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Abstract

Post-training quantization (PTQ) for large lan-
guage models (LLMs) significantly acceler-
ates model inference and relieves memory con-
straints, without incurring model training. A
“smoothing paradigm” is commonly used in
LLM quantization, which transfers the quanti-
zation difficulty of activation to weight quanti-
zation using mathematically equivalent trans-
formations. However, existing methods face
two issues: 1) Most smoothing parameters
are hand-crafted defined which leads to sub-
optimal results; 2) There are significant per-
formance degradations when tested on unseen
datasets. To address these challenges, this pa-
per introduces a robust learnable smooth-based
PTQ framework, called LRQuant. Firstly,
we consider a learnable paradigm to find op-
timal smoothing parameters which are initial-
ized by logarithmic activation equivalent. In
addition, we empirically found that only re-
lying on MSE loss could hardly lead to opti-
mal quantization results, and we then propose
a novel loss function based on the negative
logarithm of cosine similarity (NLC loss) be-
tween outputs of full-precision and quantized
block. At last, we pioneeringly introduce Test-
time adaptation (TTA) into LLM quantization,
which allows for rapid model adaptation dur-
ing testing to improve generalization perfor-
mance. More surprisingly, we find that by us-
ing our TTA method, we can achieve better
results on test sets than directly using test sets
for calibration in some cases while avoiding
catastrophic forgetting. Codes are available at
https://github.com/zjq0455/RLQ.

1 Introduction

Quantization (Esser et al., 2019; Chee et al., 2023;
Dettmers et al., 2023a,b) is a well-known model
compression technique converting the weights of
large language models (LLMs) and activations
from full precision to lower-bit representations.

*Corresponding author

Among various methods, Post-Training Quantiza-
tion (PTQ) (Nagel et al., 2020; Hubara et al., 2021;
Yao et al., 2022) is the most popular for LLMs, as it
doesn’t require retraining the model and offers fast
quantization, saving computational resources. For
instance, GPTQ (Frantar et al., 2022) uses only an
A100-80G GPU to quantize BLOOM-175B (Work-
shop et al., 2022) within 4 hours.

Previous PTQ methods exhibit uncommendable
performance when confronted with more challeng-
ing configurations, such as W4A4, due to larger
activation distribution variances. A new strategy,
known as “smooth quantization” (Xiao et al., 2023),
has been recently introduced to address this by
shifting the quantization difficulty from activations
to weights. However, current smoothing strategies,
such as hand-crafted scaling factors (Xiao et al.,
2023; Frantar et al., 2022) and uniform zero points
(Wei et al., 2023) are all predefined, which usually
lead to suboptimal. The intuitive proposition of
learning the smoothing parameters, coupled with
the adoption of MSE loss which aims to optimize
quantization output by evaluating the similarity in
magnitude, is an easily conceived solution. We
conducted an example experiment and summarized
the cosine similarity between the outputs of each
quantized block (MSE-guided learning(Shao et al.,
2024) and predefined method (Xiao et al., 2023))
and full-precision block. As shown in Figure 1,
there are large differences, both for the predefined
and the MSE-guided learning method, demonstrat-
ing that except for MSE, another learning strategy
for better optimizing is essential.

In addition, a prevalent issue across prior PTQ
methods is that quantization on the calibration
dataset leads to suboptimal performance when sub-
sequently applied to unseen datasets. For instance,
quantize a LLaMA based on WikiText2 (Merity
et al., 2016) and evaluate on PTB (Marcus et al.,
1994). Meanwhile, Test-time adaptation (TTA) is
an increasingly promising technique to improve
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(a) LLaMA-7B (b) LLaMA-13B (c) LLaMA-2-13B

Figure 1: Cosine similarity between outputs of full-precision and quantized block (by predefined method (Xiao
et al., 2023), MSE-guided learning method (Shao et al., 2024), and our LRQuant).
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Figure 2: LRQuant not only outperforms previous
methods under general setting with the help of NLC
loss but also has a strong generalization capability.

model generalization capacity (Wang et al., 2020;
Niu et al., 2022, 2023), which enhances the model’s
robustness during testing without requiring retrain-
ing. However, according to our investigation, there
is currently no method that utilizes TTA to address
the aforementioned issue in PTQ methods.

Considering all the aforementioned aspects, this
paper introduces a novel PTQ framework named
LRQuant. Firstly, we define learnable parameters
and devise a novel block-wise loss function, named
negative logarithm of cosine similarity loss (NLC
loss) considering directional differences of outputs,
to guide the learning of all learnable parameters.
As depicted in Figure 1, this modification signifi-
cantly improves our quantization performance. Ad-
ditionally, LRQuant is the first to incorporate TTA
strategy into LLMs quantization aiming to fortify
models’ robustness on unseen test sets. Rather
than adapting the learnable parameters of the whole
model based on the unseen data where we observe
catastrophic forgetting, LRQuant only updates the
learnable parameters of the last block to effectively

balance performance and forgetting. Figure 2 il-
lustrates an approximate performance comparison
between our LRQuant and previous PTQ meth-
ods. More excitedly, we observe that with our TTA
method, the adapted model even outperforms the
quantized model directly calibrated by the test set
in some cases. This discovery implies that if a
quantized model needs to be applied to different
scenarios, there will be no need to re-calibrate and
re-quantize the full-precision model from scratch.

Our key contributions can be summarized as:

• We present a learnable PTQ framework for
LLMs (called LRQuant), by setting smooth-
ing parameters into learnable with logarithmic
activation equalization initialization.

• We propose a novel block-wise loss function
called NLC loss, which is based on the neg-
ative logarithm of cosine similarity between
outputs of full-precision and quantized blocks,
to assist in correcting the output directions
rather than only the magnitude by MSE loss.

• LRQuant is the first to introduce TTA into
PTQ by updating the learnable parameters of
the last block based on test data, which en-
hances the performance on unseen test data
in some cases, while avoiding catastrophic
forgetting on source data. Remarkably, our
adapted quantized model exhibits superior per-
formance compared to calibration using test
sets from scratch.

