient information, we consider the alignment
between summary sentences and source sentences
like in Fig. 2, but this time using the reference
summaries. Each reference summary is mapped to
the source sentences it maximizes ROUGE-1 F1
against, which may be scattered across the whole
source. We convert each source sentence to its
cumulative word count from the beginning of the
source, and take the average as an approximation
of the mean position of salient information within
the source. We keep data points with mean salient
position fitting within the LLM context window.

We examine performance changes with regard
to this salient position. To do so, we compute the
Spearman correlation coefficient between salient
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Metric Model CNN/DM XSum Reddit SAMSum Multi-X AVG Arxiv PubMed GovReport SummScreenFD Multi-N AVG

ROUGE-2

Flan-UL2 -0.296 -0.124 0.048 -0.069 -0.201 -0.128 _ _ _ _ _ _
Llama-2-7B -0.160 -0.023 0.063 -0.059 -0.100 -0.056 0.022 -0.113 -0.109 -0.079 -0.210 -0.098
Llama-2-13B -0.166 -0.086 0.031 -0.078 -0.039 -0.068 -0.017 -0.081 -0.166 -0.139 -0.213 -0.123
Xgen-7B -0.228 -0.042 0.066 -0.039 -0.041 -0.056 0.028 -0.091 -0.405 0.063 -0.283 -0.138
Mistral-7B -0.289 -0.031 0.006 -0.024 -0.052 -0.078 -0.270 -0.279 -0.585 -0.132 -0.324 -0.318
GPT-3.5 -0.323 -0.027 -0.031 -0.097 0.088 -0.078 0.026 -0.093 -0.123 -0.061 -0.233 -0.097

BERTScore

Flan-UL2 -0.331 -0.185 0.062 -0.144 -0.399 -0.187 _ _ _ _ _ _
Llama-2-7B -0.173 -0.012 0.062 -0.130 -0.385 -0.128 -0.031 -0.203 -0.104 -0.067 -0.256 -0.132
Llama-2-13B -0.193 -0.102 0.038 -0.089 -0.352 -0.140 -0.082 -0.209 -0.063 -0.152 -0.279 -0.157
Xgen-7B -0.252 -0.106 0.046 -0.075 -0.343 -0.146 -0.017 -0.125 -0.353 -0.093 -0.345 -0.187
Mistral-7B -0.278 -0.052 0.014 -0.108 -0.416 -0.168 -0.348 -0.367 -0.567 -0.356 -0.403 -0.408
GPT-3.5 -0.280 -0.021 -0.025 -0.174 -0.247 -0.149 -0.087 -0.210 -0.175 -0.142 -0.262 -0.175

A3CU

Flan-UL2 -0.258 -0.090 0.050 -0.123 -0.069 -0.098 _ _ _ _ _ _
Llama-2-7B -0.182 -0.076 0.028 -0.121 -0.090 -0.088 -0.038 -0.209 -0.154 -0.129 -0.217 -0.149
Llama-2-13B -0.190 -0.098 0.009 -0.166 0.016 -0.086 -0.104 -0.232 -0.111 -0.198 -0.228 -0.175
Xgen-7B -0.212 -0.130 0.023 -0.126 -0.025 -0.094 -0.036 -0.255 -0.211 -0.076 -0.287 -0.173
Mistral-7B -0.291 -0.110 0.004 -0.105 -0.119 -0.126 -0.160 -0.283 -0.305 -0.010 -0.283 -0.208
GPT-3.5 -0.256 -0.022 -0.039 -0.216 0.141 -0.078 -0.064 -0.293 -0.201 -0.059 -0.264 -0.176

SummaC

Flan-UL2 -0.012 0.548 0.270 0.186 -0.035 0.191 _ _ _ _ _ _
Llama-2-7B 0.088 0.552 0.375 0.227 0.224 0.293 0.090 0.108 0.126 -0.020 0.205 0.102
Llama-2-13B 0.162 0.556 0.394 0.173 0.096 0.276 0.090 0.265 0.192 -0.144 0.232 0.127
Xgen-7B 0.001 0.161 0.220 0.117 0.004 0.101 -0.208 -0.087 -0.313 -0.141 0.046 -0.141
Mistral-7B -0.045 0.515 0.149 0.069 0.154 0.128 -0.250 -0.103 -0.387 0.124 -0.010 -0.125
GPT-3.5 0.156 0.590 0.444 0.180 0.008 0.276 0.058 0.237 0.061 -0.055 0.089 0.078

GPT-3.5

Flan-UL2 -0.020 0.196 0.027 -0.009 -0.193 0.000 _ _ _ _ _ _
Llama-2-7B 0.036 0.036 -0.152 0.077 -0.153 -0.031 0.008 -0.116 -0.013 -0.068 -0.120 -0.062
Llama-2-13B 0.039 0.072 -0.038 0.066 -0.052 0.017 -0.010 -0.084 -0.084 -0.060 -0.051 -0.058
Xgen-7B 0.056 -0.007 -0.101 0.006 -0.174 -0.044 -0.058 -0.096 -0.317 -0.063 -0.055 -0.118
Mistral-7B -0.115 0.124 -0.133 0.036 -0.204 -0.058 -0.446 -0.322 -0.580 -0.188 -0.163 -0.342
GPT-3.5 0.024 0.014 -0.108 0.131 -0.054 0.001 0.156 -0.008 -0.172 0.068 0.024 0.014

Table 2: Spearman correlation coefficient between each LLM’s metric, and the mean position of salient information within the
context window. Flan-UL2 is not applied to long-context summarization datasets due to its too short context window. Multi-X
is short for Multi-XScience, Multi-N is Multi-News dataset, AVG columns represent the average over standard-length and
long-input datasets, respectively. Numbers in gray correspond to non-significant Spearman scores (p-value greater than 0.05).

position and each evaluation metric in Table 2. A
high absolute Spearman value means that summary
quality (as measured by this metric) can change
(and deteriorate) with the position of important
information within the context.

