
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2719–2731
August 11-16, 2024 ©2024 Association for Computational Linguistics

ItD: Large Language Models Can Teach Themselves
Induction through Deduction

Wangtao Sun1,2, Haotian Xu6, Xuanqing Yu2,3, Pei Chen4, Shizhu He1,2, Jun Zhao1,2, Kang Liu1,2,5*

1The Laboratory of Cognition and Decision Intelligence for Complex Systems,
Institute of Automation, Chinese Academy of Sciences, Beijing, China

2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
3CAS Engineering Laboratory for Intelligent Industrial Vision,

Institute of Automation, Chinese Academy of Sciences, Beijing, China
4Department of Computer Science and Engineering, Texas A&M University

5Shanghai Artificial Intelligence Laboratory
6Xiaohongshu Inc

sunwangtao2021@ia.ac.cn

Abstract

Although Large Language Models (LLMs) are
showing impressive performance on a wide
range of Natural Language Processing tasks,
researchers have found that they still have lim-
ited ability to conduct induction. Recent works
mainly adopt “post processes” paradigms to
improve the performance of LLMs on induc-
tion (e.g., the hypothesis search & refinement
methods), but their performance is still con-
strained by the inherent inductive capability of
the LLMs. In this paper, we propose a novel
framework, Induction through Deduction (ItD),
to enable the LLMs to teach themselves induc-
tion through deduction. The ItD framework
is composed of two main components: a De-
ductive Data Generation module to generate
induction data and a Naive Bayesian Induc-
tion module to optimize the fine-tuning and
decoding of LLMs. Our empirical results show-
case the effectiveness of ItD on two induction
benchmarks, achieving relative performance
improvement of 36% and 10% compared with
previous state-of-the-art, respectively. Our ab-
lation study verifies the effectiveness of two
key modules of ItD. We also verify the effec-
tiveness of ItD across different LLMs and de-
ductors. The data and code of this paper can be
found at https://github.com/forangel2014/ItD.

1 Introduction

Induction can take we humans from the observed to
the unobserved (Sloman and Lagnado, 2005). The
task of Induction aims to discover consistent trans-
formations from a set of input-output pairs, where
the transformations map the inputs to the outputs
well (Wang et al., 2023). As shown in Figure 1,
given the input-output pairs {xi, yi}ni=1, the model

1* Corresponding author: Kang Liu (kliu@nlpr.ia.ac.cn)

Input 2

: output the first element of the input list

Output 2

: [5, 1]
: [5]

: [1, 2]
: [1]

……

: Sorry I messed up.
: I apologize for my wrongdoings.

Input 1

: As soon as you can.
: At your earliest convenience.

……

: translate the inputs into more former language

Output 1

Figure 1: Task of Induction. The tested model observes
a batch of input-output (x, y) pairs and needs to predict
the latent transformation f shared by these (x, y) pairs.

needs to predict the latent transformation f . For
a detailed example, given the input [1,2] with the
output [1] and other input-output pairs, the tested
model is supposed to figure out the transformation
output the first element of the input list. The Induc-
tion task is an important task in Natural Language
Processing (NLP) and the mastery of the induction
ability is an important sign of intelligence (Peirce,
1868; Lake et al., 2017; Chollet, 2019).

Currently, humans have already mastered the
capability of induction and have found thousands
of laws from the physical world and human soci-
ety. However, machine intelligence still struggles

2719

(a) Hypothesis Search & Refinement

(b) ItD
Input

……

Induction
Result:

Output

Fine-tune

…

…

…

…

Deduced
Samples

……

Reasoner:

Naive
Bayesian
Induction

Hypothesis Search

LLM

LoRA

Strong Inductor

Candidate Hypotheses

... ...

Input

…… LLM

Induction
Result:

Output

:0.3

Execution Results

:0.1 :0.7... ...

Hypothesis
Refinement

Weak Inductor

post processes

Deductive
Data

Generation

Figure 2: Comparison of ItD and Previous Methods.
Previous hypothesis search & refinement methods are
essentially “post processes" to the raw induction results
of LLMs, leaving LLMs as Weak Inductors. By contrast,
ItD fine-tune the LLMs and propose a novel decoding
algorithm to make them Strong Inductors.

to induce basic logic rules in structure data like
knowledge graphs (Zhang et al., 2021; Grzymala-
Busse, 2023). Recently, with the rapid develop-
ment of Large Language Models (LLMs), many
works have begun to adopt the LLMs to induce
the transformations given the input-output obser-
vations of various tasks and express the induced
transformations as rules (Yang et al., 2023; Sun
et al., 2023; Zhu et al., 2023; Zhao et al., 2023),
guidelines (Pang et al., 2023), instructions (Hon-
ovich et al., 2022), and codes (Alet et al., 2021;
Wang et al., 2023). These methods take advantage
of the interpretability and generalization ability of
LLMs in solving the Induction task.

However, recent research (Bang et al., 2023;
Mitchell et al., 2023; Mirchandani et al., 2023; Gen-
dron et al., 2023) have revealed that LLMs have in-
herently limited ability in induction. To tackle such
a limitation, work like Hypothesis Search (Wang
et al., 2023) proposes to select the generated hy-
potheses from LLMs by evaluating them on the
observations, while another following work Itera-
tive Hypothesis Refinement (Qiu et al., 2023) pro-
poses to further refine them through LLMs based
on the evaluating results on the observations. Nev-
ertheless, as shown in Figure 2(a), these hypothesis

search & refinement methods are essentially “post
processes” to the directly induced hypotheses of
LLMs. They still heavily rely on the inherent in-
duction ability of LLMs which are Weak Inductors.

Even though LLMs are limited in induction, re-
cent work finds out that they possess much better
capability in deduction (Bang et al., 2023; Tang
et al., 2023). Different from induction, deduction
aims to infer the correct output given the transfor-
mation and the input. Despite the distinction that
induction associates multiple (x, y) pairs with the
latent transformation f , whereas deduction links
x and f to the resultant y, both approaches fun-
damentally share the commonality of reasoning
within the framework of input, output, and trans-
formation (x, y, f). Therefore, it motivates us to
propose a novel framework ItD (Induction through
Deduction), to enable the LLMs to teach them-
selves induction through deduction. Different from
previous methods, ItD fine-tunes the LLMs on their
deduced data to make them Strong Inductors, as
shown in Figure 2(b). For a given induction task,
ItD first proposes Deductive Data Generation to
leverage the deductive capability of the LLMs to
generate a set of task data (x, y, f), which is simple
yet effective and does not rely on human annota-
tions or any larger LLMs’ assistance. The data will
then be used to fine-tune the LLMs to obtain better
inductive capability.

