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Abstract

The subjective perception of emotion leads
to inconsistent labels from human annotators.
Typically, utterances lacking majority-agreed
labels are excluded when training an emotion
classifier, which cause problems when encoun-
tering ambiguous emotional expressions during
testing. This paper investigates three methods
to handle ambiguous emotion. First, we show
that incorporating utterances without majority-
agreed labels as an additional class in the clas-
sifier reduces the classification performance of
the other emotion classes. Then, we propose
detecting utterances with ambiguous emotions
as out-of-domain samples by quantifying the
uncertainty in emotion classification using ev-
idential deep learning. This approach retains
the classification accuracy while effectively de-
tects ambiguous emotion expressions. Further-
more, to obtain fine-grained distinctions among
ambiguous emotions, we propose representing
emotion as a distribution instead of a single
class label. The task is thus re-framed from
classification to distribution estimation where
every individual annotation is taken into ac-
count, not just the majority opinion. The evi-
dential uncertainty measure is extended to quan-
tify the uncertainty in emotion distribution esti-
mation. Experimental results on the IEMOCAP
and CREMA-D datasets demonstrate the supe-
rior capability of the proposed method in terms
of majority class prediction, emotion distribu-
tion estimation, and uncertainty estimation.

1 Introduction

The inherent subjectivity of human emotion per-
ception introduces complexity in annotating emo-
tion datasets. Multiple annotators are often in-
volved in labelling each utterance and the majority-
agreed (MA) class is usually used as the ground
truth (Busso et al., 2008; Cao et al., 2014). Utter-
ances that have no majority-agreed (NMA) labels
(i.e., with tied votes) are typically excluded during

emotion classifier training (Kim et al., 2013; Po-
ria et al., 2017; Zou et al., 2022; Wu et al., 2021),
which may cause issues when the system encoun-
ters such utterances in practical applications.

This paper investigates three approaches to han-
dling ambiguous emotion data. First, a naive
method is tested which aggregates NMA utter-
ances into an additional class when training an emo-
tion classifier. This approach proves problematic
as NMA utterances contain a blend of emotions,
thereby confusing the classifier and undermining
the classification performance.

Then we explore if an emotion classifier can
appropriately respond with “I don’t know” for am-
biguous emotion data that does not fit into any
predefined emotion class. This is realised by
quantifying the uncertainty in emotion classifica-
tion using evidential deep learning (EDL) (Sensoy
et al., 2018). When a classifier trained on MA
data encounters an NMA utterance during the test,
the model should identify it as an out-of-domain
(OOD) sample by providing a high uncertainty
score, indicating its uncertainty regarding the spe-
cific emotion class to which the NMA utterance
belongs.

Moreover, to obtain fine-grained distinctions be-
tween ambiguous emotional data, we re-frame the
task from classification to distribution estimation.
Consider the example shown in Figure 1 with the
annotations assigned to three utterances. Since
the majority emotion classes are “angry” for both
utterances (a) and (b), they will be assigned the
same ground-truth label “angry” in the aforemen-
tioned classification system, which implies that
they convey the same emotion content and is evi-
dently unsuitable. On the contrary, utterance (c),
though being an NMA utterance, is more likely to
share similar emotional content with utterance (b).
Therefore, in order to obtain more comprehensive
representations of emotion content, we further pro-
pose representing emotion as a distribution rather
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Figure 1: The bar chart shows the number of labels as-
signed by annotators to the emotion class “angry” (Ang),
“frustrated” (Fru), and “neutral” (Neu) in an example. In
utterance (a), eight annotators interpret the emotion as
angry while one interprets it as frustrated.

than a single class label and re-framing emotion
recognition as a distribution estimation problem
rather than a classification problem. A novel algo-
rithm is proposed which extends EDL to estimate
the underlying emotion distribution given observed
human annotations and quantify the uncertainty in
emotion distribution estimation. The proposed ap-
proach considers all human annotations rather than
relying solely on the majority vote class. Multi-
ple evaluation metrics are adopted to evaluate the
performance in terms of majority class prediction,
uncertainty measure, and distribution estimation.
Rather than simply saying “I don’t know”, the pro-
posed system demonstrates the ability to estimate
the emotion distributions of the NMA utterances
and also offer a reliable uncertainty measure for
the distribution estimation.

Our contributions are summarised as follows.
(i) To the best of our knowledge, this paper is the
first work that treats ambiguous emotion as OOD
and detects it by uncertainty estimation; (ii) This
is the first work that applies EDL to quantify un-
certainty in emotion classification; (iii) Imposing a
single ground truth through majority voting leads
to under-representation of minority views. We in-
stead estimate the distribution over emotion classes
which provides a more comprehensive representa-
tion of emotion content as well as a more inclusive
representation of human opinions; (iv) A novel al-
gorithm is proposed that extends EDL to quantify
uncertainty in emotion distribution estimation.

2 Related work

Human annotators often interpret the emotion of
the same utterance differently due to their personal
experiences and cultural backgrounds (Busso et al.,
2008; Cowen and Keltner, 2017; Sethu et al., 2019).
Instead of using the MA annotation as the ground
truth label, some research suggests treating emo-

tion classification as a multi-label task (Mower
et al., 2010; Zadeh et al., 2018; Chochlakis et al.,
2023) where all emotion classes assigned by any
annotator are considered as correct classes and the
ground truth label is presented as a multi-hot vec-
tor. The model is trained to predict the presence
of each emotion class for each utterance. An issue
with this approach is that it ignores the differences
in strengths of different emotion classes.

An alternative approach uses “soft labels” as
the proxy of ground truth, which is defined as the
relative frequency of occurrence of each emotion
class (Fayek et al., 2016; Han et al., 2017; Kim
and Kim, 2018). The Kullback–Leibler (KL) diver-
gence or distance metrics between the soft labels
and model predictions are used to train the model.
However, soft labels, being maximum likelihood es-
timates (MLE) of the underlying distribution based
on observed samples, might not provide an accurate
approximation to the unknown distribution when
the number of observations (annotations) is limited.
Also, although adopting soft labels, those meth-
ods still focus on obtaining a “correct” label (i.e.,
pursuing improved classification accuracy).

