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Abstract

The Matthew effect is a notorious issue in Rec-
ommender Systems (RSs), i.e., the rich get
richer and the poor get poorer, wherein pop-
ular items are overexposed while less popu-
lar ones are regularly ignored. Most methods
examine Matthew effect in static or nearly-
static recommendation scenarios. However,
the Matthew effect will be increasingly am-
plified when the user interacts with the sys-
tem over time. To address these issues,
we propose a novel paradigm, Hypergraph-
Enhanced Multi-Preference Learning for Alle-
viating Matthew Effect in Conversational Rec-
ommendation (HyCoRec), which aims to al-
leviate the Matthew effect in conversational
recommendation. Concretely, HyCoRec de-
votes to alleviate the Matthew effect by learn-
ing multi-aspect preferences, i.e., item-, entity-
, word-, review-, and knowledge-aspect pref-
erences, to effectively generate responses in
the conversational task and accurately predict
items in the recommendation task when the
user chats with the system over time. Exten-
sive experiments conducted on two benchmarks
validate that HyCoRec achieves new state-of-
the-art performance and the superior of allevi-
ating Matthew effect. Our code is available at
https://github.com/zysensmile/HyCoRec.

1 Introduction

Conversational Recommender Systems (CRSs) en-
gage in iterative conversations with users to provide
personalized recommendations (Qin et al., 2023; Li
et al., 2023; Mishra et al., 2023), which have been
widely adopted in various domains such as mu-
sic recommendation (Epure and Hennequin, 2023)
and online e-commerce (Liu et al., 2023). Nev-
ertheless, CRSs often face the prominent issue of
Matthew effect (Liu and Huang, 2021), which can
be described as “the rich get richer and the poor get
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poorer”. This phenomenon indicates that popular
items/categories from past data receive more vis-
ibility in subsequent recommendations while less
popular ones tend to be overlooked or ignored.

Recently, many research efforts have focused on
examining the Matthew effect in static or relatively-
static offline recommendation scenarios (Liu and
Huang, 2021; Anderson et al., 2020; Hansen et al.,
2021). These offline studies strive to explore the
potential causes behind the manifestation of the
Matthew effect, and two key causes have been iden-
tified. One cause (Anderson et al., 2020; Hansen
et al., 2021; Liang et al., 2021; Zheng et al., 2021a)
is that individuals with narrower and less diverse
preferences exhibit a higher vulnerability to be-
ing trapped within the confines of the Matthew
effect. Another cause (Zheng et al., 2021b) is
that the severe popularity bias where popular items
consistently receive amplified exposure while less
popular ones are underexposed. Although these
methods have undoubtedly contributed valuable in-
sights into the phenomenon of the Matthew effect,
they directly overlook the adverse impact stem-
ming from the dynamic user-system feedback loop.
More recently, Gao et al. (Gao et al., 2023) ex-
plore the Matthew effect in dynamic user-system
interactions, but it lacks real-time user engagement
through natural language conversations.

Despite their effectiveness, most methods still
suffer from two major limitations. 1) Interactive
Schema. Many methods aim to mitigate Matthew
effect in the static recommendation settings without
considering the user-system feedback loop (Zhang
et al., 2021). In reality, the Matthew effect will
progressively amplify as users dynamically inter-
act with the system over time. Worse still, such
amplification will inevitably lead to a series of no-
torious issues such as filter bubbles (Steck, 2018)
and echo chamber (Ge et al., 2020). Thus, it is
crucial to consider the dynamic user-system inter-
actions to alleviate Matthew effect. 2) Preference
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Learning. Prior studies (Anderson et al., 2020;
Hansen et al., 2021; Liang et al., 2021; Zheng et al.,
2021a) show that the key to mitigating Matthew ef-
fect is to learn diverse user preferences. Thus, many
methods leverage multiplex external Knowledge
Graphs (KGs) to model multi-aspect preferences.
But traditional KG edges are limited to linking only
two vertices (i.e., factors), restricting preference
learning to pairwise interactions. Instead, user rela-
tions exhibit intricate complexity, such as a user’s
preference for a garment involves multiple factors
like color, brand, style, and texture simultaneously.
Hence, extending the number of vertices for learn-
ing diverse preferences is rather important.

To address these issues, we propose a novel
paradigm, Hypergraph-Enhanced Multi-Preference
Learning for Alleviating Matthew Effect in
Conversational Recommendation (HyCoRec),
which consists of Hypergraph-Enhanced Multi-
Preference Learning and Hypergraph-aware CRS.
The former aims to model multi-aspect preferences,
specifically targeting item-aspect, entity-aspect,
word-aspect, review-aspect, and knowledge-aspect
preferences. It addresses the Matthew effect in
CRS by utilizing item-based hypergraph, entity-
based hypergraph, word-based hypergraph, item
reviews, and knowledge graphs to learn and derive
these preferences. The latter focuses on leverag-
ing these multi-aspect preferences as users interact
with the system. Concretely, multi-aspect prefer-
ences are adopting to accurately predict the next
utterances in the conversational task, and effec-
tively make diverse item predictions in the recom-
mendation task. By incorporating and utilizing
these multi-aspect preferences, the system aims to
provide precise and diverse recommendations that
cater to the individual user’s preferences and needs
for alleviating the Matthew effect as they continue
to engage with the system. Empirically, extensive
experimental results on two benchmarks show that
HyCoRec outperforms all the compared baselines,
and the superior of mitigating Matthew effect.

Overall, our main contributions are included:
• To the best of our knowledge, this is the first work

to model multi-aspect user preferences, i.e., item-,
entity-, word-, review-, knowledge-aspect prefer-
ence, to alleviate Matthew effect in the CRS.

• We proposed a novel end-to-end framework, Hy-
CoRec, which adopts the multi-aspect prefer-
ences to effectively generate responses in the con-
versational task and accurately predict items in
the recommendation task.

• Quantitative and qualitative experimental results
on two CRS-based datasets exhibit superior per-
formance of HyCoRec and the effectiveness of
mitigating Matthew effect in the CRS.

