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Abstract
Task-oriented dialogue (TOD) systems are pre-
dominantly designed to be composed of several
functional modules (e.g. dialogue state tracker,
dialogue policy, natural language generation)
whether they are pipeline or end-to-end archi-
tectures. However, this modular design not
only heavily relies on massive fully-annotated
data, but also suffers from many intrinsic draw-
backs, such as serious error accumulation, poor
generalization ability, high customization cost,
and low fault tolerance rate. In this paper, we
rethink the architecture of the task-oriented di-
alogue systems and propose a novel fully zero-
shot autonomous TOD agent, named AutoTOD,
where all the delicate modules in traditional
TOD systems are deprecated and all it needs
is a general-purpose instruction-following lan-
guage model (e.g. GPT-4). AutoTOD only
leverages a simple instruction schema consist-
ing of the description of tasks and external
APIs, and can autonomously decide what to
do at each dialogue turn, including asking for
information, calling APIs, summarizing API re-
sults, and correcting previous mistakes. More-
over, we propose a simulation-based evalua-
tion framework to better validate the abilities
of TOD models in real-life scenarios. Exten-
sive experiments conducted on the MultiWOZ
and SGD datasets show the superior task com-
pletion ability and flexible language skills of
AutoTOD.1

1 Introduction

Task-oriented dialogue (TOD) systems have gained
increasing attention in recent years both in the re-
search community and the industry (Valizadeh and
Parde, 2022; Hudeček and Dušek, 2023). They
are designed to help users complete specific tasks
through natural language interactions, such as
querying flight tickets and booking restaurant ta-
bles (Budzianowski et al., 2018; Rastogi et al.,
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1Code: https://github.com/DaDaMrX/AutoTOD
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Figure 1: Different architectures of TOD systems. The
pipeline architecture has several individually designed
and trained modules. The end-to-end architecture com-
bines all the modules into a causal language model. The
autonomous agent uses an instruction-following lan-
guage model to autonomously call external APIs and
communicate with the user without any training.

2020). Traditional TOD systems are mostly de-
signed as a pipeline of several separate modules,
including natural language understanding, dialogue
state tracker, dialogue policy, and natural language
generation (Zhang et al., 2020). These modules are
trained separately and work one by one to generate
the dialogue response to the user (Su et al., 2022).
Later, end-to-end TOD systems emerged where the
separate modules are combined and built on a sin-
gle pretrained language model (He et al., 2022a;
Yang et al., 2021). Thus the whole system can be
trained end-to-end with annotated task dialogues.
Examples of these two kinds of TOD systems are
shown in Figure 1 (a, b). Nevertheless, both the
pipeline and end-to-end models are essentially in
the same modular architecture.

The classic modular TOD framework has many
intrinsic drawbacks in it. Firstly, the modules are
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connected sequentially. Any mistake in a mod-
ule will propagate to the subsequent ones. Al-
though there are later works to merge some ad-
jacent modules, the error propagation problem has
not been fundamentally solved (Zhang et al., 2020).
Secondly, the training of these systems requires
a large number of fully-annotated task dialogues.
At the same time, the capabilities of such TOD
systems are also severely limited to the training
data, which makes it difficult for them to extend to
new dialogue scenarios (Mi et al., 2022). Thirdly,
when encountering dialogue tasks in new forms,
the module architecture usually needs to be re-
designed, which makes building and maintaining a
long-running TOD system a challenging and costly
endeavour (Su et al., 2022). Finally, the fault tol-
erance ability of the systems is quite poor. When
facing inappropriate input utterances or misunder-
standings in previous turns, the systems struggle
to lead the dialogue back to the correct path (Kim
et al., 2022).

To tackle the above problems, in this paper, we
rethink the architecture of the task-based dialogue
systems and propose a novel fully zero-shot au-
tonomous TOD agent, named AutoTOD. AutoTOD
gives up all the delicate functional modules in the
traditional pipeline and end-to-end TOD models,
and the only thing it needs is a general-propose
instruction-following language model, e.g. GPT-
4 (OpenAI, 2023a) and Llama 2 (Touvron et al.,
2023) (shown in Figure 1 (c)). We propose an in-
struction schema to tell the base language model
what tasks it will deal with and how it should do.
The instruction schema is simple enough to easily
apply to various dialogue tasks, thus the gener-
alization ability is greatly improved and the cus-
tomization cost is greatly reduced. AutoTOD can
intelligently and autonomously decide to call an
external API with proper parameters and summa-
rize the API results into the final responses, which
greatly flexes the rigid process of state tracking
and database querying in traditional TOD models.
To the best of our knowledge, AutoTOD is the
first TOD system that completely deprecates the
traditional fragile modular design and has the real
zero-shot capability.

To better evaluate the performance of Auto-
TOD, we also propose a simulation-based evalu-
ation framework to validate the abilities of TOD
models in real-life scenarios. We use an instruction-
following language model to act as the user simu-
lator, which has the task goals in its prompts and

tries to achieve the goals via talking with the di-
alogue system. The dialogue system has no ac-
cess to the user goals and can only do its best to
complete the user’s requests. Then, we propose
a novel TOD evaluation approach to validate the
system’s ability to complete user goals where an-
other instruction-following language model is used
to extract the key information that the system pro-
vides to the user from the dialogues. By compar-
ing with the goals for the user simulator, it’s easy
to conclude whether the TOD system completes
the user goals successfully. We conduct exten-
sive experiments on the MultiWOZ (Budzianowski
et al., 2018) and SGD (Rastogi et al., 2020) datasets
and evaluate the system performance by both our
proposed simulation-based framework and the tra-
ditional TOD evaluation approach (Mehri et al.,
2019). The results show the superior task comple-
tion ability and fluent language skills of AutoTOD.
Furthermore, AutoTOD demonstrates great robust-
ness when facing various dialogue scenarios.

