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Abstract

Knowledge-based visual question answering
(KVQA) has been extensively studied to an-
swer visual questions with external knowledge,
e.g., knowledge graphs (KGs). While several
attempts have been proposed to leverage large
language models (LLMs) as an implicit knowl-
edge source, it remains challenging since LLMs
may generate hallucinations. Moreover, mul-
tiple knowledge sources, e.g., images, KGs
and LLMs, cannot be readily aligned for com-
plex scenarios. To tackle these, we present a
novel modality-aware integration with LLMs
for KVQA (MAIL). It carefully leverages multi-
modal knowledge for both image understand-
ing and knowledge reasoning. Specifically,
(i) we propose a two-stage prompting strategy
with LLMs to densely embody the image into a
scene graph with detailed visual features; (ii)
We construct a coupled concept graph by link-
ing the mentioned entities with external facts.
(iii) A tailored pseudo-siamese graph medium
fusion is designed for sufficient multimodal fu-
sion. We utilize the shared mentioned entities
in two graphs as mediums to bridge a tight inter-
modal exchange, while maximally preserving
insightful intra-modal learning by constraining
the fusion within mediums. Extensive experi-
ments show the superiority of MAIL.

1 Introduction

Knowledge-based visual question answering
(KVQA) aims to provide appropriate answers for
questions about images based on external knowl-
edge (Wang et al., 2017), such as knowledge graphs
(KGs) (Marino et al., 2019; Zhang et al., 2022). It
has various applications, especially for assisting
the visually impaired users (Gurari et al., 2018),
yet still, remains a challenging task that requires
complex reasoning capability across different data
modalities (Yu et al., 2020, 2017).
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Figure 1: A sketched comparison on employing LLMs for
KVQA between existing learning paradigms and ours.

Recently, several studies have explored using
large language models (LLMs) as supplemen-
tary knowledge bases and reasoning tools for
KVQA (Yang et al., 2022; Gui et al., 2022;
Lin et al., 2022); according to how they fuse
the knowledge, they can be broadly categorized
into direct prompting and modality-agnostic ap-
proaches, shown in Figure 1 (a) and (b), respec-
tively. The former directly prompts the question
and the corresponding image caption to LLMs for
answers (Yang et al., 2022). The latter leverages
LLMs to generate candidate answers with support-
ing evidence and simply combines both question
and the external knowledge embedding, e.g., Wiki-
data (Shengyuan et al., 2024), for reasoning at the
final stage (Gui et al., 2022; Lin et al., 2022).

While the above methods have employed LLMs
in various ways for KVQA, we argue that they have
not fully leveraged the knowledge from LLMs and
lack the cross-modal reasoning ability, potentially
resulting in sub-optimal performance for complex
VQA scenarios. (i) LLMs could incorrectly an-
swer questions or provide unreliable evidence for
reasoning. On the one hand, direct prompting to
LLMs may struggle to identify the right answer
for many complex or domain-specific questions,
due to the lack of domain knowledge (Amaro et al.,
2023; Chen et al., 2024). On the other hand, LLMs
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may be prone to generating hallucination (Gravel
et al., 2023) and producing misleading evidence in
support of candidate answers. (ii) Integrating mul-
timodal knowledge in a modality-agnostic manner
can be sub-optimal. Specifically, existing methods
simply concatenate different modal representations,
e.g., questions, captions, tags, and external knowl-
edge, for reasoning. This design lacks the neces-
sary cross-modal exchange to enrich the semantics
of entities, limiting the final reasoning performance.
For example, to correctly answer the question in
Figure 1, the model is required to infer the season
based on a cross-modal understanding of the inputs,
such as the “keep warm” purpose of “coat” and the
“spring blooming” feature of “sakura”.

In this work, we study the following research
question: How can we effectively leverage the
knowledge from LLMs to enhance the comprehen-
sive understanding and reasoning of the images
and questions in KVQA? Answering this question
is nontrivial due to the following challenges. (i) It
is hard to properly incorporate the knowledge from
LLMs. LLMs may generate hallucinations when
dealing with requests that are not covered in their
training corpus. Simply prompting them may gen-
erate noisy and irrelevant responses. (ii) Semantic
alignment of multiple knowledge sources is chal-
lenging. Given image captions, object/region fea-
tures, external knowledge from KGs, and implicit
knowledge from LLMs, appropriately aligning rel-
evant semantic information in different modalities
cannot be readily achieved.

To tackle these challenges, we present a novel
modality-aware framework to effectively integrate
LLMs for KVQA in Figure 1 (c), dubbed MAIL.
Specifically, (i) we propose a two-stage prompt-
ing strategy to maximally leverage the knowledge
from LLMs for image understanding. We initialize
a dense caption by prompting a visual LLM, e.g.,
Visual ChatGPT (Wu et al., 2023) and MiniGPT-
4 (Zhu et al., 2023). To depict the detailed vi-
sual scenes in the caption, we construct a scene
graph by defining twelve condensed relations and
prompting the LLM to extract spatial and object
features accordingly in the form of triples, e.g.,
(sakura, at_location, tree). (ii) We integrate the ex-
ternal knowledge from KGs to form a coupled con-
cept graph, where the mentioned entities in scene
graphs are linked with real-world assertions and
facts to facilitate knowledgeable reasoning, such as
(coat, used_for, keep warm) and (sakura, typle_of,
spring blooming). (iii) A tailored pseudo-siamese

graph medium fusion is designed for effective mul-
timodal graph fusion. Inspired by the success of
pseudo-siamese network in measuring the simi-
larity of two correlative inputs (Xia et al., 2021;
Gupta et al., 2023), we extend it to graphs to pro-
cess intra-modal information. It consists of two
graph attention networks with the same architec-
ture but different weights. In each sub-encoder,
we concentrate on one modality and design a tai-
lored context-aware propagation. This guides our
model to attentively prioritize the most valuable
entities subject to the particular question. Then we
leverage the shared mentioned entities in both cou-
pled graphs as mediums to bridge the cross-modal
interaction. The model continuously exchanges
their embeddings between two modalities, bringing
sufficient complementary knowledge to the other
modality respectively. It merely allows inter-modal
exchanging by constraining it within the mediums.
In general, MAIL effectively enhances a tight inter-
modal fusion while maximally preserving the in-
sightful intra-modal information for each modality.