2 Related Work

2.1 Conversational Recommender System

Conversational Recommender System aims to cap-
ture user preferences through dialogues and pro-
vide high-quality recommendations. Previous re-
search on CRS can be broadly categorized into
two main types: attribute-based CRS (Deng et al.,
2021a; Lei et al., 2020a,b; Ren et al., 2021; Xu
et al., 2021) and generation-based CRS (Chen et al.,
2019; Deng et al., 2023; Li et al., 2022; Zhou
et al., 2020a, 2022; Shang et al., 2023). Attribute-
based CRS involves capturing user preferences by
asking questions about item attributes and gener-
ating responses using pre-defined templates (Lei
et al., 2020a). But this strategy often neglects
the importance of generating responses that re-
semble natural human language, which can neg-
atively impact the user experience. On the other
hand, generation-based CRS tackles this issue by
utilizing the Seq2Seq architecture (Vaswani et al.,
2017a) to integrate both conversation and recom-
mendation tasks to produce fluent and coherent
human-like responses. Despite their effectiveness,
they fail to model users’ diverse preferences since
the user-item interactions data is rather sparse and
limited. In contrast, our work aims to model multi-
aspect preferences for exploring user diverse intri-
cate relation patterns.

2.2 Matthew Effect in Recommendation

Matthew effect is a notorious issue in RSs. Re-
cently, Liu et al. (Liu and Huang, 2021) have sub-
stantiated the occurrence of the Matthew effect
in YouTube’s recommendation system. Besides,
Wang et al. (Wang et al., 2019) undertook a rigor-
ous quantitative analysis, offering valuable insights
into the quantitative characteristics of the Matthew
effect in recommender systems based on collabo-
rative filtering. To alleviate Matthew effect, one
common method is to consider recommendation
diversity strongly advocated by researchers (Ander-
son et al., 2020; Hansen et al., 2021; Liang et al.,
2021; Zheng et al., 2021a), and another critical per-
spective is by removing popularity bias, a factor
that has been identified as a catalyst for its ampli-
fication (Zheng et al., 2021b). But these methods
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predominantly focus on investigating the Matthew
effect in the static recommendation settings without
considering the user-system feedback loop. Instead,
our HyCoRec aims to alleviate Matthew effect con-
sidering dynamic user-system feedback loop.

3 HyCoRec

Matthew effect is a notorious issue in the CRS,
and it inevitably becomes intensified over time due
to the existence of the dynamic user-system feed-
back loop. To tackle these challenges, we propose
a novel paradigm, HyCoRec, which consists of
Hypergraph-Enhanced Multi-Preference Learning
and Hypergraph-Aware CRS. The overall pipeline
of our HyCoRec is depicted in Fig.1.

3.1 Preliminaries

3.1.1 Conversational Recommendation
Conversational recommendation is a personalized
approach where the system engages in continuous
dialogues with users to gain a deeper understand-
ing of their preferences and deliver customized
suggestions. This interactive method enables the
system to collect additional insights into the user’s
preferences, context, and requirements, resulting in
more precise and relevant recommendations. CRSs
are widely applied across diverse domains like e-
commerce, music streaming, movie recommenda-
tions, and others, aiming to enrich user experience
and satisfaction.

3.1.2 Hypergraph
Hypergraphs demonstrate intricate configurations,
capturing intricate relationships among numer-
ous elements through hyperlinks. In our re-
search, we depict user inclinations by construct-
ing multi-grained hypergraphs, encompassing the
item-based hypergraph G(t)

item, entity-based hyper-
graph G(t)

entity, and the word-based hypergraph

G(t)
word. Each hypergraph can be delineated as

G(t)
item = (I(t)

∗ ,H(t)
∗ ,N

(t)
∗ ), comprising: (1) a node

collection I(t)
∗ ; (2) a hyperege ensemble H(t)

∗ ; (3) a
|I(t)

∗ | × |H(t)
∗ | adjacent matrix N

(t)
∗ signifying the

weighted link between each node and hyperedge.

3.2 Hypergraph-Enhanced Multi-Preference
Learning

Extensive experiments by most existing methods
(Hussein et al., 2020; Liu et al., 2021; Nguyen
et al., 2014) have consistently shown that users

with restricted preferences are highly influenced
by the Matthew effect. Thus, the key to alle-
viating such bad effect is to model the diverse
user preferences. Along this line, we formulate
the Hypergraph-Enhanced Multi-Preference Learn-
ing, including Multi-Hypergraph Construction and
Multi-Preference Learning.

3.2.1 Multi-Hypergraph Construction
Traditional KGs focus on pairwise interactions for
preference learning, as edges connect only two
vertices. However, user preferences often exhibit
complex item relation patterns. To address this,
we construct multiple hypergraphs (item-aspect,
entity-aspect, and word-aspect), enabling connec-
tions between more than two vertices.

Item-based Hypergraph. Items directly reflect
users’ genuine preferences. Users might prefer re-
lated items, such as products from the same brand
or with similar features. Thus, establishing connec-
tions among similar or functionally similar items is
crucial for exploring a diverse preferences. To do
this, we first extract items from a session and treat
them as vertices, forming a hyperedge. Then, All
hyperedges associated with a user are connected
through shared items to create the item-based hy-
pergraph G(t)

item as:

G(t)
item = (I(t)

i ,H(t)
i ,N

(t)
i ). (1)

where I(t)
i means the item set extracted from the

historical conversations, H(t)
i is the hyperedge set,

and N
(t)
i ∈ {0, 1}|I(t)

i |×|H(t)
i | is the incidence ma-

trix, which can be defined as:

N
(t)
v,h =

{
1, if v ∈ h

0, if v /∈ h
(2)

The degree of a vertex v ∈ I(t)
i is denoted as

d(v) =
∑

h∈H(t)
i

N
(t)
v,h. Similarly, the degree of an

edge h ∈ H(t)
i is written as δ(h) =

∑
v∈I(t)

i

N
(t)
v,h.

Besides, we use V
(t)
i ∈ N|I(t)

i |×|I(t)
i | and E

(t)
i ∈

N|H(t)
i |×|H(t)

i | to be the diagonal matrices of the
vertex degrees and edge degrees, respectively.