There are several takeaway findings from this
Table. First, we notice that on standard-length
datasets, reference-based evaluation metrics are
negatively correlated to position of salient infor-
mation. The correlation is only moderate, yet re-
markably consistent across datasets (except Reddit-
TIFU) and models. This is surprising, since such
datasets fit entirely in context and are not affected
by truncation. In contrast, reference-free metrics
show either no significant or positive correlation to
information position. For long-input datasets, the
negative trend for reference-based metrics is con-
firmed. On these lengthy datasets, SummaC and
GPT-3.5 tend to switch from positive to negative
correlation, especially for Xgen-7B and Mistral-7B.
We highlight that since GPT-3.5 itself is affected
by the middle-curse from Liu et al. (2023a), it may
not accurately evaluate summarization when salient
content lays in the middle of the context. In light
of these results, we conservatively conclude that
LLMs’ summarization performance is sensitive to
the position of salient information in the context
window.

4 Analysis

4.1 How is information in the middle treated?

Previous experiments show that LLMs place more
emphasis on the beginning and the end of their
context. We now narrow down on how LLMs
treat the middle. To remove the effect of spread of
salient information, we perform two controlled ex-
periments in multi-document summarization. This
setup enables us to shuffle the order of the input,
which is not realistic for the single-document setup
as it would break coherence. We only consider
data points with the same number k of documents:
k = 7 documents for Multi-XScience (n = 329),
and k = 5 documents for Multi-News (n = 219)4.

In the first experiment, we vary the position of
salient information throughout the input. We keep
a single document (the abstract of the query pa-
per on Multi-XScience, and the document with the
highest BERTScore with the reference on Multi-
News), and place it at position j for j ∈ {1, . . . , k},
using k − 1 documents from a random data point
for the other slots. The single relevant document is
accompanied by a [RELEVANT] header, while the
other documents have an [IRRELEVANT] header,
and we prompt the LLM to only summarize the
relevant document. For reference-free evaluation

4We don’t subsample from these subsets for GPT-3.5.
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Figure 3: Multi-document summarization performance on Multi-XScience (top row) and Multi-News (bottom row) when a
unique relevant document is used, and its position is varied (x-axis). Dashed horizontal lines correspond to the random baseline.

Figure 4: Fine-grained evaluation of multi-document sum-
marization on Multi-News with GPT-3.5 when varying the
position of a unique relevant input document.

metrics, we use the single relevant document as
source. We also include a random baseline of shuf-
fled inputs and model predictions. In Fig. 3, we
see a noticeable drop in performance for all metrics
when the salient document is not in the first or final
position. Flan-UL2 seems to focus on the end of
the context, Xgen-7B and Mistral-7B on the begin-
ning, and Llama-2 models and GPT-3.5 on both.
Performance can fall quite below random range,
especially for reference-free metrics, confirming
the worrying trend from Liu et al. (2023a).

A more fine-grained analysis with GPT-3.5 in
Fig. 4 evaluating specific attributes (following the

Dataset Model Input documents R-2 BS A3CU SummaC GPT-3.5 %

Multi-X

Llama-2-7B
All 7 4.64 82.83 5.88 54.56 4.17 100.00
First + last 4.62 82.82 5.78 47.00 4.50 98.36
First + 5 random + last 4.43 82.64 5.37 43.25 4.01 92.40

Llama-2-13B
All 7 4.78 83.00 6.64 42.62 4.35 100.00
First + last 4.73 82.86 5.76 43.74 4.53 98.46
First + 5 random + last 4.61 82.80 5.72 46.42 4.31 98.07

Xgen-7B
All 7 5.37 82.68 6.59 44.34 4.19 100.00
First + last 5.01 82.73 5.86 49.08 4.45 99.83
First + 5 random + last 3.89 82.16 5.03 55.29 3.01 88.93

Mistral-7B
All 7 5.40 82.60 6.35 63.78 4.26 100.00
First + last 5.12 82.67 6.15 60.91 4.76 99.80
First + 5 random + last 4.45 82.40 5.35 58.19 4.06 90.59

GPT-3.5
All 7 5.26 83.45 7.71 35.66 4.59 100.00
First + last 4.75 83.04 6.05 39.81 4.69 96.42
First + 5 random + last 4.37 82.90 5.67 43.26 4.63 95.63

Multi-N

Llama-2-7B
All 5 10.76 85.04 19.06 60.09 4.00 100.00
First + last 9.50 84.43 15.88 54.52 3.80 91.32
First + 3 random + last 7.57 83.36 12.39 50.35 2.94 78.13

Llama-2-13B
All 5 10.42 84.60 18.15 57.26 3.83 100.00
First + last 9.55 84.58 16.99 49.84 3.73 93.93
First + 3 random + last 8.27 83.79 14.84 50.09 3.18 86.14

Xgen-7B
All 5 9.04 83.18 17.05 60.55 3.32 100.00
First + last 7.82 83.27 14.18 51.59 3.60 92.68
First + 3 random + last 6.30 81.85 11.66 49.02 2.66 79.51