2 Related Work

2.1 Task-Oriented Dialogue Systems

Task-oriented dialogue (TOD) systems have been
studied for decades. Traditional approaches are fun-
damentally built in a pipeline architecture, consist-
ing of components including natural language un-
derstanding, dialogue state tracking, dialogue pol-
icy learning, and natural language generation (Wu
et al., 2019; Peng et al., 2018). Later, end-to-end
TOD systems emerged, where all the modules in
the pipeline modules are combined into a single
model and trained end-to-end with fully annotated
dialogue data (Wen et al., 2017; Wang et al., 2020).
Despite the apparent simplification, the end-to-end
architecture still necessitates large fully-annotated
dialogue datasets for training and retains the modu-
lar nature of the traditional TOD systems.

Recently, in order to reduce the training data
requirement and the cost of transferring to new di-
alogue scenarios, several zero-shot TOD systems
have been proposed. AnyTOD (Zhao et al., 2023)
adopts a neuro-symbolic approach to facilitate gen-
eralization onto unseen dialogue tasks without fur-
ther training. ZS-ToD (Mosharrof et al., 2023),
a zero-shot end-to-end TOD model, leverages do-
main schemas for robust generalization to unseen
domains. However, neither AnyTOD nor ZS-ToD
jumps out of the classical modular design frame-
work and retains the traditional pipeline or end-
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to-end architecture. Moreover, neither of them is
strictly zero-shot as they both require training data
on some known tasks, and their performance is
largely influenced by the quality of the collected
data.

2.2 Instruction-Following Language Models
and Autonomous Agents

Recently, the advent of instruction-following lan-
guage models, such as ChatGPT (OpenAI, 2022)
and Llama 2 (Touvron et al., 2023), has opened
up a new avenue in the realm of intelligent as-
sistants. These models show impressive capa-
bilities in understanding user intents, generat-
ing human-like responses, and providing insights
on a vast array of subjects (OpenAI, 2023a).
However, their application has traditionally been
limited to single-step tasks, and they lack the
ability to autonomously manage multi-step pro-
cesses (Nakano et al., 2022). This limitation
has opened the door for the emergence of au-
tonomous AI agents, a new class of AI applica-
tions that breaks down complex tasks into manage-
able subtasks and manages the execution of these
subtasks in a coordinated and autonomous man-
ner. Examples of such agents include ReAct (Yao
et al., 2023), AgentGPT (ReworkdAI, 2023), Auto-
GPT (Richards, 2023), BabyAGI (Nakajima, 2023),
and Microsoft’s Jarvis (HuggingGPT) (Shen et al.,
2023), each of which combines the power of LLMs
with the ability to store and retrieve information,
access external resources, and manage multi-step
tasks. These AI agents offer a more autonomous
execution of complex tasks and open a new way to
re-design the task-oriented dialogue systems.

3 The AutoTOD Agent

AutoTOD is a fully zero-shot autonomous task-
oriented dialogue (TOD) agent where all the del-
icate modules in traditional TOD systems are
deprecated and all it needs is a general-purpose
instruction-following language model (e.g. GPT-4).
The ability of AutoTOD comes from two aspects:
the language knowledge from the base language
model, and the dialogue ability from the instruc-
tion schema we proposed for the dialogue tasks.
The instruction schema is composed of three parts:
scenario description, task information, and output
format (a brief example is shown in Figure 2). The
detailed introduction of each part is given below.

3.1 Scenario Description

The scenario description is at the beginning of the
instruction schema and it’s a brief and comprehen-
sive description of the dialogue tasks as well as
the characters of the agent. It describes the com-
mon features of the tasks and the principles that the
agent needs to obey. The example scenario descrip-
tion for the tasks in the MultiWOZ (Budzianowski
et al., 2018) dataset is shown in Figure 2 (top),
where the agent is asked to act as a travel guide
in Cambridge and help users to complete several
querying and booking tasks.

3.2 Task Information

The task information is the main part of the instruc-
tion schema. It provides detailed information on
each task separately. The task information for each
task consists of three components: task description,
task APIs, and task logic. An example of the restau-
rant task in the MultiWOZ (Budzianowski et al.,
2018) dataset is shown in Figure 2 (left), and the
detailed description is as follows.

The task description is a sentence briefly intro-
ducing what the task is and how the agent can help
the user. The task APIs part lists all the external
APIs that can be invoked in the dialogue. The agent
can use them to obtain external information or in-
teract with the external world. The information
of each API first begins with the API name and a
brief description, and then follows the input format
definition. As shown in Figure 2, the API input
format is defined as a JSON string. At last, there is
a text specifying which parameters are required. It
should be noticed that the language model is a pure
text-in and text-out model, thus the output of APIs
must be in text format. Moreover, it’s a good prac-
tice to make the APIs output readable messages
when receiving invalid inputs, so that the agent can
adjust the inputs according to the error message,
which improves the model robustness greatly.

The task logic is an optional part that gives fur-
ther action guidance to the agent. The requirements
for the agent can be itemized in this part. More-
over, the task logic part can also be treated as a
customization area which makes it possible for the
designer to adjust the agent behaviors according to
the performance in real production scenarios.

3.3 Output Format

The output format specifies the output pattern of the
agent. We choose the Reasoning and Acting pattern

2750



- You are an intelligent assistant to help the user to complete complex tasks...
- You specialize in travel guidance in Cambridge. You can help the user to find restaurants, hotels...

Scenario Description

# Task 1: Restaurant

## Task Description: The assistant helps the user to 
find a restaurant and/or make a reservation.

## Task APIs
- query_restaurants: Query restaurants with certain 
requirements.

- Input format: ```json {
"area": "[the location of the restaurant]",
"price": "[the price of the restaurant]",
"food": "[the food type of the restaurant]",
"name": "[the name of restaurant]"

}```
- At least one of the parameters (area, price, 

food, name) should be specified.

## Task Logic
- If the API returns too many restaurants, you should 
ask for more constraints.

Task Information

# Output Format

## To call an API, please use the following format:

```
Thought: I need to call an API.
API Name: [the API name to call]
API Input: [the input parameters for the API]
API Result: [leave empty for the API output]
```

- Available API names: query_restaurants...

