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Abstract

Models that generate natural language expla-
nations (NLEs) for their predictions have re-
cently gained increasing interest. However,
this approach usually demands large datasets of
human-written NLEs for the ground-truth an-
swers at training time, which can be expensive
and potentially infeasible for some applications.
When only a few NLEs are available (a few-
shot setup), fine-tuning pre-trained language
models (PLMs) in conjunction with prompt-
based learning has recently shown promising re-
sults. However, PLMs typically have billions of
parameters, making full fine-tuning expensive.
We propose SPARSEFIT, a sparse few-shot fine-
tuning strategy that leverages discrete prompts
to jointly generate predictions and NLEs. We
experiment with SPARSEFIT on three sizes
of the T5 language model and four datasets
and compare it against existing state-of-the-art
Parameter-Efficient Fine-Tuning (PEFT) tech-
niques. We find that fine-tuning only 6.8% of
the model parameters leads to competitive re-
sults for both the task performance and the qual-
ity of the generated NLEs compared to full fine-
tuning of the model and produces better results
on average than other PEFT methods in terms
of predictive accuracy and NLE quality.

1 Introduction

Despite the tremendous success of neural networks
(Chowdhery et al., 2022; Brown et al., 2020), these
models usually lack human-intelligible explana-
tions for their predictions, which are paramount
for ensuring their trustworthiness. Building neu-
ral models that explain their predictions in natu-
ral language has seen increasing interest in recent
years (Wiegreffe and Marasovic, 2021). Natural
Language Explanations (NLEs) are generally easy
to interpret by humans and more expressive than
other types of explanations (Wallace et al., 2019;
Wiegreffe and Marasovic, 2021). However, a signif-
icant downside of these models is that they require

large datasets of human-written NLEs at training
time, which can be expensive and time-consuming
to collect. To this end, few-shot learning of NLEs
has recently emerged (Marasovic et al., 2022; Yor-
danov et al., 2022). However, current techniques
involve fine-tuning the entire model with a few
training NLE examples. This is computationally
expensive since current NLE models can have bil-
lions of parameters (Schwartz et al., 2020).

In this paper, we investigate whether sparse fine-
tuning (i.e. fine-tuning only a subset of parame-
ters), in conjunction with prompt-based learning
(i.e., textual instructions provided to a model (Liu
et al., 2021)), can help in scenarios with limited
availability of training instances with labels and
NLEs. While sparse fine-tuning has been used
in Natural Language Processing (NLP) (Houlsby
et al., 2019; Logan et al., 2022; Zaken et al., 2022),
to our knowledge, our work is the first to analyze
sparse fine-tuning in the context of jointly generat-
ing predictions and NLEs. We extend the existing
sparse fine-tuning strategy that looks only at bias
terms (Zaken et al., 2022) to a comprehensive list of
all layers and pairs of layers in a language model.

Thus, we propose SPARSEFIT, an efficient few-
shot prompt-based training regime for models gen-
erating both predictions and NLEs for their pre-
dictions. We experiment with SPARSEFIT on two
pre-trained language models (PLMs) that have pre-
viously shown high performance on task perfor-
mance and NLE generation, namely T5 (Raffel
et al., 2020) and UNIFIEDQA (Dong et al., 2019).
We test our approach on four popular NLE datasets:
e-SNLI (Camburu et al., 2018), ECQA (Aggar-
wal et al., 2021), SBIC (Sap et al., 2020), and
ComVE (Wang et al., 2019), and evaluate both
the task performance and the quality of the gen-
erated NLEs, the latter with both automatic met-
rics and human evaluation. Overall, SPARSEFIT

shows competitive performance in few-shot learn-
ing settings with 48 training instances. For exam-
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ple, fine-tuning only the Normalization Layer to-
gether with the Self-attention Query Layer, which
amounts to 6.84% of the model’s parameters, con-
sistently gave the best performance (penalized by
the number of fine-tuned parameters) on both T5
and UNIFIEDQA over all four datasets. Remark-
ably, SPARSEFIT outperforms the current state-
of-the-art parameter-efficient fine-tuning (PEFT)
models in terms of both task performance and
quality of generated NLEs in two of the four
datasets. Furthermore, we find that fine-tuning
other model components that comprise a small frac-
tion of the parameters also consistently leads to
competitive results; for instance, the self-attention
query (∼6.8% of the parameters), the self-attention
query + LM head (∼11.3%), and the entire self-
attention layer (∼20%). Moreover, we also applied
SPARSEFIT to larger language models (i.e. Llama
2-7B) and found that SPARSEFIT has competitive
performance compared to the best PEFT strategy
for all datasets. Therefore, we conclude that few-
shot sparse fine-tuning of PLMs can achieve results
competitive with fine-tuning the entire model.

2 Related Work

Few-shot learning refers to training models with
limited labeled data for a given task (Finn et al.,
2017; Vinyals et al., 2016).It has been successfully
applied to several tasks such as image caption-
ing (Dong et al., 2018), object classification (Ren
et al., 2018), behavioral bio-metrics (Solano et al.,
2020), graph node classification (Satorras and Es-
trach, 2018), and language modeling (Vinyals et al.,
2016). Large Language Models (LLMs) have
shown impressive skills to learn in few-shot scenar-
ios (Brown et al., 2020; Chowdhery et al., 2022)
thanks to the pre-training corpora size and the sta-
tistical capacity of the models (Izacard et al., 2022).

Parameter-Efficient Fine-Tuning Using fine-
tuning, LLMs have shown breakthrough language
understanding and generation capabilities in a wide
range of domains (Raffel et al., 2020; Brown et al.,
2020; Chowdhery et al., 2022). However, in NLP,
the up-stream model (i.e., the model to be fine-
tuned) is commonly a LLM with millions of param-
eters, such as T5 (Raffel et al., 2020), BERT (De-
vlin et al., 2019), or GPT-3 (Radford et al., 2018),
which makes them computationally expensive to
fine-tune. This has led to approaches known in
the literature as Parameter-efficient Fine-tuning
(PEFT) methods, which fine-tune only a small set

of the PLM’s parameters or an extra small set of
parameters to keep competitive performance in the
downstream task. In this regard, Li and Liang
(2021) introduced Prefix-Tuning, a strategy that fo-
cuses on adding a small task-specific vector to the
input so the frozen PLM can adapt its knowledge
to further downstream tasks. Hu et al. (2022) devel-
oped LoRA, a technique that injects trainable low-
rank matrices in the transformer architecture while
freezing the pre-trained model weights. Zhang
et al. (2023) extended this by proposing AdaLoRA,
a method that adaptively allocates the rank budget
among the low-rank matrices during training ac-
cording to an importance score. Later, Zaken et al.
(2022) presented BitFit, a novel approach aimed
at only fine-tuning the bias terms in each layer of
a transformer-based LM. We extend their work to
fine-tuning some layers, or pairs of them, in the LM.
More recently, Liu et al. (2022) introduced (IA)3,
a fine-tuning method that scales the intermediate
activations in a model with learned vectors.

Explainability of Neural Models Several ap-
proaches have been proposed in the literature to
bring a degree of explainability to the predic-
tions of neural models, using different forms of
explanations, such as (1) Feature-based explana-
tions (Ribeiro et al., 2016; Shrikumar et al., 2017;
Yoon et al., 2019; Sha et al., 2021), (2) Natu-
ral Language Explanations (Camburu et al., 2018;
Marasović et al., 2020; Kayser et al., 2022; Ma-
jumder et al., 2022), (3) Counterfactual explana-
tions (Akula et al., 2020), and (4) Surrogate expla-
nations (Alaa and van der Schaar, 2019). In this
paper, we focus on models that provide NLEs, i.e.,
free-form text stating the reasons behind a predic-
tion. Being in natural language, NLEs should be
easy to interpret by humans and more expressive
than other types of explanations, as they can present
arguments that are not present in the input (Wiegr-
effe and Marasovic, 2021; Camburu et al., 2021;
Kaur et al., 2020). NLEs have been applied to sev-
eral domains such as question answering (Narang
et al., 2020), natural language inference (Camburu
et al., 2018), recommendation systems (Chen et al.,
2021), reinforcement learning (Ehsan et al., 2018),
medical imagining (Kayser et al., 2022), visual-
textual reasoning (Hendricks et al., 2018; Kayser
et al., 2021; Majumder et al., 2022), and solving
mathematical problems (Ling et al., 2017).

To make neural models capable of generating
accurate NLEs, the most common approach con-
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sists of annotating predictions with human-written
explanations and training models to generate the
NLEs by casting them as a sequence generation
task (Camburu et al., 2018). However, gathering
large datasets with human-written NLEs is expen-
sive and time-consuming. To address this, Yor-
danov et al. (2022) proposed a vanilla transfer learn-
ing strategy to learn from a few NLEs but abundant
labels in a task by fine-tuning a PLM trained on a
vast number of NLEs from other domains. More
recently, Marasovic et al. (2022) introduced the
FEB benchmark for few-shot learning of NLEs and
a prompt-based fine-tuning strategy, which we use
as a baseline in our work.

3 SPARSEFIT

We propose SPARSEFIT, an efficient few-shot NLE
training strategy that focuses on fine-tuning only a
subset of parameters in a large LM. SPARSEFIT is
inspired by (1) Marasovic et al. (2022), who used
fine-tuning and prompts to do few-shot learning of
labels and NLEs; and (2) BitFit Zaken et al. (2022),
who showed that fine-tuning only the bias terms in
a PLM leads to competitive (and sometimes bet-
ter) performance than fine-tuning the entire model.
We extend BitFit by exploring the fine-tuning of
different components (i.e., layers or blocks) in the
PLM’s architecture. In particular, we study the
self-rationalization performance after fine-tuning
the following components in the T5 model: (1) the
encoder blocks, (2) the decoder blocks, (3) the
language model head, (4) the self-attention layers,
(5) the feed-forward networks, (6) the normaliza-
tion layer, and (7) all pairs of the above components
that do not contain the encoder and decoder (see
Appendix C). Given that UNIFIEDQA model’s ar-
chitecture is the same as the one in T5, the interpre-
tation of active parameters holds for UNIFIEDQA.

