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Abstract

Unsupervised bilingual lexicon induction (BLI)
task aims to find word translations between
languages and has achieved great success in
similar language pairs. However, related works
mostly rely on a single linear mapping for lan-
guage alignment and fail on distant or low-
resource language pairs, achieving less than
half the performance observed in similar lan-
guage pairs. In this paper, we introduce DM-
BLI, a Dynamic Multiple subspaces alignment
framework for unsupervised BLI. DM-BLI im-
proves language alignment by utilizing mul-
tiple subspace alignments instead of a single
mapping. We begin via unsupervised cluster-
ing to discover subspaces in source embed-
ding space. Then we identify corresponding
subspaces in the target space using a rough
global alignment. DM-BLI further employs
intra-cluster and inter-cluster contrastive learn-
ing to refine precise alignment for each sub-
space pair. Experiments conducted on stan-
dard BLI datasets for 12 language pairs (6 rich-
resource and 6 low-resource) demonstrate sub-
stantial gains achieved by our framework. We
release our code at https://github.com/huling-
2/DM-BLI.git.

1 Introduction

Unsupervised bilingual lexicon induction (BLI) has
shown to be a key multilingual NLP task to align
cross-lingual word embeddings (CLWEs) (Mikolov
et al., 2013a; Ruder et al., 2019) and bridge lexical
gap between low and rich-resource languages (Eder
et al., 2021; Marchisio et al., 2022).

Existing BLI approaches can be roughly divided
into two categories: mapping-based methods (Con-
neau et al., 2017; Artetxe et al., 2018; Ren et al.,
2020; Li et al., 2022) and generation-based meth-
ods (Gonen et al., 2020; Ghazvininejad et al., 2023;
Li et al., 2023). Mapping-based methods aim to
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Figure 1. t-SNE visualization of the clustered mono-
lingual word embedding in a distant language pair of
English (left) and Japanese (right). Different colors rep-
resent different subspaces. With a global orthogonal
mapping from English to Japanese, BLI accuracies for
subspaces 0-5 are 54.3%, 48.7%, 40.1%, 19.4%, 18.9%
and 6.9%, respectively.

align monolingual embeddings from various lan-
guages into a shared CLWEs space via linear or
non-linear projections. Generation-based methods
leverage the machine translation capacities of large
language models (LLMs) (Briakou et al., 2023) to
directly generate word translations via zero-shot
or few-shot prompting. Mapping-based methods
are superior to generation-based methods in un-
supervised settings, especially are far superior on
low-resource languages (Li et al., 2023), primarily
due to the unbalanced training corpus size of each
language supported by LLMs (Zhu et al., 2023a).

The existing fully unsupervised mapping-based
approaches still need to carefully address two is-
sues. First, these approaches rely on a strong as-
sumption that monolingual word embedding spaces
are isomorphic and the mapping matrices should
be under orthogonal constraint, but this assumption
does not hold true for all languages (Søgaard et al.,
2018; Glavaš et al., 2019), especially for distant
language pairs (Ormazabal et al., 2019; Vulić et al.,
2019). Therefore, weak orthogonal constraints
have been proposed to tackle this issue (Mohiuddin
et al., 2020; Glavaš and Vulić, 2020).

Second, a global mapping matrix does not con-
sistently perform optimally across all subspaces
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(Nakashole, 2018; Wang et al., 2020). As shown
in Figure 1, subspaces exhibit inconsistent struc-
tural similarity. With a global orthogonal mapping,
BLI accuracy varies among different subspaces:
the highest accuracy is 54.3% in subspace 0 and
the lowest accuracy is 6.89% in subspace 5. To al-
leviate the issue, recent research proposed a multi-
adversarial learning method (Wang et al., 2020)
and a graph-based paradigm (Ren et al., 2020) to
learn or refine a specific mapping for each subspace.
However, in these approaches, multiple subspaces
assigned by initial mappings are static. Once initial
solutions of these mappings are not good enough,
they may get stuck in poor local optima.