So far, the calibration of emotion models has
not been extensively studied. In this study, we
introduce a novel approach which provides not only
better emotion content estimation but also a reliable
measure of the model’s prediction confidence.

3 Detecting NMA as OOD by quantifying
emotion classification uncertainty

As explained in the introduction and confirmed ex-
perimentally in Section 7.1, training an emotion
classifier with NMA utterances grouped into an
additional class degrades the classification perfor-
mance. This section studies an alternative method.
The emotion classifier is trained on MA utterances
and NMA utterances are treated as OOD samples.
By quantifying uncertainty in emotion classifica-
tion, the model is expected to output a high uncer-
tainty score when encountering ambiguous emo-
tions, indicating that the utterance doesn’t belong
to any predefined MA class.

3.1 Limitation of modelling class probabilities
with the softmax activation function

A neural network model classifier transforms the
continuous logits at the output layer into class prob-
abilities by a softmax function. The model predic-
tion can thus be interpreted as a categorical distribu-
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tion with the discrete class probabilities associated
with the model outputs. The model is then opti-
mised by maximising the categorical likelihood of
the correct class, known as the cross-entropy loss.

However, the softmax activation function is
known to have a tendency to inflate the probabil-
ity of the predicted class due to the exponentia-
tion applied to transform the logits, resulting in
unreliable uncertainty estimations (Gal and Ghahra-
mani, 2016; Guo et al., 2017). Furthermore, cross-
entropy is essentially MLE, a frequentist technique
lacking the capability to infer the variance of the
predictive distribution.

In the following section, we estimate the
model uncertainty using evidential deep learning
(EDL) (Sensoy et al., 2018) which places a second-
order probability over the categorical distribution.

3.2 Quantify uncertainty in emotion
classification by evidential deep learning

Consider an emotion class label as a one-hot vector
y where yk is one if the emotion belongs to class
k else zero. y is sampled from a categorical distri-
bution η where each component ηk corresponds to
the probability of sampling a label from class k:

y ∼ P(y|η) = Cat(η) = ηykk . (1)

To model the probability of the predictive distri-
bution, we assume the categorical distribution is
sampled from a Dirichlet distribution:

η ∼ p(η|α) = Dir(η|α) =
1

B(α)

K∏

k=1

ηαk−1
k

(2)
where B(·) is the Beta function, αk is the hy-
perparameter of the Dirichlet distribution. α0 =∑K

k=1 αk is the Dirichlet strength. The output of
a standard neural network classifier is a probabil-
ity assignment over the possible classes and the
Dirichlet distribution represents the probability of
each such probability assignment, hence modelling
second-order probabilities and uncertainty.

Subjective logic (Jsang, 2018) establishes a con-
nection between the Dirichlet distribution and the
belief representation in Dempster–Shafer belief the-
ory (Dempster, 1968), also known as evidence the-
ory. Consider K classes each associated with a
belief mass bk and an overall uncertainty mass u,
which satisfies u+

∑K
k=1 bk = 1. The belief mass

assignment corresponds to the Dirichlet hyperpa-
rameter αk: bk = (αk − 1)/α0, where ek = αk−1

is usually termed evidence. The overall uncertainty
can then be computed as:

u =
K

α0
. (3)

A neural network fΛ is trained to predict
Dir(η(i)|α(i)) for a given sample x(i) where Λ
is the model parameters. The network is similar to
standard neural networks for classification except
that the softmax output layer is replaced with a
ReLU activation layer to assure non-negative out-
puts, which is taken as the evidence vector for the
predicted Dirichlet distribution: fΛ(x(i)) = e(i).
The concentration parameter of the Dirichlet distri-
bution can be calculated as α(i) = fΛ(x

(i)) + 1.
Given Dir(η(i)|α(i)), the estimated probability of
class k can be calculated by:

E[η(i)k ] =
α
(i)
k

α0
(i)

. (4)

3.2.1 Training
For brevity, superscript i is omitted in this sec-
tion. Given one-hot label y and predicted Dirichlet
Dir(η|α), the network can be trained by maximis-
ing the marginal likelihood of sampling y given the
Dirichlet prior. Since the Dirichlet distribution is
the conjugate prior of the categorical distribution,
the marginal likelihood is tractable:

P(y|α) =

∫
P(y|η)p(η|α)dη

=

∫ ∏

k

ηykk
1

B(α)

∏

k

ηαk−1
k

=
B(α+ y)

B(α)
=

∏K
k=1 α

yk
k

α0

∑K
k=1 yk

.

(5)

It is equivalent to training the model by minimising
the negative log marginal likelihood:

LNLL =

K∑

k=1

yk(log(α0)− log(αk)). (6)

Following (Sensoy et al., 2018), a regularisation
term is added to penalise the misleading evidence:

LR = KL(Dir(η|α̃)||Dir(η|1)), (7)

where Dir(η|1) denotes a Dirichlet distribution
with zero total evidence and α̃ = y+ (1− y)⊙α
is the Dirichlet parameters after removal of the
non-misleading evidence from predicted α. This
penalty explicitly enforces the total evidence to
shrink to zero for a sample if it cannot be correctly
classified. The overall loss is L = LNLL + λLR

where λ is the regularisation coefficient.

2080



4 Emotion distribution estimation

As illustrated in Figure 1, the majority vote class
is not sufficient for fine-grained emotion represen-
tations. In this section, we describe emotion by a
distribution instead of a single class label.