However, it is non-trivial to utilize the deduced
data. We find out that directly fine-tuning the
LLMs with the IO prompt (§2.2) used in the previ-
ous methods (Honovich et al., 2022; Wang et al.,
2023; Qiu et al., 2023) cannot effectively lever-
age the observed samples (as shown in Figure 5).
Thus, ItD further proposes Naive Bayesian Induc-
tion as a strategy to optimize the use of each sam-
ple. Moreover, we also observe performance gains
with the increase in the number of samples us-
ing our approach. Specifically, this novel tech-
nique fine-tunes the LLM to predict f conditioned
on single pair x, y (p(f |x, y)) instead of n pairs
(p(f |{xi, yi}ni=1)). During the decoding phase, it
utilizes the Naive Bayesian approach to equiva-
lently infer the probability distribution of f under
all n (x, y) conditions (p(f |{xi, yi}ni=1)) with the
probability distribution of f under a single (x, y)
condition (p(f |x, y)).

We conduct experiments on two different types
of induction tasks for evaluation: Instruction Induc-
tion and List Function. Compared with previous
methods, The experiment results show that ItD is

2720

superior to the existing methods in assisting LLMs
in induction, and both the Deductive Data Genera-
tion and the Naive Bayesian Induction components
effectively contribute to ItD. We also make discus-
sions to show that ItD can be effectively applied to
different LLMs, and a more powerful deductor, e.g.
ChatGPT, will further improve the performances of
ItD. In summary, the major contributions of this
paper are as follows:
• We propose a novel framework ItD to enable

the LLMs to teach themselves induction through
deduction.

• We propose Deductive Data Generation to ef-
fectively leverage the deductive capability of
LLMs to generate task data. which is fully self-
supervised and needs no human annotations or
any larger LLMs to assist.

• We propose Naive Bayesian Induction to allow
LLMs to optimize the use of each observed sam-
ple and be able to take advantage of the increase
in the number of observed samples.

2 Preliminary

2.1 Induction Task

As shown in Figure 1, induction aims to infer the
latent transformation, f , from a few of observed
samples, {xi, yi}ni=1, where yi = f(xi).

An induction task T will include multiple input-
output data pairs D = {xi, yi}mi=1, and all (xi, yi)
share the same latent ground truth transformation
f . The complete task data D of task T is then split
into an induction set Din and a deduction set Dde.

The testing model is asked to first run the in-
duction process on Din. Din is split into multi-
ple batches, with each batch containing n samples
{xi, yi}ni=1. The batches will be fed into the model
sequentially. The testing model observes the input
batches and induces the predicted transformation
f∗. All f∗ induced from Din will be collected for
deduction.

In the deduction process, a shared Reasoner R
is used to execute all induced f∗ from different
methods on Dde for fairness. For all test samples
(xtest, ytest) from Dde, the candidate f∗ and test
input xtest will be fed into R and then R generates
the prediction y∗. Finally, we evaluate the metric
between ytest and y∗ and average it over f∗.

2.2 IO Prompt

As the induction task offers the model n observed
samples at a time, it is natural to organize the sam-

ples into the IO (Input-Output) prompt as follows:
x1, y1;x2, y2; ...;xn, yn, which is also widely used
by previous works (Honovich et al., 2022; Wang
et al., 2023; Qiu et al., 2023). Note that we omit
the instructions and other connection words in the
prompt above. For example, for the Input2 in Fig-
ure 1, the IO prompt can be: Please figure out the
transformation that transforms the following input
lists to the output lists: Input:[1,2], Output:[1],
......, Input:[5,1], Output:[5]. So the transforma-
tion is:.

3 Framework

In this section, we introduce ItD, a framework
for empowering the induction capability of LLMs
through their own deduction capability. As shown
in Figure 3, ItD is composed of two modules: De-
ductive Data Generation, and Naive Bayesian In-
duction. For a given induction task, Deductive Data
Generation will first leverage the deductive capabil-
ity of the LLMs to generate the task data. Then we
propose Naive Bayesian Induction to allow LLMs
to optimize the use of each observed sample, while
taking advantage of the increase in the number of
observed samples.

3.1 Deductive Data Generation
To empower the induction ability of LLMs, a set of
training data (x, y, f) is needed. Here we consider
sampling from their joint distribution p(x, y, f).
As we introduced in §1, compared with induction
p(f |x, y), LLMs are better at deduction p(y|f, x).
Thus we propose the following derivation to lever-
age the LLMs to generate the task data in a deduc-
tive behavior.

p(x, y, f) = p(x, y|f)p(f)
= p(y|x, f)p(x|f)p(f) (1)

As shown in Eq (1), to generate data (x, y, f),
we propose to sample p(f), p(x|f), and p(y|x, f)
sequentially. The pipeline of Deductive Data Gen-
eration is shown in the upper half of Figure 3.

3.1.1 Sampling p(f) through Initial Induction
To ensure that the generated data (x, y, f) approxi-
mates the real task data distribution, we first need
to sample the transformation f that approximates
the ground truth transformation of the task. Thus,
we let LLMs induce f on the induction set Din in
the sampling decoding mode with the IO prompt,
and we consider the induced f as samples from the
prior distribution p(f).

2721

Input

……

§ Fine-tuning

 : Translate the inputs into more
formal language

Hypothesis Samples

: Translate the inputs into Spanish

: Negate the input sentences

……LLMs LLMs

Deduced Data

: Reply quickly.
: Please reply as soon as possible.

: Are you busy today?
: ¿¿ estás ocupado hoy?

: This apple tasted good.
: This apple tasted bad.

…

(,)

(,)

(,)

…

…

……

§ Deductive Data Geneartion

Input

……

§ Naive Bayesian Induction

LoRA
LLMs

, the is

, the is

……

forward &
log-softmax

……

Induction
Result:

Output

……

……

choosing next token

: Sorry I messed up.
: I apologize for my wrongdoings.

: As soon as you can.
: At your earliest convenience.

: Sorry I messed up.
: I apologize for my wrongdoings.

: As soon as you can.
: At your earliest convenience.

