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Abstract
Key-value (KV) caching is an important tech-
nique to accelerate the inference of large lan-
guage models (LLMs), but incurs significant
memory overhead. To compress the size of
KV cache, existing methods often compromise
precision or require extra data for calibration,
limiting their practicality in LLM deployment.
In this paper, we introduce DecoQuant, a novel
data-free low-bit quantization technique based
on tensor decomposition methods, to effec-
tively compress KV cache. Our core idea is
to adjust the outlier distribution of the original
matrix by performing tensor decomposition, so
that the quantization difficulties are migrated
from the matrix to decomposed local tensors.
Specially, we find that outliers mainly concen-
trate on small local tensors, while large tensors
tend to have a narrower value range. Based
on this finding, we propose to apply low-bit
quantization to the large tensor, while main-
taining high-precision representation for the
small tensor. Furthermore, we utilize the pro-
posed quantization method to compress the KV
cache of LLMs to accelerate the inference and
develop an efficient dequantization kernel tai-
lored specifically for DecoQuant. Through ex-
tensive experiments, DecoQuant demonstrates
remarkable efficiency gains, showcasing up to
a ∼75% reduction in memory footprint while
maintaining comparable generation quality.

1 Introduction

Large language models (LLMs) (Touvron et al.,
2023; Zhao et al., 2023) have made significant
strides in advancing the progress of language intel-
ligence. However, these large-sized models often
incur higher inference latency, bringing significant
challenges to practical deployment. Therefore, it is
urgent to reduce the running overhead of LLMs.

To optimize the efficiency of LLMs during the
inference process, a commonly used technique is

* This work was done during an internship at Huawei.
† Corresponding author.

key-value (KV) caching (Pope et al., 2022). In im-
plementation, KV caching involves the storage of
historical tokens associated with the attention key
and value tensors of each layer, offering acceler-
ated inference by trading increased memory con-
sumption for a reduction in redundant calculations.
However, applications of long-content generation,
such as story generation and long demonstrations
for in-context learning tasks, would lead to a signif-
icant increase in the size of the KV cache, resulting
in unaffordable storage costs (Zhang et al., 2023;
Liu et al., 2023c). In addition, managing a large
cache often involves frequent I/O read and write
operations, leading to considerable latency. The is-
sue becomes even more severe when I/O operations
need to span across multiple machines (Patel et al.,
2023). Therefore, we need to compress KV cache
of large models to optimize the inference process.

Considering the above issues, considerable ef-
forts have concentrated on KV cache compres-
sion to enhance inference efficiency. As a typi-
cal approach, recent work (Zhang et al., 2023; Mu
et al., 2023) prunes tokens to keep the KV cache
within a small size. This approach, while allevi-
ating memory overhead, potentially leads to infor-
mation loss in long text generation. Furthermore,
although post-quantization methods preserve all
preceding text, low-bit quantization often results in
substantial model performance degradation. This
is primarily attributed to the common challenge
of outlier problems in activation value quantiza-
tion (Dettmers et al., 2022). Additionally, current
quantization techniques still rely on calibration or
training (Frantar et al., 2022; Xiao et al., 2023) to
retain the model performance, thus imposing prac-
tical limitations in data-constrained settings (e.g.,
privacy data). This further highlights the need for
a data-free approach to KV cache compression.

To effectively quantize the KV cache (essen-
tially activation values), we draw inspiration from
SmoothQuant (Xiao et al., 2023), which sug-
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gests that the issue of outliers can be transferred
across multiple modules, by migrating the quan-
tization difficulty to weights. However, unlike
SmoothQuant, we take an improved approach by
directly migrating the quantization difficulty by
performing matrix decomposition on the activation
values themselves, without comprising the preci-
sion of the weights. The underlying principle is that
matrix decomposition can potentially adjust the out-
lier distribution of the original matrix (Liu et al.,
2021; Gao et al., 2020a), so that the decomposed
local tensors or matrices are easier to quantize.