## When you don't need to call APIs and have a response to 
the user, you MUST use the format:

```
Thought: I don't need API and want to respond to the user.
Response: [your response here]
```

Output Format

Figure 2: A demonstration of the instruction schema for the MultiWOZ dataset. The instruction schema is composed
of three parts: scenario description, task information, and output format, where the task information describes
the tasks for the agent. The task information of the restaurant task with one API is shown in the figure. The full
instruction schema is presented in the Appendix.

in the ReAct (Yao et al., 2023) paper where the
language model first thinks about what it should do
(reasoning) and then takes the corresponding action
(acting). The output format for AutoTOD is shown
in Figure 2 (right). We define two kinds of thoughts:
calling an API and generating the response. In
a dialogue turn, AutoTOD thinks about whether
the information it has is enough to respond to the
user. If not, it will choose the required API and
generate the input parameters. The returned content
of the API is appended after “API Result:” in the
instruction. The process of calling an API may
happen many times until AutoTOD thinks it should
reply to the user.

4 The Simulation-based Evaluation
Framework

The AutoTOD agent communicates with the user
in an end-to-end manner where no dialogue state
or system action is generated as in the traditional
TOD systems. Besides, AutoTOD directly out-
puts the natural language responses rather than
the delexicalized utterances without real slot val-
ues. However, the classical TOD evaluation ap-
proach (Budzianowski et al., 2018) used by almost
all previous TOD systems is deeply coupled with
the traditional modular TOD system architecture,
and can not be used for AutoTOD directly. There-
fore, we propose a new simulation-based evalua-
tion framework that has no assumption about the
architecture of the TOD system. The framework

we proposed consists of a user simulator and a
dialogue evaluator. The detailed introduction is
presented below.

4.1 User Simulator

Thanks to the powerful understanding and gen-
erating ability of current large language models,
the user simulator is implemented only by an
instruction-following language model. The user
simulator is driven by its instruction prompt, which
is the most important part in it is the user goals. The
simulator tries to complete all the goals in its mind
via talking with the TOD system. We also present
the grounding dialogue corresponding to the user
goals in the dataset, which acts as the guideline for
the simulator so it can imitate the language style
and produce more reliable dialogues. The example
of the prompt of the user simulator is presented in
the Appendix.

4.2 Dialogue Evaluator

How to accurately evaluate the performance of
TOD systems has always been a challenging prob-
lem. The core of the dialogue evaluator we pro-
posed is to answer the question: Does the TOD sys-
tem help the user complete the goals? As the user
goals are usually composed of multiple sub-goals,
the evaluation results are also composed of multiple
metrics. Similar to the traditional evaluation, we
define two kinds of metrics: Inform and Success,
where Inform measures whether the system finds
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- You are looking for a restaurant. The restaurant should be in the centre and serves Spanish food.

- Make sure you get address and price.

- Once you find the restaurant you want to book a table for 4 people at 17:00 on Saturday.

User Goals (Text)

Restaurant
Query: {"area": "centre", "food": "Spanish"}
Request: ["address", "price"]
Book:{"people":"4","time":"17:00","day":"Saturday"}

User Goals (Structure)

User: I am looking for a restaurant in the centre with Spanish food.
AutoTOD:

Thought: I need to call an API
API Name: query_restaurants
API Input: {"area": "centre", "food": "spanish"}
API Results: ...

Thought: I don't need API and want to respond to the user.
Response: There is two Spanish restaurants in the centre, La Tasca with moderate price and La 
Raza with cheap price. Which one do you like?

User: I'm interested in La Tasca. Could you tell me the address of it?
AutoTOD: The address of La Tasca is in 4 - 6 Rose Crescent. Would you like to book a table?

User: Please book a table for 4 people at 17:00 on Saturday.

AutoTOD:
...
Response: The booking is successful. Please keep the reference number bp5c803f.

Dialogue

Inform: 1
Entity Name: La Tasca
Attributes: {"name": "La Tasca", 

"area": "centre", "food": "spanish",
"price": "moderate",
"phone": "01223464630", 
"address": "14 -16 Bridge Street"}

Success: 0
Attributes: {"address": "4 - 6 Rose Crescent",

"price": "moderate"}

Book: 1
Reference Number: bp5c803f
Reservation Info: {"name": " La Tasca ",

"people": "4",
"time": "17:00",
"day": "Saturday"}

Evaluation

Figure 3: An example of user goals, dialogue, and evaluation results. The text user goals are used for the prompt of
the user simulator. The dialogue is generated by the user simulator and TOD system (AutoTOD). The dialogue
evaluator produces the evaluation results by extracting the key information from the dialogue and comparing it with
the structure user goals.

the right entity for the user, and Success measures
whether the system provides all the required entity
attributes. For the MultiWOZ (Budzianowski et al.,
2018) dataset, we also define the particular metric
Book, which measures whether the system makes
the reservation successfully for the user. Unlike the
traditional evaluation, all the metrics we defined are
computed directly by the generated dialogues with-
out any intermediate state. An evaluation example
is shown in Figure 3.

4.2.1 Inform
The Inform metric is to check whether the system
finds the right entity for the user. As shown in
Figure 3, the system uses the API to query the
database and recommends the found entity names
to the user. To this end, we use a general pretrained
language model to extract the entity name (the pri-
mary key in the database) from the dialogue, and
then obtain the complete entity attributes from the
database. Thus, the Inform metric can be computed
by comparing the constraints in the user goals and
the attributes of the recommended entity. The pre-
trained language model is powerful enough and it’s
only used to extract the minimal information (pri-
mary key) from the dialogue, thus the probability
of failed extraction can be quite low.

4.2.2 Success
The Success metric is to check whether the system
provides all the required entity attributes for the

user. We also use a pretrained language model
to extract the provided entity attributes from the
dialogue. The Success metric passes if and only if
1) the found entity is right (Inform is passed), 2) the
system provides all the attributes the user wants,
and 3) all the attribute values are correct. As shown
in Figure 3, the value of the address attribute is not
matched with that in the database, so the Success
metric is not passed in that example.