Mistral-7B
All 5 9.52 83.55 17.03 63.02 3.15 100.00
First + last 9.11 83.69 14.99 67.14 3.51 100.37
First + 3 random + last 6.59 81.66 12.50 52.14 2.45 80.17

GPT-3.5
All 5 10.26 85.06 18.45 49.21 4.09 100.00
First + last 8.94 84.52 15.85 45.94 4.01 92.76
First + 3 random + last 8.53 84.31 15.33 44.67 3.80 89.81

Table 3: Performance in multi-document summarization on
Multi-XScience (7 documents) and Multi-News (5 documents)
when infilling the middle of the context window with random
documents. R-2 is ROUGE-2, BS refers to BERTScore. % is
the mean relative performance across all metrics compared to
the baseline with all documents.

method in Adams et al. (2023), see Appendix B)
reveals more details. Coherence and quality remain
high and stable. In other words, the text outputs
from the LLMs are always of good quality. But
for informativeness and attributability, the U-shape
appears again: it shows that the LLMs (even the
powerful GPT-3.5) are struggling to generate con-
tent specifically sticking to the document inserted
in the middle.

In the second experiment, we take the opposite
approach, and put salient information at the begin-
ning and the end, while the middle of the prompt
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Figure 5: Reference-based evaluation on the MiddleSum dataset. We also report (gray bars) performance achieved by uniformly
sampling subsets of the same size as MiddleSum from the original datasets, alongside bootstrapping variance (black lines).

is filled with noise. We keep the first and last docu-
ments, and fill the k − 2 middle ones with random
documents. We also run a baseline just using the
first and last documents as input, expected to be
close to the result with random documents in be-
tween. As displayed in Table 3, filling with random
noise between the first and last document (which
amounts to a prompt mostly irrelevant to the ref-
erence) leads to a moderate drop in performance.
For instance, on Multi-XScience, with 5 random
documents between the first and last, Llama-2-13B
maintains 98% of its performance, and reaches a
GPT-3.5 score of 4.31 as compared to 4.35 when
using all 7 documents.

We conclude from these two experiments that
LLMs can focus on the beginning and/or the end
of their input, but largely ignore the middle. The
U-shape or middle curse from Liu et al. (2023a)
also applies to abstractive summarization.

4.2 Can we alleviate the middle curse?

To evaluate the loss of performance due to the mid-
dle curse in a natural setup, we subsample data
points from each of the 5 long-input summariza-
tion datasets. We obtain sentences from the (un-
truncated) source aligned with the reference sum-
mary, following the procedure from §3.2. Only data
points where the start index of the earliest aligned
source sentence is at least 1,200 words, are kept,
ensuring no salient information at the start. We ran-
domly sample 50 data points from each of Arxiv,
PubMed, GovReport and Multi-News, and 25 from
SummScreenFD, forming an evaluation dataset of
225 samples which we name MiddleSum.

We evaluate LLMs on MiddleSum, keeping only
reference-based evaluation as the dataset is built
using saliency with regard to the reference. As
expected, in Fig. 5 we see that LLMs perform no-
ticeably worse on MiddleSum (green bars) as com-
pared to the full set (gray bars), confirming that
MiddleSum is a more challenging task.

We benchmark alternative inference methods on
MiddleSum: hierarchical summarization and incre-
mental summarization, both of which are explored
in the concurrent work of Chang et al. (2023).
Namely, let us divide an input x of length n into
k consecutive blocks of size at most m (yielding
k =

⌈
n
m

⌉
): x = (x1, . . . ,xk).

Hierarchical summarization consists in summa-
rizing each block and then summarizing the con-
catenation of summaries:

yi = LLM(xi) ∀i ∈ {1, . . . , k} (1)

y = LLM(y1, . . . ,yk) (2)

Incremental summarization consists in updating
a summary of the text so far with content from the
current text block (we have y0 = ∅):

yi = LLM(yi−1,xi)∀i ∈ {1, . . . , k} (3)

y = yk (4)

In both methods, the final output is y. Noting l
the output length, standard inference has complex-
ity in O(l.n2), while both alternative methods have
complexity in O(k.l.m2) = O(l.n.m), which is
lower. For both methods and all models, we use
a block size m of 1,500 words (roughly 2,000 to-
kens), and preserve coherence by ending blocks at
the earliest end of sentence reaching the length.

Results are shown in Fig. 5 (blue and purple
bars), with detailed numbers in Appendix F. We
also compare to a baseline consisting in adding the
prompt Please also pay attention to
the middle section of the input
when constructing the summary,
which we refer to as the Focus prompt (brown
bars). Both alternative methods show promising re-
sults on open-source LLMs, notably on Mistral-7B
for which they improve performance significantly.
However, they are not successful and lag behind
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Figure 6: Long-input summarization performance on Arxiv (top) and GovReport (bottom) with 5 LLMs and all 5 metrics.
X-axis represents the truncated maximum source length. Xgen-7B and Mistral-7B cannot infer beyond 8k tokens.

Focus Prompt with GPT-3.5. Across domains (see
Table 8), hierarchical and incremental inference
are very effective on scientific publications, which
we hypothesize is due to the natural division in
structured sections of such inputs. Yet, they seem
to harm summaries on the other domains.