To this end, in this paper, we propose an effective
matrix Decomposition based Quantization method
namely DecoQuant, to alleviate the quantization
error due to outliers. Our approach is developed
based on an important empirical finding: when per-
forming tensor decomposition (i.e., Matrix Product
Operator), the value range of the large local ten-
sor (consisting of the major proportion of parame-
ters) becomes narrower, indicating fewer outliers
to be resolved in quantization. Based on this find-
ing, we propose a local tensor based quantization
method, in which we apply low-bit quantization to
the large tensor, while maintaining high-precision
representation for the small tensor. In this way, we
can achieve a lower quantization error when recon-
structing the original matrix by multiplying all the
local tensors. Furthermore, we utilize the proposed
quantization method to compress the KV cache of
LLMs to accelerate the inference rate, and further
develop an efficient dequantization kernel tailored
specifically for DecoQuant.

DecoQuant provides an effective quantization ap-
proach for LLMs, which can compress KV cache to
accelerate the inference rate. It is featured by two
major merits, namely (1) fully data-free by eliminat-
ing the need for complex calibration mechanisms
and (2) highly flexible by supporting the quantiza-
tion for weights only, activations only as well as
both simultaneously. Extensive experiments have
demonstrated the effectiveness of the proposed ap-
proach in reducing the memory consumption of the
KV cache and achieving competitive performance.
With nearly lossless performance, we can achieve
4-bit KV cache quantization and 8-bit quantization
for both weights and activations.

2 Preliminary

In this section, we present the background for our
approach about LLM inference and quantization.

LLM Inference and KV Caching. Typically,
LLMs generate the next token in a two-step pro-
cess (Zhao et al., 2023; Zhong et al., 2024): (1)
prefilling phase, in which LLMs generate the first
token based on the prompt, and (2) decoding phase,
in which the rest tokens are generated one by one
in an auto-regressive manner. Specifically, the de-
coding phase dominates the inference latency in
long-text generation (e.g., story writing). A com-
mon practice to accelerate the decoding phase is
key-value (KV) caching (Pope et al., 2022), which
stores previously seen tokens to avoid recomputing
of attention key and value tensors. However, the
size of the KV cache increases linearly with the
generation length which poses a memory-bounded
challenge. Furthermore, the increase in computing
power has increased substantially (e.g., 3.4x from
A100 to H100) while the communication improve-
ments have lagged behind (e.g., only 1.6x from
A100 to H100). This highlights the vital need to
address memory compression for the KV cache.

LLM Quantization. Quantization maps a floating-
point number into low-bit integers, which can
largely reduce the model size and inference costs
of LLMs (Lin et al., 2023; Frantar et al., 2022;
Dettmers et al., 2022). We follow Xiao et al.
(2023) and use symmetric quantization for sim-
plicity while the discussion for asymmetric cases is
similar by adding a zero-point (Jacob et al., 2018).
Generally speaking, there are two major kinds of
matrices to be quantized in LLMs, namely weights
and activations. In the context of quantizing LLMs,
there are typically two approaches: quantizing only
the weights to preserve model accuracy or quan-
tizing both the weights and activation values to
enhance the hardware compatibility. Formally, the
quantization process of a single matrix can be ex-
pressed as the following formula:

Ŵ =

⌈
W

∆

⌋
,∆ =

max(|W|)
2(m−1) − 1

, (1)

where W is the floating-point matrix, Ŵ is the
quantized conterpart, and ∆ is the quantization
step size, ⌈·⌋ is the rounding function and m is the
number of bits. However, it is practically difficult
to set a suitable value for ∆, mainly due to the
existence of outliers (those significantly deviate
from the majority of values) (Dettmers et al., 2022).
Therefore, we aim to mitigate the impact of outliers
to achieve the quantization compression of the KV
cache.
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Tensor Decomposition. Tensor decomposi-
tion (Rabanser et al., 2017; Kolda and Bader, 2009)
is a standard algorithm to factorize a matrix into
a sequential product of local tensors. Specially,
we adopt Matrix Product Operator (MPO) (Liu
et al., 2021) as the decomposition strategy. For-
mally we describe the process of decomposing a
matrix W ∈ RI×J using MPO as follows:

MPO (W) =
n∏

k=1

T(k)[dk−1, ik, jk, dk], (2)

where T denotes the local tensor with size dk−1 ×
ik × jk × dk in which

∏n
k=1 ik = I,

∏n
k=1 jk = J

and n represents the number of local tensors. We
refer to the decomposed tensors as local tensors.
When n = 2, we designate the tensor with a larger
parameter count as TL (i.e., the central tensor in
Liu et al., 2021), and the one with fewer param-
eters as TS . With MPO decomposition, we can
reorganize and aggregate information within spe-
cific tensors providing us with the opportunity to
effectively distinguish outliers.