Entity-based Hypergraph. To address the spar-
sity and limitations of historical user-item interac-
tion data, we utilize the extensive DBpedia KG
(Auer et al., 2007) to construct the entity-based hy-
pergraph. Specifically, we extract individual items
mentioned in conversations as entities and their
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Figure 1: Overview of our HyCoRec framework, which consists of Hypergraph-Enhanced Multi-Preference Learning
and Hypergraph-Aware CRS. The former aims to dynamically learn multi-aspect user preferences, while the latter
contains the conversation task to generate diverse responses and the recommendation task to predict target items.

k-hop neighbors to form each hyperedge. This
approach allows us to capture shared semantic con-
notations among the extended neighbors. The hy-
peredges are then connected based on the entities
they have in common. Formally, the entity-based
hypergraph G(t)

entity can be represented as:

G(t)
entity = (I(t)

i ∪ I(t)
e ,H(t)

e ,N(t)
e ). (3)

where I(t)
e represents the k-hop neighbors, H(t)

e is
the hyperedge set, and N

(t)
e ∈ {0, 1}|I(t)

e |×|H(t)
e | is

the incidence matrix defined by Eq.(2). Similarly,
V

(t)
e ∈ N|I(t)

e |×|I(t)
e | and E

(t)
e ∈ N|H(t)

e |×|H(t)
e | de-

note the diagonal matrices of vertex degrees and
edge degrees, respectively.

Word-based Hypergraph. Keywords in con-
versations are vital for understanding users’ needs.
By analyzing prominent words, we can identify
specific preferences, which is crucial for model-
ing diverse user preferences. To achieve this, we
build a word-based hypergraph using the word-
oriented KG ConcetNet (Speer et al., 2017) to un-
cover semantic relations like synonymy, antonyms,
and co-occurrence. We represent each historical
conversation item as a keyword and extend it to
include k-hop neighbors, forming a hyperedge. All
the hyperedges connect through shared words. The

word-based hypergraph G(t)
word can be defined as

follows:

G(t)
word = (I(t)

i ∪ I(t)
w ,H(t)

w ,N(t)
w ). (4)

where I(t)
w is k-hop neighbors, H(t)

w means the hy-
peredge set, and N

(t)
w ∈ {0, 1}|I(t)

w |×|H(t)
w | is the

incidence matrix defined as Eq.(2). Similarly, let
V

(t)
w ∈ N|I(t)

w |×|I(t)
w | and E

(t)
w ∈ N|H(t)

w |×|H(t)
w | de-

note the diagonal matrices of the vertex degrees
and the edge degrees, respectively.

3.2.2 Multi-Preference Learning
Upon constructing multiple hypergraphs as de-
scribed earlier, we will leverage these hypergraphs
to effectively capture diverse user preferences for
mitigating the Matthew effect. This includes pref-
erences related to items, entities, words, reviews,
and knowledge aspects, all of which play a role in
modeling multi-aspect preferences.

Item-aspect Preference. Modeling item-aspect
preferences holds significant importance in com-
prehending users’ distinct tastes and preferences
concerning the various items they interact with. In
line with this objective, we derive the item-aspect
preference Pi by leveraging the item-based hyper-
graph. To effectively capture high-order relations,
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inspired by (Bai et al., 2021), we define our Hyper-
graph Convolution function HConv(·) as follows:

X(l+1)
m = HConv

(
X(l),N

(t)
i ,V

(t)
i ,E

(t)
i , I

(t)
i

)
,

HConv(·) = (V
(t)
i )−1N

(t)
i (E

(t)
i )−1(N

(t)
i )TX(l)W

(l)
i ,

X(l+1) = Pooling
(
X(l+1)

m

)M

m=1
.

(5)
Here, Xl and X(l+1) represent the input of the l-th
and (l + 1)-th layers, respectively, and W

(l)
i de-

notes the trainable parameter. The notations N(t)
i ,

V
(t)
i , and E

(t)
i have been discussed in Section 3.2.1.

Specifically, I(t)i signifies the item representations
of I(t)

i extracted from the encoded entity embed-
dings (Shang et al., 2023). Additionally, m denotes
the number of heads in the multi-head architec-
ture (Vaswani et al., 2017b). Finally, we apply an
average pooling Pooling(·) on the representation
X(L+1) obtained from the last layer (i.e., (L + 1)
layer) to learn item-aspect preference Pi:

Pi = X(L+1) = Pooling
(
X(L+1)

m

)M

m=1
, (6)

Entity-aspect Preference. Capturing entity-
aspect preferences is highly advantageous for un-
veiling complex relationship patterns underlying
users’ behaviors. To achieve this, we employ the
entity-based hypergraph as a mechanism to learn
entity-aspect preferences. In a similar vein to the
item-aspect preference, the entity-aspect prefer-
ence Pe can be represented as:

X
(l+1)
j = HConv

(
X(l),N(t)

e ,V(t)
e ,E(t)

e , I
(t)
i+e

)
,

Pe = X(L+1) = Pooling
(
X

(L+1)
j

)J

j=1
.

(7)
The specifics of N(t)

e , V(t)
e , and E

(t)
e can be found

in Section 3.2.1. Besides, I(t)i+e is the entity repre-

sentations of the entity set I(t)
i ∪ I(t)

e . Moreover,
j denotes the number of heads in the multi-head
architecture, and W

(l)
e is the trainable parameter.

Word-aspect Preference. Keywords occurring
in conversations directly reflect users’ specific or
potential preferences. Derived from the word-
based hypergraph, the word-aspect preference Pw

can be formulated as:

X
(l+1)
f = HConv

(
X(l),N(t)

w ,V(t)
w ,E(t)

w , I
(t)
i+w

)
,

Pw = X(L+1) = Pooling
(
X

(L+1)
f

)F

f=1
.

(8)
Here N

(t)
w , V(t)

w , and E
(t)
w are explained in more

detail in Section 3.2.1. Additionally, I(t)i+w repre-
sents the word representations obtained from the
encoded entity embeddings. The variable f denotes
the number of heads in the multi-head architecture,
and W

(l)
f denotes the trainable parameter.