Different from previous methods, we propose a
Dynamic Multiple subspaces cross-lingual align-
ment framework for fully unsupervised Bilingual
Lexicon Induction, named DM-BLI. It leverages
intra-cluster and inter-cluster contrastive learning
to achieve precise alignment at subspace level for
both source and target languages, along with dy-
namically updating the subspace assignment of
each word. DM-BLI starts by clustering the embed-
dings of source language to establish multiple valid
subspaces. Then, we induce an initial solution to
discover corresponding multiple subspaces in the
target language. Finally, we iteratively refine a pair
of specific mappings for each subspace pair until
convergence is reached.

In summary, we make the following contribu-
tions:

• We propose a dynamic multiple subspaces
cross-lingual alignment framework for the
BLI task, which achieves customized map-
pings for each subspace pair.

• To boost the performance of our model, we de-
sign a contrastive learning framework includ-
ing intra-cluster and inter-cluster level based
on unsupervised clustering to dynamically up-
date the subspace assignment, avoiding falling
into local optima.

• We conduct extensive experiments to demon-
strate the effectiveness of our method on
twelve language pairs including six rich-
resource and six low-resource language pairs,
and DM-BLI achieves significant improve-
ments especially for distant and low-resource
language pairs.

2 Related Work

2.1 Cross-lingual Word Embedding
Bilingual lexicons can be induced via nearest neigh-
bour retrieval on CLWEs, which represent lexical
words from two or more languages in a shared
space.

Based on whether parallel corpora are used
or not, CLWEs approaches can be categorized
into three groups: supervised (Faruqui M, 2014;
Zou W Y, 2013; Vulić I, 2015), semi-supervised
(Artetxe M, 2017; Patra et al., 2019), and unsuper-
vised approaches (Conneau et al., 2017; Artetxe
et al., 2018). Because parallel corpora are not avail-
able for many languages, unsupervised approaches
gain much more attention.

But unsupervised methods do not require any
seed dictionary at all, it is more difficult to induce
a reliable initial solution which plays a crucial role
in alignment. Therefore, GAN-based adversarial
training (Zhang et al., 2017), optimal transport so-
lution (Alvarez-Melis and Jaakkola, 2018), Auto-
encoder (Mohiuddin and Joty, 2019), and graph-
based alignment (Ren et al., 2020) were utilized
to better match embedding distribution and find a
better initial solution in a fully unsupervised way.

Based on the type of pre-trained monolingual
embeddings, CLWEs can be divided into two
groups: static CLWEs and contextual CLWEs.
Most works focused on static word embeddings
(Ruder et al., 2019), which can be derived by
Word2Vec (Mikolov et al., 2013b) or fastText (Bo-
janowski et al., 2016). However, static embeddings
lack contextual information to capture polysemy.
Therefore, contextual embeddings, generated from
monolingual and multilingual pre-trained language
models (Devlin et al., 2019; Lample and Conneau,
2019), were utilized as input monolingual embed-
dings. However, they cannot surpass static embed-
ding in the BLI task based on the same mapping
technologies even with much more training time
(Vulić et al., 2020; Liu et al., 2021).

2.2 Bilingual Lexicon Induction
Bilingual lexicon induction (BLI) aims to derive
word translations from monolingual corpora in two
different languages. The performance of BLI is
heavily impacted by language differences, with
significant variation across different language pairs.

BLI methods tend to perform well on seman-
tically similar and resource-rich language pairs
but struggle with distant or low-resource language
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pairs. For example, unsupervised BLI accuracy on
English-Spanish exceeded 80%, while under 40%
on English-Chinese (e.g. Conneau et al., 2017;
Wang et al., 2020; Ren et al., 2020). Therefore,
there is an increasing interest in addressing the chal-
lenges of distant or low-resource language pairs
alignment.

However, there is no standardized criterion for
defining low-resource language pairs. For instance,
Zhang et al. (2022) used language frequency on
Twitter as a criterion, while Goyal et al. (2022)
classified languages into four types based on their
bitext resource levels with English. Compared to
high-resource languages like English, Spanish, and
Chinese, many languages face similar challenges as
extremely low-resource languages despite having a
decent amount of resources. Additionally, CLWEs
often perform poorly for truly low-resource lan-
guages due to the inferior quality of embeddings
(Michel et al., 2020). As a result, most previous
studies have focused on relatively low-resource
languages like Finnish and Hindi rather than on ab-
solutely low-resource languages (Mohiuddin et al.,
2020; Tian et al., 2022).