Our major contributions are summarized below:

• We formally define a novel learning paradigm,
modality-aware integration with LLMs for
knowledge-based visual question answering.

• The implicit knowledge in LLMs is carefully
leveraged via an effective prompting strategy for
coupled scene/concept graph construction.

• We further propose a tailored pseudo-siamese
graph medium fusion to integrate multimodal
knowledge sources. It balances both intra-modal
processing and inter-modal exchange.

• Extensive experiments are conducted on two
benchmark datasets. MAIL achieves superior per-
formance over a variety of state-of-the-art base-
lines with 2 ∼ 4× faster inferential time.

2 Problem Statement

KVQA requires the model to provide answers to
the question Q of the corresponding image I based
on external knowledge G. In this paper, we propose
a novel learning paradigm for leveraging LLMs
f(·) for comprehensive knowledge-based VQA.
Given an image I, a relevant question Q and ex-
ternal knowledge G, we aim to integrate a visual
LLM f(·) and fuse {f(I),Q,G} for prediction.
The overall performance is evaluated by the accu-
racy of returned answers with the ground truths.
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Figure 2: Our proposed framework MAIL, a novel modality-aware integration for knowledge-based VQA with LLMs.
Nodes in blue stand for external knowledge, while red is for visual objects and yellow shows the topic entities from
questions. Blue nodes with red dashed borders indicate the extracted mediums in concept graph. MAIL is trained to
integrate multimodal information for comprehensive cross-modal reasoning with a tailored PS-GMF.

3 Methodology

In this section, we introduce the detailed rationale
of our proposed framework. An illustration of MAIL
is shown in Figure 2. We first carefully leverage the
knowledge from LLMs for coupled graph construc-
tion. Then, we formulate the pseudo-siamese graph
medium fusion (PS-GMF). Through an effective
integration of two tailored training objectives, we
jointly optimize the model for accurate prediction.

3.1 Scene Graph Construction
Dense Caption Generation We carefully design
a hard prompt that requires a visual LLM f(·) to
depict the detailed appearance of all the objects in
the image and the spatial relations between them.
We obtain the generated caption through

D = f(I, P rompt). (1)

We consider the identified visual entities in the im-
age as key mentioned entities appearing in the cap-
tion, denoted as M = [m1,m2...mn] ∈ D. They
significantly dominate the multimodal information
of both visual features and external knowledge re-
quired to answer the questions.
Prompt-enhanced Triple Extraction
Given the extracted mentioned entities, we employ
LLMs to extract triples. To fully leverage LLMs’
comprehension of image captions and prioritize
the important visual features, we pre-define 12 re-
lations R = [r1, r2, ...r12] from two aspects: (i)
Spatial features. We constrain the description with
at_location, next_to, in_front_of, surrounded_by,
covered_by, includes and holds. (ii) Object fea-
tures are preserved with not only visual outlooks,
i.e., has_property, has_color, made_of and wears,
but also the intentions of the object if he/she is a
human, i.e., intends_to. We design a hard template
to prompt LLMs for scene graph construction as,

GS = f(Prompt,D,M,R). (2)

The prompt template is used as follows: ‘Describe
the image with as many details as possible. Gen-
erally, identify the objects and their spatial rela-
tions with each other. Specifically, include the vi-
sual outlook of different objects, e.g., color, style
as well as the appearance of human beings.’ We
show the detailed statistics and distributions of all
twelve condensed relations in both benchmarks
OK-VQA (Marino et al., 2019) and FVQA (Wang
et al., 2017) in Table 2 below.

3.2 Concept Graph Construction
In parallel, we incorporate ConceptNet (Speer et al.,
2018) for external commonsense knowledge to con-
struct a concept graph. It is one of the largest KGs
that provides a myriad of structured triples and con-
tains more than eight million real-world entities.
We link each mentioned entity m and the topic en-
tity in the question with ConceptNet, and denote
the constructed graph as GC with sufficient textual
descriptions, attributes, categories, and properties
of M, that are not present in the image so as to facil-
itate a more knowledgeable reasoning background
for various questions. We design the prompt as

‘Given the image caption, based on your compre-
hensive understanding, construct a high-quality
scene graph with as many meaningful details of
the mentioned entities as possible in the form of a
triple (head entity, relation, tail entity). \n Strictly
use the twelve predefined relations from: R, e.g.,
(woman, in_front_of, car), (car, has_color, blue),
only return the triples with no other content. \n
Caption: D \n Mentioned Entities: M.’

3.3 Pseudo-siamese Graph Medium Fusion
Typical pseudo-siamese networks (PSNs) could ef-
fectively measure the similarity between two in-
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PSG Architecture Formulated Definition

Context-aware Attention Φ (mt∥c)
Aggregation Function

∑
t∈Nh

αmt ×mt

Combination Function J(eℓ
Nh

) + eℓ
h

Activation Function

{
eh, if eh ≥ 0,

(1e− 2)× eh, otherwise.