4.3 Is scaling context length really useful?

Experiments from §4.1 confirm that LLMs struggle
to summarize information contained in the middle
of their context window. This poses issues for long-
input summarization: after the initial part with (usu-
ally) high saliency, important information becomes
sparser, and at the same time LLMs processing
capability weakens. To investigate this issue, we in-
fer long-document summarization with length trun-
cated at m∗2k tokens, varying m from 1 to 6.5 We
use our longest context LLMs {Xgen-7B, Mistral-
7B, GPT-3.5} ; as well as two open-source LLMs
extending Llama-2-7B context window with posi-
tion interpolation (Chen et al., 2023), a method
gaining traction as an efficient way to scale LLMs’
context window. We use Vicuna-7B-1.5-16k6, and
Llama-2-7B-32k7, with context of 16k tokens and
32k tokens, respectively.

Results on Arxiv and GovReport in Fig. 6 con-
firm our intuition: all metrics plateau or even de-
crease (see Mistral-7B) from 4k context window
upwards. Two conflicting forces are at play when
increasing length: giving more information to the
model helps it retrieve key elements further to make

5Our hardware does not allow us to exceed 12k tokens.
6In HuggingFace: lmsys/vicuna-7b-v1.5-16k
7In HuggingFace: togethercomputer/LLaMA-2-7B-32K

a richer summary, while at the same time reasoning
over a longer context is more challenging. Yet,
such a drop for Xgen-7B and Mistral-7B at 8k
inference length is concerning. Both position in-
terpolated models show more robustness ; while
GPT-3.5 seems to plateau at 8k tokens. Our results
suggest that in the current LLMs inference and
evaluation framework, there is no need to exceed
4k tokens in the context window for open-source
model.

4.4 Does the decoding method impact the
middle curse?

We now turn our attention to the process controlling
summary generation. While we had sampled all
summaries with top-k sampling with k = 50 and
temperature T = 0.3 so far ; we now also experi-
ment with greedy decoding, and top-p sampling
(where we use p = 0.95 and temperature T = 1.0).

In Fig. 7, we reproduce the salient bigrams and
sentences alignment experiments from §3.1 and
§3.2, respectively, with the aforementioned decod-
ing methods. As seen, the decoding method does
not affect position bias: for all setups, the LLMs
show similar patterns as with our previous default
decoding method. We conclude that the middle
curse is independent from the decoding method.

5 Related Work

Summarization with LLMs It is widely ac-
knowledged that LLMs have propelled forward ab-
stractive summarization research (Pu et al., 2023),
with their summaries being highly rated by hu-
man annotators (Goyal et al., 2022; Zhang et al.,
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Figure 7: Summary bigrams (top) and aligned source sen-
tences (bottom) distribution on Arxiv and GovReport for
Llama-2-7B and XGen-7B, for several decoding strategies.

2023b). Liu et al. (2023d) proposes to train smaller
models like BART (Lewis et al., 2020) or BRIO
(Liu et al., 2022b) with contrastive learning using
LLMs like ChatGPT as evaluator providing signal
on which generated summary candidate is better.
Summary chain-of-thought designs a custom chain-
of-thought method which first prompts the LLM to
list important facts, then integrates these facts into
a coherent summary (Wang et al., 2023c). SummIt
utilizes ChatGPT to iteratively write then refine
summaries given feedback from an evaluator LLM
(Zhang et al., 2023a). Chain-of-density gradually
makes GPT-4 generated summaries contain more
and more entities while keeping length budget con-
stant, creating more informative albeit a bit less
readable summaries (Adams et al., 2023). Ravaut
et al. (2022) noticed that data points with higher
compression are generally harder to summarize
with pre-trained models.

Position bias in LLMs Sun et al. (2021) showed
that for Transformer-based models, most recent
tokens play a greater role compared to older to-
kens for next-token prediction. It was later found
that for in-context learning, the order of examples
within the prompt impacts GPT-3’s performance
(Liu et al., 2022a; Lu et al., 2021). Reliance on
positional information affects LLMs capabilities
in arithmetic (Shen et al., 2023b), in multiple-

choice question-answering (Zheng et al., 2023;
Pezeshkpour and Hruschka, 2023), and as text gen-
eration evaluators (Wang et al., 2023b) ; making
it hard to rank LLMs (Alzahrani et al., 2024). Liu
et al. (2023a) were the first to show that LLMs’ per-
formance weakens in the middle of the prompt (the
middle curse), yet, how LLMs make use of their
full context window remains poorly understood.
The passkey retrieval evaluation, which consists
in prompting the LLM to recall a complex string
or long number inserted in its prompt, is becom-
ing popular recently as a way of verifying LLM’s
processing capability at each position (Liu et al.,
2023a; Jiang et al., 2024). However, this task does
not measure position bias on complex, abstract rea-
soning tasks like summarization. A line of work
attempts to solve the middle curse through com-
pressing the prompt (Jiang et al., 2023b,c), with
very promising results albeit at the cost of prompt
fluency. Another approach marginalizes results
over different permutations of the input to suppress
dependency on input order (Tang et al., 2023). Con-
current work to ours also finds that in zero-shot
summarization, LLMs tend to prefer lead content
(Chhabra et al., 2024).