Consider an input utterance x(i) associated
with Mi labels from human annotators {y(i)

m }Mi
m=1

where ym = [ym1, . . . , ymK ] is a one-hot vec-
tor. Instead of representing the emotion content
by the majority vote class, we propose estimating
the underlying emotion distribution η based on the
observations {y(i)

m }Mi
m=1. The emotion classifica-

tion problem is thus re-framed as a distribution
estimation problem. In contrast to the “soft la-
bel” method in Section 2 which approximates the
emotion distribution of each x(i) solely based on
D(i) = {y(i)

m }Mi
m=1 by MLE and trains the model

to learn this proxy in a supervised manner, the pro-
posed approach meta-learns a distribution estimator
fΛ across all data points Dmeta = {D(i)}Ni=1 where
N is the number of utterances in training. This uses
the knowledge about the emotion expression and
annotation variability across different utterances.

For brevity, superscript i is omitted thereafter.
Assume {ym}Mm=1 are samples drawn from a multi-
nomial distribution. Let ŷ =

∑M
m=1 ym represent

the counts of each emotion class:

{ym}Mm=1 ∼ P(y|η) = Mult(η,M) (8)

Mult(η,M) =
Γ(M + 1)

∏K
k=1 Γ(ŷk + 1)

ηŷkk . (9)

The categorical distribution in Eqn. (1) is the spe-
cial case when M = 1.

The network is trained by maximising the
marginal likelihood of sampling {ym}Mm=1 given
the predicted Dirichlet prior Dir(η|α):

P({ym}Mm=1|α) =

∫
P({ym}Mm=1|η)p(η|α)dη

=
Γ(M + 1)

∏K
k=1 Γ(ŷk + 1)

∏K
k=1 α

ŷk
k

α0

∑K
k=1 ŷk

. (10)

The multinomial coefficient is independent of α,
we thus verify that LNLL in Eqn. (6) can be gener-
alised to the distribution estimation framework by
replacing one-hot majority label y with ŷ:

LNLL∗
=

K∑

k=1

ŷk(log(α0)− log(αk)). (11)

The regulariser in Eqn. (7) is then replaced with:

LR1 = KL(Dir(η|α̂)||Dir(η|1)) (12)

where α̂ = ȳ+(1−ȳ)⊙α and ȳ = 1
M

∑M
m=1 ym

is the soft label. An alternative regulariser is pro-
posed in order to explicitly regularise the predicted
multinomial distribution:

LR2 = KL(ȳ||E[η]). (13)

Hence, we have extend the EDL method described
in Section 3.2 for classification to quantify the un-
certainty in distribution estimation, with the orig-
inal method (Sensoy et al., 2018) being a special
case when M = 1 and ŷ becomes the one-hot ma-
jority label y. In addition, it’s worth noting that the
proposed approach does not require a fixed number
of annotators for every utterance and can easily
generalise to a large number of annotators (i.e., for
crowd-sourced datasets). There has been previous
work on emotion distribution estimation using an-
other variant of Dirichlet prior network (DPN) (Wu
et al., 2022). Note that although both EDL* and
DPN involve a Dirichlet distribution, EDL* has
a different problem formulation to DPN. The key
differences between EDL* and DPN are explained
in detail in Appendix H.

5 Evaluation metrics

The proposed method is evaluated in terms of ma-
jority prediction, uncertainty estimation, OOD de-
tection, and distribution estimation.

Majority prediction. Majority prediction for
MA utterances is evaluated by classification accu-
racy (ACC) and unweighted average recall (UAR)
which is the sum of class-wise accuracy divided by
the number of classes.

Uncertainty estimation. Model calibra-
tion is evaluated by expected calibration error
(ECE) (Naeini et al., 2015) and maximum calibra-
tion error (MCE) (Naeini et al., 2015). ECE mea-
sures model calibration by computing the differ-
ence in expectation between confidence and accu-
racy. Predictions are partitioned into Q bins equally
spaced in the [0,1] range and ECE can be computed
as follows:

ECE =

Q∑

q=1

|Bq|
n

|Acc(Bq)− Conf(Bq)| . (14)

MCE is a variation of ECE which measures the
largest calibration gap:

MCE = max
q∈{1,...,Q}

|Acc(Bq)− Conf(Bq)| . (15)
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OOD detection. The area under the receiver
operating characteristic (AUROC) and the area un-
der the precision-recall curve (AUPRC) are used to
evaluate the performance of OOD detection. The
estimated uncertainty is used as a decision thresh-
old for both AUROC and AUPRC. The baseline is
50% for AUROC and is the fraction of positives
for AUPRC. NMA utterances are set as the positive
class to detect.

Distribution estimation. Emotion distribution
estimation performance is measured by the nega-
tive log-likelihood (NLL) of sampling human anno-
tations from the predicted multinomial distribution.

6 Experimental setup

6.1 Baselines

The proposed methods were compared to the fol-
lowing baselines:

• MLE: a deterministic classification network
with softmax activation trained by the cross-
entropy loss between the majority vote label
and model predictions;

• MCDP: a Monte-Carlo dropout (Gal and
Ghahramani, 2016) model with a dropout rate
of 0.5 which is forwarded 100 times to obtain
100 samples during testing;

• Ensemble: an ensemble (Lakshminarayanan
et al., 2017) of 10 MLE models with the same
structure trained by bagging;

• MLE+: a MLE model with NMA as an extra
class.

An additional baseline for distribution estimation:

• MLE*: the “soft label” approach mentioned
in Section 2 which is trained by minimising
KL divergence between the soft label ȳ and
predictions. It is an extension of MLE from
one-hot majority vote labels to soft labels.

The system described in Section 3.2 is denoted
as “EDL”. “EDL*(R1)” and “EDL*(R2)” refers
to the systems proposed in in Section 4 using regu-
larisation terms defined in Eqn. (12) and Eqn. (13)
respectively. Uncertainty estimation of EDL mod-
els are computed by Eqn. (3) while max probability
is used as confidence measure for other methods.
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Figure 2: Illustration of the model structure.