Review-aspect Preference. Item reviews pro-
vide valuable insights into users’ experiences and
reflections. Analyzing these reviews helps identify
patterns, sentiment trends, and user attitudes, lead-
ing to a better understanding of user preferences.
Taking inspiration from the merits of Transformer
model, we utilize the Transformer framework to
encode accessed reviews (Lu et al., 2021). Specif-
ically, given a review R, the output embeddings
from the previous transformer layer, denoted as
T l(R), define the subsequent layer T l+1(R) using
the Multi-head Attention function MHA(·) as:

T l+1(R) = MHA(T l(R), T l(R), T l(R)),

MHA(K,Q,V ) = [headl
1; · · · ;headl

g]W
l,

headl
g = SA(T l(R)Wk, T l(R)Wq, T l(R)Wv),

SA(K,Q,V ) = Softmax(
QKT

√
d/g

)V ,

(9)
where g is the number of heads, Wl denotes
the trainable parameters, and each head headl

g is
computed using the Scaled Dot-Product Attention
(Vaswani et al., 2017c) SA(·). K, Q and V indi-
cate the key, query and value matrices, respectively.
Wk, Wq, and Wv are learnable parameters. For
convenience, we consider the output embeddings
of the final transformer layer as the review-aspect
preferences Pr:

Pr = MHA(T L(R), T L(R), T L(R)). (10)

Here L is the number of transformer layers.
Knowledge-aspect Preference. The informa-

tion conveyed in the ongoing conversation reflects
the dynamic preferences of the users, providing
valuable insights into their current interests. Thus,
our focus lies in modeling the preference for knowl-
edge aspects by encoding the entities mentioned
in the current conversation. Given the current con-
versation context C, we leverage DBpedia and CN-
DBpedia, to extract entities Ek = {e1, e2, · · · , ek}
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along the paths. To capture high-order entity repre-
sentations, we use RGCN to explicitly capture rela-
tional semantics by adopt contrastive pre-training
(Shang et al., 2023). The representation of entity e
at the (l + 1)-th layer can be computed as:

el+1 = σ(
∑

r∈R

∑

ê∈N r
e

1

Zl
Wl

1ê
l +Wl

2e
l), (11)

where el is the l-th layer’s representation of entity
e, σ means the sigmoid function, ê refers to entities
from the one-hop neighbor set N r

e under relation
r, and Zl is the hyperparameter. Wl

1 and Wl
2 can

be trained. We use the representation eL from the
last layer as knowledge-aspect preference Pc:

Pc = RGCN(Ek) = {eT1 , eT2 , · · · , eTk }, (12)

where eTi is the embedding of ei via RGCN.

3.3 Hypergraph-Aware CRS
To combat the Matthew effect in the CRS, we adopt
multi-aspect preferences, i.e., Pi, Pe, Pw, Pr, and
Pc, to accurately predict item in the recommenda-
tion task and effectively generate responses in the
conversational task.

3.3.1 Recommendation Task
The recommendation task aims to accurately pre-
dict items for users through natural conversations
in dynamic user-system interactions. To address
the Matthew effect, we first integrate multiple pref-
erences to induce the fused preference Pmulrec in
the recommendation task as:

Ph = [Pi;Pe;Pw;Pr],

Pmulrec = Pooling([Pooling(Ph);Pc]).
(13)

where ; denotes the concatenation operation. Next,
the vector Pmulrec is used to select the suitable
items in all the candidate set from item set I, and
the recommendation prediction is calculated as:

Prec = Softmax(Pmulrec · ET
I ), (14)

where EI is embeddings of all candidate items from
item set I . We use cross-entropy loss (Shang et al.,
2023) to learn the recommendation task:

Lr = −
B∑

j=1

|I|∑

i=1

[−(1− yij) · log(1− P(j)
rec(i))

+ yij · log(P(j)
rec(i))],

(15)
here the symbol B represents the size of the mini-
batch, and yij ∈ {0, 1} denotes the target label.

3.3.2 Conversational Task
The conversation task focuses on generating proper
dialogue utterances to respond to user inputs. To
generate diverse responses, we integrate multi-
aspect preferences vectors to derive the fused pref-
erence in the conversation task Pmulcon as:

Pmulcon = MHA([Pc;Ph;Ph]), (16)

here Ph is defined as Eq.(13). Then, this fused pref-
erence Pmulcon is fed into the Transformer-based
encoder-decoder framework for generating diverse
responses. Let Yn−1 be the output of the last time
unit, then the current one Yn is:

An
0 = MHA(Yn−1,Yn−1,Yn−1),

An
1 = MHA(An

0 ,Pmulcon,Pmulcon),

An
2 = MHA(An

1 ,Pc,Pc),

An
3 = MHA(An

1 ,Ph,Ph),

An
4 = β ·An

2 + (1− β) ·An
3 ,

Yn = FFN(An
4 ).

(17)

Here FFN(·) is the fully-connected feed-forward
network, and β is hyper-parameter to balance two
signals. To enhance the response diversity, we use
preference-aware bias and item-related bias fol-
lowing (Shang et al., 2023). Given the predicted
sequence {st−1}, the probability of the next token
is calculated as:

Pconv(st|{st−1}) = P1(st|Yi) + P2(st|Pmulrec)

+ P3(st|Pmulrec),

(18)
where st is the t-th utterances, and {st−1} =
s1, s2, · · · , st−1. Inspired by (Shang et al., 2023),
P1(·), P2(·), and P3(·) are the vocabulary probabil-
ity, vocabulary bias, and copy probability, respec-
tively. Next, we use the cross-entropy loss:

Lc = −
B∑

b=1

T∑

t=1

log(Pconv(st|{st−1})). (19)

Here T denotes the truncated length of utterances.

4 Experiments and Analyses

We conduct experiments to fully evaluate our Hy-
CoRec and answer the following questions:

• RQ1: How does HyCoRec perform compared with
all baselines in the recommendation task?

• RQ2: How does HyCoRec perform compared with
all baselines in the conversation task?
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Model REDIAL TG-REDIAL
R@10 R@50 M@10 M@50 N@10 N@50 R@10 R@50 M@10 M@50 N@10 N@50

TextCNN 0.0644 0.1821 0.0235 0.0285 0.0328 0.0580 0.0097 0.0208 0.0040 0.0045 0.0053 0.0077
SASRec 0.1117 0.2329 0.0540 0.0593 0.0674 0.0936 0.0043 0.0178 0.0011 0.0017 0.0019 0.0047
BERT4Rec 0.1285 0.3032 0.0475 0.0555 0.0663 0.1045 0.0043 0.0226 0.0013 0.0020 0.0020 0.0058
ReDial 0.1705 0.3077 0.0677 0.0738 0.0925 0.1222 0.0038 0.0165 0.0012 0.0017 0.0018 0.0045
TG-ReDial 0.1679 0.3327 0.0694 0.0771 0.0924 0.1286 0.0110 0.0174 0.0048 0.0050 0.0062 0.0076
KBRD 0.1796 0.3421 0.0722 0.0800 0.0972 0.1333 0.0201 0.0501 0.0077 0.0090 0.0106 0.0171
KGSF 0.1785 0.3690 0.0705 0.0796 0.0956 0.1379 0.0215 0.0643 0.0069 0.0087 0.0103 0.0194
KGConvRec 0.1819 0.3587 0.0711 0.0794 0.0969 0.1358 0.0220 0.0524 0.0088 0.0102 0.0119 0.0185
BERT 0.1608 0.3525 0.0597 0.0688 0.0831 0.1255 0.0040 0.0194 0.0011 0.0017 0.0018 0.0050
XLNet 0.1569 0.3590 0.0583 0.0677 0.0811 0.1255 0.0040 0.0187 0.0011 0.0017 0.0017 0.0048
BART 0.1693 0.3783 0.0646 0.0744 0.0888 0.1350 0.0047 0.0187 0.0012 0.0017 0.0020 0.0048
MHIM 0.1966 0.3832 0.0742 0.0830 0.1027 0.1440 0.0300 0.0783 0.0108 0.0129 0.0152 0.0256
HyCoRec* 0.2231 0.4351 0.0797 0.0898 0.1123 0.1579 0.0377 0.0826 0.0154 0.0173 0.0162 0.0245