6 Conclusion

Behind the recent hype around LLMs and their
amazing instruction following and content gener-
ation capabilities, our study showcases a major
weakness in abstractive summarization: LLMs suf-
fer from the middle curse and struggle to use in-
formation in the middle of their context window.
LLMs do not make a consistent use of their context
window as they mostly look at the beginning and
(to a lesser extent) the end, which at first glance
may be hidden by the prevalent lead bias in sum-
marization datasets. Extending context window be-
yond 4k tokens, which has been an intense area of
focus lately, is not justified in the current inference
and evaluation setup in abstractive summarization.
We benchmarked two alternative inference methods
(hierarchical inference and incremental inference)
on MiddleSum, an evaluation subset designed to
showcase the middle curse. Despite encouraging re-
sults on scientific paper datasets, these methods are
far from a silver bullet to the middle curse. We call
for a better evaluation of LLMs, which accounts for
the salient spans of the source which are effectively
being processed.
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Limitations

Our work only considers open-source LLMs for
summary generation and ignores closed-source
LLMs such as the popular OpenAI’s GPT-3.5 and
GPT-4, or Anthropic’s Claude. We made this de-
cision to advocate for openness in LLM research ;
yet we acknowledge that it would be interesting to
also investigate properties of summaries generated
by these paying API LLMs.

Another limitation lays in the saliency estima-
tion. We approximate salient content in the source
through maximizing ROUGE-1 overlap with sum-
mary sentences. Other methods are also well-
suited for this task, albeit at greater computational
cost ; for instance semantic similarity through
BERTScore or BARTScore ; or saliency estima-
tion through a LLM in zero-shot.

Lastly, we can only evaluate a finite number of
LLMs, and we settled for the evaluation of 5 recent
and popular open-source LLMs. Findings may
change as LLMs undergo changes and improve-
ments in their training process.
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A Statistics

In Table 4, we include statistics on each of the
abstractive summarization datasets under consid-
eration. We use the non-anonymized version for
CNN/DM (See et al., 2017). For Reddit-TIFU,
we use the Long subset, and SummScreenFD,
is the ForeverDreaming (FD) subset of Summ-
Screen. GovReport and SummScreenFD are part of
the long-input benchmarks Scrolls (Shaham et al.,
2022) and ZeroScrolls (Shaham et al., 2023).

In Fig. 8, we illustrate how much of the source
document(s) is visible with a 4k context window
(Llama-2).

B GPT-3.5 Evaluation

To evaluate LLM-generated summaries with
GPT-3.5, we use the following prompt template:

Score the following summary generated by
another system given the source on a scale from
1 to 5 with regards to overall general summary
quality. 1-point indicates a low quality summary,
and 5 points a very high quality summary. A
high quality summary is grammatical, fluent,
informative, relevant, coherent and factually
consistent with the source. Let’s think step-by-step
and just output the score.

Source:
[source]

Instruction:

Summarize the above text in [n] sentences.

Summary:
[summary generated by the LLM to evaluate]

Your score:

When evaluating for the specific aspect of
informativeness, the first paragraph becomes:

Score the following summary generated by an-
other system given the source on a scale from 1 to
5 with regards to how informative the summary is.
1 point indicates a not informative summary, and 5
points a very informative summary. An informative
summary captures the important information in
the article and presents it accurately and concisely.
Let’s think step-by-step and just output the score.

When evaluating for the specific aspect of
overall quality, the first paragraph becomes:

Score the following summary generated by
another system given the source on a scale from 1
to 5 with regards to its quality. 1 point indicates
a low quality summary, and 5 points a very high
quality summary. A high quality summary is
comprehensible and understandable. Let’s think
step-by-step and just output the score.

When evaluating for the specific aspect of
coherence, the first paragraph becomes:

Score the following summary generated by
another system given the source on a scale from
1 to 5 with regards to its coherence. 1 point
indicates an incoherent summary, and 5 points a
very coherent summary. A coherent summary is
well-structured and well-organized. Let’s think
step-by-step and just output the score.

When evaluating for the specific aspect of
attributability, the first paragraph becomes:

Score the following summary generated by an-
other system given the source on a scale from 1 to
5 with regards to how attributable it is. 1 point in-
dicates a not very attributable summary, with many
hallucinations, and 5 points a summary very at-
tributable to the source, consistent with the source.
In a very attributable summary, all the informa-
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Dataset Domain # Docs # Data points # Sentences # Words # Tokens

Train Val Test Doc. Summ. Inf. Doc. Summ. Doc. Summ. Max gen.

CNN/DM (Hermann et al., 2015) News 1.00 287,113 13,334 11,490 33.37 3.79 3 773.23 57.75 994.56 84.47 192
XSum (Narayan et al., 2018) News 1.00 204,045 11,332 11,334 19.11 1.00 1 433.05 23.19 566.79 31.63 64
Reddit-TIFU (Long) (Kim et al., 2019) Social Media 1.00 33,701 4,214 4,221 22.21 1.45 2 444.20 23.37 532.18 29.82 128
SAMSum (Gliwa et al., 2019) Dialogue 1.00 14,732 818 819 8.96 2.01 2 126.93 23.12 175.54 29.69 128
Multi-XScience (Lu et al., 2020) Science 5.06 30,369 5,066 5,093 30.55 4.86 5 773.36 120.65 965.99 157.77 384
Arxiv (Cohan et al., 2018) Science 1.00 203,037 6,436 6,440 250.37 6.23 6 6,446.11 166.72 8,940.00 225.58 512
PubMed (Cohan et al., 2018) Science (medical) 1.00 119,924 6,633 6,658 101.61 7.59 7 3,142.92 208.03 4,602.62 324.97 512
GovReport (Huang et al., 2021) Legal 1.00 17,517 973 973 282.86 23.14 22 8,363.22 649.01 11,025.02 879.10 768
SummScreenFD (Chen et al., 2022) TV Transcripts 1.00 3,673 338 337 727.06 5.26 5 7,618.20 123.34 10,067.39 157.44 512
Multi-News (Fabbri et al., 2019) News 2.73 44,972 5,622 5,622 79.02 9.88 10 2,101.49 256.55 2,998.52 324.29 512

Table 4: Statistics on the 10 datasets used for experiments. Doc. is the source document, Summ. the ground-truth summary,
Inf. refers to the number of desired sentences to be in the summary prompted to each LLM during inference. Statistics are
computed on the entire test set. # Tokens is calculated with Llama-2’s tokenizer. Max gen. is the maximum tokens size that we
set when decoding summaries. Underlined test sizes correspond to datasets where we subsample randomly 1,000 test data points
for evaluation.