4.2.3 Book

In the MultiWOZ dataset, the user often makes
a reservation after finding the wanted venue (e.g.
restaurant, hotel). However, whether the booking is
successful is completely ignored in the traditional
TOD evaluation. Therefore, we define the Book
metric to count the success rate of booking. In Mul-
tiWOZ, the system will return a reference number
after making a reservation, thus we use a pretrained
language model to extract the reference number
in the dialogue. Then the complete reservation
information can be obtained from the reservation
database. The Book metric is computed by compar-
ing the booking constraints in the user goals and
the database record.

At last, we define a comprehensive metric Com-
bine to indicate the overall performance of the
TOD system, which is formulated as: Combine =
0.5 · Inform + 0.25 · (Success + Book).
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Model Domain Level Dialogue Level

Inform Success Book Combine Inform Success Book Combine

SimpleTOD* (Hosseini-Asl et al., 2020) 32.5 29.4 - 23.6 18.8 22.0 - 14.9
UBAR* (Yang et al., 2021) 40.8 33.3 - 28.7 24.0 26.8 - 18.7
GALAXY* (He et al., 2022b) 44.4 35.1 - 31.0 26.4 28.8 - 20.4
Mars* (Sun et al., 2023) 42.7 34.4 - 30.0 25.9 27.5 - 19.8
Mars (5% few-shot) (Sun et al., 2023) 28.9 26.3 - 21.0 16.2 14.0 - 11.6
TOATOD* (Bang et al., 2023) 45.3 36.7 - 31.8 27.8 26.9 - 20.6

AutoTOD (GPT-3.5) 62.5 52.7 51.4 57.3 43.0 46.2 48.4 45.8
AutoTOD (GPT-4) 85.2 59.1 86.7 79.1 80.2 46.9 82.0 72.3
AutoTOD (Llama 2 70B) 54.3 42.6 44.2 48.9 32.7 30.5 31.9 32.0
AutoTOD (Llama 2 13B) 37.1 28.5 31.8 33.6 28.6 23.1 27.3 26.9

Table 1: Goal completion evaluation results on MultiWOZ 2.0. All the models are evaluated with our proposed
simulation-based evaluation framework. Models marked with an asterisk (*) are trained with all the training data of
MultiWOZ 2.0 while AutoTOD models are fully zero-shot. All the baseline models don’t have the booking ability
thus their Book scores are none.

Model #Uni #Bi #Tri SE CE MSTTR MTLD HDD

SimpleTOD* (Hosseini-Asl et al., 2020) 683 2057 3388 7.13 2.00 59.32 31.28 76.91

UBAR* (Yang et al., 2021) 760 2424 3658 7.20 2.05 61.21 34.33 77.21

GALAXY* (He et al., 2022b) 791 3287 4160 7.45 2.16 62.55 34.19 80.23

Mars* (Sun et al., 2023) 849 3315 4781 7.61 2.14 64.98 40.15 83.43

Mars (5% few-shot) (Sun et al., 2023) 711 2110 3101 7.02 1.91 60.12 32.17 73.30

TOATOD* (Bang et al., 2023) 898 3829 5047 7.65 2.20 68.23 42.84 80.25

AutoTOD (GPT-3.5) 1722 6201 10188 8.11 2.62 76.61 65.09 86.07
AutoTOD (GPT-4) 2031 7391 13181 8.63 2.91 80.85 80.93 85.71

AutoTOD (Llama 2 70B) 1482 5281 7149 7.71 2.59 72.12 58.82 81.17

AutoTOD (Llama 2 13B) 1037 4121 6843 7.54 2.31 69.50 49.13 78.67

Table 2: Language diversity evaluation results on MultiWOZ 2.0. #Uni/#Bi/#Tri stands for the number of uni-
grams/bi-grams/tri-grams in system responses. SE, CE, MSTTR, MTLD, and HDD stand for Shannon Entropy,
Conditional bigram Entropy, Mean Segmental Type-Token Ratio, Measure of Textual Lexical Diversity, and
Hypergeometric Distribution Function separately.

5 Experiments

5.1 Datasets

We implement AutoTOD for two widely used
datasets: MultiWOZ (Budzianowski et al., 2018)
and SGD (Rastogi et al., 2020). MultiWOZ is a
large-scale multi-domain TOD dataset with mul-
tiple revised versions. As only the task ontology
and user goals are used by AutoTOD, we just take
the MultiWOZ 2.0 version for wide baseline mod-
els. SGD is a schema-guided TOD dataset spinning
over 26 services and each service is accompanied
by a schema that describes the APIs and slots in
it. The schemas are used in the instruction of Au-
toTOD and we collect the user actions in each dia-
logue to form the user goals for the user simulator.
We implement the API backend with DB support

for both two datasets in order to conduct real TOD
dialogues.

5.2 Experimental Settings

We build AutoTOD with several popular large
language models, including the closed-source
models GPT-3.5 (gpt-3.5-turbo-0613) (OpenAI,
2023b), GPT-4 (gpt-4-0613) (OpenAI, 2023a)
and open-source models Llama 2 (llama-2-chat
13B, 70B) (Touvron et al., 2023). The model used
for the user simulator and dialogue evaluator is
GPT-3.5. We use OpenAI API2 for using the Ope-
nAI series models and Replicate API3 for using
Llama 2 series models. The greedy decoding strat-
egy is used for all the models.

2OpenAI API: https://openai.com/blog/openai-api
3Replicate API: https://replicate.com
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5.3 Results on MultiWOZ

Goal Completion. The evaluation results of goal
completion ability on MultiWOZ 2.0 are shown in
Table 1. The scores are calculated from the domain
level and dialogue level. A dialogue is counted as
completed only if all the domains in it are com-
pleted. We can see that the AutoTOD models out-
perform the baselines with a large margin even the
full-shot trained models. It also indicates the previ-
ous TOD models cannot work well in real dialogue
scenarios and our user-simulator based evaluation
is necessary. For AutoTOD with different base
models, the OpenAI series models perform much
better than the Llama series models. There is still
a gap between the closed-source and open-source
large language models. AutoTOD with GPT-4 per-
forms far better than all the other models, while the
13B llama model performs worst.