§
Naive Bayesian
Group Decoding

§ Sampling
through Initial Induction

§ Deduction with In-
Context Learning

Next-token
Log-probs

(tokens)

Figure 3: The framework of ItD. ItD includes two main parts, i.e. Deductive Data Generation and Naive Bayesian
Induction. Given the induction set Din, ItD will first leverage the deductive capability of LLMs to generate data that
closely resembles the distribution of the task data. Then Naive Bayesian Induction is adopted to optimize the use of
each observed sample while achieving better performances with the increase in the number of samples.

3.1.2 Deduction with In-Context Learning

For the p(y|x, f)p(x|f) part in Eq (1), this paper
leverages the deductive capability with In-Context
Learning (ICL) of LLMs to generate samples (x, y).
We first manually create several cases of deduction
as the few-shot demonstrations and then ask LLMs
to generate samples (x, y) for each f (Figure 4).

As shown in Figure 4, the upper half is the fixed
prompt and the content of the last instruction is
replaced by each f from §3.1.1. In the lower half,
the LLMs will follow the demonstrations to contin-
uously first generate an input xi according to the
instruction f , and then generate yi based on their
deductive capability. We then parse the output text
of LLMs to obtain the samples {xi, yi}ni=1. The
deductive capabilities of LLMs will determine the
extent to which (x, y) satisfies the given f . For
each f , we generate n corresponding (x, y) pairs
for later tuning.

3.2 Naive Bayesian Induction

Having obtained the generated task data, we pro-
pose Naive Bayesian Induction which incorpo-
rates tuning and decoding to empower the induc-
tive capability of LLMs. The pipeline of Naive
Bayesian Induction is shown in the lower half of
Figure 3. Instead of the plain IO prompt (§2.2),
Naive Bayesian Induction proposes the Group De-
coding (GD) prompt template as follows: x, y.
Compared with the IO prompt, the GD prompt
contains only one input-output pair (x, y).

By using the GD prompt in Naive Bayesian In-
duction, we allow LLMs to optimize the use of each
observed sample (p(f |x, y)) and can take advan-
tage of the increase in the number of observed sam-
ples. Naive Bayesian Induction further proposes
Naive Bayesian Group Decoding, which enables us
to equivalently infer the probability distribution of
f under all n (x, y) conditions (p(f |{xi, yi}ni=1))
with the probability distribution of f under a single
(x, y) condition (p(f |x, y)).

Specifically, the IO prompt and GD prompt fine-
tune the LLM and decode with the LLMs according
to the following distribution respectively.

• IO prompt: pLLM (f |{xi, yi}ni=1)

• GD prompt: pLLM (f |x, y)
3.2.1 Fine-tuning on the Deduced Data
For the shared fine-tuning data collected in §3.1, we
organize them into the training data with IO prompt
and GD prompt, respectively. Then, we adapt
LoRA (Hu et al., 2021) and QLoRA (Dettmers
et al., 2023) to fine-tune the original LLMs to gain
a better capability of induction.

3.2.2 Naive Bayesian Group Decoding
For the model trained with IO prompt, in the in-
duction stage, we directly convert the n observed
sample from Din into the IO prompt, feed it into
the model, and use beam search to decode the f .
This method is denoted as ItD-IO.

For the model trained with GD prompt, ItD pro-
poses the following Naive Bayesian Group Decod-

2722

Deductive Data Generation
Prompt Template

You are a smart assistant, now please help me generate
corresponding input-output pairs that satisfy the given
instruction. Do not repeat the instructions in the inputs.

Instruction: describe the major color of the given object.
Input: watermelon.
Output: green.
Input: panda.
Output: black and white.
Input: ocean.
Output: blue.
Input: blood.
Output: red.
Input: snow.
Output: white.

Instruction: answer the capital of the given country.
Input: USA.
Output: Washington.
Input: China.
Output: Beijing.
Input: Russia.
Output: Moscow.
Input: France.
Output: Paris.
Input: UK.
Output: London.

Instruction: {𝑓}

Output

Input: 𝑥1
Output: 𝑦1
Input: 𝑥2
Output: 𝑦2
......

Figure 4: The prompt used for Deduction with In-
Context Learning. LLMs will generate multiple samples
(x, y) for each f in a deductive behavior.

ing (NBGD) algorithm. NBGD allows us to equiv-
alently infer the probability distribution of f under
all n (x, y) conditions (p(f |{xi, yi}ni=1)) with the
probability distribution of f under a single (x, y)
condition (p(f |x, y)).

p(f |{xi, yi}ni=1) =
p({xi, yi}ni=1|f)p(f)

p({xi, yi}ni=1)

∝ p({xi, yi}ni=1|f)p(f)

= p(f)
n∏

i=1

p(xi, yi|f)

= p(f)
n∏

i=1

p(f |xi, yi)p(xi, yi)
p(f)

∝ p(f)−(n−1)
n∏

i=1

p(f |xi, yi)

(2)
Here we assume that given the transformation
f , the input-output pairs (x, y) are indepen-
dent to each other, i.e. p({xi, yi}ni=1|f) =

∏n
i=1 p(xi, yi|f). This assumption is quite natu-

ral in the scene of induction, where each yi is only
determined by f and the corresponding xi.

As shown in Eq (2), we derive the probability
p(f |{xi, yi}ni=1) into two parts, i.e. the prior term
p(f)−(n−1) and the product term

∏n
i=1 p(f |xi, yi)

respectively. Suppose the text of f is a sentence
t = [t1, t2, ..., tm]. For the

∏n
i=1 p(f |xi, yi), we

modify the ordinary beam search decoding process
as follows:

n∑

i=1

log p(t|xi, yi) =
n∑

i=1

m∑

j=1

log p(tj |xi, yi, t<j)

=

m∑

j=1

n∑

i=1

log p(tj |xi, yi, t<j)

(3)
As shown in Eq (3) and Figure 3, in the induction
stage, NBGD will first convert all samples (xi, yi)
into GD prompt, tokenize them and feed them into
the LLMs in a batch. Then in each step of decoding
(j), the LLMs receive the already decoded part of
transformation t<j , and every sample (xi, yi) and
generate the next-token scores (log-probabilities)
for tj . Then we will add up the next-token scores
from all the samples (i). Like ordinary beam search,
in each step j, we will maintain the top-k beams
with the largest beam scores.

After NBGD decodes the top-k f , we finally re-
rank them through the prior term p(f)−(n−1). In
the log scale, we only need to calculate the log
probabilities log p(f) with the same LLMs and
add −(n − 1) log p(f) to their beam scores. We
consider this training & decoding method as the
complete method of our framework, denoted as
ItD.

