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Abstract
We propose LISTT5, a novel reranking ap-
proach based on Fusion-in-Decoder (FiD) that
handles multiple candidate passages at both
train and inference time. We also introduce an
efficient inference framework for listwise rank-
ing based on m-ary tournament sort with output
caching. We evaluate and compare our model
on the BEIR benchmark for zero-shot retrieval
task, demonstrating that LISTT5 (1) outper-
forms the state-of-the-art RankT5 baseline with
a notable +1.3 gain in the average NDCG@10
score, (2) has an efficiency comparable to
pointwise ranking models and surpasses the
efficiency of previous listwise ranking mod-
els, and (3) overcomes the lost-in-the-middle
problem of previous listwise rerankers. Our
code, model checkpoints, and the evaluation
framework are fully open-sourced at https:
//github.com/soyoung97/ListT5.

1 Introduction

Recent advancements on neural information retriev-
ers have made significant progress in their semantic
search capabilities. However, they still struggle in
zero-shot or out-domain tasks where statistical re-
trievers such as BM25 (Robertson and Zaragoza,
2009) often outperform, a crucial challenge since
the setting is closely related to real-world scenarios.

Until now, the field of zero-shot reranking
has been generally driven by cross-encoder mod-
els (Rosa et al., 2022) such as MonoT5 (Nogueira
et al., 2020) or RankT5 (Zhuang et al., 2022).
These models rely on pointwise reranking of each
passage, and thus lacks the ability to compare be-
tween passages relatively at inference time. This
could lead to a suboptimal solution in the task of
reranking, where discrimination and ordering be-
tween passages are crucial.

Recently, listwise reranking models (Ma et al.,
2023; Sun et al., 2023b,a), which evaluates multiple
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Figure 1: Operating unit of LISTT5. LISTT5 jointly
considers multiple (5) candidate passages at once using
FiD, each concatenated with the query and an identifier.
The output is an ordered list of the identifiers (numbers)
where the most relevant passage comes at the last.

passages together, is gaining attention for its effec-
tiveness in zero-shot retrieval. Listwise rerankers
can condition on and compare multiple passages
to calibrate the relevance scores better, and can
reduce the inaccuracy of zero-shot predictions aris-
ing from domain shift, as theoretically supported
by Xian et al. (2023), and empirically evidenced by
a line of works such as Ma et al. (2023); Sun et al.
(2023a).

However, existing approaches that attempt list-
wise reranking have limitations. DuoT5 (Pradeep
et al., 2021) implements pairwise reranking, a form
of listwise reranking as pair, which incurs quadratic
time complexity to the number of candidate pas-
sages. On the other hand, listwise reranking using
Large Language Models (LLMs) (Pradeep et al.,
2023a; Sun et al., 2023b,a; Ma et al., 2023) sacrifice
efficiency in another aspect due to large parametric
model size, and also face the "Lost in the middle"
problem (Liu et al., 2023; Tang et al., 2023).

In this work, we present LISTT5 (Fig. 1), a novel
listwise approach for zero-shot reranking that over-
comes the aforementioned limitations. LISTT5
jointly considers the relevancy of multiple candi-
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date passages at both training and inference time
based on Fusion-in-Decoder (FiD) (Izacard and
Grave, 2021) architecture. It outputs a sorted list of
input passages in the increasing order of relevance,
and employs a novel tournament tree structure at
inference time for efficient sorting. With these,
LISTT5 provides the following contributions:

(1) Computational Efficiency. LISTT5 im-
proves efficiency over previous methods in two
aspects. First, for reranking top-k passages given
n candidates, LISTT5 achieves O(n + k log n)
asymptotic cost, lower than O(n2) of pairwise
methods and comparable to O(n) of pointwise
methods (Sec. 3.2). We empirically demonstrate
such efficiency through FLOPs analysis (Sec. 4.4).
Second, while previous listwise reranking methods
relied on LLMs to process long listwise inputs, we
show that adopting FiD removes the dependency on
LLMs and allows us to perform listwise reranking
with smaller and more parameter efficient architec-
tures, such as T5-base (Tab. 3).

(2) Robustness to Positional Bias. In addition
to efficiency, we show that LISTT5 overcomes the
“Lost in the middle” problem commonly encoun-
tered in LLM-based listwise rerankers (Liu et al.,
2023) which tend to be positionally biased to pas-
sages presented in the first and last parts of the
listwise input (Sec. 4.5) and are more robust to the
change in initial ordering of the passage (Sec. 4.6).
We attribute the robustness of LISTT5 to such bias
to the nature of FiD, which distinguishes each input
passage with identifiers, instead of positions as in
LLMs.

(3) Zero-shot Performance. On top of ef-
ficiency and robustness, listwise reranking with
LISTT5 demonstrates strong performance in zero-
shot retrieval, compared to not only the pointwise
and pairwise methods, but also listwise methods
based on LLMs that are argued to be specialized
for zero-shot (Pradeep et al., 2023a,b). Specifically,
on the BEIR benchmark for zero-shot retrieval, our
approach using T5-3B surpasses state-of-the-art
methods including pointwise RankT5 (+1.4 gain
in NDCG@10) (Tab. 2) and listwise RankZephyr
(+1.4 gain in NDCG@10) (Tab. 3). We further
perform a comprehensive ablation study and find
that our key components, such as tournament sort
(App. J) and generating in the increasing order of
relevance, benefit zero-shot retrieval (Sec. 4.7).

2 Related Work

2.1 Generative Models for Reranking
In the reranking scenario, rather than dual encoder
models (Karpukhin et al., 2020) which separately
encode query and passage information, models that
see query and passage information jointly at infer-
ence time (Reimers and Gurevych, 2019; Nogueira
et al., 2020) are shown to be effective for zero-shot
retrieval (Rosa et al., 2022). Among those, formu-
lating reranking as sequence generation, such as
conducting listwise sorting (Ma et al., 2023; Sun
et al., 2023b; Pradeep et al., 2023a) or generating
rationales (Ferraretto et al., 2023), has shown an
advantage in application to zero-shot retrieval by
leveraging the language model’s auto-regressive
generation capabilities. Specifically, a series of
studies that use the encoder-decoder architecture
of T5 (Sec. 2.2), and applying zero-shot reranking
with LLMs (Sec. 2.3), or viewing reranking as au-
toregressive text generation problem (Wang et al.,
2024) has been successful.

2.2 Listwise Reranking for T5
MonoT5 (Nogueira et al., 2020) leaverages pre-
defined token probabilities (i.e., true/false) as rel-
evance scores at inference time. RankT5 (Zhuang
et al., 2022) introduces listwise training loss but
both MonoT5 and RankT5 performs pointwise
reranking at inference time. Built on top of
MonoT5, DuoT5 (Pradeep et al., 2021), imple-
ments pairwise reranking, showing superior perfor-
mance. However, DuoT5 only sees two passages
at each prediction, and is inefficient as it has to run
prediction on every pair of candidate passages (thus
requiring n2 − n predictions to rerank n passages).

2.3 Listwise Reranking with LLMs
A line of work (Sun et al., 2023b; Pradeep et al.,
2023a; Ma et al., 2023; Pradeep et al., 2023b;
Qin et al., 2023) implements listwise reranking
to LLMs, usually in a format of taking multiple
(20) passages as input with the sliding window ap-
proach. However, this format presents a challenge
due to the monolithic and lengthy input size. The
model must process all tokens at once, limiting
its applicability to LLMs trained with large con-
text lengths. The lengthy input size also leads to
the "lost in the middle" problem (Liu et al., 2023)
for LLMs, exhibiting strong positional bias to the
information in the first and last parts of long in-
puts, failing to comprehend relevant information
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Figure 2: Two variants of LISTT5, (r=1) and (r=2). The
underlying model is identical and only the inference
method varies. (r=1) keeps only the top 1 relevant index
from the output, and (r=2) keeps top 2 relevant indices.

in the middle. This problem is also prevalent in
listwise reranking (Tang et al., 2023). Furthermore,
this approach comes at the cost of sacrificing com-
putational efficiency in the already computation-
intensive reranking scenarios.

2.4 Listwise Reranking with m-ary Units
Ai et al. (2019) is in a similar spirit to ours, as they
define a basic ranking unit on m elements and ex-
tends it to rank the list of n(≫ m) elements. How-
ever, while they consider an intractable number of
all m! orderings of all m-sized subsets and then
employ Monte Carlo sampling for approximation,
we use m-ary tournament sort algorithm which is
complete and efficient by construction (Sec. 3.2).

3 Methods

Our method LISTT5 for listwise reranking has two
components: (1) the basic operating unit that takes
a fixed number of m passages and ranks the top-r
based on FiD, and (2) an extension of this basic
unit that takes full n passages and ranks the top-k
based on tournament sort. We describe the basic
unit in Sec. 3.1 and its extension in Sec. 3.2.

3.1 Basic Operating Unit (m → r)
The basic operating unit of LISTT5 processes a
fixed number of m input passages and outputs top-
r passages (m → r), as in Fig. 2. We develop the
basic unit upon the Fusion-in-Decoder (FiD) archi-
tecture (Izacard and Grave, 2021), which modifies
the Encoder-Decoder structure of T5 (Raffel et al.,
2020) to process listwise inputs efficiently. Specif-
ically, given a query q and a list of m candidate
passages [p1, ...,pm], our basic unit concatenates
each passage pi with its index identifier i and the
query q in the following format, and then feeds
them to Encoder to obtain their full sequence token
embedding hi:

hi = Enc("Question: q, Index: i, Context: pi")
(1)

In Eq. (1), notice that each passage pi is encoded
separately. Listwise reasoning upon multiple pas-
sages p1, ...,pm is handled by the decoder. Specif-
ically, the encoded representations [h1, ...,hm] are
concatenated to a single sequence and fed to the
decoder, which performs listwise ranking and auto-
regressively generates an ordered sequence of the
passage indices (identifiers) [i′1, ..., i

′
m] in the in-

creasing order of relevance:

[i′1, ..., i
′
m] = Dec(concat[h1, ...,hm]),

where rel(q,pi′1
) < ... < rel(q,pi′m) (2)

Importantly, in Eq. (2), notice that the decoder gen-
erates output passages from the least relevant one
i′1 to the most relevant one i′m. This is different
from previous listwise rerankers (Sec. 2.3), which
generate from the most relevant passage index. Our
rationale is that generating from the least relevant
to the most relevant can be beneficial, as it may
act a reasoning chain that progressively eliminates
irrelevant passages to deduce the most relevant
passages. One can imagine solving a confusing
multiple-choice question; crossing out the options
that are definitely not the answer until the last re-
maining option serves as a good strategy.