Table 1: Formulated definitions of the shared archi-
tectures for two sub-networks in the proposed Pseudo-
Siamese Graph Neural Network.

puts (Gupta et al., 2023; Xia et al., 2021). We
extend it to graphs, which naturally fit the require-
ment of learning coupled graphs for intra-modal
processing, leading to pseudo-siamese graph neural
networks (PSGs). However, PSG is incapable of
cross-modal fusion. Particularly equipped for PSG
to enable inter-modal learning, we further design a
graph medium fusion (GMF) algorithm.
Pseudo-siamese Graph Neural Network
Locating valuable entities in different modalities
is essential for KVQA. Here, we instantiate PSG
with a novel context-aware message propagation
scheme to prioritize the most important knowledge
in each modality subject to the question context.
Definition. [Pseudo-siamese GNN] We refer to
a pseudo-siamese graph neural network that con-
sists of two identical graph neural networks for
two relevant inputs. They share the same architec-
ture, i.e., attention mechanism, aggregation func-
tion, combination function and activation function,
but different weights.

As two sub-networks in PSG share the same
architecture, we uniformly provide formulations
for the intra-modality processing. For each head
entity h, we aggregate all the messages from its
neighbor tail entities Nh and t ∈ Nh. Since rela-
tions in multimodal graphs contain indispensable
information for reasoning various real-world ques-
tions, we establish the message passing at the triple
level (Zhang et al., 2023a), i.e., (h, r, t) to capture
abundant semantics as follows.

mt∈Nh
= W (eh, er, et), (3)

where (eh, er, et) is the triple embedding associ-
ated with (h, r, t), and W is a learnable matrix
for linear transformation. We initialize the entity
and relation embedding with a pre-trained language
model RoBERTa-large (Liu et al., 2019). While
multimodal graphs always contain desperate infor-
mation with each other, uniformly training each
subnetwork in PSG based on the final prediction

Categories Relation
OK-VQA FVQA

Tain Test Tain Test

Spatial
Features

at_location 10,562 10,118 3,466 3,107
next_to 3,948 3,772 2,533 2,289

in_front_of 2,239 2,244 759 687
surrounded_by 2,004 2,026 699 549

covered_by 180 191 9 7
includes 12,402 12,390 1,811 1,630

holds 3,344 3,090 965 794

Object
Features

has_property 16,685 17,032 1,301 1,297
has_color 9,191 8,836 3,653 3,258
made_of 3,388 3,310 978 948

wears 5,172 5,049 1,504 1,449
intends_to 1,599 1,655 9 8

Table 2: The overall statistics of the pre-defined con-
dense relations for OK-VQA and FVQA datasets. They
depict the spatial features and object features in images.

lacks awareness of the multimodal characteristics.
To this end, we design tailored graph attention net-
works (Veličković et al., 2017; Dong et al., 2023a)
that allocate a context-aware weight â to each mes-
sage, only prioritizing the multimodal messages in
both coupled graphs that are highly related to the
question. The context-aware weight âmt for each
message mt is correspondingly computed as:

â(h,r,t) = Φ (mt∥c) , (4)

where Φ is the adopted activation function, i.e.,
LeakyReLU. We endow the attention mechanism
to be context-aware by concatenating the ques-
tion context embedding c, expressed as ∥. No-
tably, we fix the question context embedding c with
RoBERTa and only allow it to participate during
the attention allocation process.

By normalizing the attention scores obtained pre-
viously, we further assign normative values α to
each message mt of (h, r, t):

αmt =
â(h,r,t)∑

(h,r′,t′)∈Nh
â(h,r′,t′)

. (5)

To this end, with a weighted sum aggregation
operator, we are able to acquire the aggregated
representation for entity h in the current layer from
its neighbors as eℓNh

=
∑

(h,r,t)∈Nh
α(h,r,t)) ×mℓ

t ,
where the layer number in PSG is denoted as ℓ.
We summarize the major functions in Table 1. We
finalize the overall architecture of PSG for both
inputs from scene graph GS and concept graph GC .

e
S(ℓ+1)
h = J(

∑

(h,r,t)∈Nh

α(h,r,t)) ×mt) + e
S(ℓ)
h ,

e
C(ℓ+1)

ĥ
= J(

∑

(ĥ,r̂,t̂)∈N
ĥ

α(ĥ,r̂,t̂) ×mt̂) + e
C(ℓ)

ĥ
,

(6)
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where J is a multi-layer perception. The model
effectively combines the learned neighbor informa-
tion eℓNh

and itself eℓh in current layer. We obtain
final representations of all the entities when the
layer number ℓ reaches the pre-defined target.
Graph Medium Fusion
In this subsection, we aim to fill the gaps of
the aforementioned PSG on inter-modal learning.
However, there is a challenging dilemma centered
around striking the right balance between two cru-
cial aspects. On one hand, we want to maximize the
inter-modal fusion, where multimodal information
could collaborate to yield a more insightful and nu-
anced understanding of the underlying knowledge
subject to answering the question. On the other
hand, we recognize the necessity of preserving the
integrity of intra-modal processing. Considering
excessive inter-modal fusion could introduce noise
from each other, we aim to maintain the distinc-
tive characteristics and valuable insights that each
modality inherently holds.

Since the mentioned entities M =
[m1,m2...mn] are shared by GS and GC ,
we consider these entities existing in both coupled
graphs as mediums that possess similar embed-
dings since they represent the same real-world
object though appearing in different modalities.
Motivated by this, we design a novel graph
medium fusion algorithm that leverages the
medium to bridge two modalities. To get rid of
the dilemma, we (i) exchange the representations
of mediums em within their respective graphs.
This allows the model to delicately introduce
cross-modal information with their neighbor
entities in the respective graphs, i.e., eNm ; (ii)
We strictly impose restrictions on the cross-modal
exchange to be within the mediums. This gently
brings two modalities closer to each other, while
maximally maintaining their individualities. The
formulated graph medium fusion process between
the coupled graphs is written below.

eSm =

{
eS
m, if ℓ = 0,

eC
m, otherwise.

eCm =

{
eC
m, if ℓ = 0,

eS
m, otherwise.

