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Abstract

There is a lack of quantitative measures to eval-
uate the progression of topics through time in
dynamic topic models (DTMs). Filling this
gap, we propose a novel evaluation measure for
DTMs that analyzes the changes in the quality
of each topic over time. Additionally, we pro-
pose an extension combining topic quality with
the model’s temporal consistency. We demon-
strate the utility of the proposed measure by
applying it to synthetic data and data from ex-
isting DTMs, including DTMs from large lan-
guage models (LLMs). We also show that the
proposed measure correlates well with human
judgment. Our findings may help in identify-
ing changing topics, evaluating different DTMs
and LLMs, and guiding future research in this
area.

1 Introduction

Dynamic Topic Models (DTMs) (Blei and Lafferty,
2006) learn topics and their evolution over time
from a time-indexed collection of documents. Vari-
ants of DTMs include traditional statistical topic
models, neural VAE-based topic models, and top-
ics learned using large language models (LLMs).
DTMs have proven useful in various domains, in-
cluding text mining (McCallum et al., 2005; Wang
et al., 2007; Ramage et al., 2011; Gerrish and
Blei, 2011), computer vision (Fei-Fei and Perona,
2005; Cao and Fei-Fei, 2007; Chong et al., 2009),
and computational biology (Pritchard et al., 2000;
Zheng et al., 2006). DTMs enable summarization,
browsing, and searching of large document col-
lections by capturing changes in topics over time.
However, evaluating DTMs can be challenging due
to their unsupervised nature, although it is crucial
for effectively detecting trends in time-indexed doc-
uments.

With the advent of VAE-based and LLM-based
topic models, there is an increasing need for eval-
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uation procedures to compare these models (Os-
theimer et al., 2023, 2024). While traditional eval-
uation measures (Dieng et al., 2019; Blei and Laf-
ferty, 2006) can assess the quality and diversity
of topics, they fail to capture the smoothness of
topic changes over time. This limitation becomes
problematic when a DTM has high topic quality
but lacks temporal smoothness. In such cases, ex-
isting evaluation measures may incorrectly assign
a high score to the model, even when there are
rapid and abrupt transitions between topics. For
example, if a topic quickly changes from “politics”
to “sports”, conventional evaluation measures may
still rate the model positively. To accurately assess
the quality of a DTM, it is crucial to consider the
smoothness of topic changes over time, which can
help identify gradual topic drifts or sudden shifts.
Unfortunately, existing evaluation measures lack
the ability to effectively track topic changes over
time. To bridge this gap, we propose Temporal
Topic Quality (TTQ)—a novel evaluation measure
specifically designed for DTMs. TTQ incorporates
changes in topic quality into its evaluation, thereby
capturing the temporal characteristics of topics in
DTMs.

We provide empirical evidence for the effective-
ness of the proposed measure by evaluating it on
both synthetic and real topics. The results demon-
strate a positive correlation between human ratings
and the individual components of the TTQ mea-
sure. To provide an overall evaluation of DTMs,
we propose the Dynamic Topic Quality (DTQ). The
DTQ measure aggregates the TTQ measure with
the static topic quality score. This aggregation is
performed for both year-wise evaluations and tem-
poral topic assessments, as illustrated in Figure 1.
In our experiments, we compare the results ob-
tained using the DTQ measure with those obtained
using previously employed measures for different
topic models, including LLM-based topic models.
We show that the DTQ measure effectively indi-
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cates the smoothness of topics in trained DTMs
compared to the measures used in the past. We
expect that the introduction of the new measure
will contribute to improved comparisons between
DTMs in future research efforts. Our contributions
can be summarized as follows:

• We present a novel evaluation measure for
DTMs that integrates both the vertical (year-
wise) and the horizontal (temporal) dimension
in the quality estimate (See Figure 1).

• We conduct a meta-analysis of prominent (sta-
tistical, neural, and LLM-based) DTMs with
our novel evaluation measures and present our
findings.

• We show a positive correlation between hu-
man evaluations and the new evaluation mea-
sures, confirming their validity.

2 Related Work

This section presents the previous work on DTMs
and their evaluation approaches. We further discuss
how the human evaluation for new measures was
conducted in this domain.