After the decoder ranks all m input passages,
we decide the number r of relevant passages we
will keep as the output of the basic operating unit.
Namely, LISTT5 (r = 1) keeps one, so only [pi′m ]
is selected as the output. LISTT5 (r = 2) keeps
two, selecting [pi′m ,pi′m−1

] as the output. Larger
choices of r are possible in principle, but since we
have observed saturation of performance for r > 2
in early trials, we only use the r = 1 and r = 2
variants of the basic unit in our experiments. For m,
we set its value to 5 in our experiments. Ablations
on the choice of m can be found at App. B.1.

3.2 Extension with Tournament Sort (n → k)
While the basic operating unit of LISTT5 (Sec. 3.1)
reranks a fixed number of m (= 5) passages, our
end goal is to rerank k passages given a much larger
number of n (≫ m) candidate passages. This ne-
cessitates an algorithm to extend the basic unit
(m → r) to full reranking (n → k). For the simi-
lar purpose, previous listwise rerankers (Sec. 2.3)
has mostly used the sliding window algorithm. In
these, an operating unit m → r, typically an LLM,
is slided over the n candidate passages, and at each
step m passages are locally reranked and reordered.
After the sliding is done, the top k passages are
used as the output of global reranking.
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However, we observe that sliding window has
a drawback. Since a window of size m can only
"cache" up to m passages, full reranking n → k is
bound to be inaccurate when k is set to be > m. In
such cases, it is necessary to run the whole sliding
over the entire n passages multiple times (e.g., ⌈ k

m⌉
times). Each sliding run would cost O(n) asymp-
totically, which can be computationally demanding
given n ≫ m. Therefore, for LISTT5, we opt into
developing a novel algorithm that does not require
multiple evaluations over the entire n passages.

Our inference algorithm for LISTT5 that ex-
tends the basic unit (m → r) to full reranking
(n → k) is inspired by the tournament sort algo-
rithm (McLuckie and Barber, 1986) (App. C.1).
Given n inputs, tournament sort ranks top-k by (1)
constructing a binary tournament tree of n inputs
where the root is the top-1 element, and (2) run-
ning k iterations of extracting the root and re-doing
the tournament with the remaining inputs. Here,
a crucial property is that once the tournament tree
has been constructed, re-doing the tournament only
requires recomputing a single path that traverses
from a leaf to the root. As a result, most of the
nodes and edges can be cached and reused over the
k iterations, and each iteration only costs O(log2 n)
asymptotically. Unlike sliding window, multiple
evaluations over the entire n inputs is avoided.

Based on tournament sort, our inference algo-
rithm n → k for LISTT5 is defined by (1) extend-
ing from binary to m-ary tournament trees, and (2)
invoking the basic unit m → r (Sec. 3.1) at each
node of the tournament tree. Specifically, given
an arbitrary number of n passages, we perform a
bottom-up comparison using the basic unit to con-
struct an m-ary tournament tree. Then, we run
k iterations of extracting the top-1 passage at the
root and re-doing the tournament by recomputing
a single path from the replaced leaf to root. In this
way, the model can rank top-k passages from an
arbitrary number of n passages while inheriting the
efficiency of tournament sort. Fig. 3 illustrates our
inference algorithm using LISTT5 (r = 1) as the
basic unit. Further details can be found at App. C.

Asymptotic Complexity. We now present an
asymptotic analysis of the cost of listwise rerank-
ing n → k with LISTT5 using a basic unit m → r.
At the first iteration of tournament sort, we need to
construct the full tournament tree, which amounts
to n( 1

m + r
m2 + r2

m3 + ...) = n
m

m
m−r evaluations

which is O(n). In each iteration afterwards, we

Method Name
Reranking
Method

Complexity

MonoT5 (Nogueira et al., 2020),
RankT5 (Zhuang et al., 2022)

Pointwise O(n)

DuoT5 (Pradeep et al., 2021) Pairwise O(n2)

ListT5 (Ours) Listwise O(n+ k log n)

Table 1: Comparison of the computational complexity
of different ranking methods on obtaining top-k pas-
sages from n candidate passages. The base of the log
function is m. LISTT5 achieves O(n + k log n), or
O(n + n log n) when n = k, which is way better than
pairwise models, competitive with pointwise models,
and is in fact the best possible (worst-case asymptotic)
complexity for sorting algorithms based on compar-
isons (Ren et al., 2018)1.

only need to recompute a single path from the
leaf to root to compute the top-1, resulting in an
asymptotic cost of O(logm n). With k iterations,
LISTT5 achieves O(n+k logm n) asymptotic cost
for reranking top-k from n candidate passages. If
we compare this complexity with others (Tab. 1),
we can see that LISTT5 is more efficient than pair-
wise reranking models of O(n2) (Pradeep et al.,
2021), and comparable to pointwise models of
O(n) (Nogueira et al., 2020; Zhuang et al., 2022).

4 Experiments

4.1 Overview

In this section, after explaining the training and
evaluation details, we present three main results
in the following order: (1) General performance
and efficiency comparison of our models with re-
spect to pointwise and listwise ranking models at
Sec. 4.4, (2) Analyzing the lost-in-the-middle prob-
lem by measuring the robustness to positional bias
between LISTT5 and listwise ranking models at
Sec. 4.5, and (3) Ablation experiments on the de-
sign choice at Sec. 4.7. All results are based on the
T5-base model except explicitly mentioning 3B.

4.2 Training

To train LISTT5, we use the official train subset
of the MS MARCO (Bajaj et al., 2018) passage
ranking dataset.2 The dataset consists of 532,761
distinct queries and 8.8M passages, with binary
annotations of relevancy. Since the ordering of rel-

1https://en.wikipedia.org/wiki/
Comparison_sort

2https://microsoft.github.io/msmarco/
Datasets

2290

https://en.wikipedia.org/wiki/Comparison_sort
https://en.wikipedia.org/wiki/Comparison_sort
https://microsoft.github.io/msmarco/Datasets
https://microsoft.github.io/msmarco/Datasets


Figure 3: Illustration of our inference framework using m-ary tournament sort, with LISTT5 (r = 1) as the basic
unit. Given n candidates, we can order top-k most relevant passages in O(n+ k log n) asymptotic complexity. We
can use either (r = 1) or (r = 2) for the basic unit, but the uppermost unit always outputs 1 (r = 1). We fix m to 5 in
our experiments. Full illustration at Appendix Fig.7.

BM25 Top-100 BM25 Top-1000

Initial
MonoT5

-base
RankT5

-base

ListT5
-base
(r=2)

MonoT5
-3B

RankT5
-3B

ListT5
-3B

(r=2)

MonoT5
-base

RankT5
-base

ListT5
-base
(r=2)

TREC-COVID 59.5 78.3 77.7 78.3 79.8 81.7 84.7 78.3 79.1 82.1
NFCorpus 32.2 35.7 35.1 35.6 37.3 37.4 37.7 36.1 35.3 36.1
BioASQ 52.2 55.3 58.2 56.4 57.5 58.3 58.3 52.6 57.6 55.0
NQ 30.5 52.1 53.2 53.1 56.4 57.8 56.2 55.9 57.6 57.5
HotpotQA 63.3 71.2 72.8 72.6 74.3 74.8 75.6 70.9 73.8 73.6
FiQA-2018 23.6 39.2 39.2 39.6 46.0 45.2 45.1 41.2 41.1 41.8
Signal-1M (RT) 33.0 32.0 30.8 33.5 32.2 31.9 33.8 29.3 28.6 30.9
TREC-NEWS 39.5 48.0 45.4 48.5 48.3 49.5 53.2 47.8 45.9 50.9
Robust04 40.7 53.4 54.3 52.1 58.5 58.3 57.8 55.4 57.2 54.7
Arguana 40.8 34.4 35.5 48.9 46.8 37.4 50.6 24.2 26.6 46.9
Touche-2020 44.2 29.6 37.1 33.4 32.5 38.8 33.6 26.4 37.0 31.5
CQADupStack 30.0 38.6 37.0 38.8 41.3 40.3 42.1 40.1 38.1 40.5
Quora 78.9 84.6 83.3 86.4 84.0 83.6 86.9 84.2 82.9 86.4
DBPedia 31.8 42.8 43.7 43.7 44.8 45.0 46.2 43.1 45.1 44.9
SCIDOCS 14.9 16.7 16.8 17.6 19.0 18.9 19.5 17.0 17.1 18.0
FEVER 65.2 78.4 77.6 79.8 80.0 79.8 82.0 77.9 77.8 81.0
Climate-FEVER 16.5 23.1 21.2 24.0 26.2 24.5 24.8 23.3 20.6 24.9
SciFact 67.9 73.1 73.5 74.1 76.3 77.1 77.0 73.3 73.6 74.9

Average 42.5 49.3 49.6 50.9 52.3 52.2 53.6 48.7 49.7 51.8

Table 2: Comparison of LISTT5 against pointwise ranking models, on BEIR, in NDCG@10. MS MARCO-Top1000
results for 3B models are omitted due to their long inference time. LISTT5-base excels in both performance and
model size (than MonoT5-3B or RankT5-3B) for datasets in red.

evancy between negative passages is not provided,
we use a dual-encoder retrieval model, specifically
COCO-DR large (Yu et al., 2022), to retrieve Top-
1000 passages and label relevance scores of nega-
tives for the training dataset of MS MARCO. Ex-
periments using GTR (Ni et al., 2022), the same
model used to build the training data for Zhuang
et al. (2022), are reported at Appendix. B.2. For
each query-positive passage pair, we randomly sam-

ple 20 groups of m− 1 distinct negative passages.
We randomly shuffle the positive and negative pas-
sages and assign identifiers {1, ...,m} to them to
form each training data.