(7)

Specifically, we froze the medium embeddings
in the first layer to ensure they have initially aggre-
gated important 1-hop neighbor information. Af-
terward, the embeddings for the same medium are
automatically exchanged after message-passing in
the current layer. This sequential approach ensures
a high-quality exchange of information between
modalities, i.e., visual features and external knowl-

edge, while initially preserving the local context
within each modality before they engage in cross-
modal interactions during the following layers.

3.4 Training Objective

Answer-targeted Inferential Loss
The primary target of our model is to accurately
predict the final answer subject to the particular
image and question context. We adopt the binary
cross-entropy loss to optimize the inferential per-
formance:

LInference = −log
MLP (ea + c)∑

a′∈GC MLP (ea′ + c)
, (8)

where a is the correct answer and a′ is one of
all the candidate answers from GC . We employ
MLP (ea + c) to compute the probability of all
the candidate entities in GC and prioritize the high-
est one as the final answer.
Maximum Mean Discrepancy loss
Based on the assumption that one medium in two
modalities should be similar to the maximum ex-
tent, we approximate their similarity by adopting
an auxiliary loss, i.e., Maximum Mean Discrep-
ancy (MMD) loss. The basic kernel function is
formulated as follows:

K(eS
m, eC

m) = exp

(
−||eS

m − eC
m||2

2σ2

)
, (9)

where K represents the kernel function and σ is
a hyperparameter controlling the width of the ker-
nel (Steinwart and Scovel, 2012). Given a valid
kernel function where K(eSm, eCm) = (ϕ(eSm) −
ϕ(eCm)), we denote the corresponding feature map-
ping function as ϕ. The final MMD loss for cross-
modal alignment is demonstrated hereunder,

LMedium = || 1
n

∑

m∈M
ϕ(eS

m)− 1

n

∑

m∈M
ϕ(eC

m)||2. (10)

We aim to minimize this loss to encourage the
learned representations for the same medium from
two modalities to be similar in the shared PSG ar-
chitecture. This effectively guides the process of
graph medium fusion by constraining the similarity
of mediums in different modalities with each other.

3.4.1 Joint Optimization
The overall framework is jointly optimized accord-
ing to the aforementioned training objectives. De-
spite the effectiveness of LMedium, it may intro-
duce inevitable noise by irrespectively forcing the
mediums from two modalities to be exactly aligned,
which ignores the nature of different modalities. To
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alleviate this problem, we introduce a hyperparame-
ter λ to control the contribution from LMedium. To
this end, the final training loss is calculated below:

LJoint = LInference + λLMedium. (11)

4 Experiments

In this section, we conduct a variety of experiments
to demonstrate the effectiveness of our proposed
MAIL. We aim to answer four research questions:

• RQ1 (Main Results): How does MAIL perform
compared with different types of SOTA models?

• RQ2 (Hyperparameter analysis): How do hy-
perparameters influence the performance?

• RQ3 (Ablation studies): Does each component
eventually contribute to the overall performance?

• RQ4 (Case study): How effectively does MAIL
work in real-world VQA tasks?

4.1 Experimental Setup
Implementation Details We generate dense image
captions with MiniGPT-4 (7B) (Zhu et al., 2023),
as well as InstructBLIP (Dai et al., 2024) for gen-
eralization, and adopt ConceptNet (Speer et al.,
2018) for external knowledge. We apply MiniGPT-
4 and InstructBLIP with one Tesla V100. The en-
tire processing of OK-VQA and the corresponding
Microsoft COCO images (Lin et al., 2014) includ-
ing image-to-text and data cleaning takes about 4
rounds. We adopt ℓ = 3 and λ = 1e−3 after hyper-
parameter tuning. The generated caption is stored
for further multimodal learning. Our codes and pro-
cessed graphs will be open-sourced and publicly
available. For the results of baseline LLMs, since
they could occasionally refuse to answer with re-
sponses like either ‘As a language model, I am not
capable of understanding images’ or ‘Sorry, there
is no related information in the provided caption.’,
we report the average accuracy over 2 rounds.
Datasets
Following the previous work (Marino et al., 2021;
Yang et al., 2022; Gui et al., 2022; Wu et al., 2022;
Lin et al., 2022), we mainly conduct our experi-
ments on OK-VQA (Marino et al., 2019), which is
currently the largest and most challenging bench-
mark, consisting of 14,055 image-question pairs.
To further demonstrate the generalization, we also
experimentalize on FVQA dataset (Wang et al.,
2017), which was the first exploration of KVQA.
Baselines
We adopt two pipelines of off-the-shelf methods

for performance comparison. (i) Traditional end-
to-end baselines that design various multimodal
learning algorithms for final reasoning over the
posed questions, i.e., a direct answering based on
questions only (Q Only) (Marino et al., 2019),
BAN (Kim et al., 2018), MUTAN (Ben-Younes
et al., 2017), ConceptBERT (Gardères et al.,
2020), KRISP (Marino et al., 2021), MAVEx (Wu
et al., 2022), VLC-BERT (Ravi et al., 2023),
RA-VQA (Lin and Byrne, 2022), TriG (Gao
et al., 2022), HCNMN (Zhang et al., 2023b)
and MCAN (Yu et al., 2019). Moreover, as
BAN and MUTAN merely learn the uni-modal vi-
sual features, they are augmented with ArticleNet
(AN) (Marino et al., 2019) that is trained to re-
trieve knowledge from Wikipedia for correspond-
ing question-image pair to facilitate the reasoning
with external knowledge, denoted as ‘BAN + AN’
and ‘MUTAN + AN’ (Marino et al., 2019). (ii)
LLM-enhanced baselines that leverage LLMs, i.e.,
GPT-3, for direct answer prediction or relevant sup-
porting evidence generation, i.e., PICa (Yang et al.,
2022), KAT (Gui et al., 2022), TwO (Si et al., 2023),
a simple baseline for KBVQA (Xenos et al., 2023)
and REVIVE (Lin et al., 2022).