We aim to identify a set of guidelines for iden-
tifying which components should be fine-tuned to
achieve competitive performance while updating a
minimum number of parameters. Notice that when
fine-tuning any component, or pair of components,
we freeze all other PLM’s parameters and train the
LM to conditionally generate a text in the form of

“[label] because [explanation]”.

Encoder The T5 encoder comprises N trans-
former blocks, each composed of three layers: self-
attention, position-wise fully connected layer, and
layer normalization. The number of blocks depends

on the T5 variant (12 blocks for T5-base, 24 for
T5-large, and 36 for T5-3B). The encoder ac-
counts for roughly 41% of the model parameters.

Decoder The decoder accounts for roughly 54%
of T5 model parameters. In addition to the self-
attention, fully connected layer, and layer normal-
ization, it also includes an encoder-decoder atten-
tion layer in its blocks, which we fine-tune as part
of fine-tuning the decoder.

LM Head On top of the decoder, T5 has a lan-
guage modeling head for generating text based on
the corpus. The LM head accounts for roughly 5%
of total model parameters.

Attention Layer Each of the transformer blocks
starts with a self-attention layer. There are three
types of parameters in the self-attention layer,
namely, for computing the query matrix Q, the
key matrix K, and the value matrix V . We propose
to explore the fine-tuning of each self-attention ma-
trix as a possible SPARSEFIT configuration. We
also explore fine-tuning the entire Self-attention
Layer (Q, K, V ). On average, the percentage
of trainable parameters associated with each ma-
trix accounts for roughly 6% of model parameters.
Note that the attention parameters in the encoder-
decoder attention are not updated in this setting
(they are only updated together with the decoder).

Layer Normalization The normalization layers
are intended to improve the training speed of the
models (Ba et al., 2016). The T5 model includes
two Layer Normalization components per block,
one after the self-attention layer and one after the
feed-forwards networks. Unlike the original pa-
per for layer normalization (Ba et al., 2016), the
T5 model uses a simplified version of the layer
normalization that only re-scales the activations.
The percentage of learnable weights in the layer
normalization is roughly 0.2% of the parameters.

4 Experiments

Datasets We follow the FEB benchmark for few-
shot learning of NLEs (Marasovic et al., 2022) and
consider four NLE datasets: e-SNLI for natural
language inference (Camburu et al., 2018), ECQA
for multiple-choice question answering (Aggarwal
et al., 2021), ComVE for commonsense classifica-
tion (Wang et al., 2019), and SBIC for offensive-
ness classification (Sap et al., 2020).
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SPARSEFIT ComVE ECQA SBIC e-SNLI Avg

Baseline
(100.00%)

Acc. 80.5 ±4.5 57.6 ±2.6 70.1 ±3.4 84.8 ±2.6 73.3 ±3.3

nBERTs 74.2 ±4.2 51.7 ±2.4 67.8 ±3.3 76.9 ±2.5 67.7 ±3.1

Decoder
(54.60%)

Acc. 67.3 ±6.0 ▽ 58.5 ±2.6 66.8 ±3.1 ▽ 86.6 ±1.7 ▽ 69.8 ±3.4

nBERTs 61.7 ±5.5 ▽ 52.3 ±2.4 ▽ 64.7 ±2.7 78.3 ±1.6 ▽ 64.3 ±3.0

Encoder
(40.95%)

Acc. 72.6 ±6.1 ▽ 53.2 ±3.6 ▽ 62.4 ±6.5 ▽ 79.0 ±3.4 ▽ 66.8 ±4.9

nBERTs 67.1 ±5.7 47.2 ±3.2 ▽ 58.7 ±6.5 ▽ 72.4 ±3.2 ▽ 61.3 ±4.6

Dense.wo
(27.29%)

Acc. 61.3 ±4.4 ▽ 56.1 ±2.1 ▽ 62.4 ±2.6 ▽ 84.0 ±1.9 65.9 ±2.8

nBERTs 56.4 ±4.1 ▽ 0.0 ±0.0 ▽ 59.8 ±2.6 ▽ 74.7 ±2.6 ▽ 47.7 ±2.3

Self-attention (KQV)
(20.47%)

Acc. 76.2 ±4.4 ▽ 56.9 ±3.0 69.9 ±3.8 83.3 ±2.4 ▽ 71.6 ±3.4

nBERTs 70.3 ±4.0 ▽ 50.2 ±2.7 ▽ 67.4 ±3.9 ▽ 76.1 ±2.2 ▽ 66.0 ±3.2

LM head + Attention.Q
(11.28%)

Acc. 74.8 ±5.0 ▽ 55.4 ±2.7 ▽ 67.1 ±5.2 ▽ 82.8 ±3.0 ▽ 70.0 ±4.0

nBERTs 69.0 ±4.6 43.7 ±4.3 ▽ 64.5 ±5.5 75.8 ±2.8 ▽ 63.2 ±4.3

LM head
(4.46%)

Acc. 15.6 ±1.3 ▽ 58.9 ±2.3 ▽ 0.2 ±0.2 ▽ 86.7 ±1.8 ▽ 40.3 ±1.4

nBERTs 0.0 ±0.0 ▽ 0.0 ±0.0 ▽ 0.2 ±0.2 ▽ 0.0 ±0.0 ▽ 0.0 ±0.0

LayerNorm + Attention.Q
(6.84%)

Acc. 74.9 ±5.3 ▽ 55.8 ±3.1 ▽ 67.0 ±4.4 ▽ 82.6 ±2.7 ▽ 70.1 ±3.9

nBERTs 69.0 ±4.8 45.9 ±3.7 ▽ 64.3 ±4.7 75.6 ±2.5 ▽ 63.7 ±3.9

Attention.K
(6.82%)

Acc. 48.8 ±2.8 ▽ 56.7 ±2.5 ▽ 0.2 ±0.2 ▽ 19.6 ±11.5 ▽ 31.3 ±4.3

nBERTs 19.4 ±10.0 ▽ 0.0 ±0.0 ▽ 0.1 ±0.2 ▽ 0.2 ±0.3 ▽ 4.9 ±2.6

Attention.Q
(6.82%)

Acc. 74.8 ±5.1 ▽ 55.5 ±3.2 ▽ 66.9 ±4.6 ▽ 82.8 ±2.6 ▽ 70.0 ±3.8

nBERTs 68.9 ±4.7 43.4 ±4.8 ▽ 64.2 ±4.8 75.8 ±2.3 ▽ 63.1 ±4.2

Attention.V
(6.82%)

Acc. 55.5 ±3.0 ▽ 53.1 ±2.8 ▽ 30.1 ±10.2 ▽ 84.2 ±2.0 55.7 ±4.5

nBERTs 51.0 ±2.8 ▽ 0.0 ±0.0 ▽ 30.1 ±10.2 ▽ 71.7 ±3.4 ▽ 38.2 ±4.1

LayerNorm
(0.02%)

Acc. 34.3 ±2.4 ▽ 59.0 ±2.4 ▽ 0.3 ±0.3 ▽ 86.6±1.8 ▽ 45.0 ±1.7

nBERTs 0.0 ±0.0 ▽ 0.0 ±0.0 ▽ 0.2 ±0.2 ▽ 0.0 ±0.0 ▽ 0.1 ±0.1

Table 1: Summary of best performing SPARSEFIT configurations for T5-large. We report the average and
the standard deviation over the 60 few-shot train-validation splits for the accuracy metric and the normalized
BERTScore (nBERTs). In brackets are the percentages of fine-tuned weights for each SPARSEFIT configuration. We
show in bold the setting with the highest metric for each dataset, in blue the highest performance among SPARSEFIT
without considering the number of parameters, and in green the best-performing setting after considering the
percentage of fine-tuned parameters. The trade-off between parameters and performances was computed using (1−
%params)× nBERTs). Significance testing was assessed via mean t-test compared with the baseline: ▽ represents a
p-value lower than 10−2.

Few-shot Learning Data Splits We also follow
the few-shot evaluation protocol used by Maraso-
vic et al. (2022). We use their 60 train-validation
splits to run our experiments. Each experiment is
run with 48 examples in the training set and 350
examples in the validation set. Note that, depend-
ing on the dataset, the number of training examples
per label varies: e-SNLI has 16 examples for each
label, ECQA 48, SBIC 24, and omVE 24, resulting
in 48 training examples for all datasets.

Training Procedure Following Marasovic et al.
(2022), we fine-tune T5 (Raffel et al., 2020) and
UNIFIEDQA (Khashabi et al., 2020). Depending
on the setup, the gradients are activated for specific
parameters (SPARSEFIT) or the entire model (base-
line). We report our experimental results for the
baseline, and observe a consistent behavior with
the one reported by Marasovic et al. (2022). Addi-
tionally, to compare with other PEFT baselines, we

adapted LoRA (Hu et al., 2022), AdaLoRA (Zhang
et al., 2023) and (IA)3 (Liu et al., 2022). We use
the PEFT implementation developed by Hugging
Face (Mangrulkar et al., 2022). In our implementa-
tion of (IA)3, we deviate slightly from its original
implementation since we learn scaling vectors for
all layers in the model instead of learning them
only for the attention modules. This resulted in
a significant performance increase. Also, this im-
plementation approach means we are fine-tuning a
maximal number of parameters with (IA)3. For the
SPARSEFIT configurations, we fine-tune each com-
ponent (or pair) for 25 epochs with a batch size of
4 samples. Similarly to Marasovic et al. (2022), we
use the AdamW optimizer (Loshchilov and Hutter,
2019) with a fixed learning rate of 0.00003. Con-
ditional text generation is used to do the inference
on the validation set. Training and evaluation were
run on an NVIDIA P100, and took 23.2 min, on
average.
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Figure 1: Distribution of the normalized BERTScore for different SPARSEFIT settings of sparse fine-tuning for
T5-large. The percentage of fine-tuned parameters is shown between brackets.