Dynamic Topic Models are developed to model
topics over time. Dynamic latent Dirichlet alloca-
tion (D-LDA) (Blei and Lafferty, 2006) extends
the original LDA method (Blei et al., 2003) to
account for temporal characteristics of sequential
text data. The dynamic embedded topic model (D-
ETM) combines D-LDA and word embeddings
with a recurrent neural network (RNN) (Dieng
et al., 2019). Sia et al. (Sia et al., 2020) pro-
pose an LLM-based topic model using pre-trained
word embeddings and clustering them. While this
is not a dynamic model that models topics over
time, it is straight-forward to extend to a dynamic
model by using an online clustering method. A
continuous-time version of DTMs was introduced
by Wang et al. (Wang et al., 2008; Wang and Mc-
Callum, 2006). This model is not applicable to
our datasets which have discrete timestamps. Later
work focused on the scalability of DTMs due to
their computationally intensive training (Jähnichen
et al., 2018; Bhadury et al., 2016). Many other
DTMs have been proposed for different purposes,
and not all are directly based on LDA (Grooten-
dorst, 2022; He et al., 2013; Zhou et al., 2017;
Gou et al., 2018; Morinaga and Yamanishi, 2004;
Mei and Zhai, 2005; Ahmed and Xing, 2008, 2012;

Dubey et al., 2013; Wang and McCallum, 2006).
It can be expected that with the recent advent of
neural topic models (Burkhardt and Kramer, 2019;
Burkhardt et al., 2020; Nagda et al., 2021; Nagda
and Fellenz, 2024) and LLM-based topic models,
more DTM variants will be published in the future.
In this work, we compare D-LDA and D-ETM as
the major proponents of the statistical and neural
DTMs. Additionally, we evaluate an LLM-based
topic model (Sia et al., 2020).

Evaluation Measures for Topic Models Previ-
ous work has focused on measures for static topic
models such as the topic coherence as measured
by the normalized pointwise mutual information
(NPMI) or Cv score (Newman et al., 2010; Mimno
et al., 2011; Röder et al., 2015). Using a language
model (LLM) for evaluation (Stammbach et al.,
2023) is ineffective if the corpus is domain-specific
and the LLM has not been trained on that particular
corpus (Manduchi et al., 2024).

With the rise of neural topic models, local min-
ima during training have become an issue, which
may lead to component collapse (Burkhardt and
Kramer, 2019; Bhat et al., 2023). To capture such
and other problems, different topic diversity, redun-
dancy, or overlap measures have been introduced
(Burkhardt and Kramer, 2019; Gui et al., 2019;
Dieng et al., 2020). Dieng et al. combine topic
diversity with coherence scores, resulting in topic
quality scores (Dieng et al., 2020), which is the
basis of the definition of our temporal topic quality
measure.

Human Evaluation for Topic Models The con-
cepts of coherence and interpretability are “simul-
taneously important and slippery” (Lipton, 2018;
Hoyle et al., 2021). A topic is coherent when a set
of terms, viewed together, enables human recogni-
tion of an identifiable category (Hoyle et al., 2021).
Doogan and Buntine (2021) define an interpretable
topic as one that can be easily labeled and has a
high level of agreement on its labels. In the case
of DTMs, the topic coherence, interpretability, and
smoothness across the temporal dimension are vital
for its purpose and are the focus of our study.

There are two main ways to carry out human
evaluation of topic models: topic intrusion and
topic rating. Both were developed specifically to ac-
count for the topic coherence in static topic models.
In the topic rating task, humans are presented with a
topic and are asked to rate it on a scale. Previously,
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Figure 1: This figure illustrates the core concept presented in this paper. It illustrates the topic structure within
DTMs. The vertical box highlights the set of topics for the first year, and the horizontal box shows the evolution of
Topic 1 over time. Topic Quality (TQ) evaluates the topics for each year vertically, whereas Temporal Topic Quality
(TTQ) evaluates each topic horizontally, capturing both the evolution of the topic over time and the smoothness of
topic progression.

authors have used ratings on a three-point ordinal
scale (Hoyle et al., 2021; Mimno et al., 2011; Ale-
tras and Stevenson, 2013; Ostheimer et al., 2023,
2024). The rating task is not directly transferable
to DTMs since we need to also rate how the topic
changes over time. In the topic intrusion task, top-
ics are chosen randomly, and one word in the topic
is replaced with a word from another topic. The
intruder word (Hoyle et al., 2021) is identified by
Human evaluators. Here, we extend and tailor both
tasks to the temporal evaluation of DTMs.

3 Background on Topic Evaluation
Measures

This section reviews the most common evaluation
measures for topic models, which form the basis for
our proposed measures: Topic coherence, diversity,
and quality.