We train T5 with two different model sizes: base
and 3B. We conduct grid search (App. F) on the
subset of BEIR on the learning rate and number
of steps in a reasonable range and report the best
scores. As a result, we report the T5-base model
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TREC-
DL19

TREC-
DL20

TREC-
COVID

NFC-
orpus

Signal-
1M (RT)

TREC-
NEWS

Robu-
st 04

Touche-
2020

DBP-
edia

Sci-
Fact

Avg (In-
domain)

Avg
(BeIR)

DuoT5-base 71.4 67.4 80.1 35.0 31.4 49.1 49.6 31.8 43.9 69.6 69.4 48.8
LISTT5-base (r = 2) 71.8 68.1 78.3 35.6 33.5 48.5 52.1 33.4 43.7 74.1 70.0 49.9

RankGPT (GPT3.5) 65.8 62.9 76.7 35.6 32.1 48.9 50.6 36.2 44.5 70.4 64.4 49.4
RankVicuna-7b 68.9 66.1 80.5 33.2 34.2 46.9 48.9 33.0 44.4 70.8 67.5 49.0
RankZephyr-7b 73.9 70.9 84.0 36.7 31.8 52.6 54.3 33.8 44.6 74.9 72.4 51.6
LISTT5-3B (r = 2) 71.8 69.1 84.7 37.7 33.8 53.2 57.8 33.6 46.2 77.0 70.5 53.0

Table 3: Comparison of LISTT5 against listwise (RankGPT, RankVicuna, RankZephyr) and pairwise (DuoT5)
ranking models, in NDCG@10. Initial results are from BM25 Top100. The scores of RankGPT (with GPT-3.5-
turbo-0301) are from the RankGPT paper, and the best scores are in bold. DuoT5 is applied on top 50 passages
reranked by MonoT5. LISTT5 excels the pairwise counterparts as well as the previous listwise ranking models on
the selected subset of BEIR.

trained for 20k steps with a learning rate of 1×10−4

and T5-3B for 3k steps with a learning rate of
1× 10−5, both with linear learning rate scheduler
with 10% warmup and an effective batch size of
256 in bfloat16 precision. Maximum input length
is set to 230 and 128, and the maximum output
length to 7 for T5-base and T5-3B, respectively.
With DeepSpeed stage 2 optimization, training T5-
base took approximately 8 hours on 4×NVIDIA
RTX A6000 GPUs with 48GB, while T5-3B train-
ing took 3 hours on 8×NVIDIA A100 GPUs with
40GB.

4.3 Evaluation

We measure the evaluation performance on the of-
ficial dev set of MS MARCO (passage ranking
dataset), TREC-DL19, and TREC-DL20 (Craswell
et al., 2021) for in-domain performance, and the
BEIR benchmark (Thakur et al., 2021) for zero-
shot out-domain performance. BEIR contains 18
diverse sets of domains and tasks. We download
the dumped index of the Top-100 and Top-1000
retrieved passages by BM25 from the official Py-
serini repository. Reranking results using advanced
first-stage retrieval models (e.g., COCO-DR) are re-
ported at App. D.1. We use the evaluation metric of
the Normalized Discounted Cumulative Gain@10
(NDCG@10) (Järvelin and Kekäläinen, 2002), the
official evaluation metric for BEIR (Thakur et al.,
2021). All reported scores are rounded to the near-
est tenth. We also report the Mean Reciprocal
Rank@10 (MRR@10) scores at App. Tab. 11. For
reproducibility, we include the evaluation details
including details to run baseline models and links
for dataset download at App. G.

Figure 4: Real-time FLOPs comparison of the models
on T5-base, including DuoT5 and the sliding window
variants of LISTT5. The reported BEIR performance is
averaged from a subset of BEIR, same as in Tab. 3.

4.4 Zero-shot performance and efficiency.

Performance. We measure and compare the
performance of LISTT5 against pointwise rank-
ing models (MonoT5 (Nogueira et al., 2020),
RankT5 (Zhuang et al., 2022)) in Tab. 2,
and against pairwise and listwise ranking mod-
els (DuoT5 (Pradeep et al., 2021), RankVi-
cuna (Pradeep et al., 2023a), RankZephyr (Pradeep
et al., 2023b)) in Tab. 3. LISTT5 (r = 2) achieves
an average of +1.3 point gain on NDCG@10 than
RankT5 for reranking on BM25 Top-100. Also, the
gain from listwise reranking improves even further
when we rerank from BM25 Top-100 to Top-1000.
While pointwise models show small performance
difference from BM25 Top-100, LISTT5 improves
from 50.9 to 51.8, additional 0.9 % gain from
BM25 Top-100. Additionally, LISTT5 also excels
on 3B model variants, outperforming RankVicuna-
7b and RankZephyr-7b on the selected subset of
BEIR. We additionally provide qualitative analysis
at App. I.
Efficiency in FLOPs. In addition to comparing the
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TREC-COVID FiQA

Accuracy when positive passage
is at index # :

Aggrement
ratio (↑)

Accuracy when positive passage
is at index #:

Aggrement
ratio (↑)

1 2 3 4 5 Std. (↓) 1 2 3 4 5 Std. (↓)

GPT-3.5 81.6 63.3 75.5 67.3 61.2 7.7 55.1 88.3 68.1 78.7 65.9 75.8 8.0 62.1
GPT-4 95.9 83.7 73.5 77.6 71.4 8.8 69.4 94.6 90.5 84.4 86.8 84.8 3.9 82.8
DuoT5 91.3 76.0 - - - 7.6 79.6 89.9 76.9 - - - 6.5 78.1
LISTT5 93.9 87.8 83.7 85.7 81.6 4.2 83.7 85.3 85.6 82.2 83.3 82.6 1.4 90.4

Table 4: Robustness to the position of the positive passage in the input, on TREC-COVID and FiQA. GPT-3.5, GPT-
4, DuoT5, and LISTT5 stands for GPT-3.5-turbo-1106, GPT-4-0613, DuoT5-base, and LISTT5-base, respectively.
Using the FiD structure effectively mitigates the problem of the positional bias of positive passages, showing lowest
standard deviation and highest agreement ratio.

computational complexity in Sec. 3.2, we also con-
duct real-time measurements of floating point oper-
ations (FLOPs) using the FlopsProfiler of the Deep-
Speed library3. We measure the FLOPs needed to
rerank Top-10 passages from BM25-Top100 can-
didate passages for TREC-DL19 (43 queries, max-
imum input length of 256) on T5-base, run the
profiler, and report the relative FLOPs when we
set the FLOPs of MonoT5 (pointwise model) as 14.
We also report the performance and FLOPs of the
sliding window variants of LISTT5, with details
at App. J. The results in Fig. 4 shows that LISTT5
(r=1) and (r=2) are comparable with MonoT5 and
RankT5 (pointwise ranking models), and much
more efficient than DuoT5 (pairwise ranking mod-
els). Also, tournament sort uses output caching
to lower down FLOPs than the sliding window
variants, with better performance, on the real-time
FLOPs calculation (App. J). Additionally, we can
parallize computation of the same level (e.g., leaf
node) within query for tournament sort, while the
sliding window approach should be computed se-
quentially. Even better, the LISTT5 model is flex-
ible - according to their needs, users can have the
choice to select between the trade-off of inference
speed (r=1) and performance (r=2), an option not
available for other models.

4.5 Robustness to Positional Bias

Background. One of the biggest problems of
lengthy input of zero-shot listwise rerankers is the
lost in the middle problem (Liu et al., 2023). Re-
cent studies show that LLMs exhibit strong posi-
tional bias to the information in the first and last

3https://deepspeed.readthedocs.io/en/
latest/flops-profiler.html

4The exact value of FLOPs for MonoT5 in this setup was
229,732,539,806,400.

Figure 5: Measuring the robustness to positional bias
by shuffling the index of the relevant passage. 4 is the
gold (ground truth) relevant passage in the figure.

parts of the input, and often fail to comprehend
relevant information in the middle of a long input.
A recent work also pointed out that this positional
bias problem is also prevalent in applying LLMs
to listwise reranking (Tang et al., 2023). The main
problem arises from the different assignment of
positional encoding. We believe using the FiD ar-
chitecture effectively addresses this issue, as each
passage is processed by the encoder with identi-
cal positional encoding. Consequently, the decoder
cannot exploit positional bias. To validate our state-
ment, we conduct a comparative study to answer
the following questions:

(1) How sensitive is the accuracy of each model
to the position (location) of the positive passage?

(2) How often does each model consistently
point to the same passage under position changes?

Baseline Models. We experiment with DuoT5
as representative for pairwise methods, and
GPT3.5-turbo-1106 and GPT-4-0613 from Ope-
nAI (OpenAI, 2022), the main model used for
RankGPT (Sun et al., 2023b), as representative
for listwise reranking methods. Note that we only
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consider the top-1 prediction of each model, so the
choie of LISTT5 (r=1) and (r=2) does not affect
the metric. Detailed explanation about setups with
example prompts are in Appendix H.

Experiment and Data Setup. We use the BM25
top 100 retrieved results from the FiQA-2018 and
TREC-COVID test subset. For listwise ranking
models, we randomly sample negative passages
per every positive passage in every query to make
groups of [1 positive, 4 negatives].5 Since pairwise
models only take 2 passages for input, we addi-
tionally split the original group into 4 groups of
[1 positive, 1 negative] for DuoT5. Similar with
Tang et al. (2023), we measure the accuracy and
agreement ratio after swapping the order of posi-
tive passages for each group (Fig. 5). The results
in Tab. 4 show that (1) our model suffers less from
the positive index change with (2) a higher agree-
ment ratio. Since each passage is distinguished
by identifiers instead of positions, LISTT5 effec-
tively overcomes the positional bias from long in-
puts by separately encoding each query-passage
pair at the encoder and aggregating the output at
the decoder. Still, the decoder can utilize and inte-
grate the encoded information of all passages and
effectively perform listwise reranking, achieving a
better zero-shot performance than LLMs (Tab. 3)
or non-listwise counterparts (Tab. 2).