2 Related Work

2.1 Smooth-Based Post-Training Quantization
“Smooth” is a solution proposed to address the chal-
lenge of activation quantization difficulty (Xiao
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et al., 2023). It is based on mathematical equiv-
alent transformations, where the activations with
large variances across different channels are di-
vided by scaling factors. Correspondingly, the
weights which are generally easier to quantize are
multiplied by scaling factors. Outlier Suppression
(Wei et al., 2022) finds that the scaling parameter
γ in LayerNorm (LN) layer of LLM is a key fac-
tor influencing the distribution of activation value
outliers. Therefore, Gamma Migration is proposed,
which involves removing γ from LN and moving
it to the weights in the next layer and the short
branch. Outlier Suppression+ (Wei et al., 2023)
introduces channel-wise shifting, which eliminates
the asymmetry in activation distribution and re-
duces the range of the tensor. SmoothQuant (Xiao
et al., 2023) is the first method to introduce channel-
wise scaling factors designed based on the maxi-
mum value. FPTQ (Li et al., 2023) improves the
calculation method of scaling factors by utilizing
non-linear offline logarithmic activation equaliza-
tion (LAE) to adjust the distribution of activations,
making the activation distribution moderate. Om-
niQuant (Shao et al., 2024) stands out as the latest
smooth-based PTQ method which defines learn-
able smoothing parameters. However, OmniQuant
uses the basic channel-wise maximum values as
the initial scaling factors and only use MSE loss to
update, means that its performance can not reach
the optimal level. This paper also defines learnable
parameters where smoothing parameters are initial-
ized with LAE. Furthermore, we design a novel
loss function namely NLC loss based on cosine
similarity considering the directional differences of
outputs to update the learnable parameters.

2.2 Test-Time Adaptation

Test-time adaptation is a technique to adapt mod-
els to unseen datasets to improve robustness dur-
ing testing. Unlike fine-tuning (Wang et al., 2017;
Howard and Ruder, 2018; Hu et al., 2021), it is
source-free and doesn’t require additional labels
from test data. Tent (Wang et al., 2020) minimizes
the prediction entropy generated by the model dur-
ing testing to reduce generalization error. EATA
(Niu et al., 2022) believes that excessive adaptation
can lead to catastrophic forgetting of the source
data and proposes a sample selection method to
choose samples with high contribution to adapta-
tion from the test sets for entropy minimization.
On this basis, SAR (Niu et al., 2023) proposes re-
moving noisy samples with large gradients during
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Figure 3: An overview of our LRQuant. LRQuant
uses our NLC loss and MSE loss to update learnable
smoothing and quantization parameters. During testing,
LRQuant utilizes test data to adapt the last block to
improve performance on unseen data.

testing and enhancing robustness to noise through
sharpness-aware learning on the remaining samples.
TS (Park et al., 2023) changes the traditional ap-
proach of updating model parameters and instead
performs style shifting on test samples to make
them resemble the nearest source domain.

In this paper, we are the first to introduce TTA
into LLMs quantization, aiming to improve the
model’s generalization capability on unseen test
sets while avoiding catastrophic forgetting and out-
performing re-calibration from scratch.

3 LRQuant

In this section, we provide a detailed introduction
to our LRQuant as shown in Figure 3. We first
describe the learnable parameters and NLC loss
and then introduce our TTA approach for quantized
models on unseen datasets.

3.1 Learnable Parameters

Learnable Weight Quantization. For weight
quantization, the general function is as follows:

Wq = clamp(⌊W
S
⌉+ z, 0, 2b − 1), (1)

where ⌊.⌉ means round-to-nearest operation. b de-
notes the target bit-width. Wq is the quantized
weight and W is the full-precision weight. S is the
step size and z is called zero-point, and we follow
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Lin et al. (2023) to learn these two parameters to
improve performance, which can be elaborated as:

S = αmax(W)−βmin(W)
2b−1

, z = −⌊βmin(W)
S ⌉, (2)

where α and β are learnable quantization param-
eters (Shao et al., 2024) to control the upper and
lower bound of clipping range respectively and they
are constrained within the range of [0, 1].

Learnable Activation Smoothing Quantization.
Smooth-based PTQ methods are supposed to
smooth the distribution of activations to mitigate
the impact of outliers under the condition of out-
putting exactly equal results in mathematical form.
For linear layers, this can be expressed as:

X’W’ + B’ = XW + B, (3)

where X, W, B and X’, W’, B’ are activation,
weight, bias before and after equivalent transforma-
tion respectively. In more detail:

X’ = (X − zs)diag(s)−1, (4)

W’ = diag(s)W, (5)

B’ = B + zsW, (6)

where s and zs are scaling factors and shifting fac-
tors (Wei et al., 2023) to narrow down the activation
distribution range. We should notice that in order
to calculate easily and implement smooth quanti-
zation in codes, for activation quantization, s and
zs are fused into the weights of previous LN or
linear layers, and for weights, s can be absorbed
into themselves.

As is well-known, the initial values of hyper-
parameters have a significant impact on the final
results (Glorot and Bengio, 2010). Inspired by (Lin
et al., 2023) and (Li et al., 2023), the impact of the
smoothing process on weight quantization is con-
sistently smaller compared to the benefits obtained
by smoothing activation and the use of logarithmic
equivalence proves to be more effective in suppress-
ing activation outliers. In this way, we define the
initial scaling factor s as:

s0i = max(|xi|)/loga(a+ max(|xi|)), (7)

where i is the index of the input channel. We set a
as 2 followed by (Li et al., 2023), while s0i is just
an initial value as our scaling factor is learnable.

3.2 NLC Loss
Block-wise quantization is commonly used in PTQ
for LLMs, which quantizes the whole model block
by block, to avoid excessive GPU memory usage.
The MSE is usually adopted to guide the quantiza-
tion process:

LMSE = ∥F (W,X)− F (Qw(W), Qa(X))∥22, (8)

where F (·) is the embedding function of a block.
Qw(·) represents the weight quantizer with both
learnable quantization parameters Θq (short for α
and β) and smoothing parameters Θs (short for s
and zs) while Qa(·) denotes the activation quan-
tizer with only smoothing parameters Θs.