6.2 Datasets

Two publicly available datasets were used in the
experiments. The IEMOCAP corpus (Busso et al.,
2008) is one of the most widely used emotion
datasets. It consists of 10,039 English utterances
from 5 dyadic conversational sessions. Each ut-
terance was evaluated by at least three human an-
notators. Only 16.1% of utterances have an all-
annotators-agreed emotion label. The emotion dis-
tribution is represented using a five-dimensional
categorical distribution, including happy (merged
with excited), sad, neutral, angry, and others. The
“others” category includes all emotions not covered
in the previous four categories which is dominated
by frustration (92%). 14.2% of the utterances don’t
have a majority agreed emotion class label.

The CREMA-D corpus (Cao et al., 2014) con-
tains 7,442 English utterances from 91 actors. Ac-
tors spoke from a selection of 12 sentences using
one of six different emotions (anger, disgust, fear,
happy, neutral and sad). The dataset was anno-
tated by crowd-sourcing. Ratings based on audio
alone were used in this work. Utterances have 9.21
ratings on average. 5.1% of utterances have an all-
annotators-agreed emotion label and 8.7% don’t
have a majority agreed emotion class label.

Both datasets were divided into an MA subset
and an NMA subset. All methods were trained only
on MA data except for MLE+ where 25% of NMA
utterances were reserved for testing and the rest
were included in training. For IEMOCAP, Session
5 was reserved for testing, and Sessions 1-4 were
split into training and validation with a ratio of 4:1.
For the CREMA-D dataset, the MA subset was
split into train, validation, test in the ratio 70 : 15 :
15 following Ristea and Ionescu (2021).
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Classify MA Detect NMA (all) Detect NMA (test)
ACC ↑ UAR ↑ ECE ↓ MCE ↓ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

MLE+ 0.447 0.438 0.303 0.383 / / 0.461 0.139
MLE 0.582 0.577 0.206 0.239 0.550 0.471 0.549 0.177

MCDP 0.584 0.572 0.128 0.184 0.566 0.491 0.568 0.203
Ensemble 0.593 0.595 0.439 0.594 0.567 0.491 0.563 0.192

EDL 0.611 0.596 0.103 0.145 0.610 0.530 0.620 0.227

Table 1: Results of quantifying uncertainty in emotion classification on the IEMOCAP dataset. The baseline for
AUPRC is 0.433 for the entire NMA set and 0.160 for the NMA test subset. The best value in each column is
indicated in bold, and the second-best value is underlined.

Classify MA Detect NMA (all) Detect NMA (test)
ACC ↑ UAR ↑ ECE ↓ MCE ↓ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

MLE+ 0.568 0.540 0.216 0.476 / / 0.552 0.156
MLE 0.714 0.672 0.150 0.156 0.578 0.467 0.571 0.179

MCDP 0.717 0.687 0.102 0.109 0.619 0.481 0.614 0.201
Ensemble 0.731 0.674 0.362 0.496 0.598 0.481 0.605 0.198

EDL 0.711 0.714 0.057 0.080 0.645 0.506 0.657 0.234

Table 2: Results of quantifying uncertainty in emotion classification on the CREMA-D dataset. The baseline for
AUPRC is 0.387 for the entire NMA set and 0.097 for the NMA test subset.

6.3 Model structure

The backbone structure used in this paper is il-
lustrated in Figure 2 which follows an upstream-
downstream paradigm (Bommasani et al., 2021).
The upstream model uses the universal speech
model (USM) (Zhang et al., 2023) with 300M pa-
rameters which contains a CNN-based feature ex-
tractor and 12 Conformer (Gulati et al., 2020) en-
coder blocks of dimension 1024 with 8 attention
heads. The structure of the downstream model fol-
lows SUPERB (Yang et al., 2021), a benchmark
for evaluating pre-trained upstream models, which
performs utterance-level mean-pooling followed
by a fully-connected layer. The pre-trained up-
stream USM model is frozen. The downstream
model computes the weighted sum of the hidden
states extracted from each layer of the upstream
model. The backbone structure has been shown
to outperform state-of-the-art methods for emotion
classification (see Table 5 in Appendix C). The
implementation details for model training can be
found in Appendix A.

7 Results

This section presents experimental results of the
three approaches for handling ambiguous emotion:
incorporating NMA as an extra class (Section 7.1),

detecting NMA as OOD (Section 7.2), and repre-
senting emotion as distributions (Section 7.3). The
average of three runs are reported for all results.

7.1 Including NMA as an additional category
degrades the performance

The first approach, which trains an emotion classi-
fier with NMA as an extra class, is denoted “MLE+”
in Table 1 and 2. Some of the NMA utterances
are included in MLE+ training while the remain-
der are used for testing. Therefore, OOD detection
is evaluated only on NMA (test) data for MLE+.
The results reveal that the addition of the NMA
class has a detrimental impact on the classification
performance of the original MA emotion classes.
Comparing to MLE, MLE+ observes a ∼23% rela-
tive decrease in both ACC and UAR on IEMOCAP
and a ∼20% relative decrease in ACC and UAR on
CREMA-D. The confusion matrices of the MLE+
model can be found in Appendix D, which shows
that NMA itself is challenging to predict and it also
confuses the model when predicting classes such
as neutral, sad, frustrated, and disgust.

7.2 Detecting NMA as OOD

The proposed EDL-based method is compared to
baselines in Tables 1 and 2 on the IEMOCAP and
CREMA-D datasets respectively. First, as shown
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by the values of ACC and UAR, the proposed
method demonstrates comparable classification per-
formance to the baselines, suggesting that the exten-
sion for uncertainty estimation does not undermine
the model’s capabilities. Although the Ensemble
achieves the highest accuracy on CREMA-D, it
involves training 10 individual systems. The pro-
posed method achieves overall the best classifica-
tion performance with only a tenth of the compu-
tational cost of Ensemble during both training and
testing. In addition, the proposed method offers
superior model calibration, as shown by the low-
est values of ECE and MCE. It also outperforms
the baselines in effectively identifying NMA as
OOD samples, as shown by the highest AUROC
and AUPRC values.