3.1 Topic Coherence

NPMI (Röder et al., 2015) is the most commonly
used coherence measure. For topic k, it is com-
puted as
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N∑

j=2

j−1∑

i=1

log
P
(
w

(k)
i ,w

(k)
j

)
+ϵ

P
(
w

(k)
i

)
P
(
w

(k)
j

)

− log(P
(
w

(k)
i , w

(k)
j

)
+ ϵ)

, (1)

where (w(k)
1 , . . . , w

(k)
N ) is a list of the top N words

in topic k, and P (w
(k)
i , w

(k)
j ) is the probability

of words w
(k)
i and w

(k)
j occurring together in a

document, which is approximated by counting the
number of documents where both words appear
together, divided by the total number of docu-
ments (Aletras and Stevenson, 2013). A sliding
window is used that determines the words to be con-
sidered at a time. The Cv score (Röder et al., 2015)
extends the NPMI by creating content vectors using
co-occurrences of words, then calculating NPMI
and cosine similarity between words.

3.2 Topic Diversity

There exist (at least) three different approaches to
measure diversity in topic models. The measure by
(Burkhardt and Kramer, 2019) takes into account
how often a word is repeated across topics and not
only if it is repeated. Additionally, it allows us to
compute the diversity for individual topics and not
just for the whole topic model. It computes the di-
versity for topic k as dk,C = 1−rk,C , where rk,C is
the redundancy of topic k with respect to the other
topics C = (v1, . . . , vk−1, vk+1, . . . , vK), where
vi denotes the list of words for topic i and can be
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obtained as follows

rk,C =
1

K − 1

N∑

i=1

∑

q∈C
1(w

(k)
i , q), (2)

where 1(w(k)
i , q) is one if the ith word of topic k,

w
(k)
i , occurs in topic q and otherwise zero. K is

the number of topics, and rk,C ranges from 0 to
1. Redundancy close to zero indicates that a topic
has words that do not occur in any other topic, and
redundancy close to one indicates that most words
in a topic also occur in (multiple) other topics. This
is the primary measure used in the current work.

A related measure by Gui et al. (Gui et al., 2019)
computes the Topic Overlap (TO). A high value in
TO indicates that the associated words frequently
appear across topics and can therefore be consid-
ered background words (Gui et al., 2019). Dieng et
al. (Dieng et al., 2019) proposed a third measure,
which computes the topic diversity as the percent-
age of unique words in the top N topics. Having
a diversity near zero indicates redundant topics.
All three measures rank topics in the same order
and thus lead to the same correlation values in our
experiments.

3.3 Topic Quality
Topic quality is defined as a combination of topic
coherence (TC) and topic diversity (TD). A high
diversity ensures that words across topics are differ-
ent, and a high coherence ensures that words within
topics are highly related, resulting in high-quality
topics. While Dieng et al. (Dieng et al., 2019) used
NPMI for coherence and their own diversity mea-
sure, the two components can be exchanged with
different coherence and diversity measures. For K
different topics, it is computed as

TQ =
1

K

K∑

k=1

ϕk · dk,C ,

where ϕk can be any coherence measure such as
NPMI or Cv score.

4 Proposed Measures

None of the existing measures is suitable for evalu-
ating temporal topic changes. Our proposed mea-
sure fills this gap. First, we present the temporal
topic coherence and smoothness measures. We
then show how the two are combined to form tem-
poral topic quality, which measures the quality of
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Figure 2: The idea of temporal topic coherence (TTC)
in comparison with topic coherence (TC). TC considers
word pairs within one topic. TTC only considers word
pairs across timestamps of one topic.

topic transitions over time. This measure is then
used in an aggregated measure, the dynamic topic
quality, which evaluates both crucial aspects in
DTMs: the quality of the topic model in each year
and the quality of topic transitions over time.

4.1 Temporal Topic Coherence

Temporal topic coherence (TTC, see Fig. 2) consid-
ers word pairs between two consecutive timestamps
of one topic. Otherwise, the principle is the same
as in TC: the co-occurrence of each word pair in
the reference corpus is counted. Thus, if the topic
remains semantically the same, TTC will be high,
whereas if words associated with the same topic in
consecutive timestamps do not occur together in
the reference corpus, TTC will be low. The results
of temporal topic coherence are significantly influ-
enced by the reference corpus used. Here we use
each dataset as a reference corpus. More formally,
we can now define the temporal topic coherence
for window size L as
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where the variables are defined as in the defini-
tion of TC except w(k,t)

i is the ith word in topic k
and timestamp t.