To address challenge on disatant and low-
resource language pairs, Taitelbaum et al. (2019)
suggested leveraging auxiliary languages to bridge
the gap between semantically distant and low-
resource language pairs. Based on the observation
that words are naturally grouped into different se-
mantic subspaces and the BLI accuracies of differ-
ent subspaces are not uniform, Wang et al. (2020)
proposed a multi-adversarial learning method to
learn a specific mapping for each subspace. How-
ever, this GAN-based method was less robust and
its assignment of subspaces was fixed initially
which would bring the noise of initial solution.

Different from previous work, we propose a dy-
namic multiple subspaces alignment framework for
unsupervised BLI to achieve more robust and pre-
cise alignment at subspace level for both source and
target languages, along with dynamically updating
the subspace assignment of each word.

3 Methodology

3.1 Formulation

Let X ∈ RN∗d and Y ∈ RM∗d be the normalized
pre-trained monolingual embeddings for source
and target languages, where N and M denote the
number of words and d denotes the vector dimen-
sion. Our goal is to find the optimal mapping ma-

trices WX and WY , facilitating the mapped embed-
dings XWX and YWY to be in a shared CLWEs
space.

Figure 2 illustrates the four procedural steps of
our BLI method: multiple subspaces clustering
on the source language, initial alignment, intra-
cluster and inter-cluster contrastive refinement, and
bilingual lexicon induction.

3.2 Multiple Subspaces Discovery

Multiple subspaces discovery contains the first two
steps in Figure 2: multiple subspaces clustering and
initial alignment. It aims to discovery subspaces
pairs {Xi, Yi} from the source embeddings X and
target embeddings Y , where i = 1, 2...K and K is
the number of subspaces.

Firstly, multiple subspaces clustering is only car-
ried on source language embedding X to obtain
K subspaces, denoted as X = {X1, X2, ..., XK}.
Xi ∈ RNi∗d represents the i-th subspace, where Ni

is the number of words in Xi. A major challenge
in multiple subspaces clustering is to determine
the optimal number of subspaces in advance. To
tackle this issue, we use a parameter-free hierarchi-
cal clustering called First Integer Neighbor Clus-
tering Hierarchy (FINCH) (Sarfraz et al., 2019) to
provide a reference number K. Then, K-means al-
gorithm (MacQueen et al., 1967) is used to cluster
X into K subspaces.

Secondly, an initial alignment is conducted for
identifying corresponding K subspaces in the tar-
get language Y , denoted as Y = {Y1, Y2, ..., YK}.
Yi ∈ RMi∗d represents the i-th subspace, where
Mi is the number of words in Yi. To be detailed,
we operate the initial alignment following (Artetxe
et al., 2018) to get a pair of global initial mapping
matrices WXinit and WYinit , with which we can
retrieve the translation of each target word in the
source language. Subsequently, the subspace index
of the target word is set to be the subspace index of
its translation.

3.3 Multiple Subspaces Contrastive
Refinement

A single global mapping does not consistently per-
form optimally across all subspaces (Nakashole,
2018; Wang et al., 2020). Therefore, the pro-
posed framework will dynamically refine matrices
for each subspace pair. This framework contains
both inter-cluster and intra-cluster contrastive learn-
ing. Inter-cluster contrastive learning ensures the
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Figure 2. An illustration of the proposed DM-BLI framework. ❶ represents the monolingual word embedding
spaces of source and target language, where English is the source language denoted by circles while French is
target language denoted by triangles. Multiple subspaces clustering is only applied to source language(English)
and different colors represent different subspaces. ❷ represents a cross-lingual word embedding space via an
initial alignment. ❸ is a multiple subspaces contrastive learning refinement block aiming to push away words from
different clusters and pull closer the words being translation for each other closer within the cluster. ❹ represents
refined cross-lingual word embedding space, where words being translations for each other stay closer.

distinguishability of features among different sub-
spaces pairs, thereby facilitating more effective cus-
tomized mapping. Intra-cluster contrastive learning
brings translation pairs within the subspace pair
closer together, while push non-translation pairs
further apart, thus achieving finer-grained align-
ment. The whole refinement process will be com-
pleted subspace by subspace.