3 Methods

In this section, we present an effective matrix
Decomposition based Quantization method namely
DecoQuant, to alleviate the quantization error due
to outliers. We further utilize this method to quan-
tize the KV cache for efficient inference of LLMs.

3.1 DecoQuant: Matrix Quantization based
on Decomposition

Basically, our approach aims to employ tensor de-
composition to adjust the outlier distribution in the
original matrix, so as to mitigate the quantization
difficulty. As will be introduced, decomposed local
tensors tend to exhibit fewer outliers within their
value distributions, indicating a potential opportu-
nity for improving quantization accuracy. In what
follows, we first study the distribution of outliers
in local tensors and then propose an effective quan-
tization approach based on tensor decomposition.

Outlier Distributions in Local Tensors. We are
mainly concerned with the KV cache matrices, as
they highly affect the inference latency (Zhang
et al., 2023; Patel et al., 2023; Liu et al., 2023c).
Without loss of generality, we consider n=2 for
MPO decomposition and take the key state matrix,
i.e., K, as example:

MPO(K) = TL × TS . (3)

(a) Analysis for TL. (b) Analysis for TS .

Figure 1: Outlier distributions of local tensors and ma-
trices. “Keys” are extracted from the output features of
value projections in the 16th layer of LLaMA-7B. Inves-
tigations of other structures can refer to Appendix A.1.

A property of MPO is that it can adjust the distribu-
tion of parameters (i.e., {dk−1, ik jk dk} in Equa-
tion 1) in these local tensors. Specially, we take
a biased decomposition, where TL takes a large
proportion of parameters (i.e., 99.4%) while TS
only takes a small proportion of parameters (i.e.,
0.6%). Such a large tensor TL is also called central
tensor (Liu et al., 2021; Gao et al., 2022), since
it contains the large body of information of the
original matrix. Further, we examine the change
of the outlier distribution in both tensors. In Fig-
ure 1, we can observe an interesting finding that the
value distribution of the large tensor TL becomes
much narrower than the original matrix and the
small tensor TS . In other words, it becomes easier
to quantize TL with fewer bits due to the limited
value distribution. Despite that it is still difficult
to quantize TS , it is noted that TS only contains
a small number of parameters, and we can apply
higher quantization precision with an overall small
cost.

Local Tensor Quantization. Based on the above
discussion, we introduce a novel data-free quan-
tization method based on matrix decomposition.
The key idea of our method is that through tensor
decomposition, the quantization difficulties (i.e.,
outliers) can be transferred from the original matrix
to its small local tensors. Thus, we can consider
applying low-precision quantization to the large
tensors, while maintaining high-precision repre-
sentation for the small tensors. In this way, we
can achieve a lower quantization error when re-
constructing the original matrix. Specially, our
approach involves a two-step quantization process
which is shown in Figure 3: (1) First, we uti-
lize MPO to factorize the original matrix into two
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Figure 2: Matrix quantization based on DecoQuant. The
alternating black/white and blue/white squares in the
figure denote quantized matrices.

higher-dimensional local tensors (i.e., TS and TL).
As shown in Figure 1, an important characteristic is
that TL, which occupies a significant portion of the
parameters, has a much smaller distribution of out-
liers than that of the original matrix. (2) Thus, at
the second step, we focus on quantizing the larger
tensor TL into B-bit integers (B < 16) while pre-
serving 16-bit precision for TS to achieve a lower
quantization error (with verified effectiveness in
Section 4.3).

3.2 Efficient Inference based on DecoQuant

Building upon the DecoQuant approach discussed
in Section 3.1, which achieves data-free matrix
quantization through the quantization of decom-
posed local tensors, our primary objective is to
compress the KV cache of LLMs to accelerate the
inference rate. The key idea is to quantize the
KV cache into a low-bit representation while pre-
serving FP16 precision during computation. Ad-
ditionally, we have developed a consolidated and
efficient dequantization kernel tailored specifically
for DecoQuant.