4.6 Impact of initial ordering

All listwise reranking methods, including the tour-
nament sort and the sliding window approach, de-
pends on the initial ordering returned by the first-
stage retriever (e.g., BM25). This may leave a
room for ordering sensitivity. To investigate this,
we experiment on DL19, DL20, and the selected
subset of BEIR, to measure the robustness of initial
ordering. For each dataset, we shuffle the initial
ordering of candidate passages on 3 different seeds
(seed 0,1,2) and report the average score. The re-
sults from Table 5 show that (1) ordering sensitiv-
ity is indeed prevalent in previous listwise rerank-
ing models, and that (2) using LISTT5 with FiD
greatly reduces the sensitivity in general (in line
with our findings in Section. 4.5), and (3) When
using LISTT5, tournament sort is in general more
robust to ordering change (-0.4 drop in average
performance), compared to sliding windows (-1.2

5For TREC-COVID, one positive passage were sampled
from each query since it has an average of 493 positive pas-
sages per each query.

Initial
ordering

DL19 DL20
TREC-
COVID

TREC-
NEWS

Touche
-2020

Avg.

ListT5-base (tournament sort, r=2)

No shuffle 71.8 68.1 78.3 48.5 33.4 60.0
Shuffle 71.2 68.1 77.2 48.9 32.8 59.6
Perf. drop -0.4

ListT5-base (sliding windows, stride=3, iter=4)

No shuffle 71.8 67.7 77.5 50.0 33.1 60.0
Shuffle 69.5 65.5 77.7 49.2 32.1 58.8
Perf. drop -1.2

RankVicuna-7b (sliding windows)

No shuffle 68.9 66.1 80.5 46.9 33.0 59.1
Shuffle 67.1 64.6 79.2 45.3 30.8 57.4
Perf. drop -1.7

RankGPT-3.5 (sliding windows)

No shuffle 68.4 64.9 72.6 46.5 38.2 58.1
Shuffle 62.5 57.0 66.1 38.3 22.8 49.3
Perf. drop -8.8

Table 5: NDCG@10 results before and after randomly
shuffling the initial top-100 ordering of BM25. Evalua-
tion results for RankGPT-3.5 are run 3 times and aver-
aged to compensate for the unstability of the API output.
While RankGPT-3.5 suffers heavily after shuffling (-8.8
drop in performance), ListT5 with tournament sort is
relatively robust to the initial order shuffling.

Figure 6: Variants of the output format of listwise rank-
ing models while fixing the input.

drop). This means that LISTT5 with tournament
sort can perform in a robust way even in condi-
tions where the initial ordering is not very trustable,
which is mostly the case for zero-shot retrieval
tasks.

4.7 Ablation Study

To break down the role of each feature in our
method, we perform experiments with different
variants of our model (Fig. 6) in Tab. 6. Additional
ablation experiments, such as varying m, are in
App. B.1.

r = 1 vs r = 2. Conducting inference by (r = 2)
improves the average BEIR performance by 0.3,
compared with that of (r = 1). Since this gain is
also applicable to the Relevant First variants, which
is the model trained to generate relevant index first,
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Dataset Relevant
Discrimi-

nation

Relevant First Relevant Last
(ListT5)

(r = 1) (r = 2) (r = 1) (r = 2)

In-domain

MS MARCO 40.3 40.8 40.9 40.7 40.7
TREC-DL19 72.5 69.6 70.8 71.2 71.8
TREC-DL20 67.3 67.0 66.8 67.3 68.1

Avg (in-domain) 60.0 59.1 59.5 59.7 60.2

Out-domain (BEIR)

TREC-COVID 74.0 74.9 75.9 76.7 78.3
NFCorpus 34.8 35.5 35.6 35.5 35.6
BioASQ 55.8 56.6 56.6 57.2 56.4
NQ 51.1 52.7 52.9 52.0 53.1
HotpotQA 70.9 72.5 72.6 72.1 72.6
FiQA-2018 38.1 39.3 39.0 39.5 39.6
Signal-1M (RT) 32.9 31.8 31.7 33.3 33.5
TREC-NEWS 43.9 46.6 47.3 47.9 48.5
Robust04 49.8 52.3 52.3 52.0 52.1
Arguana 26.1 32.8 34.6 49.7 48.9
Touche-2020 34.2 31.5 31.3 34.2 33.4
CQADupStack 38.8 38.3 38.4 38.4 38.8
Quora 81.9 84.4 84.8 86.1 86.4
DBPedia 42.4 43.4 43.6 43.9 43.7
SCIDOCS 16.3 17.3 17.3 17.2 17.6
FEVER 77.6 77.4 77.7 77.8 79.8
Climate-FEVER 20.7 22.8 23.0 22.8 24.0
SciFact 73.0 74.1 74.2 74.1 74.1

Avg (BEIR) 47.9 49.1 49.4 50.6 50.9

Table 6: NDCG@10 results at in-domain and BEIR
on varying the output format and generation order of
passages. Generating from the least relevant passages
shows better average performance on BEIR.

we hypothesize that r = 2 serves as giving a sec-
ond chance for the model to view passages with
different candidates to make a decision with differ-
ent viewpoints, where there are confusing passages
(hard negatives), resulting in better ability to rank.

Discrimination vs Sequential Sorting. Given
the same setup and dataset, we also train the model
to output only relevant index, annotated as Rel-
evant Discrimination, similar to Hofstätter et al.
(2022). However, the Relevant Discrimination
model shows the lowest performance amongst all
model variants (47.9). We hypothesize that training
the model to distinguish and order between nega-
tives provides additional information for the model.
While tasks that only generate positive indexes only
learn the decision boundary between positive and
negative contexts, learning to order negatives pro-
vides more informative signals and more accurate
ranking results, since the model additionally learns
to calibrate between any kind of passages.

Relevant First vs Relevant Last (LISTT5). We
also compare models by changing the ordering of

the output. Compared to LISTT5, Relevant first
shows a performance drop of 1-2 points in average
on BEIR. As explained at Sec. 3.1, we conclude
that generating in reversed order is important, as it
effectively eliminates false negatives and acts as a
reasoning chain.

5 Conclusion

We proposed LISTT5, a FiD-based listwise rerank-
ing model that jointly considers multiple passages
as input and generates an ordered list of passages,
in increasing order of relevance. LISTT5 outper-
forms others in BEIR, with a remarkable +1.3 gain
of average NDCG@10 performance. LISTT5 is
efficient, leveraging tournament sort to its advan-
tage. Finally, we show that LISTT5 overcomes
the lost-in-the-middle problem in LLMs, and are
more robust regardless of the initial ordering of the
passage.
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6 Limitations

We believe that the efficiency of our models can be
greatly optimized using simple ideas. For example,
if we can implement early stopping at sequential
decoding (assuming that the model outputs permu-
tation of 5), we can reduce the decoding step by
80% for LISTT5 (r=1) and 60% For LISTT5 (r=2).
There could also be other options, such as design-
ing a more efficient way that uses the tournament
sort with fewer number of forward passes, efficient
way of encoder output caching, and extension to
other langauges or other architectures.

We believe there are still space for optimization
of LISTT5, for example trying out m other than
5 or 10, exploring with different learning rate or
batch size on training, and so on. However, we
were only able to experiment a few due to resource
and time limitations.

Our results are mainly reported with BM25 Top-
100, BM25 Top-1000, and COCO-DR Top-100
as first-stage retrieval modules. Also, our main
results are based on the T5-base model and only
a few were experimented with 3B models, due to
the resource constraints. We hope to evaluate on
extended setups for future work.
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m = 5 ( = LISTT5) m = 10

1/5
(r=1)

2/5
(r=2)

3/5
(r=3)

4/5
(r=4)

1/10
(r=1)

4/10
(r=4)

MS MARCO 40.7 40.7 - - 40.5 40.7
+ Top-1000 44.7 44.9 - - 44.6 45.0

TREC-DL19 71.2 71.8 - - 70.1 70.5
TREC-DL20 67.3 68.1 - - 66.9 67.2

TREC-COVID 76.7 78.3 78.1 78.3 76.2 77.9
NFCorpus 35.5 35.6 35.3 35.6 36.2 36.6
BioASQ 57.2 56.4 55.9 55.8 55.4 56.4
NQ 52.0 53.1 52.2 52.2 51.5 52.5
HotpotQA 72.1 72.6 71.6 71.6 71.4 71.9
FiQA-2018 39.5 39.6 39.6 39.5 39.0 38.9
Signal-1M (RT) 33.3 33.5 33.3 33.2 31.7 32.0
TREC-NEWS 47.9 48.5 49.2 48.6 47.1 47.8
Robust04 52.0 52.1 51.6 51.7 52.2 53.1
Arguana 49.7 48.9 49.4 49.9 38.6 46.6
Touche-2020 34.2 33.4 33.8 34.2 32.4 32.7
CQADupStack 38.4 38.8 38.5 38.6 38.2 28.8
Quora 86.1 86.4 86.0 86.1 85.5 86.8
DBPedia 43.9 43.7 43.3 43.1 42.7 43.6
SCIDOCS 17.2 17.6 17.4 17.5 17.2 18.0
FEVER 77.8 79.8 78.6 78.4 76.7 79.1
Climate-FEVER 22.8 24.0 23.4 23.3 22.7 23.9
SciFact 74.1 74.1 73.8 74.3 73.4 74.2

Avg(In-domain) 56.0 56.4 - - 55.5 55.9
Avg(BeIR) 50.6 50.9 50.6 50.7 49.3 50.0

Table 7: NDCG@10 performance results for in-domain
& BEIR with LISTT5-BASE, on differing m. (Sec.B.1.)
We compare evaluation results that are trained on seeing
5 / 10 passages at once. Like the original LISTT5, both
models generate relevant indexes at the last.

A Related Work - FiD in a Similar Setup

Hofstätter et al. (2022) assigned index numbers
to each query and passage pair, directing an FiD
model to generate relevant passage indexes—an
idea initially proposed by Lakhotia et al. (2020).
While their approach is similar to ours, it diverges
in that they only generate a single positive index,
not the sorted list of all indices.