Model Metric CNN/DM XSum Reddit-TIFU SAMSum Multi-X AVG Arxiv PubMed GovReport SummScreenFD Multi-N AVG

SOTA ROUGE-2 24.17 27.09 11.13 29.88 4.60 19.37 21.93 23.26 30.90 10.70 13.60 20.07

Flan-UL2

# sents 2.89 1.00 1.34 2.08 2.28 1.19 1.78 1.27 1.80 5.49 2.79 2.63
ROUGE-2 20.28 22.74 8.61 28.21 3.04 16.58 9.37 7.42 4.76 4.33 7.79 6.73
BERTScore 88.05 91.94 87.42 92.29 81.87 88.31 83.82 83.07 83.53 84.85 84.97 84.05
A3CU 32.69 32.11 16.89 49.48 5.98 27.43 14.79 13.83 12.00 8.37 16.99 13.20
SummaC 69.96 24.27 35.76 30.19 57.98 43.63 67.56 60.96 73.80 56.00 76.80 67.02
GPT-3.5 3.16 3.52 1.61 2.92 3.23 2.89 3.11 3.16 2.46 2.11 3.36 2.84

Llama-2-7B

# sents 3.00 1.27 2.00 1.83 7.77 3.17 5.80 6.61 12.88 5.77 18.69 9.95
ROUGE-2 14.16 7.27 4.17 15.53 4.87 9.20 13.84 12.89 16.22 5.36 12.37 12.14
BERTScore 87.32 87.47 85.87 89.95 83.32 86.79 83.84 82.82 85.28 85.41 85.63 84.60
A3CU 29.04 14.18 12.15 35.64 6.39 19.48 16.78 16.60 17.23 9.66 22.23 16.50
SummaC 35.58 25.24 26.38 24.56 49.39 32.23 53.22 51.82 70.47 39.01 57.49 54.40
GPT-3.5 4.10 4.24 2.83 3.61 4.42 3.84 4.21 4.19 3.43 2.71 3.91 3.69

Llama-2-13B

# sents 3.01 1.16 2.00 1.98 5.22 2.67 5.92 7.22 27.75 5.16 12.79 11.77
ROUGE-2 14.10 8.61 4.22 14.16 5.29 9.28 13.52 15.24 17.28 5.62 12.58 12.85
BERTScore 87.40 87.94 85.85 89.45 83.58 86.84 83.88 84.24 85.29 85.42 85.84 84.93
A3CU 29.57 16.30 12.94 34.19 7.29 20.06 16.44 19.21 17.01 10.30 23.09 17.21
SummaC 33.83 24.07 25.76 24.81 41.70 30.03 55.09 56.00 76.44 38.74 53.12 55.88
GPT-3.5 4.12 4.34 2.91 3.45 4.45 3.85 4.06 4.13 3.66 2.69 3.89 3.69

Xgen-7B

# sents 3.93 2.24 2.62 2.34 5.94 3.41 8.07 13.50 22.46 10.60 9.05 12.74
ROUGE-2 14.55 6.00 3.98 14.51 5.54 8.92 12.31 13.99 14.68 4.24 11.07 11.26
BERTScore 87.07 87.12 85.84 89.53 83.42 86.60 83.07 82.87 83.94 83.91 84.95 83.75
A3CU 27.88 12.75 12.56 33.18 7.45 18.76 15.28 18.79 15.65 8.44 21.33 18.90
SummaC 52.25 37.95 28.40 25.63 44.36 37.72 53.28 60.56 65.22 42.03 56.45 55.51
GPT-3.5 3.82 3.97 2.78 3.52 4.37 3.69 3.96 3.99 2.78 2.42 3.58 3.35

Mistral-7B

# sents 3.10 1.12 2.64 2.25 7.73 3.37 12.00 11.88 25.83 27.13 16.43 18.65
ROUGE-2 16.37 7.05 4.34 14.66 5.57 9.60 9.77 14.32 11.36 3.11 12.61 10.23
BERTScore 87.50 87.45 85.71 89.78 83.16 86.72 81.44 82.85 82.43 81.46 85.07 82.65
A3CU 30.60 13.14 13.08 32.21 6.96 19.20 12.66 16.31 14.92 8.40 22.22 14.90
SummaC 53.67 24.79 30.51 26.82 62.49 39.66 57.81 69.03 67.07 35.76 68.50 59.63
GPT-3.5 3.92 4.30 2.73 3.63 4.47 3.81 2.83 3.63 2.01 1.88 3.60 2.79