However, MSE loss only measures the magni-
tude similarity of vectors without considering the
direction similarity. Hence, this paper is motivated
by maximizing the cosine similarity between the
output of each full-precision and quantized block,
to improve directional similarity. We leverage the
negative logarithm of cosine similarity for the out-
puts as the loss function called NLC loss LNLC :

LNLC = −log(C(F (W,X), F (Qw(W), Qa(X)))), (9)

where C(·) is the cosine similarity operator:

C(A,B) =
A ·B

∥A∥∥B∥ . (10)

In the end, we combined MSE loss and NLC
loss, and our final optimization objective is:

Θ∗
q ,Θ

∗
s = argmin

Θq ,Θs

(LMSE + LNLC), (11)

where Θ∗
q and Θ∗

s are the optimal learnable param-
eters. Our NLC loss approaches 0 when the quan-
tized and the full-precision outputs are close to be
the same, so as guiding the quantization process.
As illustrated in Figure 1, with NLC loss, LRQuant
has significantly outperformed MSE-only method.

3.3 TTA for Quantized Models
In most existing PTQ methods for LLMs, the pre-
trained large model is first quantized based on the
calibration dataset, which is then directly evaluated
on unseen test datasets. However, when applying
the quantized model to an unseen dataset with do-
main shift, it may cause performance degradation.
A naive solution is to re-calibrate the whole quan-
tized model based on the test dataset, while which
is time-consuming. In addition, we empirically
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found that, adapting the entire model using test
data will inevitably lead to catastrophic forgetting
of source calibration knowledge, leading to perfor-
mance degradation. Therefore, balancing model
adaptation performance and catastrophic forgetting
is crucial. To address this issue, we innovatively
introduce the idea of TTA into LLM quantization.

Considering that the most task-relevant block
in the model is the last one, we choose to only
adapt the last block of the quantized model based
on the unseen test data. As illustrated in Figure
3, in the TTA phase of our LRQuant, we only
extract the last block from the full-precision model
for quantization based on the test data, and we still
utilize a combination of MSE loss and NLC loss to
update the parameters with only a few epochs. The
adaptation goal is as follows:

Θl∗
q ,Θ

l∗
s = argmin

Θl
q ,Θ

l
s

(LMSE + LNLC), (12)

where Θl∗
q and Θl∗

s are the learnable parameters of
the last block after adaptation, where we set 5 as
the number of TTA epochs. This entire process is
source-free, and the time required for each adapta-
tion process on test sets is within one minute.

An intuitive question is why only update the
learnable parameters of the last block rather than
the entire model. Here we describe the two advan-
tages of our TTA scheme over re-calibration for
PTQ. First, it is much more time-consuming and
challenging to update the whole model than only
the last block. Second, re-calibrating the whole
model based on the test set can lead to catastrophic
forgetting which significantly alters the suitable
quantization parameters for source calibration data.
Differently, our TTA scheme only re-calibrates the
last block, which can somehow retain source knowl-
edge. Moreover, our experimental results in Table
6 show that, compared to calibrating the whole full-
precision model using test sets from scratch, our
TTA scheme can achieve much better performance
on unstable target sets such as PTB, which main-
tains its performance on the source calibration set
even after adapting to the new test dataset. In the
end, we present the entire LRQuant pseudocode
as Algorithm 1 at Appendix A.

4 Experiments

In this section, we conduct extensive experiments
to validate our LRQuant achieves the following
objectives: (1) Demonstrates outstanding perfor-
mance in challenging quantization tasks (W4A4

and W6A6) through the presented learnable param-
eters and NLC loss. (2) Enhances model perfor-
mance on unseen test sets using our TTA scheme.

4.1 Experimental Setup
Baseline. Because LRQuant is a smooth-based
PTQ method, we select the same type but prede-
fined methods SmoothQuant (Xiao et al., 2023),
LAE (Li et al., 2023) and learnable approach Om-
niQuant (Shao et al., 2024) as baselines. It is im-
portant to note that, due to the lack of data from
original papers and to ensure consistency with our
LRQuant experimental environment, all results of
other methods are reproduced as their settings.
Models. We mainly choose LLaMA (7B,13B
and 30B) (Touvron et al., 2023a) and LLaMA-2
(7B,13B) (Touvron et al., 2023b) to evaluate our
LRQuant, since LLaMA and LLaMA-2 families
are currently the most popular and widely applied
LLMs. Additionally, we also conduct experiments
on OPT (1.3B, 2.7B, 6.7B) (Zhang et al., 2022),
which can be found in Appendix D.
Training. For learnable smoothing parameters,
we initialize the channel-wise shifting factors as
Wei et al. (2023) and the scaling factors with Eq.(7),
where we set the base a as 2. We utilize the AdamW
optimizer (Loshchilov and Hutter, 2017) with zero
weight decay to optimize the learnable smoothing
parameters and quantization parameters with learn-
ing rate 1e-3 and 1e-2 respectively. Our calibration
data consists of 128 random 2048 token-segments
from WikiText2 (Merity et al., 2016). Using a
batch size of 1, all processes are performed on one
NVIDIA A100-40G GPU. The calibration train-
ing process consists of 20 epochs, while the TTA
process involves 5 epochs.
Datasets. Following most smooth-based meth-
ods (Shao et al., 2024; Xiao et al., 2023), test
data comes from WikiText2, Penn Treebank (PTB)
(Marcus et al., 1994), and C4 (Raffel et al., 2020)
for language generation tasks. For evaluating the
performance on zero-shot tasks, we select sev-
eral popular tasks including PIQA (Bisk et al.,
2020), ARC (Clark et al., 2018), BoolQ (Clark
et al., 2019), HellaSwag (Zellers et al., 2019) and
Winogrande (Sakaguchi et al., 2021) using lm-
evaluation-harness (Gao et al., 2023).