B Design Choice of LISTT5

B.1 Impact of the number of passages m
LISTT5 sees at once

This aligns with Sec. 4.7 from the main paper. In
addition to varying the output format, we try to
increase the number of passages m the model sees
at once, with variants on r as well (See Sec. 3.1 for
basic notation). The results from Tab. 7 show that
setting m as 10 is not as effective as setting m as
5. We conjecture that there is a trade-off between
the (1) benefits from seeing more negatives at once,
and (2) the complexity of the ordering task itself. If

Model RankT5 ListT5

Training data GTR COCO-DR GTR

Learning Rate 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-05
Steps - 20k 20k 10k 30k

TREC-COVID 77.7 78.3 77.3 78.6 77.9
NFCorpus 35.1 35.6 35.4 36.2 35.9
BioASQ 58.2 56.4 54.9 55.1 56.8
NQ 53.2 53.1 52.7 52.8 53.2
HotpotQA 72.8 72.6 72.1 71.9 72.1
FiQA-2018 39.2 39.6 39.1 39.9 39.4
Signal-1M (RT) 30.8 33.5 34.1 32.9 30.9
TREC-NEWS 45.4 48.5 47.6 48.0 48.3
Robust04 54.3 52.1 52.9 52.7 53.6
Arguana 35.5 48.9 43.3 43.6 43.7
Touche-2020 37.1 33.4 31.5 32.7 32.5
CQADupStack 37.0 38.8 38.6 38.5 38.8
Quora 83.3 86.4 86.0 83.9 84.4
DBPedia 43.7 43.7 43.8 43.6 44.5
SCIDOCS 16.8 17.6 17.1 17.1 17.6
FEVER 77.6 79.8 78.9 79.4 79.7
Climate-FEVER 21.2 24.0 24.0 24.8 24.6
SciFact 73.5 74.1 74.0 73.1 74.4

Avg. 49.6 50.9 50.2 50.3 50.5

Table 8: Comparison of ListT5 models trained with
GTR and COCO-DR. For ListT5, the reported scores
are evaluated using the (r=2) variant. (Sec. B.2)

we increase m, the model can get more information,
but at the same time, the task becomes very hard,
and the boundary of negative order becomes very
weak (and not very informative). Therefore, in the
case of T5-base models, we find that 5 performed
better than 10 passages. Compared to the original
FiD for QA (Izacard and Grave, 2021) where they
use large m (=100), ListT5 works best with smaller
m. We conjecture the reason for this is that sorting
task has more complexity than the original task that
only use the input as knowledge source, leading to
increased effectiveness when m is smaller. Where
the use case of the original FiD are to find relevant
information among inputs, LISTT5 needs to order
between different inputs, a task that needs to ana-
lyze the relative relevancy between all given inputs.
However, we believe the optimal number can be
improved (or can be different) for models with dif-
ferent architectures or with larger parametric size.

B.2 Impact of the negative selection model

In our main experiment, we use COCO-DR to se-
lect and align negatives from MS MARCO, when
constructing the training data. To analyze the im-
pact of using COCO-DR as negatives, we also
experiment with training ListT5 using negatives
sampled from GTR,6 since RankT5 (Zhuang et al.,
2022) used GTR to retrieve top 1000 passage from
each query and conduct random sampling to select

6https://huggingface.co/
sentence-transformers/gtr-t5-xl
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negative passages. (Note that RankT5 samples 35
negative passages per one query from the top 1000
retrieval results, while ListT5 only sees 4 negatives
at once.) The results are at Tab. 8. First, we train the
T5-base model with the same hyperparameter setup
for those used to train the original LISTT5-COCO-
DR model. 7 Then, we conduct hyperparameter
search on the learning rate and number of steps for
the GTR model, and found that training the model
with learning rate of 1e-05 for 30k steps performs
best (average 50.5). The results indicate that while
LISTT5 trained with different negatives can impact
performance, the performance gap is not signifi-
cant, and the ListT5 model based on both COCO-
DR and GTR still exhibit better performance than
RankT5.

C Details about Our Inference
Framework

This aligns with Sec. 3.2 from the main paper.

C.1 Background: Tournament Sort
Tournament sort is a variation of heap sort, inspired
by the concept from sports tournaments, where
its objective is to identify not just the best player,
but also the k-best, with the minimum number of
games. While naive selection sort takes O(n) oper-
ations to iteratively select the best element, tourna-
ment sort leverage its tournament tree structure for
efficient sorting, resulting in needing only O(log n)
operations after the initial building of the tree in
O(n)

C.2 Modification to Accept LISTT5 (r = 2)
Fig. 7 illustrates and compare the inference sce-
nario for LISTT5 (r = 1) and LISTT5 (r = 2).
Since the (r=2) variant outputs 2 different passage
indices, the total number of candidate passages we
need to compute is multipled by 2 for the next level
of a tree. For example, if we use LISTT5 (r = 1)
with m = 5 at the initial iteration, after computa-
tion of the bottom-level, we would get a total of
20 (100 / 5) filtered candidates which will go to
the next round for comparison. In contrast, if we
use LISTT5 (r = 2) with m = 5, we would get a
total of 40 (100/5 ∗ 2) candidates to compute at the
next round. However, it is important to note that
we only use the inference method of (r = 1) for

7With learning rate of 1e-04, linear learning rate scheduler
with 10% warmup, effective batch size 256, maximum input
length 230, and maximum output length of 7, and train the
T5-base model for 20k steps.

Random replace index number:

Dataset
21

(orig.)
20 19 18 17 16 15 6

signal 33.5 33.3 33.2 33.1 33.3 33.3 33.3 33.5
trec-covid 78.3 78.2 78.2 78.4 78.1 78.1 78.3 78.3
news 48.5 48.4 48.4 48.4 48.3 48.4 48.4 48.4
scifact 74.1 74.0 74.0 74.0 74.0 74.1 74.2 74.0
nfcorpus 35.6 35.7 35.7 35.7 35.7 35.7 35.7 35.8
fiqa 39.6 39.6 39.7 39.7 39.6 39.6 39.6 39.7
bioasq 56.4 56.6 56.5 56.5 56.4 56.5 56.5 56.5
touche 33.4 33.7 33.4 33.5 33.6 33.8 33.8 33.6
dbpedia 43.7 43.6 43.8 43.7 43.8 43.7 43.7 43.8
robust04 52.1 52.1 52.0 52.1 52.0 52.1 52.1 51.9
scidocs 17.6 17.6 17.6 17.5 17.6 17.5 17.6 17.5
arguana 48.9 49.0 48.8 48.8 48.9 49.0 48.9 48.9
climate-fever 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0
dl19 71.8 71.9 71.8 71.7 71.7 71.8 71.7 71.8
dl20 68.1 68.2 68.1 68.1 68.1 68.1 68.3 68.5
Average 48.4 48.4 48.3 48.3 48.3 48.4 48.4 48.4

Table 9: NDCG@10 results on differing the index of
random assignment, with explanations on Section C.3.

the root computation, since we always outputs the
top-1 candidates for every iteration.

C.3 Details on Random Replacement
As explained as the 3rd and 4th modification at the
main paper Sec. 3.2, we explain in detail the ran-
dom assignment process here. Unlike the original
tournament sort where they mark the final selected
values to infinity, it is not an option for us since we
cannot define a passage that has infinity scores of
relevance. Therefore, we choose to randomly fill
out the place, by the following rules;

Random assignment of top-1 selected passage
After one iteration, one index is selected as most
relevant out of n candidate passages. Then, we add
that index into the global exclude pool and remove
the index from the consideration pool. After that,
using the initial ordering of the passage by the first-
stage retrieval, we add +21 to the original selected
index. (For example, if the selected index was 8,
we replace that passage with 29. We just set it to a
larger value than m=5 to avoid meeting duplicates,
but it can be anything) If the index is already in the
global exclude pool or have duplicates inside the
input window m, we consider the next passage by
adding 1 until the conditions are met.

Random assignment of dummy values to fill m
The basic unit of LISTT5 always accepts exactly
m passages as the input. However, there are cases
when the leftover passages are not a multiple of m.
For example, as we proceed to the upper level on
the tournament tree, there will be a total of 100 7→
20 7→ 4 passages left if we rank 100 passages using
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LISTT5 (r=1) with m=5. In this case, we would
need one more dummy passage to make 4 candi-
date passages to 5. For reproducibility, we select
a dummy passage in a deterministic way by con-
sidering the first passage from the initial candidate
passage pool. If that passage is already selected as
top-k indices during the previous round or we have
duplicates inside the input window m, we proceed
to the next index until the conditions are met. To
show that the assignment of the random index is
not statistically significant, we have conducted ad-
ditional experiments on the subset of BEIR with
differing the random replace index number. The
results are presented at Table. 9. From the table, we
can see that the output is robust to the assignment
of random replace index number.

Edge Cases. There are some cases, especially
for the case of NFCorpus, that the initial retrieval
module doesn’t give exactly n passages as initial
candidate passages. Sometimes, they give n that
is smaller than m (e.g., 1,2,3,4). For this case,
we exceptionally allow duplicates within the input
window m, run one basic unit of LISTT5 with (r=n)
(We remove duplicate passage indexes so that the
output ordering reduces to n). That is, we only run
the inference once, and use the output ordering as it
is. Also, if k is bigger than n-m, we inevitably meet
the case where the leftover (unselected) passage
number becomes smaller than m. (For example,
ranking the 96th candidate passage for n=100 with
m=5). Similar to the previous case, we also allow
duplicates for this case and run the basic unit once
to order the leftover indices.

C.4 Example Scenario using Output Caching

For example, if we consider reranking top 10 pas-
sages from 100 candidate passages (n = 100, k =
10), without output caching results in 250 forward
passes in total; since we would need ((100/5) +
(20/5) + 1) = 25 forward passes for each iteration,
the total will be 25 * 10 = 250. With output caching,
after the initial iteration, we only need to do one
computation for each level of a tree, resulting in
(1+1+1) = 3 forward passes. Summing up results
in 25 + 3*9 = 54 forward passes, almost reducing
80% of the total number of inferences.

COCO-
DR

Large
(Init.)

MonoT5 RankT5
ListT5
(r=1)

ListT5
(r=2)

MSMARCO
Top-1000
(in-domain)

41.9 43.1 46.2 46.1 46.3

TREC-COVID 80.8 83.5 83.5 83.2 83.5
NFCorpus 35.5 35.6 35.5 36.2 36.2
NQ 54.3 57.9 59.6 59.7 60.0
HotpotQA 63.3 68.7 71.1 70.3 70.9
FiQA-2018 32.3 41.2 41.3 41.7 41.7
Arguana 46.9 33.0 34.8 49.0 49.3
Touche-2020 21.6 25.7 35.7 29.1 29.6
CQADupStack 37.3 40.5 38.7 40.7 40.9
Quora 87.3 84.0 83.0 86.2 86.3
DBPedia 40.7 44.4 46.1 45.6 45.4
SCIDOCS 17.3 17.5 17.5 17.7 18.3
FEVER 74.9 78.9 79.7 79.8 81.4
Climate-FEVER 23.1 24.2 22.9 23.9 24.9
SciFact 71.9 73.5 73.6 74.4 74.3

Avg. BEIR 49.1 50.6 51.6 52.7 53.1

Table 10: NDCG@10 results for reranking on top of
COCO-DR large Top-100 first-stage retrieval results
(Sec. D.1).