3.3.1 Inter-cluster Contrastive Learning
Given the subspace pair {Xi, Yi}Ki=1, inter-cluster
contrastive learning aims to bring the whole sub-
spaces Xi closer to Yi, while pushing it away from
other non-corresponding subspaces Yj,j ̸=i.

We introduce optimal transport distance as the
metric to evaluate distance of two subspaces dis-
tribution, in our work Wasserstein distance (Han
et al., 2022) has been applied. Compared to sim-
ple distance metrics like Euclidean distance, the
Wasserstein distance considers the overall struc-
ture of probability distributions, making it robust
to outliers and capable of capturing geometric nu-
ances more effectively. The Wasserstein distance
between the distributions of two subspaces can be
calculated as:

Dw(Xi, Yi) = min

Ni∑

j=1

Mi∑

k=1

T jkc(w
Xi
j , wYi

k ) (1)

where c(wXi
j , wYi

k ) is the transport cost between
words wXi

j ∈ Xi and wYi
k ∈ Yi, and T jk represents

the transport plan between wXi
j and wYi

k .
Based on the K pairs of subspaces, we calculate

a bi-direction inter-cluster contrastive learning loss
as follows:

Ls2t = −
1

K

{
log (e−Dw(Xi,Yi)/τ )

+
∑

j ̸=i

log (1− e−Dw(Xi,Yj)/τ )

}

Lt2s = −
1

K

{
log (e−Dw(Yi,Xi)/τ )

+
∑

j ̸=i

log (1− e−Dw(Yi,Xj)/τ )

} (2)

where τ is a temperature parameter. To be specific,
the aforementioned process is applied to the sam-
pled distribution of subspace, where the proportion
of samples is determined by a preset threshold.

Finally, we obtain the final inter-cluster con-
trastive loss Linter as below, where λ is the trade-
off set to be 0.5 between two directions:

Linter = λ ∗ Ls2t + (1− λ) ∗ Lt2s (3)
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3.3.2 Intra-cluster Contrastive Learning
Given the subspace pair {Xi, Yi}Ki=1, intra-cluster
contrastive learning is to ensure word pair
(wXi

j , wYi
k ) are closer, which are translations to

each other in Xi and Yi.
Based on the mapping matrices WX and WY ,

we can initially construct a bilingual dictio-
nary D by retrieving the translation of each tar-
get word in the source language, where D ={
(wXi

1 , wYi
1 ), (wXi

2 , wYi
2 ), ..., (wXi

l , wYi
l )

}
and l is

the number of translation pairs in D.
However, the quality of D depends on the qual-

ity of mapping matrices. To alleviate the noise
brought by the current solution, we selectively sam-
ple high-confidence word translation pairs from D,
where confidence is determined by the similarity
gap between the selected translation and the second
candidate translation with the source word.

Based on the sampled translation pairs Ds, the
intra-cluster contrastive learning loss can be de-
fined as:

Lintra = −
|Ds|∑

i=1

log
esim(wx

i ,w
y
i )/τ

∑|Ds|
j=1

esim(wx
i ,w

y
j )/τ

(4)

where |Ds| is the number of sampled translation
pairs and τ is a temperature parameter. Ultimately,
the loss of the whole contrastive refinement can be
defined as follows:

L = Linter + Lintra (5)

3.4 Multiple Subspaces Dynamic Updating
A single round of subspace assignment may in-
troduce noise from the initial solution, potentially
causing CLWEs to fall into local optima. Therefore,
we propose to dynamically adjust the subspace as-
signment of each word in target language during
the process of updating WX and WY .

To clarify, the assignment of multiple subspaces
in source language X = {X1, X2, ..., XK} is fixed
once the clustering process is completed. For word
wY
i in target language, its translation from source

language wX
i is retrieved based on XWX and

YWY . The subspace index of wX
i will be assigned

to wY
i . Upon updating WX and WY , the subspace

assignment of wY
i will be adjusted accordingly

to maintain consistency whenever its translation
changes.