4.2 Experiments on Language Generation
Tasks

The core competency requisite for LLMs is to com-
prehend and generate language. Hence, to vali-
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Bits Models Methods WikiText2 PTB C4 PTB-new C4-new

W4A4

LLaMA-7B

FP16 5.67 27.34 7.07 41.15 7.34
LAE 135.72 500.23 140.69 648.07 166.53

SmoothQuant 38.09 203.76 58.50 320.09 74.12
OmniQuant 12.46 107.31 15.83 201.06 17.78
LRQuant 11.25 52.05 14.14 99.28 15.41

LLaMA-13B

FP16 5.09 19.22 6.61 28.09 6.79
LAE 151.02 283.48 132.17 397.80 148.29

SmoothQuant 79.01 267.09 99.58 297.53 121.95
OmniQuant 12.39 72.26 15.47 105.07 17.38
LRQuant 11.26 42.76 13.19 63.78 14.53

LLaMA-30B

FP16 4.10 16.29 5.98 23.51 6.13
LAE 388.53 855.89 210.49 1194.53 233.55

SmoothQuant 449.28 1320.15 193.36 2291.59 233.35
OmniQuant 15.09 68.11 18.05 90.31 19.68
LRQuant 12.00 36.55 12.83 53.64 14.12

LLaMA-2-7B

FP16 5.47 22.51 6.97 37.91 7.26
LAE 180.94 2114.33 155.20 6149.77 174.06

SmoothQuant 106.18 1477.48 98.42 2961.55 113.35
OmniQuant 16.66 717.61 21.16 1572.5 24.05
LRQuant 12.75 87.63 15.82 281.41 17.57

LLaMA-2-13B

FP16 4.88 28.87 6.47 50.93 6.73
LAE 338.27 1231.87 516.26 2102.05 541.60

SmoothQuant 184.11 1500.14 165.09 2681.07 158.29
OmniQuant 12.93 147.25 15.47 253.71 17.25
LRQuant 12.23 132.83 14.02 262.99 15.57

Table 1: W4A4 perplexities (lower is better) comparison of quantized LLaMA and LLaMA-2 models. W6A6
results are in Table 11 at Appendix D. All models are quantized based on WikiText2 and evaluated on all datasets.

date the first objective—achieving superior per-
formance in challenging quantization tasks—we
initially compare a crucial metric for language gen-
eration tasks, perplexity, with the baselines.

The outcomes presented in Table 1 highlight
a significant superiority of our learnable method
over predefined methods in all W4A4 experiments.
When compared to another learnable method, Om-
niQuant, across WikiText2, C4, and C4-new tasks,
LRQuant exhibits a noteworthy reduction in per-
plexities by an average of 2.00, 3.20, and 3.79,
respectively. Notably, on PTB and PTB-new tasks
where OmniQuant faces substantial challenges,
LRQuant demonstrates heightened stability. A
more visually intuitive representation of the cosine
similarity comparison with OmniQuant is depicted
in Figure 1. W6A6 results can be found in Table
11 at Appendix D and OPT results can be found in
Table 13 at Appendix E. These findings underscore
the efficacy of learnable parameters and NLC loss.

4.3 Experiments on Zero-Shot Tasks

In addition to language generation, zero-shot tasks
reflect the model’s ability to handle unseen prob-
lems, also serving as a crucial metric for character-
izing model performance. To further validation, we

compare zero-shot accuracies with baselines.
As indicated in Table 2, similar to the results ob-

served in language generation tasks, our LRQuant
consistently outperforms all predefined methods.
Moreover, our LRQuant also exhibits superior per-
formance compared to OmniQuant in most cases,
showcasing an average performance increase range
of 3.22%∼8.95%. Results and analysis for W6A6
can be found in Table 12. Combining the experi-
mental results from the two subsections, we deduce
that our LRQuant attains the state-of-the-art level
in challenging quantization tasks. Additionally, in
order to further demonstrate the superiority of our
method on weight-only tasks, we conduct corre-
sponding experiments in Appendix G.

4.4 Ablation Experiments

Having showcased the superior performance of
LRQuant in challenging quantization tasks, our
objective extends to providing additional evidence
for the effectiveness of our two innovations: learn-
able parameters and NLC loss. To substantiate this,
we conduct ablation studies on the LLaMA-7B at
W4A4, and the results are presented in Table 3,
where LAE and NLC represent the initialization
methods for learnable smoothing parameters and

2245



Models Methods PIQA ARC-e ARC-c BoolQ HellaS WinoG Avg.

LLaMA-7B

FP16 78.40 67.34 38.13 73.11 56.42 66.85 63.38
LAE 56.58 28.74 21.84 56.39 27.32 52.72 40.60

SmoothQuant 61.86 42.42 22.86 58.37 33.30 50.51 44.89
OmniQuant 63.49 46.17 24.74 62.53 39.58 53.51 48.34
LRQuant 66.64 52.98 28.92 63.30 43.99 53.51 51.56

LLaMA-13B

FP16 78.78 74.53 43.94 68.53 59.09 70.08 65.82
LAE 58.10 35.31 22.09 61.31 30.60 50.98 43.07

SmoothQuant 62.45 44.31 24.48 61.07 35.63 50.11 46.34
OmniQuant 63.87 47.72 26.27 62.17 40.78 52.64 48.91
LRQuant 72.41 57.91 31.65 64.92 47.43 56.43 55.13

LLaMA-30B

FP16 80.08 58.92 45.47 68.44 79.21 72.53 67.44
LAE 56.03 28.45 19.45 50.48 26.69 48.85 38.33

SmoothQuant 54.57 28.82 19.45 55.90 26.93 49.88 39.26
OmniQuant 65.29 50.25 24.06 62.17 41.87 52.41 49.34
LRQuant 73.12 61.53 33.28 70.64 50.71 60.46 58.29

LLaMA-2-7B

FP16 78.45 69.32 40.02 71.07 56.69 67.25 63.80
LAE 56.20 28.87 21.75 56.26 28.13 52.32 40.59

SmoothQuant 58.59 32.65 21.67 59.90 29.23 50.19 42.04
OmniQuant 60.39 43.47 22.26 61.43 37.25 49.64 45.74
LRQuant 63.71 46.96 26.27 63.39 44.42 53.19 49.66

LLaMA-2-13B

FP16 78.73 73.27 45.56 69.02 59.72 69.61 65.99
LAE 54.62 29.50 20.90 58.25 28.56 50.35 40.36

SmoothQuant 54.18 28.78 19.28 60.55 27.82 50.19 40.13
OmniQuant 67.36 53.96 29.61 63.33 44.93 51.54 51.79
LRQuant 61.70 43.06 27.56 64.19 46.32 54.85 49.61

Table 2: Zero-shot accuracies (higher is better) comparison of quantized LLaMA and LLaMA-2 models at W4A4.
W6A6 results can be found in Table 12 at Appendix D.

our NLC loss, respectively.