KV Cache Quantization. To introduce our
method, we consider a typical L-layer Transformer
model with D dimensions, where the input text
consists of T prompt tokens. Then we consider
compressing key and value cache for two phases of
LLM inference separately. (1) Prefilling phase: The
key and value cache are initially obtained after the
generation of the first token, i.e., K,V ∈ RT×D.
Given the relatively large size of the matrices, we
utilize the DecoQuant technique offline on the
KV cache to alleviate the computational overhead
induced by decomposition. (2) Decoding phase:
The size of the KV cache grows linearly with
the sequence length, i.e., ∆K,∆V ∈ R1×D. To

Figure 3: Operator fusion for dequantization.

alleviate the increased computational workload
due to frequent quantization, we perform Deco-
Quant only when the cache accumulates a certain
length (e.g., 1k). In particular, DecoQuant sup-
ports quantization for weights only (WxA16), ac-
tivations only (W16Ax), as well as both simulta-
neously (WxAx), significantly expanding its appli-
cability. Next, we will describe the dequantization
process when the key and value cache are recovered
to FP16 precision for computation.

Kernel Fusion for Dequantization. Kernel fu-
sion (Wang et al., 2010) is a technique that com-
bines multiple separate computational kernels into
a single, more efficient kernel. Essentially, it allows
multiple kernels to be executed as a whole unit and
thus reduces the overhead and latency in process-
ing. In our approach, the dequantization of Deco-
Quant involves operations that convert integers to
floating-point values (i.e., dequantization operator
of quantization scales and integer values) and that
reconstruct local tensors to matrices (GeMM op-
erator of TL and TS). These two operations may
involve an additional data movement overhead be-
tween GPU compute units and the main memory
which leads to increased latency. To address this
issue, we design specific kernel fusion methods for
2/4/8-bit values by fusing the dequantization op-
erator with the next GeMM operator (as shown in
Figure 3), which streamlines the execution pipeline
and improves computational efficiency. By doing
this, we can effectively alleviate the computational
delay caused by data-movement overhead (see Sec-
tion 4.4 for specific experiments).

3.3 Discussion

In this part, we present the overhead analysis of
the proposed approach and then compare it with
existing work.

Compression Ratio and Time Complexity. In
this part, we assess the memory compression ra-
tio and time complexity of DecoQuant. While the
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tensor parameters obtained through DecoQuant are
slightly larger than the original matrix, the signif-
icant storage reduction primarily stems from con-
verting the majority of TL parameters from FP16
to B-bit integers, allowing for a more efficient rep-
resentation of the tensor and a decrease in storage
requirements. This reduction is quantified as the
compression ratio (µ), which is calculated as:

µ =
#(TL)×B +#(TS)× 16 + #(∆)

#(W)× 16
, (4)

where #(·) denotes the count of values. Due to
the significantly smaller number of parameters in
TS and ∆ compared to TL, the compression ratio
typically approximates B/16. For inference time,
DecoQuant significantly reduces communication
costs with 4-bit KV cache. This results in a speedup
of 1.25x under conditions of generating an output
of 6k tokens (Section 4.4).

Comparison with Existing Work. We compare
our method with existing methods (including RTN,
LLM.int8(), SmoothQuant, GPTQ, and AWQ)
from the perspectives of quantization settings and
requirement for extra data, with results presented in
Table 1. We find that, similar to RTN, our method
can support all quantization settings, including
weight only (WxA16), activation only (W16Ax),
and simultaneous (WxAx) in a data-free style. In
contrast, other methods typically only support a
subset of these settings (such as GPTQ and AWQ
supporting only WxA16, while LLM.int8() sup-
ports WxAx) thereby limiting their practical appli-
cation. Additionally, some methods require extra
data for calibration. However, obtaining calibration
data for scenarios involving sensitive user privacy
can be challenging. Thus we primarily focus on
RTN as our comparative baseline, introducing other
methods only as needed.

4 Experiments

We mainly evaluate the DecoQuant on the language
modeling task to compare it with other quantization
approaches. Then we explore its zero-shot general-
ization ability in open-ended document generation.
Finally, we quantitatively measure the effect of KV
cache compression on system throughput.

4.1 Experimental Setup

Datasets and Implementation. For language mod-
eling tasks, we conduct our experiments on LAM-
BADA (Paperno et al., 2016) dataset, which is a

Table 1: DecoQuant facilitates data-free quantization for
weights only (WxA16), activations only (W16Ax), as
well as both simultaneously (WxAx). RTN denotes the
vanilla round-to-nearest quantization (Lin et al., 2023).