Figure 3 shows the change of accuracy when
samples with uncertainty larger than a threshold
are excluded. The model tends to provide less ac-
curate predictions when it is less confident about its
prediction, shown by the decrease of classification
accuracy when the uncertainty threshold increases,
which demonstrates the effectiveness of uncertainty
prediction.

0.5 1.0
Uncertainty threshold

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

IEMOCAP
CREMA-D

Figure 3: The change of accuracy with respect to the
uncertainty threshold for EDL-based methods on IEMO-
CAP and CREMA-D.

7.3 Estimating emotion distribution
The proposed EDL* methods were first evaluated
in terms of majority class prediction. The results
of distribution-based methods on classification of
MA data are shown in Table 3. Compared to the
classification-based methods in Table 1 and Table 2,
it can be seen that EDL* does not reduce the perfor-
mance of emotion classification (in terms of ACC
and UAR) and model calibration (in terms of ECE
and NCE) on MA data. This indicates that the in-
formation of the majority class is retained when
representing emotion as a distribution. Note that

IEMOCAP ACC UAR ECE MCE

MLE* 0.564 0.562 0.151 0.279
EDL*(R1) 0.623 0.612 0.081 0.208
EDL*(R2) 0.624 0.616 0.025 0.201

CREMA-D ACC UAR ECE MCE

MLE* 0.693 0.621 0.109 0.115
EDL*(R1) 0.740 0.694 0.029 0.095
EDL*(R2) 0.718 0.722 0.084 0.107

Table 3: Classification and calibration performance of
distribution-based methods on MA data. The best value
in each column is indicated in bold.

NLL IEMOCAP CREMA-D
MA NMA MA NMA

MLE 1.310 1.924 1.532 2.054
MCDP 0.972 1.266 0.965 1.292

Ensemble 2.572 2.055 2.285 2.089
EDL 0.958 1.019 0.757 1.021

MLE* 0.941 1.137 0.648 0.774
EDL*(R1) 0.861 0.951 0.614 0.722
EDL*(R2) 0.833 0.953 0.606 0.698

Table 4: Distribution estimation results. NMA stands
for NMA(all).

when representing emotion as a distribution, it is
no longer appropriate to consider NMA utterances
as OOD samples, as illustrated by case (b) and (c)
in Figure 1. Although still trained only on MA
data, the proposed distribution-based system shows
good generalisation ability in predicting the emo-
tion distribution of NMA data, which we will see
shortly. When encountering NMA data during test-
ing, instead of simply returning “I don’t know”, the
proposed system can provide reliable estimation of
its emotional content, which is a key benefit.

The proposed EDL* methods were then eval-
uated regarding distribution estimation. Table 4
compares EDL* to the baselines in terms of the neg-
ative log likelihood of sampling target labels from
the predicted emotion distribution. As can be seen
from the table, EDL* produce improved distribu-
tion estimation, achieving the smallest NLL values
on both MA and NMA data. Among the two EDL*
methods employing different regularisation terms,
EDL* with R2 (defined in Eqn. (13)), which di-
rectly applies regularisation to the predicted distri-
bution, exhibits better distribution estimation with-
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Figure 4: Reject option for NLL on IEMOCAP. Trends
on CREMA-D are similar, shown in Appendix G.

out sacrificing model calibration.
A reject option was then evaluated for NLL (in-

stead of accuracy) to examine model calibration.
For a well-calibrated model, an increase in the NLL
value, which is associated with poorer distribution
estimation, is expected when the model becomes
less confident. Figure 4 visualises the change of
NLL for MA data and NMA data when uncertainty
increases. For MA data, i.e. the type of data that
has been seen by the models during training, most
methods can successfully reject uncertain samples
except for MLE and Ensemble, as shown by an in-
crease in NLL values when the uncertainty thresh-
old increases. However, for NMA data which the
model hasn’t seen in training, only the EDL* meth-
ods exhibit the ability to demonstrate an increasing
trend in NLL values.

The proficiency of the proposed EDL* methods
for estimating the emotion distribution and provid-
ing reliable confidence predictions, demonstrates
the method’s capacity to estimate both aleatoric
uncertainty (Matthies, 2007; Der Kiureghian and
Ditlevsen, 2009; Hu et al., 2024), arising from data
complexity (i.e., the ambiguity of emotion expres-
sion), and epistemic uncertainty, corresponding to
the amount of uncommitted belief in subjective
logic.

7.4 Case study

Emotion distributions estimated by different meth-
ods are visualised against the label distributions
for two representative examples in Figure 5. In
general, distribution-based methods show supe-
rior performance for distribution estimation than
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Figure 5: Visualisation of emotion distribution for case
study. Utterance (a) is selected from IEMOCAP. Utter-
ance (b) is selected from CREMA-D.

classification-based methods. In the case of utter-
ance (a) which receives two “angry” labels and
two “frustrated” labels, the proposed EDL* meth-
ods stands out by effectively capturing the tie be-
tween the emotions, whereas the predictions of
classification-based methods tend to be predomi-
nantly skewed towards “frustrated”. As for utter-
ance (b), where both “disgust” and “neutral” re-
ceive four votes, along with two votes for “angry”
and one for “fear”, the emotion distributions pre-
dicted by the EDL* methods also show a similar
pattern. These examples show that the proposed
method can not only provide a more comprehensive
emotion representation but also better reflect the
variability of human opinions. Additional exam-
ples can be found in Appendix J and Appendix K.