Language Diversity. It’s not sufficient to only
evaluate the goal completion ability for TOD
systems. Here we use some language diver-
sity metrics to evaluate the quality of model re-
sponses (Nekvinda and Dušek, 2021). The met-
rics include some statistics about words, n-gram
and information entropy (number of n-grams,
Shannon Entropy (SE), Conditional bigram En-
tropy (CE), Mean Segmental Type-Token Ratio
(MSTTR), Measure of Textual Lexical Diversity
(MTLD) and Hypergeometric Distribution Func-
tion (HDD)) (Terragni et al., 2023). The results are
shown in Table 2. We can see that all the Auto-
TOD models show better language diversity than
the trained baselines. AutoTOD based on GPT-4
gains the highest scores on almost all metrics.

5.4 Results of Traditional TOD Evaluation

We also conduct the traditional TOD evalua-
tion (Budzianowski et al., 2018) on the baselines
and AutoTOD models. Following the previous
works, the TOD models are fed with the ground-
ing user utterances in each turn regardless of the
consistency of the dialogue flow. We track the
Inform, Success, BLEU, and Combine metrics in
the traditional TOD evaluation. For AutoTOD, the
generated API parameters are used as the dialogue
state to calculate the Inform score, and the entity
attributes in the responses are used to calculate the
Success score. The evaluation results on the Mul-
tiWOZ datasets are shown in Table 3. We can see
that AutoTOD variants have competitive Inform
and Success scores with the baseline models, which

Model Inform Success BLEU Combine

SimpleTOD* 83.4 69.1 14.8 91.0
UBAR* 94.9 80.3 18.0 105.6
GALAXY* 93.5 84.9 20.8 110.0
Mars* 89.9 81.3 18.6 104.2
Mars (5% shot) 56.7 42.3 12.4 61.9

AutoTOD

• GPT-3.5 87.2 82.8 9.3 94.3
• GPT-4 91.7 84.4 10.4 98.5
• Llama 2 70B 73.3 69.8 7.8 79.4

Table 3: Traditional TOD evaluation results on Mul-
tiWOZ 2.0. All the models are evaluated by feeding
with grounding user utterances regardless of dialogue
consistency.

0

1

2

3

4

5

Fluency Coherence Informativeness Satisfaction

UBAR TOATOD AutoTOD (GPT-3.5) AutoTOD (GPT-4)

Figure 4: Human evaluation results on MultiWOZ di-
alogues. Human evaluators are asked to rate the ran-
domly sampled dialogues from 4 aspects, each with a
max score of 5.

indicates the powerful language understanding and
task completion abilities of AutoTOD. The weakest
metric for AutoTOD is BLEU, which is not surpris-
ing since AutoTOD does not see any grounding
utterances in the dataset and has no prior about the
language style of ground truth responses.

5.5 Human Evaluation

We conduct human evaluation to supplement the
limitations of automated metrics. Two full-shot
baseline models (UBAR (Yang et al., 2021), TOA-
TOD (Bang et al., 2023)) and two AutoTOD vari-
ants (GPT-3.5, GPT-4) are taken into account. We
sample 100 dialogues from the test set and ask for 5
graduate students to rate from 4 aspects: language
fluency (Fluency), dialogue coherence (Coherence),
information accuracy in responses (Informative-
ness), and overall satisfaction (Satisfaction). The
results are shown in Figure 4. We can see that the
AutoTOD models achieve comparable results with
the two full-shot TOD models, where the GPT-4
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Model Service Level Dialogue Level Diversity

Inform Success Inform Success SE CE MSTTR MTLD HDD

SimpleTOD* (Hosseini-Asl et al., 2020) 13.1 10.4 9.3 9.5 6.88 1.95 69.22 51.44 76.19
ZS-TOD* (Mosharrof et al., 2023) 24.9 11.2 18.3 10.1 7.11 2.04 71.16 53.23 80.01

AutoTOD (GPT-3.5) 46.8 21.0 35.0 20.0 8.44 2.45 73.87 58.91 86.87
AutoTOD (GPT-4) 52.4 25.9 48.1 24.8 9.58 2.51 78.21 63.02 89.66
AutoTOD (Llama 2 70B) 41.9 15.0 36.1 13.8 8.31 2.30 71.12 58.05 84.98
AutoTOD (Llama 2 13B) 35.0 11.0 32.4 9.9 7.85 2.25 70.18 56.13 82.20

Table 4: Goal completion and language diversity evaluation results on SGD. Models marked with an asterisk (*) are
trained with all the training data of SGD while AutoTOD models are fully zero-shot.

User
Simulator

Dialog Goal Diversity

Inf. Suc. Book SE CE MSTTR

TOD System: UBAR

Agenda 20.4 11.4 - 6.15 1.82 57.9
TUS 18.2 12.7 - 6.31 1.97 61.8
GenTUS 19.5 13.3 - 6.88 2.13 62.7
Ours 24.0 26.8 - 7.12 2.41 62.9

TOD System: AutoTOD (GPT-3.5)

Agenda 22.7 13.3 16.1 6.31 1.86 59.9
TUS 20.6 17.1 19.0 6.63 2.11 65.0
GenTUS 19.5 18.5 28.6 7.26 2.61 71.5
Ours 43.0 46.2 48.4 7.36 2.70 73.5

Table 5: Comparison of different user simulators on
MultiWOZ 2.0. Inf. and Suc. represent for Inform and
Success separately.

variant in particular achieves the highest scores on
all four metrics. Both the two AutoTOD models
have significantly high scores on the Information
metric. An important reason is that AutoTOD has
a better ability to summarize the results returned
by external APIs to the user.