Automatic Evaluation The evaluation considers
the task accuracy and the quality of the generated
NLEs. To automatically evaluate the quality of the
NLEs, we follow Marasovic et al. (2022) and use
the BERTScore (Zhang et al., 2019), which was
shown by Kayser et al. (2021) to correlate best with
human evaluation in NLEs. As in Marasovic et al.
(2022), we compute a normalized BERTScore
that assigns a zero score to empty NLEs, or NLEs
of incorrectly predicted samples (since one would
not expect, nor want, an NLE to be plausible if
the prediction was wrong). We report the averages
and standard deviations of the accuracy and the
normalized BERTScore over the 60 train-validation
splits for each fine-tuning configuration.

Human Evaluation In addition to the normal-
ized BERTScore, we perform a smaller-scale hu-
man evaluation to assess the quality of NLEs for the
best-performing SPARSEFIT configurations. We
use the NLEs associated with the first 30 cor-
rectly predicted samples (balanced to the number of
classes) in each validation set for human evaluation.
Our human evaluation framework follows those
of Kayser et al. (2021); Marasovic et al. (2022).
For the NLE quality assessment, each annotator
is asked to answer the question: “Does the expla-
nation justify the answer?" and select one of four
possible answers: yes, weak yes, weak no, or no.

Moreover, we also ask the annotators to iden-
tify the main shortcomings, if any, of the generated
NLEs. The possible shortcomings categories are

(1) nonsensical, (2) contradictory, (3) lack of ex-
planation, (4) incomplete explanation, (5) input
repetition, (6) hallucination, (7) extra words at the
end, (8) true but uncorrelated, (9) inaccurate, and
(10) one word. An author and a third-party an-
notator performed independent annotations of the
whole set of NLEs chosen to be evaluated (600 ex-
amples in total). As in Kayser et al. (2021), we com-
pute a numerical value for the quality of the NLEs
by mapping the four answers as follows: yes −→ 1,
weak yes −→ 2

3 , weak no −→ 1
3 , and no −→ 0; and

averaging over all annotations per model.

4.1 Results

To evaluate SPARSEFIT, we compute the task accu-
racy and the quality of the generated NLEs. Given
that there are 62 possible configurations (single
layers plus pairs of layers), for space reasons, the
following shows the best configurations based on
the model’s generalization properties. The results
for all configurations are shown in Appendix C.

Task Performance We present in Table 1 the
accuracy performance for selected SPARSEFIT set-
tings for T5-large. As can be observed in
Table 1, some SPARSEFIT configurations with
very few fine-tuned parameters can produce sig-
nificantly better results than the baseline (i.e., full
fine-tuning). For instance, fine-tuning the Normal-
ization Layer (LayerNorm) (0.02% of the model’s
parameters) achieves better task performance than
the baseline for two out of four datasets (e-SNLI
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FLOPS ComVE ECQA SBIC e-SNLI Avg

SPARSEFIT (Att.Q+LN)
(6.84%)

2.37e14 Acc. 74.86 ±5.27 55.81 ±3.12 66.99 ±4.4 82.62 ±2.73 70.07 ±3.88

nBERTs 69.02 ±4.83 45.88 ±3.72 64.29 ±4.7 75.63 ±2.51 63.7 ±3.94

AdaLoRA
(4.48%)

2.87e14 Acc. 19.43 ±1.47 ▽ 59.40 ±2.28 ▽ 0.18 ±0.20 ▽ 86.66 ±1.79 ▽ 41.42 ±1.44

nBERTs 16.26 ±1.23 ▽ 48.30 ±1.85 ▽ 0.15 ±0.16 ▽ 72.19 ±1.49 ▽ 34.23 ±1.18

AdaLoRA
(1.15%)

1.48e15 Acc. 69.66 ±3.47 ▽ 46.60 ±4.02 ▽ 61.80 ±2.74 ▽ 84.50 ±1.95 ▽ 65.64 ±3.05

nBERTs 64.06 ±3.19 ▽ 41.22 ±3.65 ▽ 58.91 ±2.86 ▽ 77.43 ±1.79 ▽ 60.41 ±2.87

LoRA (Att.QV, Rank=128)
(4.86%)

2.88e14 Acc. 67.77 ±3.73 ▽ 43.51 ±3.57 ▽ 63.57 ±3.16 ▽ 84.26 ±1.92 ▽ 64.78 ±3.1

nBERTs 61.36 ±3.41 ▽ 0.33 ±0.41 ▽ 61.06 ±3.29 ▽ 76.49 ±1.75 ▽ 49.81 ±2.22

LoRA (Att.KQVO, Rank=4)
(0.32%)

2.75e14 Acc. 68.96 ±3.68 ▽ 39.04 ±4.06 ▽ 62.66 ±3.46 ▽ 84.05 ±1.81▽ 63.68 ±3.25

nBERTs 63.48 ±3.39 ▽ 33.52 ±3.76 ▽ 59.80 ±3.66 ▽ 77.04 ±1.66 ▽ 58.46 ±3.12

(IA)3

(0.07%)
2.74e14 Acc. 58.53 ±2.32 ▽ 59.14 ±2.36 ▽ 48.08 ±0.81 ▽ 86.64 ±1.85 ▽ 63.10 ±1.84

nBERTs 53.87 ±2.15 ▽ 48.08 ±1.92 ▽ 48.06 ±0.80 ▽ 72.18 ±1.54 ▽ 55.55 ±1.60

Table 2: Performance comparison between SPARSEFIT and other PEFT strategies. We report the average and
the standard deviation over the 60 few-shot train-validation splits for the accuracy metric and the normalized
BERTScore (nBERTs). We show in bold the setting with the highest metric for each dataset. Significance testing
was assessed via mean t-test in comparison with SPARSEFIT: ▽ represents a p-value lower than 10−2.

and ECQA). Furthermore, we consistently see that
if two SPARSEFIT configurations achieve good gen-
eralization results, combining them by jointly fine-
tuning both components produces significantly bet-
ter results than each configuration in isolation. We
show in Figure 10 the spread of the task perfor-
mance for SPARSEFIT configurations. Results for
T5-base and T5-3b are shown in Appendix C.
We found that the task accuracy is consistently
higher for the largest LMs for all datasets, but
the gap between T5-large and T5-3b is small
(<7%) compared with the increase in trainable pa-
rameters (∼5x).

NLE Quality Recall that the LM is fine-tuned
to conditionally generate a text in the form of

“[label] because [explanation]”. Figure 1 shows
the normalized BERTScore for selected SPARSE-
FIT settings as a proxy to evaluate how good the
NLEs generated after the explanation token (i.e.

“because”) is. For all the box plots, the x-axis shows
the SPARSEFIT configurations, with the percentage
of fine-tuned parameters between brackets. Over-
all, it can be observed that SPARSEFIT settings
with few trainable parameters (<10%), such as the
Self-attention Query (Att.Q), LM Head + Attention
Query (Att.Q+LMhead), and Layer Norm + Atten-
tion Query (Att.Q+LN), are competitive against
the baseline for all datasets. Moreover, we can
see that the best quality of NLEs is achieved for
SPARSEFIT combinations of two or more types of
components (e.g., Att.Q). Remarkably, fine-tuning
the decoder block (∼54% params) achieves better
performance than the entire fine-tuning for two out

of four datasets (e-SNLI and ECQA). The perfor-
mance gap between most of the SPARSEFIT con-
figurations and the baseline does not exceed 15%
for all the datasets, even for very sparse fine-tuning
strategies.

Unexpectedly, many SPARSEFIT configurations
with high task accuracy (e.g., LayerNorm) have
a normalized BERTScore close or equal to zero.
This happens because either the conditional gen-
eration ends the sentence after the generated label
token or the explanation token (i.e., “because”) is
not successfully generated. We investigate more
about this behavior in Section 4.2. We summa-
rize our results on NLEs quality for T5-large
in Table 1. Results for other T5 model sizes (i.e.
T5-base, T5-large and T5-3b) are shown
in Appendix C.1. We found that the normalized
BERTScore consistently increases with the size
of the LM. Remarkably, the best SPARSEFIT con-
figurations for T5-large also achieve the best
performance when fine-tuning T5-base, but they
are slightly different for T5-3b.

Other PEFT Baselines To compare SPARSE-
FIT with other PEFT baselines, we also evalu-
ated LoRA (Hu et al., 2022), AdaLoRA (Zhang
et al., 2023) and (IA)3 (Liu et al., 2022) for NLEs.
Table 2 shows the downstream performance and
the NLEs quality for different PEFT strategies
on T5-large. It can be seen that, on average,
SPARSEFIT outperforms the other PEFT strategies.
While these PEFT methods tune less than 20% of
the 50.45 million parameters updated by SPARSE-
FIT, the quality of NLEs is considerably better for
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ComVE ECQA SBIC e-SNLI Avg

Baseline - Full Fine-tuning
(100%)

Acc. 63.71 ±9.14 11.14 ±3.14 63.86 ±1.86 34.91 ±0.43 43.41 ±3.64

nBERTs 55.93 ±9.16 9.46 ±2.79 57.42 ±1.32 28.62 ±0.84 37.86 ±3.53

SPARSEFIT (Att.Q+LN)
(7.97%)

Acc. 68.03 ±8.24 24.53 ±3.34 57.90 ±1.70 40.10 ±4.03 47.64 ±4.33

nBERTs 58.67 ±7.20 20.60 ±2.83 50.41 ±2.72 34.32 ±3.50 41.00 ±4.06

AdaLoRA
(0.30%)

Acc. 64.23 ±2.86 13.04 ±2.09 57.29 ±1.86 38.15 ±4.22 43.18 ±2.76

nBERTs 56.16 ±2.77 11.13 ±1.79 50.63 ±0.33 33.48 ±3.71 37.85 ±2.15

Table 3: Performance comparison between SPARSEFIT and other PEFT strategies for Llama 2-7B. We report
the average and the standard deviation over the 60 few-shot splits for the accuracy metric and the normalized
BERTScore (nBERTs). We show in bold the setting with the highest metric for each dataset. Significance testing
was assessed via mean t-test in comparison with SPARSEFIT: ▽ represents a p-value lower than 10−2.