Methods Support Data-freeWxA16 W16Ax WxAx

RTN ✔ ✔ ✔ ✔
GPTQ ✔ ✘ ✘ ✘
AWQ ✔ ✘ ✘ ✘

LLM.int8() ✘ ✘ ✔ ✔
SmoothQuant ✘ ✘ ✔ ✘

DecoQuant ✔ ✔ ✔ ✔

widely used dataset evaluating the ability of lan-
guage models to capture long-range dependencies
and contextual understanding in text. To evalu-
ate the effectiveness of DecoQaunt in downstream
tasks, we follow Chevalier et al. (2023) and con-
sider five tasks (AG News, Subj, MR, Boolq and
RTE) for in-context learning setting. The accu-
racy is reported to measure the quality of the next
token prediction task of different models as well
as the downstream tasks. We consider popular
large language models with various sizes includ-
ing LLaMA (7B and 13B) (Touvron et al., 2023)
and OPT (1.3B and 6.7B) (Zhang et al., 2022).
For the quantization setting, we follow (Xiao et al.,
2023) and quantize the weights, activations and KV
cache into different bit-precisions (2/4/8/16 bits).
The code to reproduce the results of this paper
can be found at https://github.com/lpyhdzx/
DecoQuant_code.

Baselines. We introduce popular baseline quanti-
zation methods for KV cache compression.
• Round-to-nearest (RTN, Lin et al. 2023). RTN

maps a real value to an integer value through a
naive rounding operation.
• SmoothQuant (Xiao et al., 2023).

SmoothQuant smooths the activation outliers to
weights and only supports WxAx quantization.

Some widely used quantization methods, such as
GPTQ and LLM.int8(), are not considered because
they cannot quantize the output activation values,
thus making them unsuitable for quantization in
the KV cache.

4.2 Main Results

Comparison with Other Quantization Methods.
The results on LAMBADA are shown in Table 2.
Compared with FP16, all quantization methods re-
duce the sizes of the KV cache significantly due
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Table 2: Results when key and value modules are quantized to different levels (denoted as W-A-). “*” indicates the
quantization results based on the calibration dataset generated using the official code.

Setting Exp #Bits Size(MB) LLaMA-7B LLaMA-13B OPT-1.3B OPT-6.7B Average

FP16 16-16 46.7 87.8 89.3 75.4 81.2 83.4
RTN 16-8 23.3 88.6 89.3 75.3 81.2 83.6

DecoQuant 16-8 23.3 88.6 89.4 75.4 81.2 83.7
activations RTN 16-4 11.7 86.0 88.1 71.7 80.6 81.6

only DecoQuant 16-4 11.7 88.1 88.9 73.6 80.9 82.9
RTN 16-2 5.8 1.0 0.0 3.5 4.7 2.3

DecoQuant 16-2 5.8 47.1 58.2 8.6 28.8 35.9

RTN 8-8 23.3 88.5 89.3 75.4 81.3 83.6
SmoothQuant 8-8 23.3 88.5∗ 89.3∗ 75.3 81.3 /

DecoQuant 8-8 23.3 88.5 89.4 75.4 81.3 83.7
weights RTN 4-4 11.7 86.4 88.0 69.4 78.5 80.6

& SmoothQuant 4-4 11.7 86.4∗ 88.0∗ 69.0 77.7 /
activations DecoQuant 4-4 11.7 88.4 88.5 70.8 79.1 81.7

RTN 2-2 5.8 0.0 0.0 3.6 3.2 2.0
SmoothQuant 2-2 5.8 0.4∗ 0.0∗ 3.8 3.0 /

DecoQuant 2-2 5.8 1.3 3.0 1.8 2.9 2.0

to low bit-precisions. Overall, we observe that De-
coQuant achieves better average scores than other
methods. We note that RTN sometimes gives better
results (LLaMA-13B), but this performance is not
stable, and in other cases, it is not good. We sus-
pect that it is related to the distribution of outliers
in the model, an observation that is very similar
to (Dettmers et al., 2022), which mentions that
there is a clear difference in the distribution of out-
liers for large models. When comparing different
quantization settings, we find that 4-bit quantiza-
tion often exhibits close performance to 16-bit per-
formance while 2-bit models get much worse. In-
terestingly, even in 2-bit quantization, DecoQuant
still has a significant advantage over other methods,
an observation that opens up the possibility of a
2-bit KV cache in the future, an exploration we
leave to be completed in subsequent work.