As we mentioned before, the whole refinement
process will be operated subspace by subspace. For

each subspace Yi in target language, the whole dy-
namic updating procedure stops until convergence
is reached. Convergence can be determined by
measuring the overlap of target words within Yi
between the current and previous rounds. Besides,
once a subspace has achieved convergence, its as-
signments are finalized, ensuring that the words
in this subspace remain unchanged. The whole
methodology is summarised in Algorithm 1.

Algorithm 1: Dynamic Multiple Subspaces
Alignment for Unsupervised BLI

Input: Monolingual word embedding
spaces X , Y

Output: {WXi}Ki=1, {WYi}Ki=1

1 {Xi}Ki=1 ← Apply Clustering on X;
2 WXinit ,WYinit ← Initial Alignment ;
3 {Yi}Ki=1 ← Calculate XWXinit , Y W Yinit ;
4 for i ≤ K do
5 Initialize WXi = WXinit , WYi = WYinit

while not convergence do
6 WXi ,WYi ← Optimize loss L

Xi ← Keep Xi fixed
Yi ← Update Yi with WXi ,WYi

7 return {WXi}Ki=1, {WYi}Ki=1;

4 Experiment Setup

We evaluate our framework in both supervised
and unsupervised BLI tasks on 12 language pairs,
which contain 6 rich-resource language pairs: Span-
ish (ES), German (DE), Russian (RU), Arabic (AR),
Japanese (JA) and Chinese (ZH), all cross-lingual
to English (EN) and six low-resource language
pairs: Finnish (FI), Hindi (HI), Turkish (TR), In-
donesian (ID), Bulgarian (BG) and Catalan (CA),
all cross-lingual to English (EN). Following previ-
ous research (Mohiuddin et al., 2020; Tian et al.,
2022), we select relatively low-resource language
pairs as low-resource setting rather than truly low-
resource languages.

4.1 Dataset

We use fastText vectors trained on Wikipedias (Bo-
janowski et al., 2016) as monolingual word embed-
dings. We use the widely used MUSE bilingual
lexicon (Conneau et al., 2017), released by Face-
book, as ground truth lexicon. MUSE provides 110
bilingual lexicons and each lexicon contains the
6,500 most frequently used words in each language,
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split in a test set of 1,500 words and a training set
of 5,000.

4.2 Baselines

Baselines are divided into supervised and unsuper-
vised two lines as described below. We run the
released code of each baseline in our experiments.
Supervised BLI
•MUSE: Conneau et al. (2017) learned an orthog-
onal map by minimizing the Euclidean distance
between the supervised translation pairs.
• VecMap: Artetxe et al. (2018) used a multi-step
framework consisting of several steps: whitening,
orthogonal mapping, re-weighting, de-whitening,
and dimensionality reduction.
• BLISS: Patra et al. (2019) proposed a semi-
supervised approach with a weak orthogonality
constraint in the form of a back-translation loss.
• CL-BLI: Li et al. (2023) proposed a robust and
effective two-stage contrastive learning framework
to combine static and contextual embeddings.
Unsupervised BLI
• MUSE: Unsupervised MUSE (Conneau et al.,
2017) used adversarial training and iterative Pro-
crustes refinement.
• VecMap: Unsupervised VecMap (Artetxe et al.,
2018) used intra-linguistic word similarity informa-
tion to induce initial solution.
• Ad. : Mohiuddin and Joty (2019) proposed a
adversarial auto-encoder framework, where adver-
sarial mapping was done at the latent embedding
space.
• BLOOM7B (Workshop et al., 2022): It is a
decoder-only Transformer language model that sup-
ports 46 natural languages. 7B parameters version
was used in our experiment.
• Llama13B (Touvron et al., 2023): It is a decoder-
only LLM which supports 20 languages. 13B pa-
rameters version was used in our experiment.
• GPT-3.5 (Brown et al., 2020): It is a decoder-
only LLM with 175B parameters, supported by 38
languages. GPT-3.5-turbo was used in our experi-
ment.