Table 1: Recommendation results. * indicates statistically significant improvement (p < 0.05) over all baselines.

• RQ3: How does HyCoRec alleviate Matthew ef-
fect in the CRS?

• RQ4: How do the item-based hypergraph G(t)
item,

entity-based hypergraph G(t)
enti, word-based hyper-

graph G(t)
word, and item reviews R contribute to the

performance?
• RQ5: How do parameters affect our HyCoRec?
• RQ6: It is better to provide the case studies to

comprehensively understand about how HyCoRec
handles Matthew effect in the CRS?

4.1 Experimental Protocol

Datasets. We evaluate our HyCoRec on two chal-
lenging CRS-based datasets REDIAL (Li et al.,
2018b) and TG-REDIAL (Zhou et al., 2020b). The
REDIAL consists of 11,348 dialogues involving
956 users and 6,924 items, while the TG-REDIAL
contains 10,000 dialogues with 1,482 users and
33,834 items. The reviews in REDIAL are sourced
from the IMDb, while the reviews in TG-REDIAL
are collected from Douban.
Baselines. To fully evaluate our HyCoRec, we con-
duct a comprehensive evaluation by comparing our
method with several state-of-the-art methods. The
compared methods include TextCNN (Kim, 2014),
SASRec (Kang and McAuley, 2018), BERT4Rec
(Sun et al., 2019), Transformer (Vaswani et al.,
2017b), ReDial (Li et al., 2018a), KBRD (Chen
et al., 2019), KGSF (Zhou et al., 2020a), KGCon-
vRec (Sarkar et al., 2020), BERT (Devlin et al.,
2019), XLNet (Yang et al., 2019), BART (Lewis
et al., 2020), DialoGPT (Zhang et al., 2020), GPT-
3 (Brown et al., 2020), C2-CRS (Zhou et al., 2022),
LOT-CRS (Zhao et al., 2023), UniCRS (Deng
et al., 2021b), and MHIM (Shang et al., 2023).

https://www.dbpedia.org/
https://movie.douban.com/

4.2 Recommendation Performance (RQ1)

Following (Shang et al., 2023), we adopt Recall@K
(R@K), MRR@K (M@K), NDCG@K (N@K)
(K=10, 50) to evaluate the recommendation task.
Experimental results in Table 1 validate that our
HyCoRec outperforms all the compared methods.

The improvement of HyCoRec over these base-
lines can be attributed to three reasons: (1) Incor-
porating external knowledge sources like DBpedia
and ConceptNet into the CRS proves beneficial in
exploring users’ intricate behaviors, considering
the sparse and limited nature of user-item interac-
tion data. (2) Dialogues serve as a treasure trove
of valuable information beyond the explicit user
inputs. By considering the ongoing conversation
between the user and the system, HyCoRec can cap-
ture the user’s current context and understand their
immediate needs. (3) Modeling multi-aspect pref-
erences, including item-, entity-, word-, review-,
and knowledge-aspect preferences, to enhance rec-
ommendation diversity and alleviate the Matthew
effect as users interact with the system over time.

4.3 Conversational Performance (RQ2)

In the conversational task, we adopt Distinct n-
gram (Dist-n) (Shang et al., 2023) (n=2,3,4) to eval-
uate the diversity of generated responses. Table 2
summarizes the experimental results, it is observed
that our HyCoRec is superior to all the compared
baselines. We can observe that the performance
rankings of the four baseline models remain con-
sistent, with KBRD leading the way, followed by
KGSF, Transformer, and finally ReDial. This can
be attributed to the fact that KBRD leverages exter-
nal knowledge sources to align the representations
of items and words. Besides, KGSF enriches its
decoder by incorporating cross-attention mecha-
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Model REDIAL TG-REDIAL
Dist-2 Dist-3 Dist-4 Dist-2 Dist-3 Dist-4

ReDial 0.0214 0.0659 0.1333 0.2178 0.5136 0.7960
Trans. 0.0538 0.1574 0.2696 0.2362 0.7063 1.1800
KBRD 0.0765 0.3344 0.6100 0.8013 1.7840 2.5977
KGSF 0.0572 0.2483 0.4349 0.3891 0.8868 1.3337
C2-CRS 0.2623 0.3891 0.6202 0.5235 1.9961 2.9236
UniCRS 0.2464 0.4273 0.5290 0.6252 2.2352 2.5194
LOT-CRS 0.3312 0.6155 0.9248 0.9287 2.4880 3.4972
DialoGPT 0.3542 0.6209 0.9482 1.1881 2.4269 3.9824
GPT-3 0.3604 0.6399 0.9511 1.2255 2.5713 4.0713
MHIM 0.3278 0.6204 0.9629 1.1100 2.3520 3.8200
HyCoRec* 0.3661 0.6434 0.9523 1.2590 2.6000 4.1210
Table 2: Conversation results. * indicates statistically
significant improvement (p < 0.05) over all baselines.

nisms along with embeddings from both entity- and
word-level knowledge graphs (KGs). Nevertheless,
Transformer and ReDial solely rely on token se-
quences, disregarding the user preferences that are
concealed within the entities.

Compared with these baselines, the improve-
ment of HyCoRec can be attributed to the fact
that: (1) HyCoRec considers multi-aspect user pref-
erences to generate diverse responses that effec-
tively align with the user’s multi-level preferences
for alleviating Matthew effect. (2) To accurately
forecast the next utterance, we integrate the fused
preference obtained from various aspects into a
Transformer-based encoder-decoder framework to
generate high-quality responses to meet users’ dy-
namic needs and interests.