Evaluation on Long-text Tasks. We evaluate
DecoQuant’s in-context learning capabilities us-
ing OPT models on five distinct datasets. For
each dataset, we conduct experiments with varying
numbers of demonstrations to investigate the im-
pact of KV cache quantization on the contextual
length. The summarized results are presented in
Table 3. Our findings indicate that a larger num-
ber of demonstrations often results in performance
improvements, as evidenced by the performance
comparison, e.g., 72.8 compared to 66.8 for FP16.
This observation underscores the effectiveness of
augmenting the contextual information. However,
when comparing the performance of RTN and De-
coQuant, we observe that, on average, RTN lags

(a) Quantization strategy. (b) Length of decomposition.

Figure 4: Quantization error analysis about quantization
strategy and length of decomposition.

behind DecoQuant. An interesting aspect of this
comparison is that RTN’s performance is compa-
rable to DecoQuant’s in the case of shorter con-
texts (2-shot), but it notably deteriorates for longer
contexts (10-shot). This outcome reinforces the effi-
cacy of our approach, which effectively compresses
the prompt while preserving critical information.

4.3 Detailed Analysis

Effectiveness of Tensor Quantization. First, We
compare the errors after quantization with differ-
ent local tensors to illustrate the effectiveness of
DecoQuant in mitigating the influence of outliers.
Specifically, we evaluate two variants that quantize
different local tensors: (1) quantizing large local
tensors only, i.e., TL, and (2) quantizing both local
tensors. The reconstruction error is shown in Fig-
ure 4(a). We find that quantizing only the largest
one (i.e., the red line) has the lowest error, followed
by quantizing both (the green line). The quantiza-
tion against the matrix (the blue one) has the largest
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Table 3: Results of in-context learning with different lengths of demonstrations.

Models Exp #Bits ICL Ag_news Subj Mr Boolq RTE Average

OPT-1.3B

FP16 16 0-shot 58.0 62.9 79.5 60.5 52.7 62.7
FP16 16 2-shot 64.2 55.1 86.1 56.9 45.1 61.5
FP16 16 10-shot 70.0 64.4 84.0 64.7 50.2 66.7

RTN 4 2-shot 61.7 63.1 81.1 41.1 45.1 58.4
DecoQuant 4 2-shot 62.4 55.8 87.0 52.2 46.9 60.9

RTN 4 10-shot 63.6 51.7 83.7 63.0 48.7 62.1
DecoQuant 4 10-shot 62.6 69.7 85.6 63.0 48.4 65.9

RTN 2 2-shot 33.0 51.7 55.0 41.8 53.1 46.9
DecoQuant 2 2-shot 40.4 56.0 52.1 49.7 52.3 51.6

RTN 2 10-shot 37.6 53.7 52.7 39.0 49.5 51.4
DecoQuant 2 10-shot 42.4 65.6 54.1 43.4 52.7 66.2

OPT-6.7B

FP16 16 0-shot 70.9 61.4 64.3 63.5 60.3 64.1
FP16 16 2-shot 71.0 74.0 89.9 65.7 54.2 71.0
FP16 16 10-shot 53.3 89.8 86.8 65.7 57.0 70.5

RTN 4 2-shot 68.7 66.1 81.1 67.5 53.8 69.2
DecoQuant 4 2-shot 71.6 73.6 87.0 68.2 53.4 71.2

RTN 4 10-shot 53.1 76.8 83.7 64.7 54.5 67.2
DecoQuant 4 10-shot 54.6 92.4 85.6 62.6 51.3 70.0

RTN 2 2-shot 29.3 51.7 55.0 38.0 52.0 44.2
DecoQuant 2 2-shot 32.0 55.1 52.1 61.5 53.4 53.1

RTN 2 10-shot 45.7 51.7 52.7 47.5 50.2 49.0
DecoQuant 2 10-shot 44.9 48.8 54.1 60.1 53.4 51.8

quantization error. This demonstrates that the issue
of quantization error for activations can be consider-
ably mitigated by substituting matrix quantization
with local tensor quantization.