D Additional Results.

D.1 Results on COCO-DR as first-stage
retrieval model.

We also conduct reranking using the Top-100 re-
sults of COCO-DR-large (Yu et al., 2022), and
compare reranked results with MonoT5 (Nogueira
et al., 2020), RankT5 (Zhuang et al., 2022), and
LISTT5. For this experiment, we could only uti-
lize the evaluation subset that is uploaded (fully
open) in the BEIR repository.8 For simplicity, the
input token length is fixed to 512 for first-stage re-
trieval with COCO-DR. From the results at Tab 10,
LISTT5 achieves an average of +1.5 point gain
for reranking on COCO-DR Top-100, additionally
showing its applicability and effectiveness on both
lexical-based (BM25) and neural-based first-stage
retrieval modules.

E MRR scores

Table 11 reports the corresponding MRR scores for
BEIR evaluation on the main table.

F Hyperparameter Optimization
Methodology

We conduct a structured grid search strategy on a
selected subset of the BEIR dataset. The selection

8Thus, results for BioASQ, Signal-1M, TREC-NEWS, Ro-
bust04 are not computed.
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Figure 7: Illustration of our inference scenario. We show and compare the process with (r=1) and (r=2).

of hyperparameters for investigation was informed
by prior research and best practices within the do-
main, specifically referencing the work by (Zhuang
et al., 2022), which demonstrated effective use of a
learning rate of 1× 10−4. To explore the potential
for further optimization, we extended the search to
include lower learning rates down to 1×10−5, con-
sidering the sensitivity of large models to learning
rate adjustments.

We employed a linear learning rate scheduler
with a 10% warmup over 10 epochs, a strategy
for stabilizing training in the initial phases. The
grid search was designed with a step size range
from 10,000 to 30,000, increasing in increments of
10,000 steps.

For our 3 billion parameter models (3B models),
due to their substantial computational requirements,
we conducted a more granular evaluation. We as-
sessed performance at every 1,000 steps between
1,000 and 10,000 steps.

This structured approach ensured that our hy-

perparameter selection was not arbitrary but based
on a reasoned strategy aiming to balance computa-
tional efficiency with empirical performance. The
specific choices of "250k steps" at a "1e-4" learning
rate and "3k steps" at a "1e-5" learning rate were
outcomes of this optimization process, identified as
configurations that provided the best performance
metrics within the constraints of our experimental
setup.

G Details on Evaluation Dataset

G.1 Baseline Models.

We download and use the officially re-
leased checkpoints for the baseline
model with the huggingface identifier of
castorini/monot5-base-msmarco-10k,
monot5-3b-msmarco-10k for
MonoT5 (Nogueira et al., 2020),
castorini/duot5-base-msmarco
for DuoT5 (Pradeep et al., 2021),
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First-stage retrieval by: BM25 Top100 COCO-DR Large Top100

Baselines Ours Baselines Ours

Task (Domain) Dataset BM25
(Initial) MonoT5 RankT5 ListT5

(r = 1)
ListT5
(r = 2)

COCO-DR
(Initial) MonoT5 RankT5 ListT5

(r = 1)
ListT5
(r = 2)

Passage
Retrieval

MS MARCO 18.0 34.9 35.8 35.6 35.8 36.0 38.2 40.5 40.3 40.2
+ top1000 18.0 37.3 38.6 38.5 38.8 36.0 37.2 40.3 40.1 40.2

TREC-DL19 82.3 98.3 100.0 98.5 98.8
TREC-DL20 82.4 93.8 95.4 95.8 95.6

In-domain average 61.0 66.1 67.4 67.1 67.2 36.0 37.7 40.4 40.2 40.2

Bio-Medical
Information
Retrieval

TREC-COVID 85.3 95.4 93.0 93.8 95.0 96.7 96.7 93.8 97.0 95.5
NFCorpus 52.4 58.0 56.3 57.5 58.5 56.0 55.9 57.1 58.1 58.4
BioASQ 59.4 64.9 67.8 67.6 67.2

Question
Answering
(QA)

NQ 26.3 48.2 49.8 48.2 49.5 49.2 52.6 54.7 54.6 55.1
HotpotQA 80.3 85.9 88.3 88.2 88.7 81.9 84.7 87.9 87.6 88.5
FiQA-2018 29.6 47.7 48.5 48.7 48.5 39.1 49.2 49.8 49.6 49.8

Tweet Retrieval Signal-1M (RT) 57.4 52.6 55.0 55.6 55.4

News Retrieval TREC-NEWS 73.9 74.8 75.8 77.9 79.2
Robust04 67.3 81.5 82.0 79.6 80.0

Argument
Retrieval

Arguana 32.8 27.1 27.7 40.7 39.6 39.2 26.8 28.6 40.5 40.8
Touche-2020 74.4 51.3 62.9 58.5 54.9 45.4 47.0 61.9 51.1 51.2

Duplicate Q.
Retrieval

CQADupStack 29.6 38.5 36.8 38.3 38.7 36.9 40.2 38.4 40.7 40.8
Quora 77.9 83.1 81.2 85.1 85.2 86.4 82.0 80.5 84.9 84.7

Entity Retrieval DBPedia 58.2 73.4 74.4 75.7 76.3 74.2 73.4 77.2 76.8 77.8

Citation Pred. SCIDOCS 26.0 29.5 29.9 30.9 31.2 30.9 30.2 30.6 31.1 32.0

Fact Checking
FEVER 62.4 78.4 77.6 77.6 80.2 74.2 79.0 80.1 80.3 82.1
Climate-FEVER 22.0 31.9 29.1 31.3 33.7 32.9 33.0 31.3 33.0 34.8
SciFact 64.6 70.3 70.6 71.8 71.9 68.4 70.9 70.4 71.8 71.8

BeIR average 54.4 60.7 61.5 62.6 63.0 58.0 58.7 60.2 61.2 61.7

Table 11: Reporting Mean Reciprocal Rank (MRR)@10 scores for initial ranking of BM25 top-100 and COCO-DR
large top-100. (Sec. E)

castorini/rank_vicuna_7b_v1 for
RankVicuna (Pradeep et al., 2023a), and
castorini/rank_zephyr_7b_v1_full
for RankZephyr (Pradeep et al., 2023b). For
RankGPT(Sun et al., 2023b) using GPT-3.5 or
GPT-4, we evaluate them using the OpenAI (Ope-
nAI, 2022) API. For RankT5, we download the
released T5X checkpoint from the official repos-
itory9 and convert it into a PyTorch checkpoint
using the HuggingFace’s conversion script10.
We evaluate DuoT5 on the same setup to the
paper’s final experiments - we rerank 100 passages
using MonoT5, select top 50 passages to be run
on DuoT5, and aggregate relevancy scores of
individual documents by the SYM-SUM method.

We run the official RankLLM repository11 to
evaluate RankVicuna and RankZephyr on BEIR.

G.2 Links, Maximum Input Length

Since the average length of query and passage dif-
fers greatly for each BEIR subset, we assign the

9https://github.com/google-research/
google-research/tree/master/rankt5

10convert_t5x_checkpoint_to_pytorch.py
11https://github.com/castorini/rank_llm

appropriate sequence length for each BEIR dataset
and evaluate all models in the same setup. We
download the dumped index of the top 100 re-
trieved passages by BM25 from the official Py-
serini repository12, and download the inital query,
corpus, and qrels from the BEIR repository.13

We referenced the average query + passage
length from the official BEIR paper. We selected
the smallest maximum length from [256, 512, and
1024], but is still bigger than the (sum of aver-
age query + passage length) multiplied by two(for
better coverage). One exception is the trec-news,
which added up to be bigger than 1024, but we
just capped it to be 1024. The exact alias with the
maximum input length is listed below;

‘msmarco’: 256, ‘dl19’: 256, ‘dl20’: 256, ‘trec-
covid’: 512, ‘nfcorpus’: 512, ‘bioasq’: 512, ‘nq’:
256, ‘hotpotqa’: 256, ‘fiqa’: 512, ‘signal’: 256,
‘news’: 1024, ‘robust04’: 1024, ‘arguana’: 1024,
‘touche’: 1024, ‘cqadupstack’: 512, ‘quora’: 256,
‘dbpedia-entity’: 256, ‘scidocs’: 512, ‘fever’: 256,
‘climate-fever’: 256, ‘msmarco_top1000’: 256,

12https://github.com/castorini/pyserini
13https://public.ukp.informatik.

tu-darmstadt.de/thakur/BEIR/datasets/
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‘scifact’: 512

G.3 Other Replication Details

Output validation module Upon experiments, we
do not use constrained decoding or validation mod-
ule to ensure the generation of valid permutations
of 5. Each digital number is represented as sim-
ple integers (The decoded output looks something
like "1 2 5 4 3" or "2 3 1 5 4"), with an exception
catching module such that if the parsing fail, we
go back to the original ordering. Even without any
validation module, since LISTT5 is fine-tuned to
output valid indexes for 20000 steps, if the input
follows the correct format, the model almost al-
ways outputs valid index. Nevertheless, we think
that adding a constrained decoding module would
be beneficial.

Evaluation We run the same evaluation setup
with the BEIR library to do evaluation. For exam-
ple, we append title with a space along with the
text(passage) part and treat as full passage. For
evaluating reranked results for both BM25 Top100
and COCO-DR Top100 candidate passages, we re-
move duplicates before evaluation14 For CQADup-
Stack, we follow the same procedure and aggre-
gated all sub-domains ranging from android to
wordpress to make 13,145 test queries, and report
the average performance.

H Details about the Experiment
Measuring Positional Bias.

H.1 Evaluation process.

We briefly explain here about the evaluation pro-
cess for the FiQA dataset. We defined the posi-
tional bias inspired from Liu et al., [9], where they
measure the answer accuracy with respect to the
index change of the relevant passage.