4.2 Main Results
To answer RQ1, in Table 3 & 4, we summarize
the comparisons with all the important baselines.
The performance is evaluated by the soft accuracy
following previous research (Hu et al., 2023). MAIL
outperforms all the traditional baselines regardless
of their various knowledge sources and the advan-
tages of leveraging a feature-level image represen-
tation. MAIL achieves 12.04% improvements over
the best traditional baseline, i.e., MCAN, on OK-
VQA and 14.7% on FVQA. For LLM-enhanced
baselines, it is worth mentioning that they have uti-
lized the generative ability from (Lin et al., 2022;
Brown et al., 2020), which makes them especially
advantageous in answering subjective questions,
for instance, ‘Can people travel on the freeway’
or ‘Is it illegal?’. Despite this, MAIL still outper-
forms the best LLM-enhanced baseline with 2.28%
increases in general, let alone 13.39% over PICa.

Moreover, MAIL is resource-efficient, requiring
the smallest number of parameters among all the
LLM-enhanced baselines, shown in Table 7. We
have used significantly far fewer parameters than
any other LLM-enhanced models, i.e., 7.13 B, for
answer prediction. As a result, the inferential time
of MAIL for one test question is 0.661s (when batch
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Method Model Inputs External Knowledge Fusion Strategy Acc. (%)

Q Only Question + Image - - 14.93

Traditional End-to-end Baselines

BAN Question + Image - - 25.17
BAN +AN Question + Image Wikipedia Modality-agnostic 25.61
MUTAN Question + Image - - 26.41

MUTAN +AN Question + Image Wikipedia Modality-agnostic 27.84
ConceptBERT Question + Image ConceptNet Modality-agnostic 33.66

HCNMN Question + Image WordNet Modality-agnostic 36.74
Krisp Question + Image Wikipedia + ConceptNet Modality-agnostic 38.90

MAVEx Question + Image Wikipedia + ConceptNet + Google Images Modality-agnostic 41.37
VLC-BERT Question + Image COMET + ConceptNet Modality-agnostic 43.14

MCAN Question + Image - - 44.65

Large Language Model-enhanced Baselines

PICa-Base Question + Caption + Object Tags Frozen GPT-3 (175B) - 43.30
Pica-Full Question + Caption + Object Tags Frozen GPT-3 (175B) - 48.00

KAT (Single) Question + Caption + Object Tags Frozen GPT-3 (175B) + Wikidata Modality-agnostic 53.09
KAT (Ensemble) Question + Caption + Object Tags Frozen GPT-3 (175B) + Wikidata Modality-agnostic 54.41

REVIVE Question + Caption + Region Tags Frozen GPT-3 (175B) + Wikidata Modality-agnostic 53.83

MAIL (ours) Question + Image Frozen MiniGPT-4 (7B)∗ + ConceptNet Modality-aware 56.69

Table 3: The overall performance comparison on benchmark dataset OK-VQA. We also elaborate on the detailed
comparison with a variety of baselines on the knowledge sources that support their inference, i.e., model inputs,
external knowledge, as well as how they fuse multiple modalities.
∗ We merely leverage it for caption and scene graph construction, with no extra information that is not present in the images.

Method Fusion Strategy Acc. (%)

XNM Modality-agnostic 63.74
KI-Net Modality-agnostic 63.78
UnifER Modality-agnostic 66.83
MCAN - 64.47

HCNMN Modality-agnostic 69.43

MAIL (ours) Modality-aware 73.95

Table 4: Performance comparison on FVQA.
ACC.% ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6

MAIL 56.41 56.69 55.45 54.11 52.80

Table 5: Evaluation on the influences of graph layers in
pseudo-siamese graph medium fusion.

size = 1). Generally, existing LLM-enhanced base-
lines commonly require 2∼4 times of inferential
time than MAIL.

4.3 Hyperparameter Analysis

Search of Graph layers
The main architecture of PS-GMF naturally com-
prises the discussion of the impacts from graph
layers ℓ. We empirically hypothesize that augment-
ing the depth of the ℓ could facilitate both a deeper
understanding of single modalities (i.e., PSG) and
a more profound exchange of information between
modalities (i.e., GMF). However, it remains unclear
about when to reach the plateau. Simply adding

ACC.% λ = 0 1e− 5 1e− 4 1e− 3 1e− 2 1e− 1

MAIL 53.34 54.18 55.31 56.69 54.30 55.82

Table 6: Exploring the control over the impacts from
LMedium to preserve insightful intra-modal learning.

Models ∼Param Size Training Time Inference Time

PICa ∼175.00 B / 1.547 s
KAT ∼175.80 B 3.025 s 1.292 s

REVIVE ∼175.80 B 4.500 s 2.644 s
MAIL(Ours) ∼7.13 B 2.699 s 0.661 s

Table 7: Comparisons on the computational costs and
inferential time with LLM-enhanced baselines.

Reasoning Module Accuracy (%)

PSG (w/o GMF) 55.53
PS-GMF 56.69

Table 8: Verification of the importance of inter-modality
fusion by removing GMF with PSG only.

more layers may over-fuse two modalities and lose
the ability of intra-modal processing, while reduc-
ing layers may lead to an adverse situation with
inadequate inter-modal fusion. To this end, we
vary the layer number and show the performance
changes in Table 5. The final prediction perfor-
mance of MAIL is reported when ℓ = 3.
Investigation on hyperparameter λ
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What is this street made of?

(street, made_of, bricks)

Ours: bricks

Visual Feature

What animal do you have to watch out 
for when doing this sport?

What type of temperature is this?