4 Experiments

4.1 Dataset and Setups

We use two datasets to test the inductive capability
of LLMs on two types of induction tasks: common-
sense inductive reasoning and symbolic inductive
reasoning.

For commonsense inductive reasoning, we adapt
the task Instruction Induction (Honovich et al.,
2022). The input x and output y are two short sen-
tences while the transformation f is an instruction.
This dataset contains 24 sub-tasks. For symbolic
inductive reasoning, we adapt the task List Func-
tion (Rule, 2020). The input x and output y are two

2723

Dataset Instruction Induction List Function

Model Llama-2-7b-chat Mixtral-8x7B

IO 13.23 18.57
SC 23.59 10.93
HS 27.83 19.50
HS&R 28.68 19.71

ItD-IO 32.49 20.05
ItD 38.70 21.60

Table 1: The main results of our experiments and the
Effectiveness of Deductive Data Generation and Naive
Bayesian Induction. ItD is superior to all of the previous
methods on both datasets, while both Deductive Data
Generation and Naive Bayesian Induction effectively
contribute to the performance of ItD.

integer lists while the transformation f is a natural
language description of the latent list transforma-
tion. This dataset contains 250 sub-tasks.

We adopt ChatGPT as the Reasoner R for both
datasets and all tested methods (Note that the Rea-
soner R will not participate in Deductive Data Gen-
eration but only execute the induced f for evalua-
tion). The reported results are average execution
scores (Honovich et al., 2022) over all sub-tasks.
The detailed setups of the experiments can be found
in Appendix A and the detailed results of each sub-
task of all methods can be found in Appendix B.

4.2 Baselines

We adopt the following baselines to compare with
our proposed ItD:
• IO (input-output, Honovich et al. 2022). This

baseline is the plain prompt, i.e. directly splice
the observations x1, y1, x2, y2, ..., xn, yn as the
IO prompt, and feed this prompt for LLMs to
conduct induction.

• SC (self-consistency, Wang et al. 2022). Based
on the IO prompt, the SC method will sample k
hypotheses and select the most consistent one by
taking a majority vote.

• HS (hypothesis search, Wang et al. 2023).
Based on the IO prompt, the HS method will
evaluate the generated hypotheses by applying
the hypotheses to the observed samples. The de-
ductive reasoning results will be used to filter out
the most qualified hypothesis.

• HS&R (hypothesis search & refinement, Qiu
et al. 2023). After selecting the best hypothesis,
this baseline allows LLMs to refine the hypothe-

sis to a better one based on the execution results.

4.3 Main Results
We first compare ItD with previous methods to
see whether ItD trains the LLMs to become better
inductors.

For Instruction Induction, we adopt Llama-2-7b-
chat as the LLM for all methods. For List Function,
as List Function is a task of symbolic reasoning and
LLMs are found poor at symbolic deduction than
semantic deduction (Tang et al., 2023), we adopt a
larger and more powerful LLM, Mixtral-8x7B, for
all methods.

As shown in Table 1, ItD is significantly supe-
rior to all existing methods on both datasets, bring-
ing relative performance improvement of 193%
and 16% compared with the base model (IO),
while bringing relative performance improvement
of 35% and 10% compared with the previous SOTA
(HS&R). These results verify that ItD is better than
previous methods in empowering the inductive ca-
pability of LLMs.

4.4 The Effectiveness of Deductive Data
Generation

To verify the effectiveness of Deductive Data Gen-
eration, we here compare the ItD-IO version with
the base model (IO). The only difference between
these two models is that ItD-IO is fine-tuned with
the same data generated by Deductive Data Gener-
ation but with the IO prompt.

As shown in Table 1, ItD-IO is superior to the
base model on both datasets, bringing the relative
performance improvement of 146% and 8%. These
results indicate that Deductive Data Generation can
produce effective fine-tuning data for the LLMs.

4.5 The Effectiveness of Naive Bayesian
Induction

The Naive Bayesian Induction allows us to op-
timize the use of each observed sample and to
take advantage of the increase in the number of
observed samples. To verify the effectiveness of
Naive Bayesian Induction, we first compare the
complete ItD with ItD-IO. As shown the Table 1,
the model trained with complete ItD significantly
outperforms ItD-IO on both datasets, indicating the
effectiveness of Naive Bayesian Induction.

Moreover, we conduct experiments to verify that
Naive Bayesian Induction can benefit from the in-
crease in the number of observed samples. While
ItD-IO is tuned with 5 pairs of (x, y) per batch, we

2724

2 5 8 20
Number of Samples

20

25

30

35

40
Av

er
ag

e
Ex

ec
ut

io
n

Sc
or

es

32.09 32.49 32.35 33.24

37.47
38.70

39.78
41.33

19.70 20.05 20.16 20.4719.76 21.60 21.93 22.53

ItD-IO (Instrcution Induction)
ItD (Instrcution Induction)
ItD-IO (List Function)
ItD (List Function)

Figure 5: Naive Bayesian Induction can benefit from the increase in the number of observed samples.

Dataset Instruction Induction List Function
Model Llama-2-7b-chat Llama-2-13b-chat ChatGPT* Mixtral-8x7B ChatGPT*
IO 13.23 34.43 56.75 18.57 26.88
ItD 38.71 44.64 62.07 21.60 29.59
Human 67.82 37.08

Table 2: ItD is effective for LLMs of different sizes. * denotes that models only use the ItD-IO version as we are not
able to modify the decoding algorithms of these black-box LLMs. Human denotes the results that the Reasoner R
directly adopts the human-written references for evaluation.

Dataset Instruction Induction List Function

Model Llama-2-7b-chat Mixtral-8x7B

HS 27.83 19.50
HS+D 31.76 20.30
ItD 38.70 21.60
ItD+D 41.01 23.91

Table 3: Both ItD and baseline method HS can benefit
from a more powerful deductor (ChatGPT, denoted as
+D). Compared with conducting deduction by the tested
model, both methods with ChatGPT helping in conduct-
ing deduction will have better performances.

test both ItD-IO and ItD with 2, 5, 8, and 20 pairs
of (x, y) per batch. As shown the Figure 5, the
performance of ItD-IO remains almost unchanged
with the increase in the number of samples, with
ItD-IO-20 only outperforming ItD-IO-2 by 1.15%
and 0.77%. In contrast, the performance of ItD
enjoys a natural improvement as the number of
samples grows, with ItD-20 outperforming ItD-2
by 3.86% and 2.77%. These results verify the ef-
fectiveness of Naive Bayesian Induction in both

directly improving the induction performance and
making LLMs capable of taking advantage of the
increase in the number of observed samples.