GPT-3.5

# sents 3.00 1.00 2.00 1.98 4.99 2.59 5.60 6.46 15.82 5.01 9.27 8.43
ROUGE-2 13.17 8.19 5.17 14.47 5.37 9.27 13.78 13.90 17.94 6.55 12.28 12.89
BERTScore 87.26 87.90 86.38 89.79 83.82 87.03 84.14 84.29 85.99 86.13 86.02 85.31
A3CU 26.72 15.21 13.37 35.85 7.90 19.81 17.98 18.76 19.32 12.69 22.95 18.34
SummaC 35.14 23.22 26.00 24.92 37.56 29.37 50.11 47.36 73.23 40.58 48.91 52.04
GPT-3.5 4.12 4.58 3.08 3.81 4.61 4.04 4.41 4.36 4.03 3.39 4.14 4.07

Table 5: Performance achieved by the LLMs on each dataset for all 5 metrics. # sents is the average number of sentences
in generated summaries. Multi-X is short for Multi-XScience, Multi-N is Multi-News dataset, AVG columns represent the
average over standard-length and long-input datasets, respectively. SOTA numbers are taken from (Xie et al., 2023) on CNN/DM,
from (Zhao et al., 2022b) XSum, Reddit-TIFU and SAMSum, from (Pang et al., 2022) for Arxiv and PubMed, from (Xiong
et al., 2023) for GovReport and SummScreenFD, from (Xiao et al., 2022) for Multi-News and Multi-XScience. Due to a lack of
reported results for other metrics, we only include ROUGE-2 scores for SOTA models. Best scores (outside of SOTA) are in
bold.
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Figure 8: Fraction of the source which fits into the context window, for several context window lengths with Llama-2
tokenization. The black dashed lines correspond to Llama-2 context window length of 4k tokens. On standard-length datasets,
4k is enough to access 100% of all source documents ; but on the long-input datasets such as GovReport or SummScreenFD,
such a context window may not even fit 50% of the source.

Model CNN/DM XSum Reddit-TIFU SAMSum Multi-XScience Arxiv PubMed GovReport SummScreenFD Multi-News

Flan-UL2 0.000 0.012 0.000 0.057 0.000 _ _ _ _ _
Llama-2-7B 0.000 0.000 0.000 0.490 0.000 0.000 0.000 0.000 0.000 0.000
Llama-2-13B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Xgen-7B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mistral-7B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GPT-3.5 0.000 0.000 0.000 0.135 0.000 0.000 0.000 0.000 0.000 0.000

Table 6: P-value of a 2-sample Kolmogorov-Smirnov test between the position distribution of bigrams in LLM-generated
summaries and bigrams in reference summaries. We round numbers to 3 decimals. Numbers in gray correspond to non-significant
differences (p-value above 0.01).

Figure 9: Relative location of summary bigrams within the
source on MiddleSum for Llama-2-13B with different infer-
ence methods.

tion is fully attributable to the source. Let’s think
step-by-step and just output the score.

C Baseline Performance

In Table 5, we report zero-shot performance with
the 6 LLMs described in §2. We note that for
standard-length datasets, Flan-UL2 is dominating,
perhaps due to its better instruction-tuning ; while
for long-context ones, GPT-3.5 takes the lead. GPT-
3.5 is always consistently ahead on the GPT-3.5

metric, showing the preference of the LLM for its
own generation when used as an evaluator.

D Statistical Significance on RQ1

In Table 6, we run a 2-sample Kolmogorov-
Smirnov statistical significance test to compare the
bigrams position distribution of LLMs with the
reference summaries.

E Results with base Models

In Fig. 10, we repeat the analysis from §3.1 (bi-
grams alignment) and §3.2 (sentences alignment)
but this time using the base model versions (not
instruction-tuned) of Llama-2-7B and Llama-2-
13B. As we can see, the position bias is even
stronger for base models than for chatbot mod-
els, suggesting that this bias is acquired during
pre-training.

F More Results on MiddleSum

In Table 7, we show statistics on the MiddleSum
evaluation dataset.
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Dataset Domain # Docs # Data points # Sentences # Words # Tokens

Doc. Summ. Doc. Summ. Doc. Summ.

Arxiv Science 1.00 50 299.36 5.84 7,605.52 165.80 10,846.00 226.22
PubMed Science (medical) 1.00 50 157.60 6.96 5,090.84 203.04 7,783.02 329.12
GovReport Legal 1.00 50 445.64 22.80 13,308.70 656.10 17,462.90 883.10
SummScreen TV transcripts 1.00 25 762.24 3.56 9,732.44 88.60 12,878.08 115.00
MultiNews News 3.18 50 211.34 9.86 5,939.32 269.84 8,130.78 336.16
Overall Mixed 1.48 225 332.24 10.50 8,180.13 297.57 11,258.16 407.15

Table 7: Statistics on the MiddleSum evaluation dataset, breaking down on each domain. Doc. is the source document, Summ.
the ground-truth summary. # Tokens is calculated with Llama-2’s tokenizer.

Figure 10: Summary bigrams (top) and aligned source sentences (bottom) distribution for Llama-2-7B and Llama-2-13B on the
long-input datasets, both with base (dashed lines) and chat (full lines) models.

In Fig. 9, we repeat the salient bigrams analy-
sis from Fig. 1 for Llama-2-13B on MiddleSum.
We note that both hierarchical and incremental in-
ference notably decrease reliance on lead bigrams
compared to standard inference, while the simple
Focus Prompt does not.

In Table 8, we show reference-based evaluation
on each of the 5 subsets of MiddleSum.