4.2 Temporal Topic Smoothness

The idea of temporal topic smoothness (TTS) is to
use the diversity measure (introduced in Section
3.2), but instead of applying it vertically for one
topic model, we apply it horizontally over time (see
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Figure 1). In this case, the goal is to have smooth
changes, which corresponds to a low diversity mea-
sure. Therefore, smoothness can be considered to
be the opposite of diversity d. We apply TTS to
one topic over a window of time steps. TTS for
topic k in a window with size L can be obtained by

TTSk,t = rk,C̃ ,

where C̃ = (v(k,t), . . . , v(k,t+L−1)) and rk,C̃ is de-
fined in Equation 2.

4.3 Temporal Topic Quality
Temporal Topic Coherence is calculated with re-
spect to a reference corpus, whereas Temporal
Topic Smoothness is only based on the words of the
topics themselves. Thus, they are complementary
since TTC can be high and TTS low or the other
way around. High TTS and low TTC would point
to component collapsing (an incoherent topic that
is repeated over time), whereas high TTC and low
TTS could point for example to changes in vocabu-
lary use over time in topically coherent topics. As
a combination of both measures, analogously to
the topic quality measure, we propose the temporal
topic quality (TTQ).

TTQ for topic k over a sequence of timestamps
t = 1, · · · , T with a window size of L can be
computed as

TTQk =
1

T − L+ 1

T−L+1∑

t=1

TTCk,t · TTSk,t.

The window size parameter L enables to cal-
culate the measure at different resolutions which
correspond to detecting rapid changes (small win-
dow size) or slow transitions (large window size).

4.4 Dynamic Topic Quality
TTQ enables us to see the changes of a topic over
time (see Figure 1 horizontal box), but it tells us
nothing about the relation between different top-
ics within one timestamp or their coherence (see
Figure 1 vertical box). The role of TQ is to en-
sure the created topics are coherent and diverse. A
DTM should exhibit high TTQ and TQ. Evaluating
a model based on both measures gives rise to an
aggregated measure called dynamic topic quality,
DTQ, which measures the overall quality of a DTM
and can be computed as

DTQ =
1
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Figure 3: The temporal topic rating task as presented
to the human evaluators. We present a sequence of five
timestamps with equal spacing to evaluate a temporal
topic.

where TQt is the average quality of all topics in
year t. Using DTQ, DTMs can be compared and
ranked based on their performance on sequential
text data.

5 Using Human Evaluation to Examine
DTMs

Since topic modeling is unsupervised and no
ground truth for topic quality is available, human
evaluation is needed to validate our measures. In
this section, we propose two tasks for the hu-
man evaluation of DTMs. The proposed tasks
are adapted from the widespread word intrusion
(Chang et al., 2009) and topic rating (Newman
et al., 2010) tasks for static topic models.

5.1 Temporal Word Intrusion

Word intrusion (Chang et al., 2009) is a common
way of evaluating topic models. Intrusion words
are chosen such that they have a low probability of
belonging to the target topic, but a high probability
of belonging to another topic. Words of existing
topics are replaced by the intrusion words. Humans
are then asked to detect the intrusion words. In tem-
poral word intrusion, we instead modify a temporal
sequence of one topic k, (v(1)k , . . . , v

(T )
k ), where

v
(t)
k corresponds to the list of top words for topic k

at time t. We can then analyze how our proposed
measure of coherence over time changes based on
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D-LDA D-ETM
year-wise temporal (ours) year-wise temporal (ours)

Dataset TC TD TQ TTC TTS TTQ DTQ TC TD TQ TTC TTS TTQ DTQ
NeurIPS .08 .97 .08 .17 .94 .16 .12 .07 .97 .07 0.14 .72 .10 .09
NeurIPS∗ .08 .97 .08 .00 .07 .00 .04 .07 .97 .07 .00 .06 .00 .03
NYT .13 .96 .12 .20 .95 .19 .16 .13 .98 0.13 .15 .60 .12 .13
NYT∗ .13 .96 .12 .00 .09 .00 .06 .13 .98 .13 .00 .05 .00 .06
UN Debates .06 .94 .05 .15 .96 .15 .10 .06 .96 .06 .14 .82 .12 .09
UN Debates∗ .06 .94 .05 .00 .08 .00 .02 .06 .96 .06 .00 .05 .00 .03
diff