5.6 Results on SGD

The evaluation results for the SGD dataset are pre-
sented in Table 4. The goal completion metrics are
summarized into service level and dialogue level
assessments. Notably, the booking aspect is treated
as a special Inform task in SGD, thus there is no
Book metric presented. The results demonstrate
that all AutoTOD models surpass the baseline mod-
els in terms of both goal completion and language
diversity. In particular, Among different AutoTOD
variants, the OpenAI series models exhibit superior
performance compared to the Llama models.

5.7 User Simulators

The user simulator plays a pivotal role in the eval-
uation of task-oriented dialogue (TOD) systems

within real-world scenarios. An effective user sim-
ulator should not impede the capabilities of TOD
systems and should possess clear goal expression,
as well as flexible dialogue strategies and diverse
languages. In order to assess the performance of
our proposed user simulator, we conducted experi-
ments to compare it with several SoTA user simu-
lators, namely Agenda (Schatzmann et al., 2007),
TUS (Lin et al., 2021) and GenTUS (Lin et al.,
2022). These simulators were constructed with
a dialogue policy incorporating either template-
based or neural language generation modules, and
were employed to engage in dialogues with var-
ious TOD systems using the MultiWOZ dataset.
The results are presented in Table 5, illustrate that
our proposed user simulator enables TOD systems
to achieve higher goal completion scores, while
simultaneously offering greater linguistic diversity.

6 Conclusion

In this paper, we propose AutoTOD, a novel fully
zero-shot autonomous agent for task-oriented dia-
logues. AutoTOD deprecates all the delicate mod-
ules in traditional TOD systems and only uses
an instruction-following language model to au-
tonomously call external APIs and communicate
with the user, which greatly reduces the construc-
tion cost and improves the generalization ability.
We also propose a simulation-based evaluation
framework to evaluate TOD systems in more real
scenarios. Extensive experiments demonstrate the
superior task completion ability and flexible lan-
guage skills of AutoTOD.

7 Limitations

AutoTOD is the first fully zero-shot task-oriented
dialogue (TOD) agent as far as we know, although
it still exhibits certain limitations that warrant fu-
ture improvements. (1) Due to the API cost, Auto-

2755



TOD has only been implemented on a limited num-
ber of large language models (LLMs) (GPT-3.5,
GPT-4, and Llama 2). However, it is crucial to con-
duct a more comprehensive comparison by includ-
ing other well-known LLMs such as Claude (An-
thropic, 2023) and PaLM (Chowdhery et al., 2022).
(2) There is a need for more comprehensive eval-
uations of TOD. Regarding goal completion, the
metrics employed should strive for enhanced ef-
ficiency and accuracy. For the language aspect,
better automatic evaluation methods need to be
developed to assess language quality beyond diver-
sity. (3) It would be better to assess AutoTOD on a
broader range of datasets and employ a greater va-
riety of instruction prompts. (4) Few-shot methods
for LLMs-based TOD agents need to be investi-
gated and the agent performance would be further
improved.
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A Appendix

A.1 Case Study
We present a dialogue fragment between AutoTOD
(GPT-3.5) and the user simulator in Table 8. The
user simulator is fed with the user goals, located at
the top of the table, and asked to achieve the goals
step by step via talking with AutoTOD. AutoTOD
has no access to the goals and can only leverage
the APIs given to it to complete the user’s requests.

A.2 The Instruction Schema for AutoTOD
The full version of the instruction schema for Au-
toTOD, specifically designed for the restaurant do-
main within the MultiWOZ dataset, is provided in
Listing 1. The instruction schema comprises three
distinct components: scenario description, task in-
formation, and output format. During execution,
the task information component encompasses all

Domains Inform Success Book Overall

Restaurant 98.8 95.2 97.6 97.7
Hotel 98.3 97.5 100.0 98.5

Attraction 100.0 96.2 - 98.4
Train - 96.8 100.0 98.6
Taxi 95.8 100.0 - 97.3

Overall 97.6 97.7 99.0 97.3

Table 6: The accuracy of the information extractor
within the dialogue evaluator. The results are obtained
through manual verification 100 randomly selected dia-
logues generated by AutoTOD.

five domains (restaurant, hotel, attraction, train,
taxi) available in the MultiWOZ dataset.

A.3 The Prompt for the User Simulator
An example of the user simulator prompt for Mul-
tiWOZ tasks is presented in Listing 2. The pivotal
component of the prompt is the user goals, which
serve as the driving force behind the interactions
between the user simulator and the TOD agent.
Additionally, the prompt includes the correspond-
ing grounding dialogue extracted from the dataset.
To ensure the appropriate behavior of the simula-
tor, specific instructions are provided, such as the
requirement for the simulator to conclude the dia-
logue by outputting "Dialogue Ends" when all the
goals have been successfully completed.

A.4 The Information Extractor in Dialogue
Evaluator

In the simulation-based evaluation framework, the
dialogue evaluator employs a pretrained large lan-
guage model, (GPT-3.5 in our experiments) to ex-
tract essential information from the generated dia-
logues. To illustrate this process, we provide an ex-
ample prompt and its corresponding output in List-
ing 3. The prompt encompasses multiple compo-
nents, including user goals, the generated dialogue,
specific questions regarding the desired informa-
tion, and the specified answer format in JSON. To
optimize the API cost, all the necessary informa-
tion in one domain is extracted at once within a
single prompt.

Given the powerful capabilities of pretrained
large language models, the extraction accuracy can
be quite high. To quantify this accuracy, we con-
ducted a manual verification process on a randomly
selected subset of 100 dialogues from the Mul-
tiWOZ test set. The extraction accuracy results
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Schema
Service Level Dialogue Level

Inform Success Inform Success

SGD (v0) 46.0 20.9 34.6 20.0

Variant v1 46.5 22.5 34.5 20.4
Variant v2 44.9 20.9 33.9 18.8
Variant v3 47.7 21.0 36.1 19.1
Variant v4 46.1 20.5 35.5 19.0
Variant v5 45.6 22.5 33.7 20.7

Table 7: Evaluation results of AutoTOD (GPT-3.5) on
the service schemas of SGD and the 5 variants in SGD-
X. The same 100 dialogues are sampled from the test set
and equipped with different service schemas separately.

are presented in Table 6. The overall accuracy is
determined to be over 97%. Notably, the Inform
information in the taxi domain presents the most
challenging extraction task, achieving an accuracy
of 95.8%. The overall accuracy achieves 97.3%,
indicating the effectiveness of the language model-
based information extractor.