4.6 Discussion
4.6.1 The Effectiveness of ItD on Different

Sizes of LLMs
To verify whether ItD is effective with different
sizes of LLMs, we adopt extra LLMs of differ-
ent sizes for each task: For Instruction Induction,
besides Llama-2-7b-chat, we adopt Llama-2-13b-
chat, and ChatGPT for experiments. For the List
Function, besides Mixtral-8x7B, we adopt Chat-
GPT for the experiments of this task. Note that for
ChatGPT, as we are not able to modify the decod-
ing algorithm during its inference time, we only
apply the ItD-IO version for it. We use the offi-
cial API for the fine-tuning and inference of the
ChatGPT.

As shown in Table 2, for LLMs of different sizes,
ItD can effectively enhance the performance of the
model, with the relative performance improvement
ranging from 9% to 193% across different models.
These results support that ItD can effectively em-

2725

Task IO ItD ItD-OOD

sum 22.33 50.02 25.21
translation_en-de 11.50 50.82 15.25
antonyms 40.82 80.40 48.28
first_word_letter 12.56 71.27 88.50
sentiment 2.01 87.49 0.03

Table 4: Performance of different methods on selected
tasks.

power the inductive capability of LLMs of different
sizes.

4.6.2 A More Powerful Deductor Can Bring
Further Improvements for ItD

Both HS and ItD need a deductor to improve the
induction process. For HS, the deductor is used to
search for the best-proposed hypothesis by evalu-
ating them on the observed samples. For ItD, the
deductor is used to deduce data for fine-tuning. In
the experiments above, the deductor used in these
two methods is both the tested model itself. How-
ever, here we would like to discuss whether a more
powerful deductor will further improve these meth-
ods. So we adopt the Reasoner R of the tasks, i.e.
ChatGPT, as a more powerful deductor for these
methods as the comparison.

As shown in Table 3, After being equipped with
a more powerful deductor (denoted as +D), both HS
and ItD gain performance improvements on both
datasets, while ItD still consistently outperforms
HS whatever the deductor is the base model or
ChatGPT. These results further inform us that the
more powerful the Deductor, the better it helps in
training the Inductor.

4.6.3 Held-out Task Generalization
To investigate the inductive capability of LLMs un-
der the Instruction-tuning (ItD) framework on out-
of-distribution (OOD) tasks, we selected 5 held-out
tasks from the 24 sub-tasks in the Instruction In-
duction dataset: sum, translation_en-de, antonyms,
first_word_letter, and sentiment. These tasks were
drawn from the Spelling, Lexical Semantics, Nu-
merical, Multilingual, and GLUE categories (cate-
gorized by Honovich et al., 2022), respectively.

During the Deductive Data Generation stage, we
masked the function f and its corresponding x, y
pairs for these 5 held-out tasks, making them OOD
tasks. We then fine-tuned the LLM using the f, x, y
pairs generated from the remaining sub-tasks. This

setting is referred to as ItD-OOD.
The results, as shown in Table 4, indicate that

compared to the full ItD framework, ItD-OOD
generally exhibits a significant performance drop
on the held-out tasks. However, compared with
the naive IO baseline, ItD-OOD shows improve-
ments on most tasks, and even surpasses ItD on the
first_word_letter sub-task. This suggests that the
ItD framework has a certain degree of cross-task
generalization capability, but the effectiveness of
this generalization depends on the similarity be-
tween the transformations f of different sub-tasks.

5 Related Work

5.1 Capability of Induction of LLMs

Although LLMs have shown great power in a large
number of fields of NLP (Chen et al., 2024b,a; Li
et al., 2024; Ling et al., 2023; Xu et al., 2024), it is
shown by previous research that they are poor on in-
duction. Mirchandani et al. 2023 and Gendron et al.
2023 found that LLMs are poor on abstract induc-
tion tasks like Abstraction and Reasoning Corpus
(Chollet, 2019). Another research (Mitchell et al.,
2023) found that even GPT-4 and GPT-4V are still
not able to robustly form abstractions and reason in
contexts not previously seen in their training data.
However, Bang et al. 2023 and Tang et al. 2023
have made quantitative evaluations on LLMs and
found that they are much better at deduction than
induction. Inspired by the findings of these works,
we propose a novel framework, ItD, to leverage the
powerful deductive capability of LLMs to enhance
their inductive capability.

5.2 Memory-Oriented Induction

LLMs have shown strong ability in reasoning in var-
ious down-steam tasks. However, they still struggle
when it comes to an unfamiliar task. Thus, many
previous works have designed a working memory
to help LLMs store and use task-specific knowl-
edge (Yang et al., 2023; Sun et al., 2023; Zhu et al.,
2023; Zhao et al., 2023). The LLMs are prompted
to induce task-specific knowledge in the form of
facts or rules and store them in the memory dur-
ing the induction stage. In the deductive reasoning
stage, a retriever will be called to retrieve rele-
vant knowledge about the current question from the
memory and prompt it to the LLMs. For these ap-
plications, ItD is supposed to be a powerful frame-
work for these methods to tune the LLMs to gain
better inductive capability to further improve their

2726

performances.

5.3 Hypothesis Search and Refinement

Some previous works have proposed methods to
improve the induced hypotheses of LLMs by con-
ducting Hypothesis Search and Refinement. Hy-
pothesis Search (Wang et al., 2023) proposes to
implement the natural language hypothesis to the
Python program and then execute them on the ob-
served samples, the execution results are then used
to filter out the better hypotheses. Based on Hy-
pothesis Search, Iterative Hypothesis Refinement
(Qiu et al., 2023) proposes to iteratively refine the
hypothesis through LLMs based on the feedback
of execution results. Compared with these meth-
ods, ItD improves the inherent inductive capability
of LLMs by fine-tuning them with high-quality
deduced data and producing a better induction al-
gorithm.

5.4 Naive Bayes-based Context Extension

NBCE (Su, 2023) is recently proposed as an ef-
fective method to extend the context for LLMs.
It is proposed for the scenes of conducting QA
with a batch of documents. However, the doc-
uments are likely to be coupled with others and
thus cause NBCE poorly infer the answers. Com-
pared with NBCE, Naive Bayesian Induction ap-
plies this derivation to the problem of induction,
where the samples are conditionally independent
of each other given f in nature. Moreover, we in-
volve the tuning process with GD prompt in ItD,
which not only optimize the use of each observed
sample but also take advantage of the increase in
the number of samples.