8 Conclusions

This paper re-examines the emotion classification
problem, starting with an exploration of ways to
handle data with ambiguous emotions. It is first
shown that incorporating ambiguous emotions as
an extra class reduces the classification perfor-
mance of the original emotion classes. Then, ev-
idence theory is adopted to quantify uncertainty
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in emotion classification which allows the classi-
fier to output “I don’t know” when it encounters
utterances with ambiguous emotion. The model is
trained to predict the hyperparameters of a Dirichlet
distribution, which models the second-order proba-
bility of the probability assignment over emotion
classes. Furthermore, to capture finer-grained emo-
tion differences, we transform the emotion classi-
fication problem into an emotion distribution es-
timation problem. All annotations are taken into
account rather than only the majority opinion. A
novel approach is proposed which extends standard
EDL to quantify uncertainty in emotion distribution
estimation. Experimental results show that given
an utterance with ambiguous emotion the proposed
approach is able to provide a comprehensive rep-
resentation of its emotion content as a distribution
with a reliable uncertainty measure.

Ethics Statement

In this work, all human annotations used for train-
ing were taken from existing publicly available cor-
pora. No new human annotations were collected.

In subjective tasks like emotion recognition,
there is usually no single “correct” answer. The
conventional approach of imposing a single ground
truth through majority voting may overlook valu-
able nuances within each annotator’s evaluation
and the disagreements between them, potentially
resulting in the under-representation of minority
views. This study, instead of exclusively relying
on the majority vote, integrates emotion annota-
tions from all annotators for each utterance during
model training. It is hoped that this work could con-
tribute to a more inclusive representation of human
opinions.

Limitations

The proposed approach requires the raw labels from
different human annotators for each sentence to
be provided by the datasets. Although validated
only for emotion recognition, the proposed method
could also be applied to other tasks with disagree-
ments in subjective annotations, which will be in-
vestigated in future work.

Different people perceive emotion differently
and hence the motivation of the paper is to handle
such ambiguity. It may be that if annotators were to
also provide confidence ratings during annotation,
which is not the case in the emotion datasets we
have used, then this information could be used to

weight the observations when estimating the emo-
tion distribution.
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Narayanan. 2010. A framework for automatic hu-
man emotion classification using emotion profiles.
IEEE Transactions on Audio, Speech, and Language
Processing, 19(5):1057–1070.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos
Hauskrecht. 2015. Obtaining well calibrated prob-
abilities using bayesian binning. In Proc. AAAI,
Austin, USA.

S. Poria, E. Cambria, R. Bajpai, and A. Hussain. 2017.
A review of affective computing: From unimodal
analysis to multimodal fusion. Information Fusion,
37:98–125.
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A Implementation details

This section describes the implementation details.
The model is implemented using Pax1. The batch
size is set to 256, The coefficient λ is set to 0.8 for
IEMOCAP and 0.2 for CREMA-D. The Adafactor
optimiser and Noam learning rate scheduler are
used with 200 warm up steps and a peak learning
rate of 8.84×10−4. Since the CREMA-D dataset
is extremely imbalanced (i.e., neutral accounts for
over 50%), a balanced sampler is applied during
training. The model is trained for 20k steps which
takes ∼ 5 hours on 8 TPU v4s.

B Discussion of statistical significance

The results reported in Section 7 are the average
of three runs with different seeds. Regarding ECE,
MCE, AUROC and AUPRC, the improvements in
the results in bold are consistent across all three
runs. For ACC and NLL, the differences are statis-
tically significant with p < 0.05.

C Comparing the backbone structure to
SOTA models

The USM-based backbone structure is evaluated
following the setup of the emotion recognition task
of the SUPERB benchmark (Yang et al., 2021):
four-way emotion classification (happy, sad, an-
gry, neutral) on IEMOCAP dataset with leave-one-
session-out five-fold cross validation. The USM-
300M model is compared to multiple state-of-the-
art models of similar size. Results are shown in
Table 5. Except for the USM-300M model used in
the paper, all other results are quoted from the cited
papers. As shown in the table, the USM-based
backbone structure outperforms other state-of-the-
art methods2 and yields the highest accuracy.

D Confusion matrices of MLE+

As described in Section 7.1, including NMA as an
extra class reduces the classification performance.
This section analyses the confusion matrices of
the MLE+ model, shown in Figure 6. It can be
seen from the bottom right entry that NMA itself
is challenging to predict, possibly because it essen-
tially contains a mix of different emotion content.
The last column demonstrates that grouping these
utterances into one class can confuse the model,

1https://github.com/google/paxml
2https://superbbenchmark.org/leaderboard

Model # Param ACC (%)

Wav2vec 2.0 large
(Baevski et al., 2020)

317M 65.64

Data2vec large
(Baevski et al., 2022)

314M 66.31

HuBERT large
(Hsu et al., 2021)

317M 67.62

WavLM large
(Chen et al., 2022)

317M 70.62

USM-300M
(Zhang et al., 2023)

290M 71.06

Table 5: Four-way classification results IEMOCAP fol-
lowing the SUPERB-ER benchmark setup.

particularly for the classes neutral, sad, frustrated,
and disgust.
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Figure 6: Confusion matrix of the MLE+ system on
IEMOCAP and CREMA-D.

E Alternative activation functions

As described in Section 3.2, ReLU is used as the
output activation function in EDL to make sure the
evidence is non-negative. This section compares
the use of different activation functions including
ReLU, softplus and exponential functions. The
three activation functions are plotted in Figure 7.
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Classify MA Detect NMA (all) Detect NMA (test)
IEMOCAP ACC UAR ECE MCE AUROC AUPRC AUROC AUPRC

EDL (ReLU) 0.611 0.596 0.103 0.145 0.610 0.530 0.620 0.227
EDL (Softplus) 0.608 0.574 0.035 0.173 0.617 0.534 0.639 0.251

EDL (Exponential) 0.588 0.601 0.167 0.230 0.593 0.502 0.619 0.225

Classify MA Detect NMA (all) Detect NMA (test)
CREMA-D ACC UAR ECE MCE AUROC AUPRC AUROC AUPRC

EDL (ReLU) 0.701 0.714 0.057 0.080 0.645 0.506 0.657 0.234
EDL (Softplus) 0.692 0.696 0.113 0.309 0.640 0.506 0.633 0.230

EDL (Exponential) 0.723 0.602 0.277 0.277 0.623 0.495 0.626 0.197

Table 6: Comparison of EDL methods with different activation functions on IEMOCAP and CREMA-D.
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Figure 7: Illustration of the activation functions.