A.5 Influence of Task Information
To assess the robustness of AutoTOD concerning
various task information, we conducted experi-
ments utilizing the SGD-X dataset, which is an
extension of SGD comprising 5 variants of service
schemas. These variants exhibit semantic similar-
ity while displaying diverse stylistic characteris-
tics. Consequently, we transformed these diverse
schemas into task information for AutoTOD. Us-
ing the GPT-3.5 version of AutoTOD, we indepen-
dently ran experiments on 100 randomly sampled
dialogues from MultiWOZ. The results, presented
in Table 7, indicate that the performance differ-
ence between the original SGD schema and its five
variants is not prominent. This outcome demon-
strates the robustness of AutoTOD, as it is not eas-
ily influenced by different task descriptions. To
further quantify the significance of the differences
in scores, we performed a statistical significance
test, which confirmed that the observed variations
were not statistically significant (p < 0.05).
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Goals

• You are looking for information in Cambridge.
• You are looking for places to go in town. The attraction should be in the centre and should be
in the type of entertainment.
• If there is no such attraction, how about one that is in the type of cinema.
• Make sure you get address, postcode, and phone number.
• You are also looking for a train. The train should go to Peterborough and should leave on Sunday.
• The train should leave after 13:45 and should depart from cambridge.
• Make sure you get train ID, travel time, and price.

User I’m looking for entertainment places in the centre of town.

AutoTOD

API Name: query_attractions
API Input: {"area": "centre"}
API Result: | id | name | type | area | address | postcode | phone | pricerange |
entrance_fee | openhours |
| 2 | adc theatre | theatre | centre | park street | cb58as | 01223300085 |
? | ? | ? |
43 more records ...

Response: I found a theatre in the centre of town with address: Park Street, CB5 8AS. Please let me know
if you need more information or if there’s anything else I can help with!

User How about a cinema?

AutoTOD

API Name: query_attractions
API Input: {"type": "cinema", "area": "centre"}
API Result: | id | name | type | area | address | postcode | phone | pricerange |
entrance_fee | openhours |
| 75 | vue cinema | cinema | centre | the grafton centre, east road | cb11ps |
08712240240 | ? | ? | ? |

Response: There is a cinema called Vue Cinema located in the centre of town. You can contact them
at 08712240240 for more information about pricing and opening hours.

User Yes please, I would like the address, postcode, and phone number.

AutoTOD Response: The address of Vue Cinema is The Grafton Centre, East Road, and the postcode is CB1 1PS.
The phone number is 0871 224 0240.

User I am also looking for a train that will go to Peterborough and leave on a Sunday. Can you locate one for me?

AutoTOD

API Name: query_trains
API Input: {"destination": "peterborough", "day": "sunday"}
API Result: | id | arriveBy | day | departure | destination | duration | leaveAt |
price | trainID |
| 1041 | 05:56 | sunday | cambridge | peterborough | 50 minutes | 05:06 |
13.20 pounds | TR8293 |
| 1042 | 06:24 | sunday | cambridge | peterborough | 50 minutes | 05:34 |
13.20 pounds | TR2913 |
35 more records ...

Response: Sure! Here are some trains that go to Peterborough and leaves on a Sunday. They leave Cambridge
at 05:06, 05:34, 06:06. Please let me know if you would like more information about any of these trains.

User Is there a train that leaves after 13:45?

AutoTOD

API Name: query_trains
API Input: {"destination": "peterborough", "day": "sunday", "leaveAt": "13:45"}
API Result: | id | arriveBy | day | departure | destination | duration | leaveAt |
price | trainID |
| 1059 | 14:56 | sunday | cambridge | peterborough | 50 minutes | 14:06 |
13.20 pounds | TR0283 |
| 1060 | 15:24 | sunday | cambridge | peterborough | 50 minutes | 14:34 |
13.20 pounds | TR3577 |
17 more records ...

Response: Yes, there are trains that leave after 13:45 to go to Peterborough on a Sunday. Here are a few options:
train TR0283 leaves at 14:06, train TR3577 leaves at 14:34, train TR3434 leaves at 15:06.

Table 8: A dialogue fragment between AutoTOD (GPT-3.5) and the user simulator. The user simulator is provided
with the predefined goals, specified at the top of the table, while AutoTOD utilizes external APIs to fulfill the user
requests.
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Listing 1: The full version of the instruction schema for AutoTOD (restaurant domain in MultiWOZ)
You are an intelligent AI assistant to help the user complete complex tasks. The task may contain

several sub-tasks, and the AI Assistant first determines which sub-tasks are involved in the
user's utterance, and then completes the user's request according to the instructions of the
corresponding sub-tasks.

↪→
↪→
↪→

You specialize in travel guidance in Cambridge. You can help the user to find restaurants, hotels,
attraction, trains and taxi as well as make reservations.↪→

# Task #1: Restaurant

## Task Description
The AI Assistant helps the user find a restaurant and/or make a reservation.

## Task APIs

- query_restaurants: Query the restaurants with certain requirements.
- Parameter: the input parameter should be a json string satisfying the following format:
```json {

"area": "[the location of the restaurant. only allowed values: centre, north, south, east,
west]",↪→

"price": "[the price range of the restaurant. only allowed values: cheap, moderate,
expensive]",↪→

"food": "[the food type or cuisine of the restaurant]",
"name": "[the name of restaurant]"

}```
- At least one of the parameters (area, price, food, name) should be specified.

- book_restaurant: Book a restaurant with certain requirements
- Parameter: the input parameter should be a json string satisfying the following format:
```json {

"name": "[the name of restaurant to book]",
"people": "[the number of people of the booking]",
"day": "[the day when the people go in a week. only allowed values: monday, tuesday,

wednesday, thursday, friday, saturday, sunday]",↪→
"time": "[the time of the reservation. time format: hh:mm, examples: 08:30, 16:00]"

}```
- All the parameters (name, people, day, time) are required.