Human Evaluation

e-SNLI ECQA SBIC ComVE Avg

Full
Fine-tuning

29.63 (0.43) 41.92 (0.23) 54.44 ±0.7 21.67 (0.22) 36.91

SPARSEFIT

Att.Q
17.28 0.38 35.35 (0.31) 61.11 (0.77) 28.89 (0.35) 35.66

AdaLora
1.15%

23.33 (0.34) 34.44 (0.26) 61.11 (0.69) 23.34 (0.25) 35.55

SPARSEFIT

Att.Q+LN
38.27 (0.34) 31.31 (0.26) 58.89 (0.69) 40.00 (0.25 42.12

Table 4: Average scores given by human annotators
for the best performing SPARSEFIT and other PEFT
baselines of T5-large. The best results are in bold. In
brackets, we show the inter-annotator agreement score.

SPARSEFIT for two out of four datasets. Notice
that in Table 2 SPARSEFIT has the lowest FLOPS.
We hyphotesise that this happens since SPARSEFIT

neither introduces additional model parameters nor
increases the model’s architectural complexity. In
Table 8 in Appendix C.3, we show further results
for LoRA trained on a bigger range of the number
of parameters.

Larger Language Models To evaluate the per-
formance of SPARSEFIT in both larger language
models and different architectures we perform a
set of experiments applying SPARSEFIT to Llama
2-7B. Notice that SPARSEFIT approach applies to
any architecture (not only the T5 encoder-decoder)
since it focuses on identifying the optimal layer
to fine-tune, regardless of the underlying model’s
structure. In this regard, we conducted experi-
ments on a larger decoder-only model (i.e. Llama
2-7B). Table 3 shows the average predictive accu-
racy and the NLEs quality for the the best SPARS-
EFIT strategy (Att.Q+LN) and the best perform-
ing PEFT baseline (AdaLora) for Llama 2-7B.
Overall, it can be observed that SPARSEFIT out-
performs the other PEFT strategy for all datasets.
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Figure 2: Illustration of plausibility score given by hu-
man annotators to the quality of the NLEs generated
by different SPARSEFIT configurations. The annotators
were asked to answer the question: “Does the explana-
tion justify the answer?

Particularly, the best SPARSEFIT have on aver-
age roughly 5% better NLE quality than the other
PEFT.

Human Evaluation We show in Table 4 the dis-
tributions of the scores given by the human annota-
tors for the quality of the generated NLEs for the
best SPARSEFIT strategies and the best perform-
ing PEFT baseline (AdaLora). We compute the
inter-annotator agreement score using the Cohen’
κ metric (Cohen, 1960). Overall, we found that
the quality of the NLEs generated after applying
SPARSEFIT is much higher than those of the base-
line and AdaLoRA for 2 out of 4 tasks. For the
other two tasks, AdaLoRA produces better NLEs
by a very smaller margin. On average, the NLEs
of SPARSEFIT are roughly 8% better than NLEs
of AdaLoRA and 6% better than full fine-tuning
NLEs. However, the human evaluation shows that
the generated NLEs are often insufficient to explain
the predictions accurately. We show in Figure 2
the distributions of the plausability score given by
the human annotators for the quality of the gener-
ated NLEs for the best SPARSEFIT strategies. It
can be observed that roughly half of the NLEs do
not justify the answer, no matter what fine-tuning
strategy is used. Similarly, the proportion of NLEs
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Human Evaluation

e-SNLI ECQA SBIC ComVE Avg

Full
Fine-tuning

17.78 38.89 47.78 40.00 36.11

SPARSEFIT

Att.Q+LN
41.11 73.33 68.89 70.00 63.33

AdaLora 50.00 52.22 71.11 55.56 57.22

Table 5: Average scores given by human annotators
for the best performing SPARSEFIT and other PEFT
baselines of Llama-2-7B. The best results are in bold.

that fully justify the prediction is close to 25% re-
gardless of the SPARSEFIT setting. We detail the
shortcomings and limitations of generated NLEs in
Section 4.2. Finally, we show in Table 5 the human
evaluation results for the best SPARSEFIT config-
uration and other PEFT baselines when applied to
Llama2-7B. It can be seen that on average the
NLEs of SPARSEFIT are roughly 6% better than
NLEs of AdaLoRA and 21% better than full fine-
tuning NLEs of Llama2-7B.

4.2 Discussion

Analysis of the Generated NLEs In Figure 4,
we show a collection of examples of the gener-
ated NLEs by the baseline and the best perform-
ing SPARSEFIT configurations. As in previous
works (Camburu et al., 2018; Kayser et al., 2021;
Marasovic et al., 2022), we only show examples
where the label was correctly predicted by the
model since we do not expect a model that pre-
dicted a wrong label to generate a correct explana-
tion. We present in Appendix B a more extensive
list of generated NLEs with SPARSEFIT.

NLE Shortcomings Figure 3 depicts the his-
togram of frequencies of the shortcomings for the
baseline and the best-performing SPARSEFIT strate-
gies. It can be observed that the most common
shortcomings are Lack of explanation, Nonsensical,
and Incomplete explanation. For the best SPARSE-
FIT configuration (i.e. Att.Q+LN), the Incomplete
explanation is the reason with the most occurrences.
We show a breakdown of the shortcomings for each
dataset in Appendix C.4.

Inter-Annotator Agreement As shown in Ta-
ble 4, the agreement between annotators is mod-
erately low for the set of evaluated NLEs. More
precisely, the annotators gave different scores to
181 out of 600 NLEs. The dataset with the most
significant difference is ECQA, with 63 differences,

baseline decoder encoder attentionQ layerNorm+
attentionQ
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Figure 3: Histogram of the shortcomings of the gener-
ated NLEs for the baseline and the performing SPARSE-
FIT configurations aggregated for all the datasets.

while the SBIC dataset is the most uniform, with
17 differences. The variation between annotators
can result from three potential perceptual reasons
(Bourke, 2014; Niño, 2009). The first reason is the
perceptual disagreement, which states that anno-
tators could not objectively identify the difference
between two adjacent answers (i.e. Weak Yes vs
Weak No, or Yes vs. Weak Yes). The second rea-
son is positionality disagreement (Bourke, 2014),
which could alter how the annotators perceive the
outcomes of the algorithm due to their race, gen-
der, and other socioeconomic identity factors. This
is particularly crucial for the SBIC dataset, as it
contains offensive content. The third reason is the
expectation disagreement, which may cause an an-
notator to be more strict on the characteristics that
make an explanation complete and accurate. An
extensive collection of examples of perceptual dis-
agreement, positionality disagreement, and expec-
tation disagreement samples are in Appendix C.5.

Generation of Empty NLEs As mentioned ear-
lier, some SPARSEFIT configurations (e.g. Layer-
Norm) have high task performance but generate
empty NLEs most of the time, particularly for the
e-SNLI and ECQA datasets. One possible expla-
nation for the discrepancy between the high task
accuracy and the low NLE quality is that generat-
ing NLEs is an intrinsically more complex prob-
lem than solving the downstream tasks, where
the former may require fine-tuning more signifi-
cant portions of the model parameters. Another
explanation can be found by analyzing the pre-
training tasks of the PLM and observing that, in
the pre-training stage, T5 was trained on the MNLI
dataset (Williams et al., 2018), which is composed
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Premise 2 woman walking down the street next to graffiti
Hypothesis The 2 woman are running
Label Contradiction
Explanation You can’t be running, if you are walking. Walking is differ-

ent from running.

Generated Explanation
Baseline walking and running are different actions
Decoder walking and running are different verbs
Att.Q the 2 woman are walking not running
Att.Q + Head walking and running are not the same
Att.Q + LN walking is not running

Question The teacher doesn’t tolerate noise during a test in their what?
Answer Choices A) Theatre B) Bowling C) Alley D) Factory E) Classroom
Answer Classroom
Explanation Test is done in classroom. A teacher when in classroom

does not tolerate noise.

Generated Explanation
Baseline noise is harmful for students. classroom is a place where

students can take test.
Decoder classroom is a place where students are studying. there is

no noise in classroom.
Att.Q classroom is a place where people can learn. noise is a

problem in classroom.
Att.Q + Head noise is harmful to students
Att.Q + LN classroom is a place where people can learn. noise is a

distracting thing.

Post @cmencarini: I dont trust girls ; cant trust these hoes
Label Offensive
Explanation This post implies that women are not honest. This post

implies that women are not trustworthy. This post implies
that women are all women are hoes.

Generated Explanation
Baseline this post implies that women aren’t important
Decoder this post implies that women are prostitutes
Att.Q this post implies that women aren’t trustworthy
Att.Q + Head this post implies that women aren’t trustworthy
Att.Q + LN this post implies that women are dirty

Choice 1 A Latino can communicate with someone from Spain
Choice 2 French and Latinos can communicate easy
Label Choice 2
Explanation French can’t communicate with Latinos because they don’t

speak the same language. French and Latinos belongs to
two different countries with two different languages.

Generated Explanation
Baseline french and latinos are two different languages
Decoder french and latinos are two different people and don’t speak

the same language
Att.Q french is not a common language in latinamerica
Att.Q + Head french and latinos cannot communicate easily.
Att.Q + LN french and latinos cannot communicate easily

Figure 4: Examples of generated NLEs for e-
SNLI (Green), ECQA (Blue), SBIC (Red), and
ComVE (Yellow).

of NLI instances without NLEs. The T5 weights
were then pre-trained on MNLI by casting the NLI
task as a sequence transduction problem, where the
input is a hypothesis-premise pair, and the output is
the label. When only a small subset of parameters
is updated (e.g., LayerNorm(0.02%)), the model
elicits its original behavior and predicts the label
without generating the NLE. Similar reasoning may
be concluded for ECQA since UNIFIEDQA was
pre-trained on CommonsenseQA (Talmor et al.,
2019), which is composed of samples with only the

answer for the multiple-choice question.