6 Conclusion

In this paper, we propose a novel framework, ItD,
to enable LLMs to teach themselves induction
through deduction. We conduct a series of experi-
ments on two types of induction datasets and verify
that ItD is superior to existing methods in empow-
ering the inductive capability of LLMs. Moreover,
we verify the effectiveness of Deductive Data Gen-
eration and Naive Bayesian Induction. More ex-
periment results support that ItD can be effectively
applied to LLMs of different sizes, and a more pow-
erful deductor can further improve the performance
of ItD.

Limitations

With our ItD framework, we can improve both the
symbolic deductive reasoning and semantic deduc-
tive reasoning tasks. However, constrained by the
limited capability of LLMs in symbolic reasoning,
the performance of ItD on List Function (a sym-
bolic deductive task) is not as satisfying as it is on
Instruction Induction (a semantic deductive task).
Besides, our proposed Naive Bayesian Group De-
coding is still categorized to greedy algorithms. It
does not involve planning and may likely fall into
local optima. We leave further exploration of these
directions as future work.

Ethics Statement

This paper proposes a method for LLMs to teach
themselves induction through deduction. All exper-
iments are conducted on publicly available datasets.
Thus there is no data privacy concern. Meanwhile,
this paper does not involve human annotations, and
there are no related ethical concerns.

Acknowledgements

This work was supported by the National Key
R&D Program of China (No.2022ZD0160503) and
the National Natural Science Foundation of China
(No.62376270) and OPPO Research Fund.

References
Ferran Alet, Javier Lopez-Contreras, James Kop-

pel, Maxwell Nye, Armando Solar-Lezama, Tomas
Lozano-Perez, Leslie Kaelbling, and Joshua Tenen-
baum. 2021. A large-scale benchmark for few-shot
program induction and synthesis. In International
Conference on Machine Learning, pages 175–186.
PMLR.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multi-
task, multilingual, multimodal evaluation of chatgpt
on reasoning, hallucination, and interactivity. arXiv
preprint arXiv:2302.04023.

Pei Chen, Boran Han, and Shuai Zhang. 2024a.
Comm: Collaborative multi-agent, multi-reasoning-
path prompting for complex problem solving.

Pei Chen, Soumajyoti Sarkar, Leonard Lausen, Balasub-
ramaniam Srinivasan, Sheng Zha, Ruihong Huang,
and George Karypis. 2024b. Hytrel: Hypergraph-
enhanced tabular data representation learning. Ad-
vances in Neural Information Processing Systems,
36.

2727

http://arxiv.org/abs/2404.17729
http://arxiv.org/abs/2404.17729

François Chollet. 2019. On the measure of intelligence.
arXiv preprint arXiv:1911.01547.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Gaël Gendron, Qiming Bao, Michael Witbrock, and
Gillian Dobbie. 2023. Large language models are not
abstract reasoners. arXiv preprint arXiv:2305.19555.

Jerzy W Grzymala-Busse. 2023. Rule induction. In
Machine Learning for Data Science Handbook: Data
Mining and Knowledge Discovery Handbook, pages
55–74. Springer.

Or Honovich, Uri Shaham, Samuel R Bowman, and
Omer Levy. 2022. Instruction induction: From few
examples to natural language task descriptions. arXiv
preprint arXiv:2205.10782.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Brenden M Lake, Tomer D Ullman, Joshua B Tenen-
baum, and Samuel J Gershman. 2017. Building ma-
chines that learn and think like people. Behavioral
and brain sciences, 40:e253.

Ming Li, Pei Chen, Chenguang Wang, Hongyu Zhao,
Yijun Liang, Yupeng Hou, Fuxiao Liu, and Tianyi
Zhou. 2024. Mosaic it: Enhancing instruction tuning
with data mosaics.

Chen Ling, Xujiang Zhao, Jiaying Lu, Chengyuan Deng,
Can Zheng, Junxiang Wang, Tanmoy Chowdhury,
Yun Li, Hejie Cui, et al. 2023. Domain specializa-
tion as the key to make large language models dis-
ruptive: A comprehensive survey. arXiv preprint
arXiv:2305.18703.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter,
Danny Driess, Montserrat Gonzalez Arenas, Kan-
ishka Rao, Dorsa Sadigh, and Andy Zeng. 2023.
Large language models as general pattern machines.
arXiv preprint arXiv:2307.04721.

Melanie Mitchell, Alessandro B Palmarini, and Arseny
Moskvichev. 2023. Comparing humans, gpt-4, and
gpt-4v on abstraction and reasoning tasks. arXiv
preprint arXiv:2311.09247.

Chaoxu Pang, Yixuan Cao, Qiang Ding, and Ping Luo.
2023. Guideline learning for in-context information
extraction. arXiv preprint arXiv:2310.05066.

Charles S Peirce. 1868. Questions concerning certain
faculties claimed for man. The Journal of Speculative
Philosophy, 2(2):103–114.

Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar,
Valentina Pyatkin, Chandra Bhagavatula, Bailin
Wang, Yoon Kim, Yejin Choi, Nouha Dziri, et al.

2023. Phenomenal yet puzzling: Testing in-
ductive reasoning capabilities of language mod-
els with hypothesis refinement. arXiv preprint
arXiv:2310.08559.

Joshua Stewart Rule. 2020. The child as hacker: build-
ing more human-like models of learning. Ph.D. the-
sis, Massachusetts Institute of Technology.

Steven A Sloman and David Lagnado. 2005. The prob-
lem of induction. The Cambridge handbook of think-
ing and reasoning, pages 95–116.

Jianlin Su. 2023. Naive bayes-based context extension.
https://github.com/bojone/NBCE.

Wangtao Sun, Xuanqing Yu, Shizhu He, Jun Zhao, and
Kang Liu. 2023. Expnote: Black-box large language
models are better task solvers with experience note-
book. arXiv preprint arXiv:2311.07032.

Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng,
Song-Chun Zhu, Yitao Liang, and Muhan Zhang.
2023. Large language models are in-context seman-
tic reasoners rather than symbolic reasoners. arXiv
preprint arXiv:2305.14825.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen
Pu, Nick Haber, and Noah D Goodman. 2023. Hy-
pothesis search: Inductive reasoning with language
models. arXiv preprint arXiv:2309.05660.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen,
Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. 2024. A survey on knowledge dis-
tillation of large language models.