## Task Logic

- After using the query_restaurants API to query restaurants with user's constraints, the AI
Assistant should recommend the restaurant names to the user for choosing.↪→

- If there are too many restaurants returned by query_restaurants, the AI Assistant should ask the
user for more constraints rather than asking for reservaton.↪→

# Output Format

## To call an API, please output with the following format:
```
Thought: I need to call an API.
API Name: [the API name to use]
API Input: [the input parameter for the API]
API Result: [leave empty for the API output]
```
- Available tool names:

- Restaurnt: query_restaurants, book_restaurant
- Hotel: query_hotels, book_hotel
- Attraction: query_attractions
- Train: query_trains, buy_train_tickets
- Taxi: book_taxi

## When you don't need to call APIs and have a response to the user, you MUST use the format:
```
Thought: I don't need API and want to respond to the user.
Response: [your response here]
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Listing 2: The example prompt for the user simulator.
You act as a user to talk to an AI assistant to complete some tasks.

You should carefully read and understand the User Goals below, then talk with the AI Assistant and
gradually express the intents in the goals. Your purpose is to let the user achieve the goals as
much as possible.

↪→
↪→

Note that the AI Assistant is not perfect. It may make various mistakes, including ignoring the user's
requests, executing the wrong instructions, forgetting early conversation content, etc. The user
you play should talk to the AI Assistant as patiently as possible, remind him to correct when you
find that the AI assistant made a mistake, and complete the task as much as possible.

↪→
↪→
↪→

When the dialogue goals are completed or are not been completed, the user will output "Dialogue Ends"
to indicate the end of the dialogue. The user doesn't need to try conditions other than the
dialogue goals.

↪→
↪→

There is also a reference dialogue example to achieve the goals. The simulator user may learn from the
language style and dialogue strategy. The final simulated dialogue style should be similar to the
reference dialogue style.

↪→
↪→

User Goals:

You are looking for a restaurant. The restaurant should be in the west and should serve kosher food.
The restaurant should be in the expensive price range.
If there is no such restaurant, how about one that serves indian food.
Make sure you get address, phone number, and postcode.

Reference dialogue:

User: I'm looking for a restaurant that serves kosher food in the west side.
AI Assistant: I'm sorry, we don't have any Kosher restaurants on the west side. Would you like to try

a different cuisine type?↪→
User: I was really hoping for Kosher.
AI Assistant: Unfortunately, there are no Kosher restaurants anywhere in the city. Can I help you find

something else?↪→
User: How about an expensive Indian restaurant? I know there are many of those!
AI Assistant: We have 5 in the west side. Cocum is very popular, would you like to try there?
User: Sure. What's Cocum's address, phone number, and postcode?
AI Assistant: Here is the information you've requested for Cocum: 71 Castle Street City Centre,

01223366668, cb30ah↪→
User: Great, thank you! That is all I need today.
AI Assistant: You're quite welcome. Thank you and goodbye!

Current conversation:
User: I'm looking for a restaurant that serves kosher food in the west side.
AI Assistant: I'm sorry, we don't have any Kosher restaurants on the west side. Would you like to try

a different cuisine type?↪→
User:
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Listing 3: The example prompt and its output of the information extractor in dialogue evaluator.
You are a calm, objective and professional judger and good at to evaluate quality of dialuges between

user and AI Assistant. Your judging results are always accurate and concise.↪→

There is a dialogue between a user and an AI Assistant. The user has the goals in his minds (User
Goals) and talks with the AI Assistant to achieve the goals. The AI Assistant is a intelligent
agent that is able to understand the user utterances, decide to take actions to use external
tools, and generate proper responses. Your task is to judge whether the AI Assistant helps the
user achieve his goals successfully by answering the questions one by one.

↪→
↪→
↪→
↪→

User Goals:

You want to find an expensive restaurant and it should be in the south part of town.
You want to know the address and phone number of the venue.

Dialogue:

User: I would like an expensive restaurant in the south part of town
AI Assistant: I found some expensive restaurants in the south part of town. Here are a few options:
1. Taj Tandoori
2. Good Luck Chinese Food Takeaway
3. Chiquito Restaurant Bar
4. Frankie and Bennys
5. Peking
Let me know if you would like more information about any of these restaurants or if you have any other

preferences.↪→
User: I don't care.
AI Assistant: Here are some expensive restaurants in the south part of town:
1. Taj Tandoori
2. Good Luck Chinese Food Takeaway
3. Chiquito Restaurant Bar
4. Frankie and Bennys
5. Peking
Let me know if you would like more information about any of these restaurants.
User: What is the address and phone number of Chiquito Restaurant Bar?
AI Assistant: The address of Chiquito Restaurant Bar is 2G Cambridge Leisure Park Cherry Hinton Road

Cherry Hinton. The phone number is 01223400170.↪→
User: Thank you. Good bye.
AI Assistant: You're welcome! If you have any more questions in the future, feel free to ask. Goodbye

and have a great day!↪→

Questions:
1. What restaurant is the user interested in and asking information about it?
2. What is the address of the hotel?
3. What is the phone number of the hotel?

Answer Format:
Please output the answer in json format like this:
```{

"restaurant": "<fill the answer of question 1>"
"address": "<fill the answer of question 2>"
"phone": "<fill the answer of question 3>"

}```
If no answer for a question, please fill `none`.

Answer:
```{

"restaurant": "Chiquito Restaurant Bar"
"address": "2G Cambridge Leisure Park Cherry Hinton Road Cherry Hinton"
"phone": "01223400170"

}```
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