4.3 Implementation details

We choose the most 75,000 frequent vocabular-
ies of each language. The normalization proce-
dure for pre-trained embedding contains three steps:
length normalizes the embeddings, then mean cen-
ters each dimension, and then length normalizes
them again.

For multiple subspaces discovery, the number
of subspaces is set to be 9 and we will discuss the
impact of this setting later. For inter-cluster con-
trastive learning, only words with weight above
0.45 are sampled to represent the subspace distri-
bution. For intra-cluster contrastive learning, we
only sample the top 20% of word translation pairs
sorted descending by confidence.

Following the previous research (Patra et al.,
2019), the prompt template for Llama13B is de-
fined as: "Translate from Lx to Ly: wx=>"; the
prompt template for GPT-3.5 is defined as: "Trans-
late the Lx word wx into Ly:". Both of them are
provided as the best template for each of them in
Li et al. (2023).

The evaluation for BLI is done by comparing
the bilingual lexicon constructed by each model
with the benchmark lexicon MUSE (Conneau et al.,
2017) and reporting precision Precision@N for
N = 1, 5. Precision@N accounts for accuracy for
which the correct translation of the source words
is in the N -th nearest neighbors based on CSLS
(Conneau et al., 2017).

5 Result and Discussion

5.1 Results in low-resource Languages

Table 1 summarizes the results of the supervised
and unsupervised BLI tasks in low-resource lan-
guage pairs. In both tasks, our proposed method
shows significant improvements, particularly in
Precision@5, with an average of 2.16 points higher
than the strongest baseline VecMap in the super-
vised task. In the unsupervised task, our method
performs nearly as well as the strong baseline GPT-
3.5.

In the supervised task, DM-BLI outperforms all
the baseline methods on all language pairs, demon-
strating the robustness and effectiveness of our
framework on low-resource language pairs. In
the unsupervised task, DM-BLI outperforms all
the baseline methods on four out of six language
pairs and archives suboptimal scores in the remain-
ing pairs at Precision@5. It demonstrates that
our method is competitive even compared with
GPT-3.5, which has 175B parameters and sup-
ports 38 languages. The unsatisfied performance
of BLOOM7B and Llama13B also suggests that the
generalization of LLMs to low-resource languages
remains an open challenge.

2046



Method
Precision@1 Precision@5

Avg.
FI-∗ HI-∗ TR-∗ ID-∗ BG-∗ CA-∗ FI-∗ HI-∗ TR-∗ ID-∗ BG-∗ CA-∗

Supervised
MUSE 46.50 25.65 39.82 35.56 39.28 46.19 66.07 39.17 57.56 50.92 56.62 60.52 46.99
BLISS 49.94 28.17 41.45 38.49 42.21 47.26 68.97 42.43 59.39 54.05 59.51 61.94 49.48

VecMap 58.12 34.07 49.37 44.72 49.13 54.35 75.43 48.40 66.24 59.52 64.62 66.84 55.90
CL-BLI 57.78 32.62 48.52 43.43 47.34 53.89 75.97 47.02 59.93 58.63 64.20 67.09 54.70
DM-BLI 60.29 35.57 53.09 48.24 50.80 56.47 77.08 49.24 69.11 62.09 66.16 68.57 58.06

Unsupervised
MUSE 0.05 0.00 36.82 36.35 38.31 46.07 0.05 0.05 54.76 51.65 55.05 60.51 31.64

VecMap 54.71 28.19 48.92 45.65 45.69 53.52 71.72 41.54 65.25 59.76 61.24 65.63 53.49
Ad. 0.45 0.01 46.69 0.09 0.03 53.06 1.47 0.03 63.08 0.31 0.11 65.55 19.24

BLOOM7B 23.43 28.30 30.82 45.45 16.75 43.89 25.75 28.54 34.08 49.77 16.94 48.01 32.64
Llama13B 40.98 30.68 44.90 48.63 56.86 48.83 41.64 30.69 45.24 48.95 57.16 49.19 45.31
GPT-3.5 60.37 56.11 54.49 48.37 67.51 45.15 64.33 57.40 55.99 49.35 69.53 45.78 56.19
DM-BLI 57.48 30.80 51.98 48.81 47.63 56.15 74.10 43.75 67.95 62.46 63.36 67.61 56.00

Table 1. Precision@1 and Precision@5 for the BLI task on six low-resource language pairs, where ∗ represents
EN(English). The best score is shown in bold, and the suboptimal score is shown in underlined.