Zeyuan Yang, Peng Li, and Yang Liu. 2023. Fail-
ures pave the way: Enhancing large language mod-
els through tuning-free rule accumulation. arXiv
preprint arXiv:2310.15746.

Jing Zhang, Bo Chen, Lingxi Zhang, Xirui Ke, and
Haipeng Ding. 2021. Neural, symbolic and neural-
symbolic reasoning on knowledge graphs. AI Open,
2:14–35.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu
Lin, Yong-Jin Liu, and Gao Huang. 2023. Expel:
Llm agents are experiential learners. arXiv preprint
arXiv:2308.10144.

Zhaocheng Zhu, Yuan Xue, Xinyun Chen, Denny
Zhou, Jian Tang, Dale Schuurmans, and Hanjun Dai.
2023. Large language models can learn rules. arXiv
preprint arXiv:2310.07064.

2728

http://arxiv.org/abs/2405.13326
http://arxiv.org/abs/2405.13326
https://github.com/bojone/NBCE
http://arxiv.org/abs/2402.13116
http://arxiv.org/abs/2402.13116

A Setups

For Instruction Induction, it contains 24 sub-tasks,
with the induction set Din of each sub-task includ-
ing 100 batches, each batch includes n = 5 pairs
of (x, y). The deduction set Dde of each sub-task
including 100 pairs of (x, y) for testing. For List
Function, it contains 250 sub-tasks, with the induc-
tion set Din of each sub-task including 3 batches,
each batch includes n = 5 pairs of (x, y). The
deduction set Dde of each sub-task including 17
pairs of (x, y) for testing.

Induction on both tasks is conducted in a zero-
shot manner by LLMs. For both ordinary beam
search and Naive Bayesian Group Decoding used
during the induction phase, we adopt the beam size
of 5.

For Deductive Data Generation, we adopt top-p
= 0.95 and temperature = 0.3 to sample 5 transfor-
mations f from each batch of Din. And then we
generate 5 pairs of (x, y) for each f . For both ItD
and ItD-IO, we fine-tune them using the same data
above, with a learning rate of 1e-4 and for 3 epochs.
For Naive Bayesian Group Decoding, we create a
patch for the utils.py in the transformer library, it
can be easily installed and uninstalled using our
scripts.

The prompts used in Induction (§3.2.2) and De-
duction with In-Context Learning (§3.1.2) for In-
struction Induction and List Function are shown
in Table 5 and Table 6, respectively. Note that the
text in the Induction part is shared by both the IO
prompt and the GD prompt (for the IO prompt,
n > 1, and for the GD prompt, n = 1).

B Detailed Results

The detailed results of Instruction Induction are
shown in Table 7. As the List Function con-
tains 250 sub-tasks and we have 19 methods in
all, the table of its detailed results will be too
large for the paper. Instead, you can find it at
https://github.com/forangel2014/ItD.

Dataset Instruction Induction

Induction

I gave a friend an instruction and an input.
The friend read the instruction
and wrote an output for the input.
Here is the input-output pair:
Input: {x1}
Output: {y1}
......
Input: {xn}
Output: {yn}
The instruction was

Deduction
with
In-Context
Learning

You are a smart assistant,
now please help me generate corresponding
input-output pairs that satisfy the given instruction.
Do not repeat the instructions in the inputs.
instruction: describe the major color of the given object.
Input: watermelon.
Output: green.
Input: panda.
Output: black and white.
Input: ocean.
Output: blue.
Input: blood.
Output: red.
Input: snow.
Output: white.
instruction: answer the capital of the given country.
Input: USA
Output: Washington.
Input: China.
Output: Beijing.
Input: Russia.
Output: Moscow.
Input: France.
Output: Paris.
Input: UK.
Output: London.
Instruction: {f}

Table 5: The prompts used for Instruction Induction.

2729

Dataset List Function

Induction

There is a transformation that transforms
the input list to the output list.
please tell me the transformation in natural language.
Input: {x1}
Output: {y1}
......
Input: {xn}
Output: {yn}
The transformation is:
The transformation

Deduction
with
In-Context
Learning

You are a smart assistant,
now please help me predict the output
given the input and the transformation.
transformation: Remove the first and the second element.
input: [0, 8, 9, 3, 7, 5, 5]
output: [9, 3, 7, 5, 5]
input: [7, 3, 9, 6]
output: [9, 6]
input: [0, 0, 0, 7, 7, 7]
output: [0, 7, 7, 7]
input: [2, 5, 5, 6, 3]
output: [5, 6, 3]
input: [7, 3, 6, 8, 8, 5, 0]
output: [6, 8, 8, 5, 0]

transformation: Retain the elements that greater than 5.
input: [3, 4, 8, 1, 0, 5, 3, 7, 9, 9]
output: [8, 7, 9, 9]
input: [0, 4, 5, 7, 7, 1, 2, 6]
output: [7, 7]
input: [1, 0, 0, 3, 7, 8, 5]
output: [7, 8]
input: [5, 1, 9, 3, 6, 1, 7, 3]
output: [9, 6, 7]
input: [2, 6, 8, 1, 7]
output: [6, 8, 7]

transformation: Reverse the input list.
input: [1, 0, 3, 8]
output: [8, 3, 0, 1]
input: [1, 3, 7, 4, 2, 0, 8, 9]
output: [9, 8, 0, 2, 4, 7, 3, 1]
input: [8, 9, 0, 1, 3]
output: [3, 1, 0, 9, 8]
input: [5, 5, 6, 8, 0, 1, 3, 2]
output: [2, 3, 1, 0, 8, 6, 5, 5]
input: [2, 0, 8, 7, 5, 4]
output: [4, 5, 7, 8, 0, 2]

transformation: Append 5 to the input list.
input: [7, 0, 3, 6]
output: [7, 0, 3, 6, 5]
input: [1, 2, 3, 7, 8, 5]
output: [1, 2, 3, 7, 8, 5, 5]
input: [2, 9, 6, 3, 7, 5, 4, 4]
output: [2, 9, 6, 3, 7, 5, 4, 4, 5]
input: [0, 0, 8, 6, 9]
output: [0, 0, 8, 6, 9, 5]
input: [7, 5, 6, 5, 3, 3, 2]
output: [7, 5, 6, 5, 3, 3, 2, 5]

transformation: {f}

Table 6: The prompts used for List Function.