4.4 Study on Matthew Effect (RQ3)

As our objective is to alleviate the Matthew effect
in the CRS, we extensively examine the recom-
mendation outcomes and compare them with the
strongest baselines to assess whether HyCoRec
can effectively mitigate Matthew effect. To miti-
gate the Matthew effect, the crucial factor is to en-
hance the diversity of the recommendation results.
Thus, we adopt two commonly-used metrics Cov-
erage@k (C@k) and Isolation-Index (Iso-Index)
to assess the extent of recommendation diversifica-
tion by taking into account the distinctions among
recommended items. The higher coverage value
demonstrates its superior capability to encompass
a larger portion of the recommendation space, en-
compassing items from various categories. A lower
isolation-index value indicates a higher diversity in
the recommended results.

As shown in Table 3, it is evident that our Hy-
CoRec consistently achieves the highest values
of Coverage and the lowest isolation-index value

Datasets REDIAL
Models C@5 C@10 C@15 C@20 Iso-Index
KBRD 0.0579 0.0810 0.0961 0.1072 0.1149
KGSF 0.0664 0.0831 0.1195 0.1366 0.1055
KGConvRec 0.0478 0.0735 0.1044 0.1235 0.1003
MHIM 0.1098 0.1492 0.1747 0.1977 0.0923
HyCoRec 0.1168 0.1579 0.1848 0.2071 0.0617
Datasets TG-REDIAL
Models C@5 C@10 C@15 C@20 Iso-Index
KBRD 0.0757 0.1204 0.1468 0.1584 0.1222
KGSF 0.0847 0.1324 0.1606 0.1858 0.1198
KGConvRec 0.0720 0.0904 0.1228 0.1515 0.1091
MHIM 0.1749 0.2493 0.2939 0.3423 0.1042
HyCoRec 0.1841 0.2743 0.3100 0.3608 0.0791

Table 3: Results on C@k and Iso-Index metrics.

Model REDIAL TG-REDIAL
R@10 R@50 R@10 R@50

HyCoRec 0.2231 0.4351 0.0377 0.0826
w/o item hypergraph 0.2061 0.4177 0.0347 0.0733
w/o entity hypergraph 0.2049 0.4206 0.0267 0.0696
w/o word hypergraph 0.2058 0.4194 0.0257 0.0661
w/o item reviews 0.2102 0.4203 0.0267 0.0771

Table 4: Ablation studies on the recommendation task.

across all datasets compared with the strongest
baselines. For instance, on the REDIAL, our
HyCoRec achieves substantial improvements of
102.72%, 75.90%, 144.35%, and 63.75% in terms
of Cover@5 when compared to all the strong
models, namely KBRD, KGSF, KGConvRec, and
MHIM, respectively. The results show that Hy-
CoRec effectively addresses isolation and ensures
extensive coverage of recommended items by pro-
viding users with a broader choice range, validating
the superiority in alleviating the Matthew effect as
the user interacts with the system.

4.5 Ablation Studies (RQ4)

In this part, we conduct ablation experiments with
different variants of HyCoRec to verify the contri-
butions of each component, including: 1) w/o item
hypergraph: we remove the item-based hypergraph;
2) w/o entity hypergraph: we remove the entity-
based hypergraph; 3) w/o word hypergraph: we
remove the word-based hypergraph; 4) w/o item re-
views: we remove item reviews. As shown in Table
4, we can observe that a substantial decline in per-
formance when removing any type of component.
The main reason is that various knowledge data
can effectively explore users’ multi-aspect prefer-
ences. This observation highlights the effectiveness
of HyCoRec in alleviating the Matthew effect by
providing diverse recommendation results.
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Figure 2: Impact of different hyperparameters.

4.6 Hyperparameters Analysis (RQ5)

Next, we investigate the impact of several impor-
tant hyperparameters on the recommendation per-
formance. As depicted in Fig.2, we can observe:

Firstly, with the increase of embedding dimen-
sion, the recommendation performance continually
improves. This is because the large dimension
could encode sufficient high-level feature repre-
sentations. Secondly, the model performance is
optimal when the layer number is set to 2 on both
datasets. The main reason is that larger hypergraph
convolution layer numbers easily lead to model
overfitting while the smaller one fail to capture
enough feature representations. Lastly, a suitable
hypergraph pooling layer number can enhance the
model performance but the larger one might dam-
age recommendation performance. The reason is
that too large hypergraph pooling layer numbers
might lose the important feature representations.

4.7 Case Studies (RQ6)

For a more in-depth understanding of how our pro-
posed method, HyCoRec, tackles the Matthew ef-
fect during user-system interactions, we present
comparative case studies between our approach and
existing methods, visually illustrating the dialogue
recommendation outcomes in human-computer in-
teraction. As illustrated in Fig.3, our method ef-

Figure 3: Case studies to comprehensively understand
about how our proposed method HyCoRec handles
Matthew effect in the CRS compared with most existing
methods. Different colors denote different categories
(see (a)) while the same color means the same category
(see (b)).

fectively recommends a diverse range of movies
from different categories (see (a)), setting itself
apart from existing methods that typically recom-
mend movies from the same category (see (b)).
The results highlight that our method achieves
higher recommendation diversity, while most ex-
isting methods demonstrate lower diversity in rec-
ommendations. Generally, an effective strategy to
alleviate the Matthew effect involves enhancing
recommendation diversification (Anderson et al.,
2020; Hansen et al., 2021; Liang et al., 2021; Zheng
et al., 2021a). Thus, these results validate the effec-
tiveness of our proposed method in mitigating the
Matthew effect as users interact with the system
over time in CRS.

5 Conclusion

The Matthew effect is a notorious issue in the CRS,
and it will be increasingly amplified due to the dy-
namic user-system feedback loop. To address these
issues, we propose a novel paradigm, HyCoRec,
which aims to learn multi-aspect user preferences,
i.e., item-, entity-, word-, review-, and knowledge-
aspect preferences, to effectively generate diverse
responses in the conversation task and accurately
predict items in the recommendation task for al-
leviating Matthew effect. Extensive experiments
validate that our HyCoRec outperforms all the com-
pared baselines and the superior of HyCoRec in
alleviating Matthew effect in the CRS.
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6 Limitations

While our HyCoRec has attained a remarkable
state-of-the-art performance, it does have certain
limitations. Firstly, the complexity and extensive
nature of item reviews make the construction of
the review-based hypergraph challenging and dif-
ficult. Consequently, the current version does not
include the review-based hypergraph to capture a
wider range of multiplex user relation patterns. Sec-
ondly, our proposed method necessitates the design
of individual hypergraphs for learning multi-aspect
preferences. This limitation could be addressed
by developing a general framework that integrate
any types of hypergraphs, thereby automatically
unifying various knowledge sources.