LAE MSE NLC Wiki-2 PTB C4

✓ 12.46 107.31 15.83
✓ ✓ 12.34 91.58 15.69
✓ ✓ 12.22 50.57 14.98
✓ ✓ ✓ 11.25 52.05 14.14

Table 3: Ablation results of LLaMA-7B quantized by
LRQuant at W4A4 quantization.

The first row in the table is same as Omni-
Quant which only uses the MSE loss. It is evi-
dent from the second and third row that each in-
novation in our LRQuant is effective. Although
LAE + NLC group achieves optimal performance
on PTB, which shows mediocre results on Wiki-
Text2 and C4. Conversely, LAE + MSE + NLC
demonstrates the overall best performance, which
is selected as our default setting.

We also conduct experiments to demonstrate the
effectiveness of smoothing strategy. As illustrated
in Figure 4, it can be observed that after smoothing
the magnitude of the activation values has signif-
icantly decreased and shows much better perfor-
mance, especially for those channels with more
prominent outliers.

Pre-Smooth Post-Smooth

Figure 4: The magnitude comparison of activations
before and after smoothing by LRQuant in a layer of
LLaMA-7B.

Model Methods Wiki-2 PTB C4 PTB-n C4-n

LLaMA-7B w/o smooth 2.9e3 2.4e3 3.1e3 2.8e3 3.5e3
smooth 11.25 52.05 14.14 99.28 15.41

LLaMA-2-7B w/o smooth 462.03 661.47 472.60 1044.91 514.84
smooth 12.75 87.63 15.82 281.41 17.57

Table 4: Perplexity comparison of LRQuant with and
w/o smooth at W4A4.

4.5 Experiments on Test-Time Adaptation
Performance

After achieving the first validation objective, the
subsequent goal is to verify whether our TTA
method can enhance the performance on unseen
datasets. We compare the perplexities of LRQuant
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Bits Models Methods WikiText2 PTB C4 PTB-new C4-new

W4A4

LLaMA-7B pre-TTA 11.25 52.05 14.14 99.28 15.41
post-TTA 11.25 54.22 14.83 98.10 16.32

LLaMA-13B pre-TTA 11.26 42.76 13.19 63.78 14.53
post-TTA 11.26 40.58 13.44 60.34 15.08

LLaMA-2-7B pre-TTA 12.75 87.63 15.82 281.41 17.57
post-TTA 12.75 80.69 17.17 227.27 19.69

LLaMA-2-13B pre-TTA 12.23 132.83 14.02 262.99 15.57
post-TTA 12.23 97.42 14.46 196.16 19.50

W6A6
LLaMA-7B pre-TTA 5.88 32.56 7.35 49.14 7.67

post-TTA 5.88 32.64 7.63 49.09 7.97

LLaMA-13B pre-TTA 5.27 20.13 6.84 28.39 7.07
post-TTA 5.27 19.98 7.15 28.48 7.41

Table 5: Perplexities (lower is better) comparison of quantized models by LRQuant before and after TTA at
W4A4 and W6A6. In this experiment, models are quantized on WikiText2 and then directly evaluated (pre-TTA) or
adapted (post-TTA) on the remaining datasets.

Bits Testsets Methods LLaMA-13B LLaMA-2-13B

W4A4 PTB Calibration 40.86 59.35
TTA 40.58 97.42

W6A6 PTB Calibration 20.07 30.61
TTA 19.98 29.99

Table 6: Perplexities on target dataset after direct calibration and our TTA scheme. In this experiment, “Calibration"
directly calibrates and quantizes models on the target dataset (PTB), while “TTA" quantizes models based on
WikiText2, and adapts to the target datasets. This table reports their evaluation performance on the target datasets.

before and after adaptation, where the model is
quantized based on WikiText2 while adapted and
evaluated on remaining datasets. As illustrated in
Table 5, although a little worse on C4, perplexities
of almost all adapted models with our TTA scheme
have shown a certain degree of reduction on PTB,
which intuitively proves the effectiveness of our
method.

Bits Methods LLaMA-7B LLaMA-13B LLaMA-2-7B

W4A4 Calibrate 137.2 240.9 137.8
TTA 0.4 0.6 0.4

W6A6 Calibrate 138.6 243.9 137.7
TTA 0.5 0.6 0.4

Table 7: Time (miniute) comparison of directly calibrat-
ing and TTA on PTB.

In addition, we compare our TTA scheme with
directly calibrating the whole model using PTB.
In Table 6, Calibrate means the model is directly
calibrated and quantized using PTB and then im-
mediately evaluated on it, while TTA means our
TTA scheme where WikiText2 is the calibration set
and adapt on PTB. The calibration of the whole
model requires 300 × more time than TTA adap-
tation. More surprisingly, our TTA scheme can

Models Methods W4A4

C4 PTB

LLaMA-7B reCalib 11.77 14.09
TTA 11.25 11.25

LLaMA-13B reCalib 11.80 13.22
TTA 11.26 11.26

LLaMA-2-7B reCalib 13.64 15.12
TTA 12.75 12.75

LLaMA-2-13B reCalib 12.10 14.94
TTA 12.23 12.23

Table 8: Perplexities on original WikiText2 at W4A4
after re-calibrating and TTA on test datasets (C4 and
PTB). In this experiment, “reCalib" first quantizes mod-
els based on WikiText2 and then re-quantizes the model
based on test datasets. This table reports their evaluation
performance on the original WikiText2 dataset.

outperform directly calibrating the whole model
with the test sets in some cases. For other cases
with slight decreases, our method remains com-
parable performance but shows hundreds of times
faster than recalibration (see Table 7). In summary,
we consider that our TTA scheme can significantly
promote the deployment efficiency of quantized
models in new scenarios while ensuring effective-
ness.
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Last, we conduct experiments to evaluate our
TTA scheme in relieving catastrophic forgetting.
As indicated in Table 8, we evaluate the W4A4 per-
formance on WikiText2 to compare re-calibrating
the model from scratch (reCalib) with our TTA
method (TTA) after adapting on new datasets. As
shown, the performance on the original WikiText2
deteriorates after re-calibrating on new test sets
(C4 and PTB). Differently, our TTA can retain its
performance on the original dataset, verifying its
effectiveness in mitigating catastrophic forgetting.
W6A6 results are in Table 14 at Appendix F.