As shown in Table 6, using exponential function
tends to result in less effective model calibration,
shown by the largest ECE and MCE values. It also
produces worse performance for NMA detection,
shown by the smallest AUROC and AUPRC. Fig-
ure 8 shows the reject option for accuracy of EDL
with different activation functions. A drop in accu-
racy when the uncertainty threshold increases from
0 to 0.1 is observed for model using exponential ac-
tivation. This indicates that exponential activation
tends to lead to smaller uncertainty.0 1
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Figure 8: Reject option for accuracy for EDL methods
with different activation functions.

The empirical cumulative distribution function
(ECDF) of uncertainty and entropy on IEMOCAP
and CREMA-D are plotted in Figure 9 and Fig-

ure 10 respectively. It can be seen that exponential
activation leads to smaller uncertainty and entropy,
which echos the statement in Section 3.1 that expo-
nential activation tends to inflate the probability of
the correct class.
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Figure 9: Empirical CDF of uncertainty (left) and en-
tropy (right) on IEMOCAP for EDL method with differ-
ent activation functions.
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Figure 10: Empirical CDF of uncertainty (left) and
entropy (right) on CREMA-D for EDL method with
different activation functions.
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F Analysis of regularisation coefficient

This section analyses the effect of regularisation co-
efficient λ in Eqn. (7) for EDL. The empirical CDF
of uncertainty and entropy when different regulari-
sation coefficient was used is plotted in in Figure 11
and Figure 12 for IEMOCAP and CREMA-D re-
spectively. We observed that larger lambda val-
ues lead to a larger entropy and uncertainty. This
aligns with the definition of the regularisation term
in Eqn. (7) which tends to enforce a flat prior with
small evidence.
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Figure 11: Empirical CDF of uncertainty (left) and
entropy (right) on IEMOCAP for EDL method with
different regularisation coefficient λ.
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Figure 12: Empirical CDF of uncertainty (left) and
entropy (right) on CREMA-D for EDL method with
different regularisation coefficient λ.

G Reject option for NLL on CREMA-D

This section shows the reject option for NLL on
CREMA-D dataset. The change of NLL for MA
data and NMA data when the uncertainty thresh-
old increases are shown in Figure 13. For a well-
calibrated model, an increase in the NLL value is
expected when the model becomes less confident.
Similar to the findings in Figure 4, most methods
are effective for rejecting uncertain samples in the
MA data, as shown by an increase in NLL values
when the uncertainty threshold increases. However,
only the EDL* methods are successful for NMA
data.
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Figure 13: Reject option for NLL on NMA data of
CREMA-D.

H Differences between the proposed
EDL* method and Dirichlet prior
networks

The proposed EDL* method is similar to the Dirich-
let prior network (DPN) used in Wu et al. (2022)
but essentially different. Both methods involve
a Dirichlet distribution, but the difference lies in
the problem formulation and the connection of the
Dirichlet distribution to evidence theory.

(i) Problem formulation. In DPN, individual
emotion class labels provided by human annota-
tors are treated as one-hot categorical distributions
({ηm}Mm=1) and the model is trained by maximis-
ing the likelihood of sampling those one-hot cate-
gorical distributions given the Dirichlet prior.

LNLL
DPN = log p({ηm}Mm=1|α) (16)

However, the proposed EDL* method preserves
the target emotion labels as discrete class labels
({ym}Mm=1) which are drawn from an unknown cat-
egorical likelihood (η). The model is then trained
by maximising the likelihood of sampling discrete
labels given the Dirichlet prior by marginalising
out all possible categorical distributions.

LNLL
EDL* = log P({ym}Mm=1|α)

= log

∫
P({ym}Mm=1|η)p(η|α)dη

(17)

Therefore, the problem setting and NLL loss for
two methods are essentially different. A drawback
of DPN is that it greatly reduces the classification
accuracy (as also pointed out by Wu et al. (2022)),
while the proposed EDL* method improves over
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IEMOCAP ACC UAR ECE MCE

DPN 0.545 0.477 0.214 0.285
EDL*(R1) 0.623 0.612 0.081 0.208
EDL*(R2) 0.624 0.616 0.025 0.201

CREMA-D ACC UAR ECE MCE

DPN 0.702 0.637 0.489 0.645
EDL*(R1) 0.740 0.694 0.029 0.095
EDL*(R2) 0.718 0.722 0.084 0.107

Table 7: Comparison of DPN and EDL* in terms of
classification and calibration performance.

NLL IEMOCAP CREMA-D
MA NMA MA NMA

DPN 1.081 0.954 0.958 0.845
EDL*(R1) 0.861 0.951 0.614 0.722
EDL*(R2) 0.833 0.953 0.606 0.698

Table 8: Comparison of DPN and EDL* in terms of dis-
tribution estimation results. NMA stands for NMA(all).

DPN by preserving or even boosting the classifica-
tion performance.

(ii) Connection to evidence theory. By con-
necting to evidence theory, the proposed method
provides an explicit uncertainty score (Eqn. (3))
while DPN doesn’t. Therefore, DPN can only es-
timates aleatoric uncertainty (i.e., data complex-
ity) but it cannot predict epistemic uncertainty (i.e.,
model confidence). In contrast, the proposed EDL*
method provides superior performance in estimat-
ing both aleatoric and epistemic uncertainty, as
explained in the last paragraph of Section 7.3.