7 Ethics Statement

The data utilized in our study are sourced from
open-access repositories, and do not pose any pri-
vacy concerns. We are confident that our research
adheres to the ethical standards set forth by ACL.

8 Acknowledgements

This work was supported in part by the National
Key Research and Development Program of
China under Grant No.2021ZD0111601; Na-
tional Natural Science Foundation of China
under Grant No.62325605, Grant No.62206110
and Grant No.62206314; Guangzhou Basic
Research Project for Basic and Applied Research
under Grant No.202201010334; Guangdong
Basic and Applied Basic Research Founda-
tion under Grant No.2023A1515011374 and
Grant No.2022A1515011835; Guangzhou
Science and Technology Program under
Grant No.2024A04J6365; Science and Tech-
nology Projects in Guangzhou under Grant
No.2024A04J4388; and Guangdong Province Key
Laboratory of Information Security Technology,
Sun Yat-sen University.

References

Ashton Anderson, Lucas Maystre, Ian Anderson,
Rishabh Mehrotra, and Mounia Lalmas. 2020. Al-
gorithmic effects on the diversity of consumption on
spotify. In The Web Conference, pages 2155–2165.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary G. Ives.
2007. Dbpedia: A nucleus for a web of open data.

In International Semantic Web Conference/Asian Se-
mantic Web Conference, volume 4825, pages 722–
735.

Song Bai, Feihu Zhang, and Philip H. S. Torr. 2021.
Hypergraph convolution and hypergraph attention.
Pattern Recognit., 110:107637.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Conference on Neural Information Processing Sys-
tems.

Qibin Chen, Junyang Lin, Yichang Zhang, Ming Ding,
Yukuo Cen, Hongxia Yang, and Jie Tang. 2019. To-
wards knowledge-based recommender dialog system.
arXiv preprint arXiv:1908.05391.

Yang Deng, Yaliang Li, Fei Sun, Bolin Ding, and Wai
Lam. 2021a. Unified conversational recommenda-
tion policy learning via graph-based reinforcement
learning. In Conference on Research and Develop-
ment in Information Retrieval, pages 1431–1441.

Yang Deng, Yaliang Li, Fei Sun, Bolin Ding, and Wai
Lam. 2021b. Unified conversational recommenda-
tion policy learning via graph-based reinforcement
learning. In Conference on Research and Develop-
ment in Information Retrieval, pages 1431–1441.

Yang Deng, Wenxuan Zhang, Weiwen Xu, Wenqiang
Lei, Tat-Seng Chua, and Wai Lam. 2023. A unified
multi-task learning framework for multi-goal conver-
sational recommender systems. ACM Transactions
on Information Systems, 41(3):1–25.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 4171–4186. Association
for Computational Linguistics.

Elena V. Epure and Romain Hennequin. 2023. A human
subject study of named entity recognition in conversa-
tional music recommendation queries. In European
Chapter of the Association for Computational Lin-
guistics, pages 1273–1288.

Chongming Gao, Kexin Huang, Jiawei Chen, Yuan
Zhang, Biao Li, Peng Jiang, Shiqi Wang, Zhong
Zhang, and Xiangnan He. 2023. Alleviating matthew
effect of offline reinforcement learning in interactive
recommendation. In Conference on Research and
Development in Information Retrieval, pages 238–
248. ACM.

2535



Yingqiang Ge, Shuya Zhao, Honglu Zhou, Changhua
Pei, Fei Sun, Wenwu Ou, and Yongfeng Zhang. 2020.
Understanding echo chambers in e-commerce rec-
ommender systems. In Conference on Research and
Development in Information Retrieval, pages 2261–
2270. ACM.

Christian Hansen, Rishabh Mehrotra, Casper Hansen,
Brian Brost, Lucas Maystre, and Mounia Lalmas.
2021. Shifting consumption towards diverse content
on music streaming platforms. In Conference on Web
Search and Data Mining, pages 238–246. ACM.

Eslam Hussein, Prerna Juneja, and Tanushree Mitra.
2020. Measuring misinformation in video search
platforms: An audit study on youtube. ACM
on Human-Computer Interaction, 4(CSCW):048:1–
048:27.

Wang-Cheng Kang and Julian J. McAuley. 2018. Self-
attentive sequential recommendation. In IEEE In-
ternational Conference on Data Mining, pages 197–
206.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Empirical Methods in Nat-
ural Language Processing (Demonstrations), pages
1746–1751.

Wenqiang Lei, Xiangnan He, Yisong Miao, Qingyun
Wu, Richang Hong, Min-Yen Kan, and Tat-Seng
Chua. 2020a. Estimation-action-reflection: Towards
deep interaction between conversational and recom-
mender systems. In Web Search and Data Mining,
pages 304–312.

Wenqiang Lei, Gangyi Zhang, Xiangnan He, Yisong
Miao, Xiang Wang, Liang Chen, and Tat-Seng Chua.
2020b. Interactive path reasoning on graph for con-
versational recommendation. In International Con-
ference on Knowledge Discovery and Data Mining,
pages 2073–2083.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In the Association for Computational
Linguistics, pages 7871–7880. Association for Com-
putational Linguistics.

Raymond Li, Samira Ebrahimi Kahou, Hannes Schulz,
Vincent Michalski, Laurent Charlin, and Chris Pal.
2018a. Towards deep conversational recommenda-
tions. Advances in Neural Information Processing
Systems, 31.

Raymond Li, Samira Ebrahimi Kahou, Hannes Schulz,
Vincent Michalski, Laurent Charlin, and Chris Pal.
2018b. Towards deep conversational recommenda-
tions. In Advances in Neural Information Processing
Systems, pages 9748–9758.

Shimin Li, Qinyuan Cheng, Linyang Li, and Xipeng Qiu.
2023. Mitigating negative style transfer in hybrid

dialogue system. In Association for the Advancement
of Artificial Intelligence, pages 13103–13111.