5 Conclusion

In this paper, we propose a robust smooth-
based PTQ framework namely LRQuant. Firstly,
LRQuant defines learnable smoothing parameters
and initializes them using LAE. Subsequently, we
introduce a novel block-wise loss function namely
NLC loss which further considers the directional
similarity of outputs. The experiments substanti-
ate that our LRQuant attains state-of-the-art lev-
els on challenging weight-activation quantization
tasks. Moreover, we pioneeringly proposed a TTA
scheme for LLM quantization to improve general-
ization performance on unseen datasets by adapting
the learnable parameters of the last block based on
the test data. The experiments indicate that our
method not only relieves catastrophic forgetting
but also surpasses re-calibration using the target
set, thereby significantly promoting the deployment
efficiency of quantized models in some cases.

Limitations

Our LRQuant defines learnable smoothing param-
eters and introduces a novel loss function based
on cosine similarity so it has become state-of-the-
art weight-activation PTQ method. However, due
to hardware limitation we have not applied our
method to quantize larger LLMs with over 100 bil-
lion parameters. This will be added to our list of
future work.

Additionally, our LRQuant is the first to intro-
duce TTA into LLMs quantization which has suc-
cessfully improved the quantized models’ perfor-
mance on unseen datasets. However, we do not
draw inspirations from state-of-the-art TTA meth-
ods which makes our performance may not achieve
optimal, such as on C4 dataset our TTA scheme
still stands behind original results. In future work,
we aim to explore ideas from other methods and

propose a more effective TTA scheme for LLMs
quantization.

Ethics Statement

This paper introduces solutions to the challenges
associated with Large Language Models (LLMs)
quantization, with the overarching goal of facili-
tating the widespread adoption and application of
LLMs. In the current landscape, ethical concerns
tied to LLMs, including the presence of hidden
biases encoded in the models, are garnering height-
ened attention. Following our investigation, we
assert that our proposed method does not further
amplify the biases and contravene any ethical stan-
dards.
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Appendix

A The Full Algorithm

Algorithm 1 Overall algorithm of LRQuant
Input: full-precision LLM model M; calibration set X; test set Xt

Output: quantized LLM model after TTA
1: Xfp = Xq = X
2: for Bi in M do ▷ Block-wise quantization
3: Xfp = Bi(Xfp)

4: Init learnable parameters Θq and Θs ▷ Θs with Eq. (7)
5: for k in epochs do
6: for (xq, xfp) in (Xq, Xfp) do
7: B′

i = Quantize (Smooth(Bi,Θs),Θq)

8: x
′
q= B′

i(xq)

9: loss = MSE(x
′
q, xfp)+NLC(x

′
q, xfp) ▷ NLC(·) with Eq. (9)

10: loss.backward() ▷ Update Θq and Θs

11: end for
12: end for
13: Bq

i = Quantize (Smooth(Bi,Θs),Θq)

14: Xq= Bq
i (Xq)

15: end for
16: Xt

fp = Xt
q = Xt ▷ TTA phase

17: for (Bi, Bq
i ) in (M, Mq) do

18: if i == len(M) then ▷ The last quantized block
19: Xt

fp = Bi(Xt
fp)

20: Init Θl
q and Θl

s

21: for k in 5 do
22: for (xtq, xtfp) in (Xt

q, Xt
fp) do

23: B′
i = Quantize (Smooth(Bi,Θ

l
s),Θ

l
q)

24: xt
′

q = B′
i(xtq)

25: loss = loss(xt
′

q , xtfp).backward()
26: loss.backward()
27: end for
28: end for
29: Bq

i = Quantize (Smooth(Bi,Θ
l
s),Θ

l
q)

30: else
31: continue
32: end if
33: end for
34: return quantized model Mq

B Hyperparameter Analysis on the Base
of LAE

In this paper, we set 2 as the base of our learnable
scaling factors initialization function, which is the
same with (Li et al., 2023). In addition, we also
compare several other bases (e, 5, and 10) to quan-
tize LLaMA-7B at W4A4, and the experimental
results (perplexity) are shown in the Table 9.

Base Wiki-2 PTB C4 PTB-n C4-n

2 11.25 52.05 14.14 99.28 15.41
e 11.28 50.13 14.15 82.95 15.53
5 11.58 96.46 14.53 157.09 15.87

10 11.37 47.38 14.40 85.09 15.72

Table 9: Perplexity comparison of LAE using different
bases to calculate initial learnable scaling factors to
quantize LLaMA-7B at W4A4.

From the table, it can be observed that using dif-

ferent bases yields similar results. Even setting the
base as a learnable parameter does not lead to a sig-
nificant improvement in performance. Therefore,
to save computational resources, we choose 2 as the
base which shows relatively better performance.

C Weighted Combination of MSE and
NLC Loss

To validate whether the weighted combination of
MSE and NLC loss in LRQuant achieves better
performance, we further select different combina-
tion ratio for comparison as indicated in Table 10.

Methods Wiki-2 PTB C4

0.9MSE+0.1NLC 11.35 73.06 14.23
0.8MSE+0.2NLC 11.42 64.24 14.11
0.6MSE+0.4NLC 11.69 57.17 15.42

MSE+NLC 11.26 42.76 13.19

Table 10: Perplexity comparison of weighted combina-
tion on LLaMA-7B at W4A4.

From the results, it can be observed that even
with the weighted combination method, the per-
formance does not improve and is even inferior
to evenly combination. Therefore, we select an
evenly combination of two loss functions for our
LRQuant.

D LLaMA and LLaMA-2 Experiments at
W6A6

Table 11 and Table 12 shows W6A6 experimen-
tal results corresponding to Section 4.2 and Sec-
tion 4.3 respectively. As illustrated in Table 11,
LRQuant achieves the best performance in most
experiments. Additionally, as demonstrated in Ta-
ble 12, LRQuant achieves optimal results in some
experiments, while in the remaining ones, it ob-
tains near-optimal performance, also demonstrat-
ing an advanced level. Combining the experiments
for W4A4 in the content, we can conclude that
LRQuant has become the current state-of-the-art
method for weight-activation quantization.