G Software

We use the following Python libraries, all open
source:

• numpy, version 1.24.3

• torch, version 2.0.1

• scikit-learn, version 1.0.2

• sentencepiece, version 0.1.97

• nltk, version 3.8.1

• spacy, version 3.6.0

• scipy, version 1.10.1

• rouge-score, version 0.1.2

• bert-score, version 0.3.13

• summac, version 0.0.03

• tiktoken, version 0.4.0

• openai, version 0.28.0

• huggingface-hub, version 0.17.2

• datasets, version 2.14.5

• accelerate, version 0.21.0

• tokenizers, version 0.14.1

• transformers, version 4.34.0
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Model Metric Inference MiddleSum (MS) MS/Arxiv MS/PubMed MS/GovReport MS/SummScreen MS/Multi-News

Llama-2-7B

ROUGE-2

Standard 10.96 12.62 10.97 13.26 4.07 10.43
Focus prompt 10.70 12.10 11.51 13.28 3.57 9.48
Hierarchical 11.33 14.63 13.36 13.51 4.85 7.06
Incremental 12.56 14.43 13.54 17.26 5.19 8.68

BERTScore

Standard 84.19 83.43 83.13 84.63 85.33 85.01
Focus prompt 84.07 83.33 83.00 84.77 85.27 84.59
Hierarchical 84.13 83.86 83.74 84.26 85.23 84.10
Incremental 84.26 83.73 83.80 84.67 85.70 84.14

A3CU

Standard 12.81 13.55 12.12 11.71 7.31 16.61
Focus prompt 12.41 13.54 13.39 10.84 7.15 14.52
Hierarchical 13.21 15.64 15.14 12.26 9.71 11.57
Incremental 12.88 15.34 14.45 10.51 10.24 12.55

Llama-2-13B

ROUGE-2

Standard 11.07 11.68 11.63 13.56 5.09 10.38
Focus prompt 10.82 11.51 11.30 12.42 4.83 11.03
Hierarchical 10.24 13.45 13.26 10.21 4.93 6.71
Incremental 11.90 12.53 13.84 17.34 5.06 7.33

BERTScore

Standard 84.04 83.29 83.15 84.43 85.24 84.70
Focus prompt 84.12 83.26 83.06 84.49 85.08 85.19
Hierarchical 83.17 83.74 83.75 80.07 85.03 84.20
Incremental 83.43 82.45 83.45 84.96 83.24 82.95

A3CU

Standard 12.94 13.01 13.42 10.92 8.47 16.65
Focus prompt 13.10 13.17 11.76 11.91 7.06 18.58
Hierarchical 12.85 16.28 14.11 10.40 8.36 12.86
Incremental 12.47 14.64 14.80 11.75 10.76 9.54

Xgen-7B

ROUGE-2

Standard 8.92 11.94 9.34 10.02 4.53 6.57
Focus prompt 9.79 12.87 10.79 11.46 4.15 6.85
Hierarchical 9.87 13.06 11.37 11.77 2.79 6.83
Incremental 9.11 10.97 10.55 13.16 3.71 4.44

BERTScore

Standard 82.51 82.45 81.96 82.65 83.28 82.60
Focus prompt 82.75 82.45 82.14 83.08 83.81 82.80
Hierarchical 82.86 82.73 82.56 82.67 83.79 83.03
Incremental 82.49 81.94 81.82 83.11 83.39 80.83

A3CU

Standard 12.50 15.14 12.85 11.99 8.48 12.05
Focus prompt 12.23 15.82 12.04 11.57 8.20 11.50
Hierarchical 11.74 14.55 12.61 10.76 7.33 11.25
Incremental 11.51 12.73 13.15 9.13 8.97 9.69

Mistral-7B

ROUGE-2

Standard 7.16 9.28 9.56 5.86 2.19 6.41
Focus prompt 6.20 7.62 8.44 4.85 1.42 6.29
Hierarchical 10.78 11.67 13.71 13.36 4.76 7.39
Incremental 10.15 11.36 12.66 12.89 3.46 7.02

BERTScore

Standard 81.07 80.98 81.19 80.41 80.10 82.20
Focus prompt 80.72 80.31 80.81 79.91 80.12 82.13
Hierarchical 83.10 82.56 83.00 83.81 83.90 82.62
Incremental 82.25 81.92 82.39 83.67 83.14 80.56

A3CU

Standard 10.35 11.55 11.46 7.94 8.53 11.34
Focus prompt 9.96 10.13 10.65 7.81 7.59 12.44
Hierarchical 11.15 12.15 14.21 10.62 7.48 9.47
Incremental 10.43 14.25 11.00 8.90 7.44 9.05

GPT-3.5

ROUGE-2

Standard 12.33 12.99 12.78 16.16 6.05 10.53
Focus prompt 12.17 12.61 12.56 15.95 6.35 10.46
Hierarchical 8.59 9.58 10.27 10.30 4.33 6.36
Incremental 12.04 11.85 12.17 18.46 5.38 9.03

BERTScore

Standard 84.77 83.81 83.70 85.41 86.32 85.39
Focus prompt 84.80 83.76 83.81 85.50 86.28 85.39
Hierarchical 84.27 83.34 83.62 85.30 85.37 84.28
Incremental 84.43 83.48 83.74 85.41 85.76 84.44

A3CU

Standard 15.40 15.22 15.58 12.72 13.15 19.21
Focus prompt 15.07 14.51 15.59 12.34 13.63 18.54
Hierarchical 12.24 12.54 13.01 13.29 9.03 11.74
Incremental 12.08 13.59 13.24 10.90 9.05 12.08

Table 8: Reference-based results for all models and inference methods on MiddleSum, breaking down by subset. The best
number across inference methods is in bold.
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