(man, holds, surfboard)
(sakura, at_location, tree)

(woman, wears, coat)

(Sakura, related_to, cherry tree) 
(cherry tree, type_of, spring blooming)

(spring, related_to, cold spring)
(coat, used_for, keep warm in winter)

(winter, property, cold)

Ours: cold
Ours: shark

Visual Feature
Visual Feature

When was this type of transportation invented?

What position is behind the batter?  

(steam-powered tram, at_location, rail)

(A man, intends_to, hit the ball)

(B man, behind, A man)

(B man, intends_to, catch the ball)

(batter, capable_of, hit the bal)
(catcher, capable_of, catch the ball)

Ours: Catcher

Ours: 1804

Visual Feature

Visual Feature

External Knowledge

External Knowledge

External Knowledge

External Knowledge

(street, used_for, automobile)

(surfboard, related_to, sea)

(shark, is_a, animal)
(shark, at_location, seawater)

(steam-powered tram, invented in, 1804)

(a) (b) (c)

(d) (e) (f)

What type of emergencies do 
these group of people respond to?  

(firetruck, at_location, street) 

(firetruck, related_to, fire)

Ours: fire

Visual Feature

External Knowledge

External Knowledge

Prediction Results

Prediction Results
Prediction Results

Prediction Results

Prediction Results

Prediction Results

Figure 3: Case studies with both single-hop and multi-hop reasoning examples in OK-VQA.

Pure LLMs Multimodal Understanding Acc.(%)

Large Language Models

Llama (7B) Dense Caption 39.27
Llama2 (7B) Dense Caption 45.35

ChatGPT (GPT3.5) Dense Caption 40.26
GPT-4 Dense Caption 54.33

Visual Large Language Models

Visual ChatGPT BLIP-VQA-Base + GPT3.5 38.70
MiniGPT-4 (7B) ViT + Vicuna 51.26

Ours Dense Caption + PS-GMF 56.69

Table 9: Ablation studies on comparing with pure LLMs
by directly feeding the questions and (i) corresponding
image caption to LLMs or (ii) the raw images to visual
LLMs for answers in a zero-shot setting.

While an excessively strict alignment of mediums
may homogenize the intra-modal information, we
aim to find a suitable λ that constrains the im-
pacts of LMedium. This could significantly encour-
age harmonious inter-modal fusion from multiple
modalities while retaining the richness and speci-
ficity inherent to each modality. The experimen-
tation process involves a systematic adjustment of
λ across a range of values, specifically within the
interval [0, 1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e− 1].
We showcase the results in Table 6. Upon careful
examination of the performance trends, we employ
λ = 1e− 3 for a balanced trade-off.

4.4 Ablation Studies

Empirical comparison with LLMs
In this ablation study, we further demonstrate our
tailored multimodal learning module PS-GMF, and
delineate the specific contributions by comparing it
against frozen LLMs. Specifically, we adopt both

pure LLMs, i.e., Llama (Touvron et al., 2023a) and
Llama2 (Touvron et al., 2023b), as well as visual
LLMs with Visual ChatGPT (Wu et al., 2023) and
MiniGPT-4 (Zhu et al., 2023). We exclusively con-
strain the inputs in a zero-shot setting with only
dense captions and questions for LLMs, while raw
images and questions for frozen visual LLMs. The
results are summarized in Table 9. MAIL outper-
forms the best LLM GPT-4 with 2.36% improve-
ments, attributed to the effective graph medium
fusion that integrates external knowledge. MAIL
also significantly outperforms Visual ChatGPT and
MiniGPT-4 with 17.99% and 5.43% higher accu-
racy. The results shed light on the cross-modal
reasoning ability of MAIL.
Reasoning with PSG Only
In this subsection, we explore the importance of
inter-modality interaction by removing the graph
medium fusion and only relying on PSG for infer-
ence. We list the performance of ‘PSG w/o (GMF)’
in Table 8. The complete multimodal reasoning
with PS-GMF outperforms the version with only
intra-modal learning with 1.16% improvements.
Under this PSG-only setting, we seek to grasp in-
sights into the necessity of graph medium fusion
for fostering effective inter-modality interaction.
Understanding the performance impact of omit-
ting this fusion mechanism supports the value of
shared entities and medium exchange in bridging
the cross-modal interaction and facilitates our pro-
posed modality-aware integration with LLMs.
Ablation with InstructBLIP
To investigate the generalization ability of our pro-
posed MAIL, we adopt InstructBLIP (Dai et al.,
2024) as an alternative LLM to take the place of
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MiniGPT-4. We reconstruct the scene graph and
concept graph based on the newly generated im-
age captions. The main results on OK-VQA are
reported in Appendix Table 10.

4.5 Case Studies

In this section, we answer RQ4 with six real-world
examples from OK-VQA in Figure 3 to shed light
on our effectiveness. Single-hop questions can
be directly inferred with easily accessible infor-
mation from either the visual content or external
knowledge sources, while multi-hop questions
pose more challenges for accurately locating an-
swers several hops away from mentioned entities.

These cases show the adeptness of MAIL in
handling a spectrum of questions, requiring both
straightforward inferences from explicit informa-
tion and complex multi-hop reasoning ability by in-
tegrating implicit knowledge sources. For example,
Figure 3 (a) can be answered based on the visual
information captured by the scene graph without
external knowledge, while the answer of (e) needs
to be artfully inferred from two different angles,
i.e., both the blossom season of sakura and the
warmth of people’s clothes. These can be attributed
to (i) the coupled graph construction that contains
abundant modality-aware knowledge to ground the
reasoning, as well as (ii) the effective design of our
pseudo-siamese graph neural network. It benefits
sufficient preservation of intra-modal information
and adequate cross-modal fusion, resulting in a
powerful multi-hop reasoning ability over both in-
herent visual features and external knowledge.