The performance of DPN and EDL* are com-
pared in the Table 7 and Table 8 (results taken for
EDL* from Table 3 and Table 4 with the addition
of DPN results). It can be seen that the proposed
EDL* methods outperform DPN in all metrics on
both datasets.

I Analysis of Instances When OOD
Detection Fails

This section includes examples and analysis of par-
ticular utterances where OOD detection is prob-
lematic and compares these examples across the
techniques discussed. It is shown that distribution-
based methods improve over the classification-
based systems in handling complex ambiguous
emotions.

Consider the following false negative case where
the OOD detection model fails to detect an NMA
sample. Utterance “Ses04M_impro02_F024” from
the IEMOCAP dataset has two “angry” labels and
two “frustrated” labels as shown in Figure 14. The
EDL system predicts this utterance as “frustrated”
with a belief mass of 0.567 and an overall uncer-
tainty score of 0.433, which reveals that the system
fails to detect the utterance as NMA.
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Figure 14: Human annotations for NMA utterance
“Ses04M_impro02_F024”.

A possible cause of this failure is that the model
gets confused by MA utterances seen in the train-
ing that convey similar emotional content, such
as “Ses05M_impro01_M014” whose annotations
are shown in Figure 15 with an MA emotion class
“frustrated”. Although one annotator considered it
as “angry”, the MA ground-truth target was “frus-
trated” in a classification-based system.
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Figure 15: Human annotations for MA utterance
“Ses05M_impro01_M014”.

Both utterances occur within a dyadic situation
where two people disagree, with the speaker be-
ing the one who compromises, feeling unhappy
and frustrated. Such similar emotional content
may confuse a classification-based system to also
predict the NMA utterance as frustrated. It is
worth noting that data with the same distribution as
“Ses04M_impro02_F024”, which has tied votes, is
not included during the training of a classification-
based model because there is no majority vote avail-
able to serve as ground truth.

This complex emotional expression can be better
described by the distribution-based EDL* systems.
The predicted distribution of the MA utterance is
shown in Figure 16 and the predicted distribution
of the NMA utterance can be found in Figure 5(a).
It can be seen that the classification-based methods
produce a similar distribution for the two utter-
ances, with “frustrated” being dominant. However,
the proposed EDL* methods can better match the
label distribution and distinguish between these two
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cases. Although not been trained on NMA data,
the EDL* methods are still capable of providing ac-
curate predictions of its emotional content. This is
a key benefit of the distribution-based approaches.
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Figure 16: Predicted emotion distribution of MA utter-
ance “Ses05M_impro01_M014”.

Next, we provide a typical false positive instance
where an MA utterance is mis-detected as OOD.
The MA utterance “1087_IEO_FEA_LO” from the
CREMA-D dataset has four “neutral”, two “sad”,
and three “fear” human labels as in Figure 17. The
NMA utterance “1052_ITH_FEA_XX” has four
“neutral”, two “sad”, and four “fear” human labels
as in Figure 18. The OOD system successfully
predicts the NMA utterance as OOD with an over-
all uncertainty of 0.691 while also predicting the
MA utterance as an OOD sample with an over-
all uncertainty of 0.623.3 This failure is possible
because the MA utterance “1087_IEO_FEA_LO”
contains a complex mixture of emotions shown
by the rather flat label distribution similar to
“1052_ITH_FEA_XX”, which confuses the OOD
detection system. Note that the MA class “neutral”
in Figure 17 comprises only 4

4+2+3 × 100% =
44.4% of the annotations and hence is not an ab-
solute majority, which reduces the severity of this
detection error.

Hap Ang Neu Sad Dis Fea
0 0

4
2

0

3

Figure 17: Human annotations for MA utterance
“1087_IEO_FEA_LO”.

3Assume the OOD detection threshold is taken as 0.5.
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Figure 18: Human annotations for NMA utterance
“1052_ITH_FEA_XX”.

Again, the distribution-based EDL* methods
show superior capability in handling such com-
plex cases. The predicted distribution of the MA
utterance is shown in Figure 19 and the predicted
distribution of the NMA utterance can be found
in Figure 21(b). For the MA utterance, although
human opinions diverge, the classification-based
methods only capture the majority prediction, with
the predicted distribution being dominated by “neu-
tral”. However, the emotion distribution predicted
by the proposed EDL* methods retains the prob-
ability for “sad” and “fear” which accounts for
the minority human opinions. Therefore, we show
that the proposed EDL* method improves over the
OOD system by providing a more comprehensive
representation of emotional content as well as a
more inclusive representation of human opinions.

0.0 0.5 1.0
Probability

MLE
MCDP

Ensemble
EDL

MLE*
EDL*(R1)
EDL*(R2)

Label
Hap
Ang
Neu
Sad
Dis
Fea

Figure 19: Predicted emotion distribution of MA utter-
ance “1087_IEO_FEA_LO”.
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J Further visualised examples:
IEMOCAP

This section shows more examples on IEMOCAP.
Aligning with the findings in Section 7.4, EDL*
methods show better estimation of emotion distri-
bution.
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(a) Ses01M_impro07_M025
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(b) Ses03F_script01_1_F016
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(c) Ses04F_script01_1_M033
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(d) Ses04M_script01_3_M013

Figure 20: Case study on IEMOCAP.

K Further visualised examples:
CREMA-D

This section shows more examples of CREMA-D.
As can be seen, EDL* methods can better approx-
imate the distribution of emotional content of an
utterance.
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(a) 1033_IWW_DIS_XX
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(b) 1052_ITH_FEA_XX
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(c) 1068_ITH_SAD_XX
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(d) 1009_IWL_FEA_XX

Figure 21: Case study on CREMA-D.
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