Analysis of Length of Local Tensors. We vary
the MPO decomposition length (n) to assess its
impact on quantization. Specifically, we choose
n = 2, 3, 4 and the results are shown in Figure 4(b).
This result shows that we can further enhance the
quantization by extending the length of decomposi-
tions, which validates that the tensor decomposition
process is indeed beneficial in mitigating the effect
of outliers on quantization. However, the gains di-
minish as n increases. Notably, the improvement
from n = 2 to n = 3 is higher than from n = 3
to n = 4. Considering effectiveness and efficiency,
we select n = 2 for our experiments but recom-
mend higher n for higher accuracy.

Comparison with Other Decomposition Meth-
ods. We compare the MPO decomposition in our
approach with QR and SVD, which are popular
decomposition methods. Results are in Figure 5.
Our method outperforms SVD and QR, with sig-
nificantly lower quantization errors (40.9 vs. 105.4
for SVD and 103.7 for QR at 4-bit precision) while
introducing slight parameters. Additionally, MPO
offers flexible tensor shapes, unlike QR and SVD
which have fixed shapes, allowing us to balance ac-

(a) Compression ratio. (b) Quantization error.

Figure 5: Comparison between MPO with other decom-
position methods.

curacy and performance by adjusting quantization
granularity.

4.4 Efficiency Analysis

Memory and Latency. In this section, we pro-
vide additional analysis to show that memory and
latency costs can be significantly reduced by our
approach in the decoding phase. Without loss of
generality, we focus on LLaMA architecture (70B),
a popular open-source decoder-only model, and
the sequence length of 1k to 8k for evaluation. In
Figure 6(a), we observe a significant reduction in
the memory usage of the KV cache through com-
pression, particularly evident when the sequence
length reaches 6k. At this point, the cache size has
matched the model size, while our cache remains
under 30GB. Examining the latency in Figure 6(b),
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(a) Memory Cost. (b) IO Latency.

Figure 6: Efficiency of DecoQuant in terms of memory
cost and IO latency.

we note that DecoQuant achieves even lower la-
tency. These findings indicate that despite Deco-
Quant’s increased computational effort, it remains
negligible when compared to the communication
overhead saved, ultimately resulting in latency op-
timization.

5 Related Work

In this section, we present related works in three
aspects as well as draw distinctions of our approach
to existing literature.

Tensor Decomposition for Language Models.
Matrix product operator decomposition was an
efficient tensor decomposition method proposed
by (Pirvu et al., 2010), then applied for compress-
ing deep neural network (Gao et al., 2020a). In
language modeling, tensor decomposition meth-
ods enable fine-grained model compression and
tuning by decomposing the model’s weights, and
show a very high potential since such operations
are independent of the model’s structure. For ex-
ample, in compression methods (Gao et al., 2020a;
Sun et al., 2020; Gao et al., 2020b), in fine-tuning
methods (Gao et al., 2023; Liu et al., 2021), in the
field of pre-training (Gao et al., 2022; Liu et al.,
2023a), and in the field of emergent ability (Liu
et al., 2023b). However the references of tensor
decomposition in parameter quantization have not
been well studied, and the contribution of this paper
bridges the gap.

Quantization for LLMs. Quantization methods
have been shown to be effective in reducing the size
of the model as well as speeding it up. For example
method (Frantar et al., 2022) focuses on weight
quantization while method (Dettmers et al., 2022)
focuses on activation value quantization. Activa-
tion value quantization is considered more challeng-
ing due to the presence of outliers. To address this

issue, Dettmers et al. (2022) cache the outlier val-
ues, while effective but still need to retain some of
the FP16 values, thus making it difficult to achieve
higher compression rates. A lot of quantization
still needs to provide calibrated datasets, which
may be difficult for some practical applications,
e.g., users’ private data are usually not allowed to
be publicly accessible. This paper, on the other
hand, addresses the activation value quantization
methods still under the condition of no calibration.

KV Cache Compression. The decoding part of the
current inference phase of LLM is mainly memory-
bandwidth bound and an important approach is
to alleviate the frequency of IO by compressing
the KV cache. To achieve this goal, a straight-
forward approach is parameter quantization, but
higher compression rates cannot be achieved due to
the difficulty of activation value quantization. An-
other mainstream branch of research is concerned
with reducing the number of tokens in the context,
e.g., H2O (Zhang et al., 2023) by scores of atten-
tion. Other research is concerned with replacing
the hard context with a soft prompt, e.g., AutoCom-
pressors (Chevalier et al., 2023) by compressing
the context into limited tokens. However, it may
not be appropriate to choose to remove some to-
kens that are not important for the future only based
on the existing context. Compared to the previous
one, our approach keeps all tokens and ensures the
integrity of the context.