5 Summary

We introduced SPARSEFIT, a strategy that com-
bines sparse fine-tuning with prompt-based learn-
ing to train NLE models in a few-shot setup.
SPARSEFIT shows consistently competitive per-
formance while only updating a minimal subset of
parameters (i.e. the Self-attention Query + Layer
Normalization, having ∼6.8% of the model pa-
rameters). We found that the sparse fine-tuning
of T5-large consistently achieves better perfor-
mance than fine-tuning T5-base and is slightly
worse (< 5%) than T5-3b, no matter the SPARSE-
FIT strategy. Moreover, the top three best perform-
ers for T5-base are achieved by the same set of
SPARSEFIT configurations found for T5-large.
Compared to other PEFT techniques, SPARSEFIT

produces better average predictive accuracy and
NLE quality. We aim for SPARSEFIT to inspire
the community to investigate sparse fine-tuning at
different model components.

Limitations

Although generating natural language explanations
is a fervid research area, there is still no guaran-
tee that such explanations accurately reflect how
the model works internally (Wiegreffe et al., 2021;
Camburu et al., 2020). For example, the fact that
the generated explanation seems reasonable does
not mean that the model does not rely on protected
attributes and spurious correlations in the training
data to produce its predictions. As such, we still
recommend being careful to use self-explanatory
models in production, as they can capture poten-
tially harmful biases from the training data, even
though these are not mentioned in the explanations.
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A SPARSEFIT Graphical Representation

In this paper, we propose an efficient few-shot
prompt-based training regime for models gener-
ating both predictions and NLEs on top of the T5
language model. To have a better understanding of
the active trainable parameters in each SPARSEFIT

configuration, we illustrate in Figure 5 a graphical
representation of the T5 architecture with active
parameters colored for the Layer Normalization
sparse fine-tuning. After freezing the rest of the
model (gray-colored layers), the percentage of pa-
rameters that could potentially be updated in the
Layer Normalization is 0.02% of the entire model.
Considering that the UNIFIEDQA model’s architec-
ture is the same as the one in T5, the interpretation
of active parameters holds for UNIFIEDQA.
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Figure 5: Illustration of the active trainable parameters
in T5 when SPARSEFIT is performed over the layer
normalization.

B Examples of Generated NLEs

This section shows a collection of examples of the
generated NLEs by the baseline and the different
sparse fine-tuning strategies considered in our ap-
proach. We show four examples for each dataset.
Each example contains the generated NLE for the
best performing SPARSEFIT configurations. As
in previous works (Camburu et al., 2018; Kayser
et al., 2021; Marasovic et al., 2022), we only show
examples where the label was correctly predicted
by the model (since we do not expect a model
that predicted a wrong label to generate a correct
NLE). Regarding the protocol for choosing the ex-
amples shown in this section, we have done a man-
ual inspection of several possible examples, and we
have chosen the more informative ones to conclude
the strengths and the weaknesses of the generated

NLEs. Notice that, due to the few-shot splits pro-
tocol (60 different train-validation splits), a single
example could be predicted more than once for a
single setup (i.e., the sample is in more than one
validation set).

Premise Two dogs play together on the bed.
Hypothesis Dogs laying down on the floor, motionless.
Label Contradiction

Generated Explanation
Baseline dogs can’t be motionless and play together on the bed.
Decoder playing together is different than lying down, motionless.
Encoder dogs laying down on the floor are motionless.
Attention.Q two dogs playing together on the bed are not laying down,

motionless.
LM Head + Att.Q two dogs playing together on the bed are not motionless.
LayNorm + Att.Q two dogs playing together on the bed are not laying down,

motionless.
Self-Attention two dogs playing together on the bed are not motionless.

Premise Man walking barefoot on the beach on what seems to be a
very cloudy day

Hypothesis It is going to rain soon.g
Label Neutral

Generated Explanation
Baseline it does not look like it is going to rain soon
Decoder not all cloudy means it is raining
Encoder it does not mean it is going to rain soon
Attention.Q not all clouds are bad
LM Head + Att.Q not all cloudy days are going to rain soon
LayNorm + Att.Q it does not mean it is going to rain soon
Self-Attention not all cloudy days are going to rain soon

Premise Number 13 kicks a soccer ball towards the goal during
children’s soccer game

Hypothesis A player trying to score in a soccer game
Label Entailment

Generated Explanation
Baseline number 13 is a player
Decoder number 13 is a player trying to score
Encoder number 13 is a player trying to score
Attention.Q number 13 is a player
LM Head + Att.Q number 13 is a player trying to score
LayNorm + Att.Q number 13 is a player
Self-Attention kicking a soccer ball towards the goal is similar to trying

to score

Figure 6: Examples of generated NLEs for e-SNLI.
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Question What does a person who likes school also do?
Answer Choices A) Fever B) Play dumb C) Read text D) Catch cold E)

Enjoy learning
Answer Enjoy learning

Generated Explanation
Baseline A school is a place where one can learn. it is a place where

one can get knowledge and skills
Decoder a person who likes school also does. a person who likes

school also does
Encoder enjoy learning is also a part of life of a person. a person

who likes school also does enjoy learning
Attention.Q school is a place where people learn. a person who likes

school also likes to learn.
LM Head + Att.Q school is a place where people learn. a person who likes

school also does things like studying.
LayNorm + Att.Q school is a place where people learn. a person who likes

school also does things like studying.
Self-Attention a person who likes school also does things like studying.

Question When someone is watching a film that is a documentary,
what are they hoping to gain?

Answer Choices A) Like B) Insight C) Fear D) Being entertained E) Aware-
ness

Answer Insight

Generated Explanation
Baseline insight is the ability to gain knowledge through observation.

when someone watches a documentary, they are hoping to
gain insight.

Decoder insight is the ability to gain knowledge through observa-
tion. people often seek out information through watching
a documentary.

Encoder insight is the ability to gain knowledge through observa-
tion.

Attention.Q insight is a kind of knowledge that is gained through ob-
servation.

LM Head + Att.Q insight is a quality that is gained when someone is watching
a documentary.

LayNorm + Att.Q insight is gaining knowledge. people are hoping to gain
knowledge by watching a documentary.

Self-Attention insight is the ability to gain knowledge. when someone is
watching a documentary, they are hoping to gain knowl-
edge.

Question When you go on vacation what do you have to do with
things you want to take with you?

Answer Choices A) Pay bills. B) Save money. C) Pack. D) Sell. E) Have
money

Answer Pack

Generated Explanation
Baseline packing means to take something with you. if you want to

take something with you, you have to pack it.
Decoder packing means packing to take with you when you go on

vacation. if you want to take things with you, you have to
pack them.

Encoder packing is the process of packing things you want to take
with you.

Attention.Q packing is a process of taking things with you. when you
go on vacation you have to pack things you want to take
with you

LM Head + Att.Q when you go on vacation you have to pack things you want
to take with you.

LayNorm + Att.Q tpacking is a process where you put things together to take
with you when you go on vacation.

Self-Attention you have to pack things when you go on vacation. packing
means taking things with you.

Figure 7: Examples of generated NLEs for ECQA.

Post Watching conservacucks slobber all over the Western Wall
makes me ill.

Label Offensive

Generated Explanation
Baseline this post implies that southerners are lazy.
Decoder this post implies that conservacucks are slobbering
Encoder this post implies that conservacucks are disgusting
Attention.Q this post implies that conservacucks are slobbering all over

the western wall.
LM Head + Att.Q tthis post implies that conservacucks are slobbering all

over the western wall.
LayNorm + Att.Q this post makes fun of conservacucks
Self-Attention this post implies that conservacucks are dirty.

Post Whats the difference between a training gun and a police
officer? A training gun shoots blanks, an officer shoots
blacks

Label Offensive

Generated Explanation
Baseline this post implies that black people are criminals
Decoder this post implies that blacks are the only color that will be

killed
Encoder this post implies that blacks are the victims of police bru-

tality
Attention.Q this post implies that blacks are more dangerous
LM Head + Att.Q this post implies that blacks are more dangerous
LayNorm + Att.Q this post implies that black people are criminals
Self-Attention this post implies that blacks are inferior

Post What’s the worst than a nerd being Basketball Player A
Nigga Becoming a Doctor

Label Offensive

Generated Explanation
Baseline this post implies that black folks are less than white
Decoder this post trivializes harm to victims
Encoder this post implies that blacks are worse than nerd
Attention.Q this post implies that blacks are better than nerds
LM Head + Att.Q this post implies that blacks are inferior
LayNorm + Att.Q this post implies that blacks are inferior
Self-Attention this post implies that blacks are the only people who shoot

training guns

Figure 8: Examples of generated NLEs for SBIC.
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Choice 1 He used a towel to dry off after his shower.
Choice 2 He used an apple to dry off after his shower.
Label Choice 2

Generated Explanation
Baseline apple is a fruit, so it cannot dry off.
Decoder apple is a fruit and does not dry off
Encoder an apple is not a very absorbent material
Attention.Q an apple doesn’t dry off as well as a towel
LM Head + Att.Q an apple is a fruit and it doesn’t dry off.
LayNorm + Att.Q an apple is a fruit and it’s not a towel, so it’s not drying off

as well.
Self-Attention apples are a fruit, and they don’t dry well on their own.

Choice 1 He walked his fish
Choice 2 He walked his dog
Label Choice 1

Generated Explanation
Baseline fish have no legs
Decoder fish cannot walk on water
Encoder fish cannot walk
Attention.Q fish are not able to walk
LM Head + Att.Q fish don’t walk
LayNorm + Att.Q fish cannot walk
Self-Attention fish cannot be walked

Choice 1 A ball is square and can roll
Choice 2 A ball is round and can roll
Label Choice 1

Generated Explanation
Baseline a square ball cannot roll
Decoder square balls are not rollable
Encoder a ball is square cannot roll
Attention.Q balls are round and can roll
LM Head + Att.Q a ball is round and can roll.
LayNorm + Att.Q a square ball cannot roll
Self-Attention a ball can roll only in a round shape

Figure 9: Examples of generated NLEs for ComVE.