5 Related Work

KVQA with KGs. Early studies either dedicated
to integrating different knowledge sources (Wang
et al., 2017; Dong et al., 2023b) or proposed var-
ious fusion algorithms for multimodal informa-
tion (Marino et al., 2021). ConceptBERT (Gardères
et al., 2020) constrains the multimodal information
with question embedding and fuses embeddings of
each modality for prediction. MAVEx (Wu et al.,
2022) aims to discern the corresponding knowledge
source for each candidate answer to reduce noise.
KRISP (Marino et al., 2021) captures both implicit
information in both questions, images and KGs.
KVQA with LLMs. Recently, large language mod-
els (LLMs) have surprised the community with
their superior understanding of texts (Guo et al.,
2023). PICa (Yang et al., 2022) first leverages
GPT3 (Brown et al., 2020) as an implicit knowl-

edge source for reasoning by prompting the image
captions and in-context examples. Another pipeline
of studies employs LLMs to generate candidates
or supporting evidence for particular captions, e.g.,
KAT (Gui et al., 2022) and REVIVE (Lin et al.,
2022). While they do not fully leverage the multi-
ple sources of knowledge, we break the limitation
of complex reasoning by developing a tailored mul-
timodal fusion algorithm that balances intra- and
inter-modal learning.

6 Conclusions
We present MAIL, a modality-aware integration with
large language models for knowledge-based visual
question answering. We formally define a novel
multimodal learning paradigm for comprehensive
cross-modal reasoning among multiple knowledge
sources. The knowledge from LLMs is effectively
leveraged via a carefully designed prompting for
coupled graph construction, i.e., scene graph and
concept graph. Then we integrate various multi-
modal information with a tailored pseudo-siamese
graph medium fusion. It effectively enhances a
tight inter-modal interaction and maximally pre-
serves insightful intra-modal processing. MAIL
achieves superiority on two benchmark datasets
while requiring 2∼ 4× faster inferential time than
the existing state-of-the-art baselines.

Limitations
Since the real-world knowledge graphs only con-
tain concrete real-world entities, our KG-based
VQA is naturally limited to being able to answer
subjective questions, e.g., YES/NO and abstract
opinions. We will include this valuable direction
in future work to equip our model with generative
components to handle the subjective questions.
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periments with widely adopted publicly available
datasets. The generated image captions, processed
scene graphs and concept graphs will be open-
sourced for other researchers’ fair reproduction and
further study in the active KVQA community.

Acknowledgements
The work described in this paper was fully sup-
ported by a grant from the Research Grants Council
of the Hong Kong Special Administrative Region,
China (Project No. PolyU 25208322).

2425



References
Ilaria Amaro, Attilio Della Greca, Rita Francese, Gen-

oveffa Tortora, and Cesare Tucci. 2023. Ai unreliable
answers: A case study on chatgpt. In ICHCI, pages
23–40. Springer.

Hedi Ben-Younes, Rémi Cadene, Matthieu Cord, and
Nicolas Thome. 2017. Mutan: Multimodal tucker
fusion for visual question answering. In ICCV, pages
2612–2620.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. NeurIPS, 33:1877–1901.

Shengyuan Chen, Qinggang Zhang, Junnan Dong, Wen
Hua, Qing Li, and Xiao Huang. 2024. Entity align-
ment with noisy annotations from large language
models.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale N Fung, and Steven Hoi.
2024. Instructblip: Towards general-purpose vision-
language models with instruction tuning. Advances
in Neural Information Processing Systems, 36.

Junnan Dong, Qinggang Zhang, Xiao Huang, Keyu
Duan, Qiaoyu Tan, and Zhimeng Jiang. 2023a.
Hierarchy-aware multi-hop question answering over
knowledge graphs. In WWW, pages 2519–2527.

Junnan Dong, Qinggang Zhang, Xiao Huang, Qiaoyu
Tan, Daochen Zha, and Zhao Zihao. 2023b. Active
ensemble learning for knowledge graph error detec-
tion. In WSDM, pages 877–885.

Feng Gao, Qing Ping, Govind Thattai, Aishwarya Re-
ganti, Ying Nian Wu, and Prem Natarajan. 2022.
Transform-retrieve-generate: Natural language-
centric outside-knowledge visual question answering.
In CVPR, pages 5067–5077.

François Gardères, Maryam Ziaeefard, Baptiste Abe-
loos, and Freddy Lecue. 2020. Conceptbert:
Concept-aware representation for visual question an-
swering. In EMNLP, pages 489–498.

Jocelyn Gravel, Madeleine D’Amours-Gravel, and Esli
Osmanlliu. 2023. Learning to fake it: limited re-
sponses and fabricated references provided by chat-
gpt for medical questions. Mayo Clinic Proceedings:
Digital Health, 1(3):226–234.

Liangke Gui, Borui Wang, Qiuyuan Huang, Alexan-
der G Hauptmann, Yonatan Bisk, and Jianfeng Gao.
2022. Kat: A knowledge augmented transformer for
vision-and-language. In NAACL, pages 956–968.

Tao Guo, Song Guo, and Junxiao Wang. 2023. Pfed-
prompt: Learning personalized prompt for vision-
language models in federated learning. In Proceed-
ings of the ACM Web Conference 2023, pages 1364–
1374.

Yangyang Guo, Liqiang Nie, Yongkang Wong, Yibing
Liu, Zhiyong Cheng, and Mohan Kankanhalli. 2022.
A unified end-to-end retriever-reader framework for
knowledge-based vqa. In ICMM, pages 2061–2069.

Agrim Gupta, Jiajun Wu, Jia Deng, and Li Fei-Fei. 2023.
Siamese masked autoencoders. CVPR.

Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo,
Chi Lin, Kristen Grauman, Jiebo Luo, and Jeffrey P
Bigham. 2018. Vizwiz grand challenge: Answering
visual questions from blind people. In CVPR, pages
3608–3617.