1. We break down the original dataset into pairs
of one query and one positive passage associated
with the query. For each query-positive pair, we ran-
domly sample 4 negative passages from the BM25
top100 results and additionally pair them to make
one sample. Preprocessing them makes 818 distinct
samples.

2. For every sample, we make 5 variants of the
input text, so that the first one assigns index 1 to
the positive passage, and the last one assigns index
5 to the positive passage. Note that only the index

14For example, quora had 1 (out of 10000) duplicates, so
the NDCG@10 for BM25 may differ from the BEIR paper.

of the positive passage is changed, and we keep the
order of other passages (negatives) as the same.

3. we forward the inputs to each model, and
collect the output that corresponds to the most rele-
vant index. To answer (1), we measure the accuracy
with respect to the index of positive passage. To
answer (2), we analyze the ratio of samples where
the model points to the same passage regardless of
positive index change.

We discard queries that doesn’t have positive
indexes in the bm25 top100 dataset, or those that
don’t have 4 distinct negative contexts. For re-
producibility, all randomly sampled datasets used
for experiments are conducted with fixed seed.
(seed=0) Standard deviation are calculated using
the numpy.std function.

H.2 Prompt example.
To enforce a scenario where the model takes
lengthy inputs at once, we apply the instruction
format of permutation generation (text), and use
the same prompt described in the RankVicuna
(Pradeep et al., 2023a) paper. The prompts we
use to give inputs to GPT-3.5-turbo-0301 are the
following:
I will provide you with 5 passages,
each indicated by numerical identifier [].
Rank the passages based on their
relevance to the search query: {query}.

[1] {passage_1}
[2] {passage_2}
[3] {passage_3}
[4] {passage_4}
[5] {passage_5}

Search Query: {query}

Rank the 5 passages above based on their
relevance to the search query.
All the passages should be included and
listed using identifiers, in descending
order of relevance. The output format
should be [] > [], e.g., [4] > [2].
Only respond with the ranking
results, do not say any word or explain.

Given the above input, we collect the output of the
LLM. Following the setup from Sun et al. (2023b),
we use the ChatCompletion api by the openai li-
brary, with temperature of 0. Using the openai api,
running the whole process cost about $35. To run
ths GPT4 experiment on FiQA, it additionally cost
195.8$ (total of 6523910 input / 1298 output to-
kens). After the run, we found that 3 out of 818
outputs had malformed outputs, in a format such as:
"[No relevant passage found] > ... [1]", rather than
in a correct format such as: "[3] > [1] > [5] > [2]
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> [4]". We discard those 3 malformatted instances
with incorrect output formats into consideration
and compared only with the rest. (That is, we also
discard those instances for the FiD-T5 variant) To
give an exactly same scenario to both models, we
truncate each passages up to 512 tokens (based on
the T5 tokenizer), since that is exactly what our
fid model sees. After truncation, we also validated
that all of the input sizes are below the range of
4096 (as the maximum input window size of gpt-
3.5-turbo-0301 is 4096)

H.3 Detailed analysis about pairwise methods

We find that pairwise models also exhibit positional
bias, having a tendency to label the passage that
comes at the front as positive. Theoretically, we
can remove the positional sensitivity by evaluating
all possible permutations of input passages (Mur-
phy et al., 2019; Yarotsky, 2018). DuoT5 and other
pairwise ranking methods (Qin et al., 2023) already
include swapping orders and aggregate scores from
both orderings. To measure the positional bias of
pairwise models, in this experiment, we removed
the averaging from swapping orders in DuoT5.
However, the number of forward passes needed
to mitigate positional bias problems in this way
grows in a factorial scale, making it impossible and
impractical to be applied to listwise methods. (We
need 5! = 120 number of forward passes in order
to remove the positional bias of 5 instances) In
contrast, we effectively mitigate the positional bias
problem, without any additional forward passes,
with the Fusion-in-Decoder architecture.

H.4 Experiments on the consistency of LLMs.

We ran the positional bias experiment (on GPT3.5)
on TREC-COVID for 3 times to investigate the fol-
lowing: given the same input, does LLMs generate
the same output multiple times? 15 The results
from api calls at Tab. 13 were not always exactly
the same, but the difference was negligible, not
changing the main claims. For the case of LISTT5,
it is deterministic and thus fully replicable. On
running the same experiments on FiQA twice, we
validated that the output files for LISTT5 are ex-
actly the same.

15We were only able to run the inconsistency experiment
on GPT3.5 due to the high inference cost of GPT-4.

I Qualitative Analysis

Tab. 12 reports a sample output selected from
the Arguana Dataset, which seeks the counter-
argument most opposed to the query argument
.16 Considering the NDCG@10 reranking per-
formance for MonoT5-base, RankT5-base, and
LISTT5-base is 34.4, 35.5, and 48.9, respectively,
LISTT5 excels on Arguana than other pointwise
baseline models with a large margin. From inspec-
tion, we conclude that the listwise reranking nature
of LISTT5 helps to discern and select which fea-
tures are important in determining relevancy in this
dataset, with respect to other passages.

We hypothesize that listwise comparison makes
the model to favor counterarguments - (Differ-
ent point of view, but the discussion topic is the
same) over similar topics. For example at Tab. 12,
RankT5 places passages that talks about account-
ability and criminal law in a moral aspect as the
most relevant passage, which is quite similar to
the original query (since it includes words such as
‘Prosecuting’) but not exactly the same about pros-
ecuting offenders. Also, the passage that is scored
highest from MonoT5 talks about ICC’s prosecu-
tion policy, but the original query is not related to
ICC. In contrast, since perhaps LISTT5 is able to
see different passages, it correctly determines the
GT passage as top-1, giving more weight on talking
about the same topic (even though the aspect can
be different).

J Measuring efficiency - Sliding window
v.s. Tournament Sort.

We briefly describe the difference of tournament
sort and the sliding window approach in Figure. 8.
We conduct additional experiments to compare the
efficiency of tournament sort and the sliding win-
dow.

J.1 Implementation Details.

We rerank top-10 passages from BM25 top100 can-
didate passages, for 43 queries of TREC-DL19.
The latency and FLOPs for tournament sort vari-
ants are computed using our LISTT5 evaluation
code, and the efficiency for the sliding window
approach (without the FiD architecture) is com-
puted using the official repository for RankVicuna

16The query is always included in the corpus, so for qualita-
tive analysis, we excluded the passage that is exactly the same
with the original query.
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GT Rank / GT Score 1st Rank / 1st Score Passage

LISTT5 1 1
Most often, prosecutions that occur are not just with only the losing side being prosecuted for
their crimes. The Nuremburg trials prosecuted Nazi’s for offences they committed, but none of the
Allied forces were ever brought for trial(...)

MonoT5 78/ -0.32 1 / -0.13

As the ICC intentionally limits its prosecutions to group leaders, many of those who actually commit
atrocities need have no fear of prosecution By prosecuting only those leaders deemed ‘most responsible’
for the crimes in question, the ICC is effectively allowing lower-ranked perpetrators to commit crimes
with impunity. (...)

RankT5 25/ -5.86 1 / -4.58

Accountability It is a fundamental principle of morality that individuals should be held responsible
for their crimes – that is the reason why we, as societies, have criminal law. Prosecuting people
– holding them responsible for their crimes – is a moral imperative. We all wish to live in a
society where everyone is equally accountable when they commit crime as one in which not everyone
is held to account is fundamentally unjust (...)

Query

(...) Prosecuting offenders is the only way to get a just outcome when there have been horrific
crimes committed. At a most principled level, those who commit a crime ought to be held accountable
for their actions even if they are powerful or it damages the chances of peace because the powerful
must be shown not to be above the law (...)

Relevant Passage
Most often, prosecutions that occur are not just with only the losing side being prosecuted for
their crimes. The Nuremburg trials prosecuted Nazi’s for offences they committed, but none of the
Allied forces were ever brought for trial(...)

Table 12: Example of ListT5, MonoT5, RankT5 retrieval result on Arguana dataset. Relevant topics are highlighted
with red, non-relevant topics in blue, and opinions are bolded. (Sec. I)

Figure 8: Overview comparison of sliding window v.s. Tournament sort for listwise reranking. (Sec. J)

GPT-3.5-turbo-1106 ListT5
-baseTrial 1 Trial 2 Trial 3 Avg.

(1) Accuracy when the gold passage is at index #:

1 81.6 79.6 81.6 81.0 93.9
2 63.3 63.3 61.2 62.6 87.8
3 75.5 75.5 75.5 75.5 83.7
4 67.3 63.3 67.3 66.0 85.7
5 61.2 63.3 65.3 63.3 81.6
std 7.68 7.1 7.4 7.4 4.2

(2) Agreement ratio (%) within index change of positive

points to
same passage

55.1 55.1 55.1 55.1 83.7

other 44.9 44.9 44.9 44.9 16.3

Table 13: Measuring the LLM consistency on TREC-
COVID. (Sec. H.4)

and RankZephyr.17 The FiD variant of the sliding
window approach are computed using our LISTT5
evaluation code. We append the deepspeed Flop-
sProfiler for FLOPs measurement, which is the
same as the ones that was appended for LISTT5.
For a fair comparison, we also measure the FLOPs
of the sliding approach on the T5-3b model18 and
the T5-base FiD architecture using the LISTT5
code. Example commands used are as follows:

CUDA_VISIBLE_DEVICES=0 python
./src/rank_llm/scripts/run_rank_llm.py
--model_path=castorini/lmsys/
fastchat-t5-3b-v1.0
--top_k_candidates=100
--dataset=dl19 --retrieval_method=bm25

17https://github.com/castorini/rank_llm
18we replace the model code from cas-

torini/rank_vicuna_7b_v1 to lmsys/fastchat-t5-3b-v1.0
and measure FLOPs.
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Sorting method # required forward passes to rerank top1 # required forward passes to rerank top10

sliding window, stride=1 1 + ⌈(100-5)/1⌉ = 96 96 × ⌈10/4⌉ = 288 -> 280
sliding window, stride=2 1 + ⌈(100-5)/2⌉ = 49 49 × ⌈10/3⌉ = 196 -> 191
sliding window, stride=3 1 + ⌈(100-5)/3⌉ = 33 33 × ⌈10/2⌉ = 165 -> 162
sliding window, stride=4 1 + ⌈(100-5)/4⌉ = 25 25 × ⌈10/1⌉ = 250 -> 248

tournament sort, r=1 (100/5) + (20/5) + 1 = 25 25 + 9 x (1+1+1) = 52
tournament sort, r=2 (100/5) + (40/5) + 2 + 1 = 31 31 + 9 × (1+1+1+1) = 67