Method
Precision@1 Precision@5

Avg.
ES-∗ DE-∗ RU-∗ AR-∗ JA-∗ ZH-∗ ES-∗ DE-∗ RU-∗ AR-∗ JA-∗ ZH-∗

Supervised
MUSE 67.80 63.14 53.23 44.33 0.14 8.29 78.13 75.86 70.19 61.16 0.41 18.87 45.13
BLISS 68.46 63.49 54.88 45.70 0.01 6.43 78.86 76.69 71.28 62.47 0.04 14.00 45.19

VecMap 71.70 66.46 59.58 51.54 37.14 42.50 80.43 78.22 74.69 67.00 53.65 62.23 62.10
CL-BLI 73.02 69.00 61.31 53.14 35.07 42.44 81.71 80.28 77.10 68.95 50.68 62.26 62.91
DM-BLI 72.87 68.28 61.61 52.33 41.03 44.83 81.16 79.35 76.35 67.80 56.94 64.13 63.89

Unsupervised
MUSE 67.89 63.27 50.49 0.03 0.09 0.01 78.37 75.87 67.10 0.08 0.37 0.04 33.63

VecMap 72.00 67.17 56.42 47.43 26.62 33.39 79.91 77.77 71.45 63.53 40.62 51.86 57.35
Ad. 71.93 66.63 55.50 0.00 0.00 0.00 79.99 77.59 70.56 0.00 0.01 0.01 35.19

BLOOM7B 52.50 38.34 26.06 32.67 21.34 34.35 56.19 41.49 26.27 32.80 21.38 34.53 34.83
Llama13B 60.58 57.80 64.44 22.13 38.56 32.28 61.09 58.51 65.10 22.14 38.57 32.29 46.12
GPT-3.5 68.17 63.07 74.15 65.94 71.80 65.12 70.72 66.08 76.84 69.88 74.95 68.69 69.62
DM-BLI 72.94 68.67 58.91 48.58 32.42 37.34 80.65 78.92 73.45 64.70 47.98 56.45 60.08

Table 2. Precision@1 and Precision@5 for the BLI task on six rich-resource language pairs, where ∗ represents
EN(English). The best score for is shown in bold, and the suboptimal score is shown in underlined.

5.2 Results in Rich-resource Languages

Table 2 summarizes the main results of the su-
pervised and the unsupervised BLI tasks on rich-
resource language pairs.

In supervised tasks, our proposed method
achieves significant improvements, with average
nearly 1 point higher than the strongest baseline
CL-BLI. We achieve the optimal or sub-optimal
performance on all the language pairs. Notably,
our method achieves a 6.26% improvement over
CL-BLI on distant language pairs Japanese to En-
glish, demonstrating advantages of multiple sub-

space alignment on distant language pairs.

In unsupervised tasks, DM-BLI achieves the
sub-optimal result on rich-resource language pairs.
While it outperforms the previous mapping-based
SOTA method VecMap but underperforms GPT-3.5.
The outstanding performance of GPT-3.5 verifies
the potential of the latest generation of LLMs for
developing bilingual lexicons with sufficient train-
ing and a large amount of parameters. However,
BLOOM7B and Llama13B are still far lagging be-
hind the traditional mapping-based method even on
rich-resource language pairs, which verifies that it
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Figure 3. t-SNE visualization of sampled CLWEs derived from VecMap and DM-BLI, where visualization of
CLWEs derived from DM-BLI is based on different numbers of multiple subspaces.

is difficult to extract lexical information from large
language models (Liu et al., 2021).

5.3 Influence of the Number of Subspaces
In this section, we discuss the impact of the number
of subspaces on performance of DM-BLI, taking
distant language pair JA2EN as an example.

As shown in Figure 3, compared with VecMap
who only use a global mapping, our method lets
word with same meaning from different languages
get much closer in a shared CLWEs space via mul-
tiple subspace-level alignments.