Yushi Hu, Hang Hua, Zhengyuan Yang, Weijia Shi,
Noah A Smith, and Jiebo Luo. 2023. Promptcap:
Prompt-guided task-aware image captioning. ICCV.

Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang.
2018. Bilinear attention networks. NeurIPS, 31.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In ECCV, pages 740–
755. Springer.

Weizhe Lin and Bill Byrne. 2022. Retrieval augmented
visual question answering with outside knowledge.
EMNLP.

Yuanze Lin, Yujia Xie, Dongdong Chen, Yichong Xu,
Chenguang Zhu, and Lu Yuan. 2022. Revive: Re-
gional visual representation matters in knowledge-
based visual question answering. NeuIPS, 35:10560–
10571.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Kenneth Marino, Xinlei Chen, Devi Parikh, Abhinav
Gupta, and Marcus Rohrbach. 2021. Krisp: Inte-
grating implicit and symbolic knowledge for open-
domain knowledge-based vqa. In CVPR, pages
14111–14121.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi,
and Roozbeh Mottaghi. 2019. Ok-vqa: A visual
question answering benchmark requiring external
knowledge. In CVPR, pages 3195–3204.

Sahithya Ravi, Aditya Chinchure, Leonid Sigal, Ren-
jie Liao, and Vered Shwartz. 2023. Vlc-bert: vi-
sual question answering with contextualized com-
monsense knowledge. In WACV, pages 1155–1165.

Chen Shengyuan, Yunfeng Cai, Huang Fang, Xiao
Huang, and Mingming Sun. 2024. Differentiable
neuro-symbolic reasoning on large-scale knowledge
graphs. Advances in Neural Information Processing
Systems, 36.

2426

http://arxiv.org/abs/2405.16806
http://arxiv.org/abs/2405.16806
http://arxiv.org/abs/2405.16806


Jiaxin Shi, Hanwang Zhang, and Juanzi Li. 2019. Ex-
plainable and explicit visual reasoning over scene
graphs. In CVPR, pages 8376–8384.

Qingyi Si, Yuchen Mo, Zheng Lin, Huishan Ji, and
Weiping Wang. 2023. Combo of thinking and observ-
ing for outside-knowledge vqa. ACL.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2018.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge.

Ingo Steinwart and Clint Scovel. 2012. Mercer’s theo-
rem on general domains: On the interaction between
measures, kernels, and rkhss. Constructive Approxi-
mation, 35:363–417.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.
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A Appendix

A.1 Generalization study with InstructBLIP
To demonstrate the generalization ability of our pro-
posed MAIL, we adopt a more advanced multimodal
LLM, i.e., InstructBLIP, to replace MiniGPT-4.
Though we lack the subjective ability to answer
YES/NO questions, we have achieved comparable
improvements that significantly demonstrate our-
selves with the nonnegligible merits for KBQA.

A.2 Baselines used on FVQA Dataset
To further demonstrate the generalization abil-
ity of our proposed MAIL, we compare it with
the widely adopted baselines on the first KVQA
dataset FVQA, i.e., XNM (Shi et al., 2019), KI-
Net (Zhang et al., 2021), UnifER (Guo et al., 2022),
MCAN (Yu et al., 2019) and HCNMN (Zhang
et al., 2023b). For external knowledge, KI-Net
uses ConceptNet and Wordnet; UnifER uses Visual-
Bert, LXMERT and ViLT; HCNMN uses WordNet,
WikiText, ConceptNet and Visual Genome.

A.3 Additional Case Studies
Case studies on MiniGPT-4. For fair comparisons,
we further show the prediction results of MiniGPT-
4 over the six examples in Table 11. It can only
answer 2 out of 6 questions, which effectively indi-
cates the superiority of both our task setting with
candidate answers from KGs and the reasonable
design of PS-GMF. From the results, we see that
multimodal LLMs like MiniGPT-4 indeed require a
careful design to be properly utilized so as to max-
imize their ability while solely using it for VQA
could be unreliable.
Case Studies of MAIL w/o GMF. We showcase
the predictions on both single-hop and multi-hop
questions in this subsection without graph medium
fusion in Table 11 line 3. The observation sug-
gests the necessary cross-modal reasoning ability
brought by GMF, where we can answer 3 out of
6 questions while failing the majority of complex
multi-hop questions.
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Method External Knowledge Fusion Strategy Acc. (%)

Q Only - - 14.93

Traditional End-to-end Baselines

RA-VQA T5-large+Google Search Corpus Modality-agnostic 54.48
TRiG T5+Wikipedia Modality-agnostic 49.35

Large Language Model-enhanced Baselines

Pica-Full Frozen GPT-3 (175B) - 48.00
TwO Frozen GPT-3 (175B) - 55.52

KAT (Single) Frozen GPT-3 (175B) + Wikidata Modality-agnostic 53.09
KAT (Ensemble) Frozen GPT-3 (175B) + Wikidata Modality-agnostic 54.41

REVIVE Frozen GPT-3 (175B) + Wikidata Modality-agnostic 53.83
A Simple Baseline4KBVQA Llama2(13B)+PNPVQA Modality-agnostic 59.07

PromptCap - - 60.4
Prophet Frozen GPT-3 (175B) - 61.1

MAIL (ours) Frozen InstructBLIP + ConceptNet Modality-aware 61.77

Table 10: The overall performance comparison on benchmark dataset OK-VQA by using InstructBLIP.

Cases Q1 Q2 Q3 Q4 Q5 Q6

MiniGPT-4 cobblestone firefighter a purple and yellow train sharks springtime catcher
Result ✗ ✗ ✗ ✓ ✗ ✓

MAIL(w/o GMF) brick fire rail currents keep warm in winter catcher
Result ✓ ✓ ✗ ✗ ✗ ✓

Table 11: Additional Case studies on both single-hop and multi-hop questions.
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