E Perplexities on OPT Families

We also evaluate perplexities of our LRQuant on
OPT families (1.3B, 2.7B, 6.7B). The results are
shown in Table 13. From the table, we know that
our method outperforms all the predefined methods
and for another learnable method OmniQuant there
can be clearly seen a moderate decrease on each
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Bits Models Methods WikiText2 PTB C4 PTB-new C4-new

W6A6

LLaMA-7B

LAE 6.04 30.61 7.47 44.44 7.80
SmoothQuant 6.15 30.73 7.63 46.17 7.99
OmniQuant 6.05 30.89 7.54 46.45 7.89
LRQuant 5.88 32.56 7.35 49.14 7.67

LLaMA-13B

LAE 5.43 22.31 6.98 31.57 7.22
SmoothQuant 5.49 25.22 7.03 33.99 7.28
OmniQuant 5.48 21.39 7.03 29.42 7.28
LRQuant 5.27 20.13 6.84 28.39 7.07

LLaMA-30B

LAE 4.57 17.36 6.34 25.00 6.54
SmoothQuant 4.77 18.03 6.48 25.34 6.70
OmniQuant 4.38 17.56 6.23 25.54 6.41
LRQuant 4.31 16.94 6.19 24.53 6.36

LLaMA-2-7B

LAE 5.78 26.04 7.35 55.95 7.72
SmoothQuant 6.21 35.50 7.77 142.53 8.07
OmniQuant 6.20 37.01 7.76 155.70 8.06
LRQuant 5.67 25.77 7.24 67.09 7.61

LLaMA-2-13B

LAE 5.13 31.90 6.71 59.36 7.03
SmoothQuant 5.18 31.78 6.76 59.28 7.09
OmniQuant 5.41 31.32 7.01 57.12 7.41
LRQuant 5.07 29.79 6.68 54.71 6.98

Table 11: W6A6 perplexities (lower is better) comparison of quantized LLaMA and LLaMA-2 models.

comparison so it proves that our LRQuant is able
to applied for accurately and effectively quantizing
OPT models.

F W6A6 Catastrophic Forgetting
Experiments for Test-Time Adaptation

Be similar with W4A4 results in Table 8 at Section
4.5, the performance on WikiText2 of models re-
calibrated by C4 or PTB is all surpassed by our
method on W6A6, where we use C4 or PTB to
adapt the last block. The comparison results can be
found in Table 14. Thereby, we can assert further
that our method relieves catastrophic forgetting
through the implementation of our TTA scheme.

G Weight-Only Experiments

Our LRQuant is mainly focusing on the more chal-
lenging weight-activation quantization while quan-
tization methods such as AWQ and GPTQ belong
to weight-only quantization. To demonstrate the
superiority of our proposed method on hardware-
friendly quantization tasks, we also add additional
weight-only experiments as shown in Table 15 and
Table 16. From results, it can be seen that compared
to the two well-known weight-only PTQ methods
AWQ and GPTQ, our method still demonstrates
significant advantages. Especially under more ex-
treme weight quantization settings like W2A16,
where GPTQ and AWQ collapse, RLQuant still
maintains a good performance. For zero-shot tasks,

our method still outperforms them in most results.
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Models Methods PIQA ARC-e ARC-c BoolQ HellaS WinoG Avg.

LLaMA-7B

LAE 77.74 64.73 37.79 71.62 55.59 66.29 62.29
SmoothQuant 77.96 66.62 39.07 70.70 55.93 64.16 62.41
OmniQuant 77.04 67.67 38.31 72.66 55.43 63.14 62.38
LRQuant 77.36 64.81 38.13 72.50 55.81 65.82 62.41

LLaMA-13B

LAE 78.29 71.67 43.34 65.74 58.00 69.13 64.36
SmoothQuant 78.72 70.74 42.66 65.25 58.27 68.27 63.99
OmniQuant 78.30 71.60 42.80 65.40 58.10 67.70 63.98
LRQuant 78.29 71.96 42.90 66.88 58.64 68.98 64.61

LLaMA-30B

LAE 77.04 70.41 43.25 71.55 61.08 71.34 65.78
SmoothQuant 76.98 69.61 45.73 71.43 60.28 71.03 65.84
OmniQuant 79.98 73.74 46.67 67.80 61.88 71.90 67.00
LRQuant 80.74 74.54 45.31 68.44 61.85 72.22 67.18

LLaMA-2-7B

LAE 77.63 66.83 38.82 70.55 55.84 65.35 62.50
SmoothQuant 77.20 68.39 38.73 70.51 55.85 64.95 62.61
OmniQuant 77.14 68.77 39.93 70.15 55.72 65.74 62.91
LRQuant 77.36 68.30 40.27 69.14 56.15 65.43 62.78

LLaMA-2-13B

LAE 78.40 71.75 43.08 68.59 58.61 71.19 65.27
SmoothQuant 78.45 73.14 43.77 69.96 58.15 65.19 64.78
OmniQuant 76.44 70.75 41.72 67.71 57.12 64.88 63.10
LRQuant 78.40 72.18 43.94 67.92 59.16 68.59 65.03

Table 12: Zero-shot accuracies (higher is better) comparison of quantized LLaMA and LLaMA-2 models at
W6A6.

Bits Models Methods WikiText2 PTB C4 PTB-new C4-new

W4A4

OPT-1.3B

FP16 14.62 16.96 14.72 20.29 16.07
SmoothQuant 126.05 120.43 107.16 128.68 119.11

LAE 102.12 106.38 76.40 112.53 86.95
OmniQuant 19.19 23.62 19.45 28.92 21.49
LRQuant 19.11 23.29 19.39 28.75 21.45

OPT-2.7B

FP16 12.47 15.11 13.16 17.97 14.34
SmoothQuant 252.04 207.65 151.90 220.49 169.49

LAE 423.20 304.95 263.87 246.71 309.16
OmniQuant 15.19 19.34 16.51 23.24 18.14
LRQuant 14.94 19.24 16.15 23.33 17.83

OPT-6.7B

FP16 10.86 13.09 11.74 15.77 12.71
SmoothQuant 491.34 317.70 238.19 293.54 277.48