C SPARSEFIT Full Results

This section shows the results in terms of task accu-
racy, and NLEs quality all configurations of SPARS-
EFIT and for different model sizes (i.e. T5-base,
T5-large and T5-3b). For each metric, we also
break down the results by dataset.

C.1 Task Performance

Figure 10 depicts the distribution of the accuracy
score for SPARSEFIT configurations trained on top
of T5-large. It can be observed that several
SPARSEFIT configurations exhibit similar perfor-
mance as the baseline, particularly for ECQA and
E-SNLI. The SPARSEFIT configurations with the
best task performance are Decoder, Self-Attention
KQV, Self-attention Query, and Layer Normaliza-
tion. Remarkably, the SPARSEFIT configurations
do not show a higher variance than the baseline
across the 60 train-validation splits (inter-quartile
range). Figure 11 depicts the distribution of the ac-
curacy score for SPARSEFIT configurations trained
on top of T5-3b. It can be observed that all
SPARSEFIT configurations outperform the base-

line. However, the best performance for T5-3b
is achieved by the sparse fine-tuning of the Self-
attention Value Layer. The results for T5-base
can be observed in the breakdown done for each
dataset.

Figure 12 depicts the box plot with the distribu-
tion of the accuracy scores on e-SNLI for the 60
train-validation splits for different SPARSEFIT con-
figurations and the two pre-trained LM sizes. Over-
all, for e-SNLI, the task performance increases with
the size of the model for most of the sparse fine-
tuning configurations. Moreover, the interquartile
range is considerably smaller when the model size
increases (i.e., T5-large scores are less spread
than the ones for T5-base). The highest me-
dian score was achieved by the fine-tuning of the
Layer Normalization in T5-large, followed very
closely by the fine-tuning of the LM head and the
Decoder in T5-large. The combination of com-
ponents (i.e. Layer Norm + Self-attention Query)
performed very closely to the best-performing set-
tings.

For the ECQA dataset, Figure 13 shows the box
plot with the accuracy scores for different SPARSE-
FIT setups. It can be observed that the performance
of the larger LM (i.e., T5-large) is consistently
better than T5-base. Overall, the accuracy is
fairly similar for all the SPARSEFIT configurations
for a given LM size, with an average of 58% and
42% for T5-large and T5-base, respectively.
Note that the random guess accuracy is 20% for the
ECQA dataset, since there are 5 possible answer
choices. The highest accuracy was achieved by
the fine-tuning of the Decoder in T5-large, fol-
lowed very closely by the fine-tuning of the Layer
Normalization and LM Head. The combination
of components achieves a slightly lower perfor-
mance than single components for the task pre-
diction. Surprisingly, for ECQA, the variability
for a given combination of configuration-model
(i.e. each box) is higher for T5-large than for
T5-base. Moreover, the fine-tuning of the En-
coder for T5-base gives worse results in compar-
ison with all the other configurations. Besides the
setting where only the Encoder is fine-tuned for
T5-base, the highest observed range in ECQA is
roughly 14%.

For the SBIC dataset, Figure 14 depicts the
box-plot with the dispersion of accuracy scores
for T5-base and T5-large. Recall that for
the SBIC dataset, we fine-tune the UnifiedQA
variant of T5. In general, it can be seen that
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Figure 10: Distribution of the accuracy scores for different SPARSEFIT configurations for T5-large. The
percentage of parameters fine-tuned for each configuration is shown between brackets.
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SPARSEFIT ComVE ECQA SBIC e-SNLI Avg

LayerNorm + Attention.Q
T5-base

Acc. 53.22 ±3.67 ▽ 39.35 ±2.31 ▽ 62.11 ±5.04 ▽ 72.63 ±2.87 ▽ 56.83 ±3.47

nBERTs 48.77 ±3.37 ▽ 0.0 ±0.0 ▽ 59.45 ±5.47 ▽ 64.81 ±3.13 ▽ 43.26 ±2.99

LayerNorm + Attention.Q
T5-large

Acc. 74.9 ±5.3 ▽ 55.8 ±3.1 ▽ 67.0 ±4.4 ▽ 82.6 ±2.7 ▽ 70.1 ±3.9

nBERTs 69.0 ±4.8 45.9 ±3.7 ▽ 64.3 ±4.7 75.6 ±2.5 ▽ 63.7 ±3.9

LayerNorm + Attention.Q
T5-3B

Acc. 83.27 ±4.52 ▽ 54.13 ±3.86 ▽ 68.87 ±4.86 ▽ 79.16 ±3.72 ▽ 71.36 ±4.24

nBERTs 75.83 ±4.14 ▽ 48.31 ±3.46 ▽ 65.86 ±5.07 ▽ 71.27 ±3.44 ▽ 65.32 ±4.03

Table 6: Summary of best performing SPARSEFIT configurations for LayerNorm + Attention. We report the
average and the standard deviation over the 60 few-shot train-validation splits for the accuracy metric and the
normalized BERTScore (nBERTs). In brackets are the percentages of fine-tuned weights for each SPARSEFIT
configuration. We show in bold the setting with the highest metric for each dataset, in blue the highest performance
among SPARSEFIT without considering the number of parameters, and in green the best-performing setting after
considering the percentage of fine-tuned parameters. The trade-off between parameters and performances was
computed using (1−%params)× nBERTs). Significance testing was assessed via mean t-test compared with the
baseline: ▽ represents a p-value lower than 10−2.
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Figure 12: Distribution of the accuracies for different settings of SPARSEFIT for the e-SNLI dataset. For each
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the accuracy score surges when the model size
is increased; thus, the best accuracy scores for a
given sparse fine-tuning setup are found for the
T5-large. The best median accuracy perfor-
mance is achieved by the baseline. However, the
difference in the median scores between the best
and the second and third best-ranked configurations
(i.e. Self-attention Layer and Layer Normalization
+ Self-attention Query, respectively) are less than
3%. The maximum variance among scores for the
3 best-performing SPARSEFIT configurations is
roughly 15%. Furthermore, it can be observed that
for many very sparse fine-tuning configurations, the
accuracy score is close to or equal to zero. Even
though the performance of a random model is 50%,
an accuracy of 0% is feasible in our scenario as
the model could generate different words from the
ones expected as labels. In this regard, the accu-
racy scores of zero are a consequence of the fact
that, after the conditional generation, the model
generates neither “offensive" nor “non-offensive"
for any sample in the validation set. Notice that

this phenomenon is particularly happening when
only a small fraction of weights is fine-tuned.

For the ComVE dataset, we show in Figure 15
the accuracy for the 60 different train-validation
splits for different SPARSEFIT settings and model
sizes. It can be seen that the best-performing
setting in terms of accuracy is the baseline for
UNIFIEDQA-T5-large. (i.e. Self-attention
Layer and Layer Normalization + Self-attention
Query fine-tuning are the second and third best
performing, respectively. Overall, the fine-tuning
of the Normalization Layer leads to the worst task
performance. Moreover, it can be observed that
the performance increases with the size of the
model, thus UNIFIEDQA-T5-large always
performs better than UNIFIEDQA-T5-base
for all the fine-tuning configurations. The
smallest gap in performance between
model sizes (UNIFIEDQA-T5-large vs.
UNIFIEDQA-T5-base) happens for the
fine-tuning of the Dense Layer. Conversely,
the maximum spread in performance (i.e. the
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Figure 13: Distribution of the accuracy scores for different SPARSEFIT settings for the ECQA dataset. For each
model, the variation represents the overall performance in each of the 60 train-validation splits. The percentage of
parameters fine-tuned for each setup is depicted in brackets below the name of each configuration.todoUpdate plot
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Figure 14: Distribution of the accuracy scores for different settings of SPARSEFIT for the SBIC dataset. For each
model, the variation represents the overall performance in each of the 60 train-validation splits. The percentage of
parameters fine-tuned for each setup is depicted in brackets below the name of each configuration.

difference between the best and the worst split)
is around 21% for models trained using the
UNIFIEDQA-T5-large architecture.

C.2 Explanation Generation Performance
Figure 1 shows the box-plot with the normalized
BERTscores for different SPARSEFIT setups fine-
tuned on top of T5-large. In addition to ex-
plained in the main text, it can be seen that combi-
nations of components lead to less variance in the
score achieved for the 60 train-test splits (see the in-
terquartile range). Furthermore, Table 7 shows the
performance summary for the downstream perfor-
mance and the NLEs quality for T5-3b. It can be
observed that the Attention Value Layer achieves
the best performance on average. We highlight
that SPARSEFIT outperforms the baseline (i.e. full
fine-tuning) for all datasets.

For e-SNLI, Figure 17 shows the normalized

BERTscore over the 60 few-shot learning splits for
different SPARSEFIT configurations. Overall, for
every sparse fine-tuning setting, the BERTscore
is consistently higher for the largest PLM (i.e.
T5-large). However, the gap in performance is
smaller for the best-performing sparse fine-tuning
configurations. For instance, the difference in the
average normalized BERTscore values between
T5-large and T5-base for the best perform-
ing SPARSEFIT (i.e., Decoder) is roughly 5% while
for the worst performing configuration is around
68%. The first five best-performing SPARSEFIT

configurations for T5-large are Decoder, Base-
line, Self-attention KVQ, Layer Normalization +
Self-attention Q, and Self-attention Values. Note
that the normalized BERTscore is zero for some
sparse fine-tuning configurations (e.g., Layer Nor-
malization). This is mostly happening when the
sparse fine-tuning is applied to small models (i.e.,
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Figure 15: Distribution of the accuracy scores for different settings of SPARSEFIT for the ComVE dataset. For each
model, the variation represents the overall performance in each of the 60 train-validation splits. The percentage of
parameters fine-tuned for each setup is depicted in brackets below the name of each configuration.