2730

Task IO (L7) SC (L7) HS (L7) HS&R (L7) HS+D (L7) ItD (L7) ItD+D (L7)
active_to_passive 56.18 3.23 9.55 20.1 16.13 90.15 100.00
antonyms 40.82 79.75 81.59 80.97 83.50 80.40 83.00
cause_and_effect 16.74 15.70 24.78 21.52 28.78 45.84 57.06
common_concept 0.96 6.47 7.00 6.98 6.67 17.58 3.21
diff 1.14 3.32 9.78 15.46 14.70 17.00 34.49
first_word_letter 12.56 58.03 58.90 54.28 81.49 71.27 100.00
informal_to_formal 40.51 34.59 40.99 43.16 43.04 26.22 48.16
larger_animal 0.04 11.86 22.34 23.29 28.54 6.05 30.06
letters_list 0.12 0.31 1.15 1.23 1.22 0.04 0.00
negation 9.52 6.51 13.16 14.44 15.39 44.95 43.45
num_to_verbal 3.00 3.00 4.00 7.58 7.48 97.00 100.00
orthography_starts_with 3.02 6.94 5.71 7.26 9.76 1.86 43.20
rhymes 26.64 2.93 3.00 2.72 2.45 0.19 2.25
second_word_letter 4.73 2.13 1.23 1.92 5.36 8.64 2.28
sentence_similarity 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sentiment 2.01 17.49 26.41 27.18 45.82 87.49 36.96
singular_to_plural 28.58 94.05 97.93 96.94 98.78 97.86 99.95
sum 22.33 50.54 83.64 84.37 84.13 50.02 10.37
synonyms 8.56 0.39 1.22 1.05 1.43 2.79 1.42
taxonomy_animal 0.00 0.37 1.56 0.77 2.27 1.59 8.08
translation_en-de 11.50 48.37 50.42 51.97 52.33 50.82 53.78
translation_en-es 14.99 65.50 67.83 66.41 69.15 57.50 60.08
translation_en-fr 13.52 47.99 47.68 51.86 52.45 35.96 46.37
word_in_context 0.00 6.74 8.08 6.80 11.30 37.61 20.02
average 13.22782 23.59205 27.83108 28.67735 31.75728 38.70161 41.00783
Task ItD-IO-2 (L7) ItD-IO-5 (L7) ItD-IO-8 (L7) ItD-IO-20 (L7) ItD-2 (L7) ItD-8 (L7) ItD-20 (L7)
active_to_passive 37.11 56.76 56.58 53.34 79.82 93.25 98.98
antonyms 77.99 67.24 66.55 75.45 76.79 82.48 83.29
cause_and_effect 26.96 22.44 18.28 12.44 42.14 42.10 36.98
common_concept 4.45 5.02 4.87 7.66 16.69 17.72 17.72
diff 0.93 2.17 8.74 5.94 19.00 16.00 37.00
first_word_letter 51.96 43.84 33.36 26.69 65.93 79.49 69.21
informal_to_formal 35.36 31.87 33.31 38.23 27.13 26.03 23.73
larger_animal 41.31 20.86 12.21 16.35 8.54 3.39 0.00
letters_list 0.00 0.00 0.00 0.22 0.04 0.06 0.07
negation 33.47 31.54 39.46 29.33 50.86 50.45 56.17
num_to_verbal 98.30 96.86 96.63 99.01 96.00 99.00 100.00
orthography_starts_with 7.42 3.61 2.87 2.94 2.51 2.12 1.01
rhymes 1.64 0.75 0.67 0.87 0.43 0.20 0.04
second_word_letter 3.55 4.25 1.43 0.00 8.94 8.79 12.54
sentence_similarity 0.05 0.00 0.02 0.00 0.00 0.00 0.00
sentiment 21.75 31.59 35.10 61.95 80.33 88.11 89.00
singular_to_plural 91.11 97.46 96.77 91.52 97.39 97.37 97.35
sum 68.16 64.07 67.33 85.26 42.02 52.00 75.00
synonyms 4.92 8.32 6.59 6.81 2.01 3.05 2.09
taxonomy_animal 6.21 2.77 0.96 0.13 2.16 1.11 0.46
translation_en-de 50.54 56.46 55.35 55.65 51.67 52.77 51.39
translation_en-es 55.85 59.43 60.74 51.04 58.11 58.79 58.02
translation_en-fr 40.11 48.32 52.40 52.22 35.04 37.84 35.81
word_in_context 11.11 24.01 26.22 24.85 35.82 42.67 46.14
average 32.09425 32.48515 32.35150 33.24609 37.47368 39.78301 41.33348
Task IO (L13) ItD (L13) IO (ChatGPT) ItD-IO (ChatGPT) IO (reference)
active_to_passive 93.43 100.00 100.00 100.00 100.00
antonyms 73.36 81.23 77.54 73.80 81.11
cause_and_effect 10.52 57.16 30.24 44.04 39.33
common_concept 3.91 9.17 7.84 9.21 12.00
diff 32.57 91.56 93.00 99.00 99.89
first_word_letter 26.10 9.13 100.00 100.00 99.89
informal_to_formal 52.01 42.38 54.56 53.94 59.55
larger_animal 35.98 87.67 68.95 77.73 91.78
letters_list 3.59 7.03 77.88 94.02 89.44
negation 52.05 61.44 75.09 73.03 74.50
num_to_verbal 44.18 100.00 99.90 100.00 93.00
orthography_starts_with 2.20 12.12 25.28 40.42 52.50
rhymes 1.17 0.18 1.75 6.67 11.38
second_word_letter 1.08 0.12 50.60 85.81 99.00
sentence_similarity 0.00 0.00 0.00 0.00 0.33
sentiment 74.84 39.01 53.82 66.81 82.75
singular_to_plural 82.45 100.00 94.74 94.53 99.88
sum 7.81 20.74 97.00 100.00 98.87
synonyms 3.95 5.56 14.72 15.28 12.88
taxonomy_animal 0.56 0.35 37.99 52.72 94.00
translation_en-de 58.52 60.77 62.12 62.66 61.83
translation_en-es 61.95 73.97 73.61 74.33 73.50
translation_en-fr 57.87 66.63 64.46 65.51 69.25
word_in_context 46.31 45.04 0.97 0.28 30.90
average 34.43337 44.63556 56.75255 62.07481 67.81509

Table 7: Detailed results of Instruction Induction. L7 denotes Llama-2-7b-chat and L13 denotes Llama-2-13b-chat.

2731