Table 14: Number of forward passes to rerank top-k candidates from 100 candidate passages per one query, where
window size w=5. In the case of reranking top-10 passages, tournament sort requires much more fewer number of
forward passes. (Sec. J.2)

Idx Base Model
Sorting
method

Name
FLOPs to rerank:

Top-1 Top-10

0 T5-base pointwise MonoT5 1x 1x
1 T5-base tournament ListT5(r=1) 1.3x 2.6x
2 T5-base tournament ListT5(r=2) 1.8x 4.7x
3 T5-base sliding w.(s=2) T5(FiD) 2.5x 9.8x
4 T5-base sliding w.(s=3) T5(FiD) 1.7x 12.3x

5 T5-3b tournament ListT5(r=1) 17.6x 36.3x
6 T5-3b tournament ListT5(r=2) 24.6x 66.0x
7 T5-3b sliding w.(s=2) T5(FiD) 38.5x 154x
8 T5-3b sliding w.(s=2) T5(no FiD) 53.8x 215.1x
9 T5-3b sliding w.(s=3) T5(FiD) 25.6x 128x
10 T5-3b sliding w.(s=3) T5(no FiD) 35.1x 175.6x

Table 15: FLOPs (In a multiple of FLOPs of MonoT5-
base) on the choice of architecture and method, on
TREC-DL19. For the sliding window approach, we
would need a total of 4 multiple passes for stride = 3
and 5 passes for stride = 2 (Explained at Tab. 14) to
rerank Top-10 candidates. (Sec. J.3)

--prompt_mode=rank_GPT --
context_size=4096 --variable_passages
--window_size 5 --step_size [2 or 3]

J.2 Number of Required Forward Passes.
We calculate the number of required forward passes
needed for variants of tournament sort and the slid-
ing window approach at Table 14. Given a window
size of 5, tournament sort is much more efficient to
rerank top-10 passages, requiring fewer number of
forward passes. This is because, unlike tournament
sort with output caching, the sliding window ap-
proach requires re-evaluation over the entire input
sequence, depending on the window size, stride,
and the number of top-k passages to rerank. De-
tailed explanation of how we calculated the num-
bers from the table is below:

• After one pass of a sliding window of size
5 and stride of 4, we discard 4 passages and
only carry (5-4)=1 previous passage to the
next step as we move the window. Therefore,
we would only be able to correctly order top-1

Rerank Top-10 (NDCG@10) Rerank Top-1 (NDCG@1)

Sorting Method T.S. S.W T.S. S.W.

Hyperparam. r=1 r=2
s=2

(iter=5)
s=3

(iter=4)
r=1 r=2

s=2
(iter=1)

s=3
(iter=1)

FLOPS(DL19) 1x 1.8x 3.7x 3.1x 1x 1.4x 1.96x 1.32x

DL19 71.2 71.8 71.5 71.8 81.0 79.1 81.0 78.7
DL20 67.3 68.1 67.3 67.7 77.8 77.8 79.0 79.6

In-domain avg. 69.3 70.0 69.4 69.8 79.4 78.5 80.0 79.2

TREC-COVID 76.7 78.3 78.9 77.5 88.0 91.0 88.0 86.0
NFCorpus 35.5 35.6 35.3 35.5 47.8 49.2 48.6 48.6
BioASQ 57.2 56.4 54.5 54.9 59.2 58.4 55.8 57.2
NQ 52.0 53.1 52.7 52.8 36.0 37.6 36.4 36.6
HotpotQA 72.1 72.6 71.2 71.6 83.3 84.1 83.1 83.1
FiQA-2018 39.5 39.6 39.7 39.8 41.2 40.7 41.4 41.5
Signal-1M (RT) 33.3 33.5 32.4 33.2 43.3 41.8 42.3 41.8
TREC-NEWS 47.9 48.5 49.8 50.0 53.2 54.1 52.3 52.9
Robust04 52.0 52.1 51.3 51.7 65.1 66.3 67.1 65.9
Arguana 49.7 48.9 47.7 47.8 25.8 23.9 23.3 22.7
Touche-2020 34.2 33.4 32.7 33.1 34.7 31.6 36.7 36.7
CQADupStack 38.4 38.8 38.9 38.8 31.6 31.9 32.1 32.0
Quora 86.1 86.4 86.3 86.2 77.8 77.8 78.1 77.7
DBPedia 43.9 43.7 42.6 43.2 55.5 56.5 55.1 56.6
SCIDOCS 17.2 17.6 17.9 17.7 21.9 22.0 22.8 21.4
FEVER 77.8 79.8 79.3 79.3 69.4 72.4 70.2 70.4
Climate-FEVER 22.8 24.0 23.8 23.7 20.2 23.3 20.4 21.0
SciFact 74.1 74.1 73.6 73.5 65.0 65.3 65.3 65.7

BEIR avg. 50.6 50.9 50.5 50.6 51.1 51.6 51.1 51.0

Table 16: Comparison of FLOPs and performance on
LISTT5 with the S.W (Sliding Window) approach and
T.S (Tournament Sort) with different hyperparameters.
LISTT5 (r=2) performs the best, with lower FLOPs than
the sliding window variants on both setup of reranking
top-10 and top-1 candidates. (Sec. J.4)

passages, since the top-2 passage cannot be
moved.

• Therefore, to rank top 10 candidates, we have
to iterate through at least ⌈10 / (5-4)⌉ = 10
times, which would result in a total of about
250 forward passes.

• For ranking top-6 with a sliding window of
size 5 and stride 4, some forward pass can be
saved in the 6th slide because top-5 have al-
ready been ordered in the first 5 slides. There-
fore, a corrected precise calculation (noted as
-> in the table) gives 248.

• The same applies to methods of stride=2 to 4.
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• In contrast, tournament sort uses output
caching, and after the initial computation (25
for r=1 and 31 for r=2), we only need to com-
pute one path from leaf to root, which only
costs only one additional forwards for each
level of the tournament tree, which is 3 for
(r=1) and 4 for (r=2).

• Therefore, by using tournament sort, we can
efficiently reduce the number of forward
passes needed to rank top 10 candidates.

J.3 FLOPs comparision

In this section, we compare in detail on the choice
of sorting method and architecture at Tab. 15.

T5 (FiD) v.s. T5 (no FiD). ListT5 uses the FiD
architecture to effectively mitigate the positional
bias problem and handle long inputs efficiently.
Comparing with idx 7 v.s 8 (38.5 vs 53.8) and 9 vs
10 (25.6 vs 35.1) at Tab. 15, we can see that using
FiD results in lower number of total FLOPs.

Tournament sort v.s. Sliding window on T5
(FiD). By comparing idx 5 and 6 with respect to
idx 7 and 9, we conclude that the FLOPs to rerank
Top-10 candidates are much lower for both (r = 1)
and (r = 2) variants of tournament sort (36.3x and
66.0x), compared with the FiD variant of sliding
window, for both (stride = 2) and (stride = 3) (154x
and 128x). It also holds the same for models built
on top of T5-base, by comparing idx (1,2) with
respect to (3,4).

J.4 Performance Comparison.

Comparison of FLOPs and performance on
LISTT5 with the S.W(Sliding Window) approach
and T.S(Tournament Sort) with different hyperpa-
rameters. LISTT5 (r=2) performs the best, with
lower FLOPs than the sliding window variants on
both setup of reranking top-10 and top-1 candi-
dates.

K Additional Experiments on
Tournament Sort.

K.1 Cases where m > k

In the main paper, we have discussed that the slid-
ing window approach can be much more efficient
when m « k. However, even when m > k, e.g., m
= 20 and k = 10, the number of forward passes
needed to get top-10 rankings for tournament sort
can less than or equal to the sliding window vari-
ants, with simple modifications. For example, the

Figure 9: Illustration for the tournament sort to rank
top-10 passages among 100 candidates for r=10 and
m=20. It takes 9 forward passes with unwanted wins.
(Sec. K.1)

# of stride == value of r

10 5 1

Sliding w. 9 x 1 iter. = 9 17 x 2 iter. = 34 81 x 10 iter. = 810
Tournament S. 9 x 1 iter. = 9 7 x 2 iter. = 14 6 x 10 iter. = 60

Table 17: Comparison of the number of forward passes
needed to rank top-10 passages, when m = 20, and n =
100. The number is written in the format of {number of
forward pass for each iteration} x {number of iterations
to assure global ranking}. (Sec. K.1)

number of iterations to rank top-10 with m=20 and
r = 10 with LISTT5 requires 9 forward passes if we
take into account all top-r results from one iteration
and take into account unwanted wins. Tournament
sort with r=10 can correctly rank global top-10
candidates in one iteration, as illustrated at Fig. 9.
This is the same amount of iterations needed with
the sliding window approach with window size of
20 and stride of 10. We also compute the number
of forward passes with different value of s, or r in
Table. 17.

K.2 Tournament Sort with LLMs.
We have also analyzed the performance of
RankGPT (Sun et al., 2023b), listwise reranking
with GPT3.5, with tournament sort. The perfor-
mance difference of tournament sort with respect
to the sliding window approach for w=20, s=10
were not significant, while the number of required
forward passes to rank top-10 passages were the
same (9) for both variants.
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Method dl19 dl20 trec-covid news touche

sliding 68.4 ± 0.4 64.9 ± 1.1 72.6 ± 1.4 46.5 ± 1.0 38.2 ± 0.5
tournament 67.4 ± 0.9 65.8 ± 0.6 76.4 ± 0.4 45.5 ± 1.0 33.1 ± 1.7

Table 18: NDCG@10 on the selected subset of BEIR,
on RankGPT-3.5 with different sorting methods. For
fair comparison, we used w = 20, s = 10 for the sliding
approach, and m = 20, r = 10 for the tournament sort.
To compensate for the instability of APIs, all results
are run for 3 times. Except for trec-covid and touche,
differences are statistically non-significant (p > 0.1).
(Sec. K.2)
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