T5-base). The fact that the BERTscore is zero
for a given configuration for all the samples in a
split implies that the generated NLEs are always
empty. We explore the reasons behind this phe-
nomenon in Section 4.2

For the ECQA dataset, we show in Figure 18
the spread of the normalized BERTscore for all
SPARSEFIT configurations. Without exception,
the largest model (T5-large) outperforms the
T5-base models for every setting. Remarkably,
for ECQA, many sparse fine-tuning configurations
lead to the generation of empty explanations. Par-
ticularly, only the fine-tuning of the Baseline, the
Decoder, and the Encoder are able to consistently
generate non-empty explanations no matter the size
of the model. Among the configurations that gen-
erate non-empty explanations, the best normalized
BERTscores are achieved by the Decoder sparse
fine-tuning, followed by the Baseline and Encoder
Blocks fine-tuning. Note that for all of these con-
figurations, the interquartile range is smaller than
6% regardless of the model size. Moreover, the
fine-tuning of Self-attention Query achieves com-
petitive results for T5-large but zero BERTscore
for T5-base.

Figure 19 shows the normalized BERTscore re-
sults for the SBIC dataset. Recall that for the SBIC
dataset, we fine-tune the UnifiedQA variant of
T5. As expected, the model size contributes to bet-
ter performance. Consequently, the BERTscore is
higher for the T5-large model for every sparse
fine-tuning configuration. The best BERTscore
median is achieved by the Baseline in combina-
tion with the UNIFIEDQA-T5-large, with a
metric value of ≈ 68%. The second and third

best-performing setups are the Decoder and the
Encoder, respectively. Moreover, the fine-tuning
of layers such as the Normalization Layer or Self-
attention Layer results in the generation of text that
does not contain the explanation token “because”,
thus the BERTscore is close to zero for those con-
figurations.

We depict in Figure 20 the variation of the nor-
malized BERTscore metric over the 60 different
train-validation splits for the SPARSEFIT configu-
rations. Recall that for ComVE dataset, we fine-
tune the UnifiedQA variant of T5. Overall, the
BERTscore is substantially higher for T5-large.
The best BERTscore for T5-large is obtained
by the Baseline fine-tuning, with a median score
of 75% for the 60 different seeds. Similar behav-
ior can be seen for T5-base, where Baseline is
also the setting with the best explanations (from
the perspective of the automatic metric). The sec-
ond and third best sparse fine-tuning setups are
the Self-attention Query and Baseline, respectively.
Notice that the difference in the median between
the Baseline and the Encoder is around 3%. More-
over, the variance among the different splits for a
given sparse fine-tuning setting is on average higher
than for the Baseline. Remarkably, the sparse fine-
tuning over the Normalization Layer was the only
setting that obtained a zero BERTscore for the
ComVE dataset.

C.3 Other PEFT Baselines

In order to make our approach comparable in the
number of parameters, we test LoRa (Hu et al.,
2022) using higher ranks. Table 8 shows the per-
formance of LoRA for different rank sizes. Notice
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SPARSEFIT ComVE ECQA SBIC e-SNLI Avg

Baseline
(100.00%)

Acc. 62.48 ±6.03 22.39 ±3.61 63.55 ±6.59 55.3 ±4.98 50.93 ±5.3

nBERTs 55.55 ±5.6 19.73 ±3.22 61.21 ±6.79 49.25 ±4.36 46.44 ±4.99

Decoder
(54.60%)

Acc. 83.67 ±10.12 ▽ 62.62 ±4.16 ▽ 65.59 ±7.51 87.48 ±4.02 ▽ 74.84 ±6.45

nBERTs 74.66 ±9.02 ▽ 55.31 ±3.65 ▽ 62.72 ±7.66 77.92 ±3.7 ▽ 67.65 ±6.01

Encoder
(40.95%)

Acc. 73.14 ±11.24 ▽ 46.23 ±3.96 ▽ 66.81 ±6.43 70.34 ±5.79 ▽ 64.13 ±6.86

nBERTs 66.7 ±10.28 ▽ 41.46 ±3.56 ▽ 64.45 ±6.7 63.79 ±5.28 ▽ 59.1 ±6.46

Dense.wo
(27.29%)

Acc. 83.91 ±6.54 ▽ 66.21 ±3.12 ▽ 66.64 ±6.46 86.85 ±3.0 ▽ 75.9 ±4.78

nBERTs 76.1 ±6.04 ▽ 59.12 ±2.76 ▽ 63.87 ±6.51 78.24 ±2.78 ▽ 69.33 ±4.52

Dense.wi
(27.29%)

Acc. 77.6 ±6.63 ▽ 62.12 ±2.75 ▽ 63.99 ±7.4 87.31 ±3.6 ▽ 72.76 ±5.1

nBERTs 70.21 ±6.04 ▽ 55.12 ±2.44 ▽ 61.05 ±7.43 78.24 ±3.28 ▽ 66.16 ±4.8

Attention KQV
(20.47%)

Acc. 81.73 ±4.14 ▽ 50.24 ±3.48 ▽ 68.84 ±5.37 ▽ 75.3 ±3.78 ▽ 69.03 ±4.19

nBERTs 74.27 ±3.84 ▽ 44.79 ±3.06 ▽ 66.12 ±5.46 ▽ 67.67 ±3.36 ▽ 63.21 ±3.93

LM head + Attention.Q
(11.28%)

Acc. 82.59 ±3.37 ▽ 54.28 ±3.57 ▽ 0.0 ±0.0 79.33 ±2.94 ▽ 72.07 ±3.29

nBERTs 75.2 ±3.0 ▽ 48.42 ±3.17 ▽ 0.0 ±0.0 71.52 ±2.74 ▽ 65.05 ±2.97

LM head
(4.46%)

Acc. 0.09 ±0.13 ▽ 69.43 ±1.88 ▽ 0.23 ±0.22 ▽ 89.04 ±1.63 ▽ 39.7 ±0.96

nBERTs 0.0 ±0.0 ▽ 0.0 ±0.0 ▽ 0.19 ±0.18 ▽ 0.0 ±0.0 ▽ 0.05 ±0.04

LayerNorm + Attention.Q
(6.84%)

Acc. 83.27 ±4.52 ▽ 54.13 ±3.86 ▽ 68.87 ±4.86 ▽ 79.16 ±3.72 ▽ 71.36 ±4.24

nBERTs 75.83 ±4.14 ▽ 48.31 ±3.46 ▽ 65.86 ±5.07 ▽ 71.27 ±3.44 ▽ 65.32 ±4.03

Attention.Q
(6.82%)

Acc. 83.09 ±4.15 ▽ 54.39 ±3.66 ▽ 68.44 ±4.44 ▽ 77.88 ±3.66 ▽ 70.95 ±3.98

nBERTs 75.65 ±3.76 ▽ 48.56 ±3.24 ▽ 65.4 ±4.68 ▽ 70.23 ±3.41 ▽ 64.96 ±3.77

Attention.K
(6.82%)

Acc. 87.7 ±3.83 ▽ 68.74 ±2.29 ▽ 65.48 ±6.26 87.8 ±1.83 ▽ 77.43 ±3.55

nBERTs 80.01 ±3.52 ▽ 61.25 ±2.07 ▽ 62.41 ±6.5 79.55 ±1.62 ▽ 70.8 ±3.43

Attention.V
(6.82%)

Acc. 87.72 ±3.16 ▽ 67.22 ±2.14 ▽ 68.11 ±5.19 ▽ 88.17 ±2.38 ▽ 77.81 ±3.22

nBERTs 79.87 ±2.92 ▽ 60.12 ±1.9 ▽ 65.67 ±5.09 ▽ 79.63 ±2.26 ▽ 71.32 ±3.04

LayerNorm
(0.02%)

Acc. 21.37 ±2.06 ▽ 68.71 ±1.89 ▽ 0.29 ±0.27 ▽ 88.91 ±1.74 ▽ 44.82 ±1.49

nBERTs 0.0 ±0.0 ▽ 0.0 ±0.0 ▽ 0.24 ±0.22 ▽ 0.0 ±0.0 ▽ 0.06 ±0.06

Table 7: Summary of best performing SPARSEFIT configurations for T5-3B. We report the average and the
standard deviation over the 60 few-shot train-validation splits for the accuracy metric and the normalized
BERTScore (nBERTs). In brackets are the percentages of fine-tuned weights for each SPARSEFIT configu-
ration. We show in bold the setting with the highest metric for each dataset. Significance testing was assessed via
mean t-test in comparison with the baseline: ▽ represents a p-value lower than 10−2.

that average performance, in terms of accuracy and
NLE quality, do not increase when the rank is in-
creased.

C.4 Explanations Shortcomings per Dataset

Given the diverse nature of the studied datasets, we
perform an individual analysis for each dataset in
order to find the particular deficiencies and traits
of the explanations by dataset. Figure 22 shows a
set of histograms with the assessment of the anno-
tators on shortcomings for the e-SNLI dataset. It
can be seen that the Nonsensical category is consis-
tently the most common no matter what fine-tuning
strategy was used. Below, the reader can find two
examples of Nonsensical explanations generated by
the Baseline and the Decoder strategy, respectively.

In addition to this, Input Repetition is the second
most common shortcoming for e-SNLI. A regular
pattern found in the generated explanations is the

repetition of a sub-string of the hypothesis as the
predicted explanation, which happens for around
17% of the generated explanations. Below, the
reader can see an example of input repetition found
in the e-SNLI dataset.

We depict in Figure 25 a set of histograms
with the number of times that a shortcoming cat-
egory happens for different fine-tuning strategies
for ECQA. Predominantly, Incomplete Explanation
is the main weakness of generated NLEs. Notice
that for this dataset, the answers are not generally
shared by different samples (i.e., the possible labels
for a sample are not always the same as in the other
datasets). This causes the generated explanations to
be vague and incomplete. Below, the reader can see
3 examples of Incomplete Explanation generated
by the Baseline, Decoder, and Encoder fine-tuning
strategy, respectively.