Notably, from Figure 3, we can find that even
using different numbers of subspaces, DM-BLI still
achieved nearly the same results, which shows that
it is not sensitive to the number of subspaces and
further proves the robustness of our method.

5.4 Influence of Translation Direction
In this subsection, we examine how the transla-
tion direction affects BLI results in unsupervised
setup. The language pairs we choose as examples
are Japanese (JA), Chinese (ZH), Finish (FI), Turk-
ish (TR), from and to English (EN), as shown in
Table 3.

Methods
EN-JA EN-ZH EN-FI EN-TR
→ ← → ← → ← → ←

MUSE 0.01 0.37 0.01 0.04 0.06 0.05 30.73 54.76
VecMap 35.63 40.62 32.62 56.45 43.08 71.72 40.10 65.25
GPT-3.5 57.06 74.98 42.56 68.69 58.97 64.33 52.63 55.99
DM-BLI 39.43 47.98 34.69 56.45 44.30 74.10 41.90 67.95

Table 3. Precision@5 for the bi-direction unsupervised
BLI task on four language pairs. The best score is shown
in bold, the suboptimal score is shown in underlined.

From Table 3, we observe the performance dif-
ferences in the two directions of the language pair.
Specifically, the results from English to other lan-
guages significantly lag behind those from other
languages to English. A part of the reason is that
there are more unique English words than non-
English words in the evaluation set (Xu et al., 2018).

It also proves that LLMs exhibit unbalanced capac-
ities across languages, performing better at translat-
ing into English than translating into non-English
(Zhu et al., 2023b).

5.5 Effect of Multiple Subspaces Alignment

Notice that our method focuses on leveraging mul-
tiple subspace alignments to achieve better perfor-
mance for BLI. In this subsection, we discuss the
advantages of multiple subspaces alignment from
our method DM-BLI, taking low-resource language
pair CA2EN as an example.

Figure 4. Precision@1 for unsupervised BLI from Cata-
lan to English in different English subspaces.

As shown in Figure 4, on low-resource language
pair like CA2EN, we can find that BLI accura-
cies for all subspaces based on DM-BLI are higher
than the strongest mapping-based baseline VecMap.
Notably, we also find that unbalanced alignments
occur in a generative way via GPT-3.5 as well. Fur-
thermore, LLM’s capability on BLI is still far lag-
ging behind mapping-based approach.

In order to show effect of DM-BLI more intu-
itively, we sample 2 subspaces for visualization.
As shown in Figure 5, via multiple subspaces align-
ment, translation pairs within the subspace stay
closer together than applying a global mapping.
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Figure 5. t-SNE visualization of two sampled subspaces
in CLWEs space derived from VecMap and DM-BLI on
CA2EN. Within the subspace, dots denoted by the same
color but different transparency are translation pairs.

6 Conclusion

In this paper, we propose a Dynamic Multiple
subspaces alignment framework for unsupervised
BLI, called DM-BLI. Our method utilizes multiple
subspaces alignment instead of a single mapping
alignment to achieve more accurate alignment on
the subspace level. The experiments show that
our method can significantly improve the bilin-
gual word induction performance compared with
strong baselines even including GPT-3.5, especially
for distant and low-resource language pairs. At
the same time, the unsatisfied performances of
BLOOM7B and Llama13B on all language pairs
also suggest that it is difficult to extract lexical
information from large language models and the
generalization of LLMs to low-resource languages
remains an open challenge. In the future, we will
consider combining our method with multilingual
LLMs to take advantage of these two paradigms.

Limitations

First, public BLI datasets are not enough to sup-
port a comprehensive evaluation. In the evaluation
standard dictionary, the proportion of ground-truth
translations in different categories is uneven. As
also discussed in (Li et al., 2023), current evalua-
tion will not work for words that are not included
in the gold translations.

Second, we choose the relatively low-resource
languages rather than truly low-resource languages
in the setting, which fails to address the problem
in real low–resource scenarios. Truly low-resource
languages will be considered to increase the appli-
cability of proposed framework in our future work.
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