LAE 305.84 235.22 180.49 202.07 214.96
OmniQuant 12.34 15.44 13.56 18.50 14.88
LRQuant 12.33 15.31 13.50 18.31 14.76

W6A6

OPT-1.3B

FP16 14.62 16.96 14.72 20.29 16.07
SmoothQuant 15.42 17.65 15.32 21.30 16.70

LAE 15.34 17.67 15.20 21.30 16.57
OmniQuant 14.99 17.42 15.06 20.94 16.42
LRQuant 14.94 17.38 15.04 20.80 16.41

OPT-2.7B

FP16 12.47 15.11 13.16 17.97 14.34
SmoothQuant 12.68 15.35 13.32 18.28 14.51

LAE 12.96 15.65 13.53 18.67 14.68
OmniQuant 12.56 15.30 13.27 18.23 14.47
LRQuant 12.55 15.23 13.27 18.14 14.47

OPT-6.7B

FP16 10.86 13.09 11.74 15.77 12.71
SmoothQuant 10.98 13.23 11.85 15.89 12.82

LAE 11.39 13.69 12.15 16.33 13.08
OmniQuant 10.94 13.17 11.81 15.81 12.79
LRQuant 10.93 13.16 11.81 15.79 12.78

Table 13: Perplexities (lower is better) comparison of quantized OPT models at W4A4 and W6A6.
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Models Methods W6A6

C4 PTB

LLaMA-7B reCalib 5.91 5.95
TTA 5.88 5.88

LLaMA-13B reCalib 5.28 5.34
TTA 5.27 5.27

LLaMA-2-7B reCalib 5.71 5.76
TTA 5.67 5.67

LLaMA-2-13B reCalib 5.09 5.09
TTA 5.07 5.07

Table 14: Perplexities on original WikiText2 at W6A6 after re-calibrating and TTA on test datasets (C4 and PTB).
In this experiment, “reCalib" first quantizes models based on WikiText2 and then re-quantizes the model based on
test datasets. This table reports their evaluation performance on the original WikiText2 dataset.

Bits Models Methods WikiText2 PTB C4 PTB-new C4-new

W4A16

LLaMA-7B
AWQ 5.98 30.74 7.44 47.20 7.75
GPTQ 5.93 29.62 7.47 46.17 7.84

LRQuant 5.84 30.93 7.32 45.72 7.64

LLaMA-13B
AWQ 5.25 22.73 6.80 31.01 7.02
GPTQ 5.28 20.36 6.86 29.75 7.12

LRQuant 5.21 19.39 6.76 28.32 6.98

OPT-1.3B
AWQ 15.22 18.40 15.68 22.06 17.12
GPTQ 15.44 18.47 15.79 22.04 17.21

LRQuant 15.05 17.65 15.27 21.23 16.70

OPT-2.7B
AWQ 13.17 16.17 13.92 19.45 15.13
GPTQ 13.09 16.09 13.96 19.32 15.21

LRQuant 12.87 15.85 13.71 18.97 14.95

W2A16

LLaMA-7B
AWQ 9.1e4 7.1e4 9.1e4 7.4e4 8.9e4
GPTQ 491.62 9.7e3 5.1e3 1.2e4 4.7e3

LRQuant 16.20 121.41 24.65 389.78 26.18

LLaMA-13B
AWQ 2.1e5 1.6e5 1.5e5 1.7e5 1.7e5
GPTQ 364.21 1.4e4 1.3e4 1.7e4 1.3e4

LRQuant 12.24 77.42 17.44 120.78 18.35

OPT-1.3B
AWQ 9.5e3 5.9e3 6.4e3 8.2e3 6.7e3
GPTQ 5.5e3 6.6e3 5.5e3 7.8e3 5.9e3

LRQuant 48.43 91.86 69.34 100.78 76.07

OPT-2.7B
AWQ 2.3e4 9.0e3 1.2e4 1.5e4 1.2e4
GPTQ 6.4e3 7.1e3 6.4e3 7.9e3 6.7e3

LRQuant 30.59 47.57 42.49 62.19 45.05

Table 15: Perplexities comparison of PTQ methods on weight-only quantization tasks.
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Bits Models Methods PIQA ARC-e ARC-c BoolQ HellaS WinoG

W4A16

LLaMA-7B
AWQ 78.12 66.58 37.71 73.08 55.20 66.53
GPTQ 77.69 67.88 37.54 69.93 55.38 66.85

LRQuant 78.18 65.02 37.79 72.96 55.42 65.35

LLaMA-13B
AWQ 78.61 73.82 43.00 68.47 58.41 69.13
GPTQ 78.61 73.19 43.43 66.88 57.83 69.13

LRQuant 78.99 73.73 42.66 68.28 58.42 69.29

OPT-1.3B
AWQ 71.10 56.81 25.68 56.69 40.81 57.93
GPTQ 71.44 55.64 24.15 57.98 40.56 57.22

LRQuant 70.95 56.90 23.46 61.07 40.65 58.41

OPT-2.7B
AWQ 73.01 60.04 26.96 59.81 44.88 61.56
GPTQ 73.39 59.43 26.88 53.30 44.38 60.85

LRQuant 73.23 60.82 26.02 65.75 45.04 60.22

W2A16

LLaMA-7B
AWQ 53.69 26.30 21.16 46.02 25.38 49.01
GPTQ 53.64 26.09 21.92 46.42 25.87 49.80

LRQuant 62.89 46.75 25.76 62.01 36.19 54.61

LLaMA-13B
AWQ 53.21 26.51 23.37 57.15 25.54 49.72
GPTQ 51.90 25.84 22.52 39.54 26.08 49.17

LRQuant 68.22 57.49 27.81 64.34 43.08 58.56

OPT-1.3B
AWQ 51.63 24.83 20.05 37.82 25.71 48.93
GPTQ 52.77 25.59 19.28 40.06 25.74 49.80

LRQuant 60.23 43.22 19.80 57.98 30.71 51.78

OPT-2.7B
AWQ 53.15 25.04 21.67 40.09 25.89 51.06
GPTQ 51.85 25.38 21.16 42.29 26.05 51.22

LRQuant 64.04 47.81 20.65 54.10 33.59 53.51

Table 16: Zero-shot accuracies comparison of PTQ methods on weight-only quantization tasks.
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