Figure 27 shows a set of histograms with the as-
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Figure 16: Distribution of the normalized BERTScore for different SPARSEFIT settings of sparse fine-tuning for
T5-3b. The percentage of fine-tuned parameters is shown between brackets.
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Figure 17: Distribution of the normalized BERTscore for different settings of sparse fine-tuning for the e-SNLI
dataset. For each model, the box represents the overall performance over the 60 train-validation splits. The
percentage of parameters fine-tuned for each setup is depicted in brackets below the name of each configuration.

sessment done by the annotators about the most
common shortcomings. Different from other
datasets, there is no singular shortcoming that dom-
inates the results for all the fine-tuning setups. The
most common mistakes among all the explanations
in the dataset are: Inaccurate, Nonsensical, and
Incomplete Explanation. Below, the reader can
find an example for the Incomplete Explanation
shortcoming for the Decoder fine-tuning.

We have depicted in Figure 28 a series of his-
tograms with the frequency of possible shortcom-
ings given by human annotators to the evaluated
explanations. It can be seen that annotators con-
sider that the Lack of explanation, Nonsensical, and
Incomplete Explanation are the most relevant cate-

gories to explain the weaknesses of the generated
explanations.

C.5 Inter-annotator Agreement
We show in Figure 30 an example of perceptual dis-
agreement where the annotators assigned the same
plausibility reason but a different score. Further-
more, Figure 31 shows an example of expectation
disagreement where human evaluators assigned a
opposite score for the given explanation.

2073



ba
sel

ine

(10
0.0

 %
)

att
en

tio
n.k

(6.
68

 %
)

att
en

tio
n.q

(6.
65

 %
)

att
en

tio
n.q

+att
en

tio
n.k

+att
en

tio
n.v

(19
.91

 %
)

att
en

tio
n.v

(6.
68

 %
)

de
cod

er

(53
.1 

%)
de

nse
.wi

(26
.72

 %
)

de
nse

.wo

(26
.72

 %
)

en
cod

er

(39
.73

 %
)

lay
er_

no
rm

(0.
02

 %
)

lay
er_

no
rm

+att
en

tio
n.q

(6.
66

 %
)

lm
_he

ad

(6.
44

 %
)

lm
_he

ad
+att

en
tio

n.q

(13
.58

 %
)

Sparse Fine-tuned Component

0

10

20

30

40

50

60

N
or

m
al

iz
ed

 B
ER

Ts
co

re
 (

%
)

Model Type
allenai/unifiedqa-t5-3b allenai/unifiedqa-t5-base allenai/unifiedqa-t5-large

Figure 18: Distribution of the normalized BERTscore for different settings of sparse fine-tuning for the ECQA
dataset. For each model, the box represents the overall performance over the 60 train-validation splits. The
percentage of parameters fine-tuned for each setup is depicted in brackets below the name of each configuration.
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Figure 19: Distribution of the normalized BERTscore for different settings of sparse fine-tuning for the SBIC
dataset. For each model, the box represents the overall performance over the 60 train-validation splits. The
percentage of parameters fine-tuned for each setup is depicted in brackets below the name of each configuration.
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Figure 20: Distribution of the normalized BERTscore for different settings of sparse fine-tuning for the ComVE
dataset. The baseline model represents the work done by (Marasovic et al., 2022), where all the parameters of the
LM were fine-tuned. For each model, the box represents the overall performance over the 60 train-validation splits.
The percentage of parameters fine-tuned for each setup is depicted in brackets below the name of each configuration.
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PEFT
Strategy

Rank
Size

Percentage
Parameters ComVE ECQA SBIC e-SNLI Avg

LoRA

8 0.32% Acc. 67.64 ±3.37 39.59 ±3.82 63.42 ±3.46 84.15 ±2.0 63.7 ±3.16

nBERTs 61.24 ±3.09 1.55 ±1.26 60.93 ±3.45 76.41 ±1.82 50.03 ±2.4

16 0.63% Acc. 67.94 ±3.4 39.41 ±3.58 63.26 ±3.36 84.26 ±1.88 63.72 ±3.06

nBERTs 61.51 ±3.11 1.44 ±1.31 60.78 ±3.49 76.5 ±1.71 50.06 ±2.41

32 1.26% Acc. 67.79 ±3.75 39.74 ±3.85 63.5 ±3.28 84.27 ±1.9 63.82 ±3.2

nBERTs 61.36 ±3.43 1.36 ±1.18 61.01 ±3.36 76.51 ±1.73 50.06 ±2.43

64 2.49% Acc. 67.65 ±3.77 43.44 ±3.54 63.78 ±3.15 84.25 ±1.91 64.86 ±3.11

nBERTs 61.31 ±3.42 0.32 ±0.40 61.10 ±3.31 76.54 ±1.73 50.01 ±2.10

128 4.86% Acc. 67.77 ±3.73 43.51 ±3.57 63.57 ±3.16 84.26 ±1.92 64.78 ±3.1

nBERTs 61.36 ±3.41 0.33 ±0.41 61.06 ±3.29 76.49 ±1.75 49.81 ±2.22

Table 8: Accuracy and NLE quality metrics for different rank sizes in LoRA. We report the average and the
standard deviation over the 60 few-shot train-validation splits for the accuracy metric and the normalized
BERTScore (nBERTs).
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Premise A poor family is leaving their home with only a few
belongings

Hypothesis A man eats a chalupa
Label Contradiction
Explanation A family consists of two or more people, not just one

man.

Generated Explanation
“a man who eats a chalupa also has to be poor"

Human Score No
Reason Nonsensical

Premise A man in red pants skiing down a slope
Hypothesis An Olympic skier skiing.
Label Entailment
Explanation WE have no idea if the man is an olympic skier or not.

Generated Explanation
“we don’t know what he is doing"

Human Score No
Reason Nonsensical

Figure 21: Examples of Non-sensical NLEs generated
for e-SNLI.
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Figure 22: Histogram of the occurrences of the main
shortcomings of the generated explanations for the base-
line and the two best performing sparse fine-tuning setup
for the e-SNLI dataset.

Premise girl in uniform running through the water fountain gush-
ing water from the tiles

Hypothesis A girl is running through the water
Label Entailment
Explanation “If a water fountain is gushing water, that implies that

there is water, and therefore the girl is running through
water"

Generated Explanation
“a girl in uniform running through the water fountain."

Human Score No
Reason Input Repetition

Figure 23: Examples of Input-Repetition NLEs gener-
ated for e-SNLI.

Question Where is the ticket booth often outside the building?
Choices train station — stadium — auditorium — subway
Label auditorium
Explanation Ticket booth of an auditorium is often outside the build-

ing

Generated Explanation
“auditorium is a large venue with lots of people. the
ticket booth is often outside the building"

Human Score Weak Yes
Reason Incomplete Explanation

Question What happens to the person that is well known for fre-
quent farting?

Choices social ostracism — evil — bad smell — stinking
Label social ostracism
Explanation Ticket booth of an auditorium is often outside the build-

ing

Generated Explanation
“Social ostracism is act of ignoring and excluding in-
dividuals. Frequent farting can make you ignored by
people around you as frequent farting makes them un-
comfortable with you"

Human Score Weak Yes
Reason Incomplete Explanation

Figure 24: Examples of Incomplete Explanation NLEs
generated for ECQA.
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Figure 25: Histogram of the occurrences of the main
shortcomings of the generated explanations for the base-
line and the two best performing sparse fine-tuning setup
for the ECQA dataset.

Post The normie "vibe" argument is horseshit Anytime a
normie says that you give off misogynistic vibes even if
you don’t outright say "I hate women" they are lying.

Label Offensive
Explanation this post is a personal attack

Generated Explanation
“this post implies that women are inferior"

Human Score Weak No
Reason Incomplete Explanation

Figure 26: Examples of Incomplete Explanation NLEs
generated for SBIC.
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Figure 27: Histogram of the occurrences of the most
common explanation shortcomings for the baseline and
the two best performing sparse fine-tuning setup for the
SBIC dataset.
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Figure 28: Histogram of the occurrences of the most
common explanation shortcomings for the baseline and
the two best performing sparse fine-tuning setup for the
ComVE dataset.

Question What is the best way to release energy?
Choices yell — think — exercise — rest — work off
Label exercise
Explanation By doing exercise, one can release energy. The best way

of releasing energy is exercise.
Generated Explanation
“exercise releases energy. to release energy, one must
yell or yell loudly. to exercise, one must exercise vigor-
ously. to work off, one must work off the energy."
Annotator 1 Annotator 2

Human Score No Weak Yes
Reason Hallucination Hallucination

Figure 29: Example of annotator expectation disagree-
ment in our study for the ECQA dataset.

Question Teddy liked learning languages. He helped him with
what?

Choices problems — frustration — confidence — better commu-
nication — sadness

Label better communication
Explanation Better communication is defined as verbal speech or

other methods of relaying information that get a point
across. He helped him with better communication.

Generated Explanation
he helped him with better communication.

Annotator 1 Annotator 2
Human Score Weak No Weak Yes
Reason Lack of Explanation Lack of Explanation

Figure 30: Example of annotator perceptual disagree-
ment in our study for the ECQA dataset.

Question What is the best way to release energy?
Choices yell — think — exercise — rest — work off
Label exercise
Explanation By doing exercise, one can release energy. The best way

of releasing energy is exercise.

Generated Explanation
“exercise releases energy. to release energy, one must
yell or yell loudly. to exercise, one must exercise vigor-
ously. to work off, one must work off the energy."

Annotator 1 Annotator 2
Human Score No Weak Yes
Reason Hallucination Hallucination

Figure 31: Example of annotator expectation disagree-
ment in our study for the ECQA dataset.
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