6 Conclusion

In this paper, we proposed DecoQuant, a new data-
free quantization method designed specifically for
KV cache compression, to improve data genera-
tion efficiency. By first decomposing the KV cache
matrices into local tensors, our approach only quan-
tized the large local tensor with the major propor-
tion of parameters in low-bit precision while main-
tained the small tensor in 16-bit precision. This
approach can mitigate the quantization difficulty
from the original matrix to the small local tensor,
which effectively reduces the quantization error in
KV cache compression. During inference, we also
developed an efficient dequantization technique
based on the fused kernel tailored for dequanti-
zation of DecoQuant to accelerate the generation
process. Extensive experiments have demonstrated
the effectiveness of the proposed approach in re-
ducing the memory consumption of the KV cache
and achieving competitive performance. For future
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work, we plan to explore the potential of leverag-
ing Decoquant for scenarios where communication
overhead plays a dominant role in LLM inference,
specifically in the Splitwise technique where pre-
filling and decoding phases are in different nodes.

7 Limitations

While we present promising results and contribu-
tions to the field, it is not without its limitations.
The performance of our methods may be influenced
by external factors such as hardware configurations,
software dependencies, and environmental condi-
tions. A thorough analysis of these factors and
their impact on the performance of our methods is
essential for practical deployment and real-world
applications. In addition, our approach may facili-
tate the deployment of large language models onto
a wide range of edge devices, including personal
smartphones. However, this expansion may raise
social concerns. It is crucial to consider potential
biases and fairness issues in real-world applica-
tions.
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A Appendix

A.1 Analysis of Outliers

The Interquartile Range (IQR) denotes the range
between the 25th and 75th percentiles of the data.
Outliers are often defined as data points that fall
outside 1.5 times the IQR above the third quartile
or below the first quartile. Thus, to better under-
stand the benefit of the distribution of outliers after
MPO decomposition, we investigated the IQR in
other layers (1st, 16th, and 31st layers) and other
structures (keys and values).

As seen in Table 4, we summarize the IQR of
the target tensors. We observe, as discovered in
Figure 1, that the IQR range of TL is the narrow-
est, followed by TS , and the numerical ranges of
the decomposed TL and TS are much smaller than
those of the matrix. This indicates that our method
can be universally applied to all key/value tensors.
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Table 4: Analysis of the outlier distributions in LLaMA-7B.

Keys Values
Q1 Q3 IQR Q1 Q3 IQR

LLaMA-7B

1st layer
matrix -0.439 0.442 0.881 -0.013 0.013 0.026
TL -0.027 0.027 0.055 -0.055 0.055 0.111
TS -0.155 0.156 0.312 -0.228 0.222 0.449

16th layer
matrix -0.674 0.668 1.342 -0.307 0.306 0.613
TL -0.056 0.056 0.112 -0.055 0.055 0.111
TS -0.238 0.232 0.470 -0.228 0.222 0.449

32th layer
matrix -0.685 0.672 1.357 -0.362 0.374 0.735
TL -0.055 0.055 0.111 -0.055 0.055 0.111
TS -0.228 0.222 0.449 -0.228 0.222 0.449

Dataset
Tokens per demonstration

OPT-based models LLaMA-based models

Mr 36 40
Subj 40 40

Ag_news 65 75
RTE 75 85

Boolq 165 170

Table 5: Details of the datasets used for in-context learn-
ing. “Tokens per demonstration” indicates how long the
demonstrations are for the average example.

A.2 Details of the datasets
In our in-context learning experiments, the length
of the KV cache can be measured using the length
of demonstrations since these demonstrations con-
stitute the majority of the prefilling process. There-
fore, we report the token per demonstration for
five datasets to represent this, as shown in the Ta-
ble 5. We find that the datasets we used covered
a range of context lengths, including longer con-
texts (Boolq), shorter contexts (Mr and Subj), and
moderate contexts (Ag_news and RTE).
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