Shuokai Li, Ruobing Xie, Yongchun Zhu, Xiang Ao,
Fuzhen Zhuang, and Qing He. 2022. User-centric
conversational recommendation with multi-aspect
user modeling. In Conference on Research and De-
velopment in Information Retrieval, pages 223–233.

Yile Liang, Tieyun Qian, Qing Li, and Hongzhi Yin.
2021. Enhancing domain-level and user-level adap-
tivity in diversified recommendation. In Conference
on Research and Development in Information Re-
trieval, pages 747–756. ACM.

Ping Liu, Karthik Shivaram, Aron Culotta, Matthew A.
Shapiro, and Mustafa Bilgic. 2021. The interaction
between political typology and filter bubbles in news
recommendation algorithms. In The Web Conference,
pages 3791–3801.

Ying Chieh Liu and Min Qi Huang. 2021. Examin-
ing the matthew effect on youtube recommendation
system. In Conference on Technologies and Applica-
tions of Artificial Intelligence, pages 146–148.

Yuanxing Liu, Weinan Zhang, Baohua Dong, Yan Fan,
Hang Wang, Fan Feng, Yifan Chen, Ziyu Zhuang,
Hengbin Cui, Yongbin Li, and Wanxiang Che. 2023.
U-NEED: A fine-grained dataset for user needs-
centric e-commerce conversational recommendation.
In Conference on Research and Development in In-
formation Retrieval, pages 2723–2732. ACM.

Yu Lu, Junwei Bao, Yan Song, Zichen Ma, Shuguang
Cui, Youzheng Wu, and Xiaodong He. 2021.
Revcore: Review-augmented conversational recom-
mendation. In Findings of the Association for Com-
putational Linguistics, pages 1161–1173.

Kshitij Mishra, Priyanshu Priya, and Asif Ekbal. 2023.
Help me heal: A reinforced polite and empathetic
mental health and legal counseling dialogue system
for crime victims. In Association for the Advance-
ment of Artificial Intelligence, pages 14408–14416.

Tien T. Nguyen, Pik-Mai Hui, F. Maxwell Harper,
Loren G. Terveen, and Joseph A. Konstan. 2014. Ex-
ploring the filter bubble: the effect of using recom-
mender systems on content diversity. In The Web
Conference, pages 677–686. ACM.

Libo Qin, Zhouyang Li, Qiying Yu, Lehan Wang, and
Wanxiang Che. 2023. Towards complex scenarios:
Building end-to-end task-oriented dialogue system
across multiple knowledge bases. In Association
for the Advancement of Artificial Intelligence, pages
13483–13491.

Xuhui Ren, Hongzhi Yin, Tong Chen, Hao Wang,
Zi Huang, and Kai Zheng. 2021. Learning to ask
appropriate questions in conversational recommenda-
tion. In Conference on Research and Development
in Information Retrieval, pages 808–817.

2536



Rajdeep Sarkar, Koustava Goswami, Mihael Arcan, and
John Philip McCrae. 2020. Suggest me a movie for
tonight: Leveraging knowledge graphs for conversa-
tional recommendation. In Conference on Computa-
tional Linguistics, pages 4179–4189.

Chenzhan Shang, Yupeng Hou, Wayne Xin Zhao,
Yaliang Li, and Jing Zhang. 2023. Multi-grained
hypergraph interest modeling for conversational rec-
ommendation. AI Open, 4:154–164.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Association for the Advancement
of Artificial Intelligence, pages 4444–4451.

Harald Steck. 2018. Calibrated recommendations. In
Conference on Recommender Systems, pages 154–
162.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin,
Wenwu Ou, and Peng Jiang. 2019. Bert4rec: Se-
quential recommendation with bidirectional encoder
representations from transformer. In International
Conference on Information and Knowledge Manage-
ment, pages 1441–1450. ACM.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017a. Attention is all
you need. Advances in neural information processing
systems, 30.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017b. Attention is
all you need. In Advances in Neural Information
Processing Systems, pages 5998–6008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017c. Attention is
all you need. In Advances in Neural Information
Processing Systems, pages 5998–6008.

Hao Wang, Zonghu Wang, and Weishi Zhang. 2019.
Quantitative analysis of matthew effect and sparsity
problem of recommender systems. CoRR.

Kerui Xu, Jingxuan Yang, Jun Xu, Sheng Gao, Jun Guo,
and Ji-Rong Wen. 2021. Adapting user preference to
online feedback in conversational recommendation.
In Web Search and Data Mining, pages 364–372.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Advances in Neural Infor-
mation Processing Systems, pages 5754–5764.

Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei,
Chonggang Song, Guohui Ling, and Yongdong
Zhang. 2021. Causal intervention for leveraging pop-
ularity bias in recommendation. In Conference on
Research and Development in Information Retrieval,
pages 11–20. ACM.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2020. DIALOGPT : Large-scale
generative pre-training for conversational response
generation. In the Association for Computational
Linguistics, pages 270–278. Association for Compu-
tational Linguistics.

Zhipeng Zhao, Kun Zhou, Xiaolei Wang, Wayne Xin
Zhao, Fan Pan, Zhao Cao, and Ji-Rong Wen. 2023.
Alleviating the long-tail problem in conversational
recommender systems. In ACM Conference on Rec-
ommender Systems, pages 374–385. ACM.

Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, and
Yong Li. 2021a. DGCN: diversified recommenda-
tion with graph convolutional networks. In The Web
Conference, pages 401–412.

Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Yong Li,
and Depeng Jin. 2021b. Disentangling user interest
and conformity for recommendation with causal em-
bedding. In The Web Conference, pages 2980–2991.

Kun Zhou, Wayne Xin Zhao, Shuqing Bian, Yuanhang
Zhou, Ji-Rong Wen, and Jingsong Yu. 2020a. Im-
proving conversational recommender systems via
knowledge graph based semantic fusion. In Inter-
national Conference on Knowledge Discovery and
Data Mining, pages 1006–1014.

Kun Zhou, Yuanhang Zhou, Wayne Xin Zhao, Xiaoke
Wang, and Ji-Rong Wen. 2020b. Towards topic-
guided conversational recommender system. In Inter-
national Conference on Computational Linguistics,
pages 4128–4139.

Yuanhang Zhou, Kun Zhou, Wayne Xin Zhao, Cheng
Wang, Peng Jiang, and He Hu. 2022. C2-crs: Coarse-
to-fine contrastive learning for conversational recom-
mender system. In Web Search and Data Mining,
pages 1488–1496. ACM.

2537