Table 1: This table demonstrates that our temporal measures are able to capture temporal transitions, whereas the
year-wise measures are not. NeurIPS∗ is a synthetic dataset where the original topics from the NeurIPS dataset
are shuffled. On the shuffled topics, the temporal measures record lower scores as compared to the original topics,
whereas the year-wise measures show unchanged values. This suggests that using only year-wise measures (TQ)
to evaluate Dynamic Topic Models (DTM) is insufficient. The performance of D-LDA and D-ETM models are
shown in terms of both year-wise (TC, TD, TQ) and temporal (TTC, TTS, TTQ) measures. These measures are
computed based on the NPMI scores on three real-world datasets of NeurIPS, NYT, and UN General Debates. The
arrow indicates a change in score when topics are shuffled.

the number of intruder words.1

5.2 Temporal Topic Rating
In the topic rating task, humans are presented with
a topic and asked to rate it on a three-point ordinal
scale. Similarly, we aim to examine the tempo-
ral sequence of a topic for word-relatedness and
smoothness. Human annotators are asked to rate
a topic sequence instead of one static topic. Word
familiarity scores are also collected for the analysis.
Fig. 3 shows how the task was presented to the
human annotators.

6 Experiments

In this section, we establish the efficacy of the pro-
posed measures using synthetic data and human
evaluation. First, we compare static and temporal
measures on synthetic topics in Section 6.2. Sec-
ond, we investigate the sensitivity of the measures
to noise in Section 6.3. Then, we conduct human
evaluations of dynamic topics and compute the
correlations of human ratings with the temporal
measures in Section 6.4. As a window size param-
eter for our proposed measures TTS and TTC, we
choose L = 2 in all experiments. Choosing higher
window sizes would make the measure more sen-
sitive to detecting slower transitions. However,
sudden changes are of greater interest to us as they
affect the interpretability of a topic over time more.

1Note, that in contrast to (Hoyle et al., 2021) we do not
use human evaluation here, but study correlation between
intrusion level and coherence directly.

6.1 Models and Corpora

We compare our proposed measures for the models
D-LDA (Blei and Lafferty, 2006), D-ETM (Dieng
et al., 2019) and D-LLM (Sia et al., 2020). D-LDA
is a probabilistic model extending the popular LDA
model to be dynamic. D-ETM is a neural DTM,
which uses embeddings of words and topics. D-
LLM is a dynamic version of the model by Sia et
al. (Sia et al., 2020). To make the model dynamic,
we train separate models on the data for each times-
tamp, initializing the cluster means with those from
the previous time step. We use 50 topics as is com-
mon in the literature (Dieng et al., 2019; Hoyle
et al., 2021) for all the models. We randomly select
80% of documents for training, 10% for testing,
and 10% for validation.
We study our proposed evaluation measures using
three commonly used datasets in the domain. The
UN General Debates corpus (Jankin Mikhaylov
et al., 2017) spans 51 years (1970 to 2020). It con-
tains general debate statements from 1970 to 2020.
The second dataset (Sandhaus, 2008) consists of
New York Times articles spanning 21 years (1987
to 2007). The third dataset, the NeurIPS corpus
(Swami, 2020), contains all NeurIPS papers from
1987 to 2019. Each dataset is preprocessed us-
ing standard techniques such as tokenization and
removal of all punctuation and stop words (see Ap-
pendix A, B, and C for complete corpus statistics,
preprocessing, and model training details).
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6.2 Efficacy of Temporal Topic Evaluation

Table 1 compares the proposed temporal measures
(TTC, TTS, TTQ, and DTQ) to static (year-wise)
measures (TC, TD, and TQ). The results for D-
LLM are shown in appendix H. We evaluate our
proposed measures on three real-world corpora.
Additionally, we construct synthetic topic models
by shuffling the original topics of each model in
each timestamp. This shuffling disrupts the topic
transitions. The resultant synthetic data works as a
proxy for the output of a DTM with poor topic tran-
sitions. An ideal evaluation measure is expected to
capture the impact of shuffling on the topic transi-
tions.

The evaluation results for the shuffled topics (cor-
pus with ∗) are compared to the results for the un-
shuffled topics in Table 1. This reveals that the
year-wise measures are unchanged regardless of
the shuffling. However, the temporal measures of
the shuffled topics are significantly lower than the
temporal measures of the original topics in all three
datasets. This suggests that the proposed temporal
measures can consistently detect poor topic tran-
sitions. The results also emphasize that temporal
changes are not reflected in the year-wise measures.
Therefore, they are inadequate for evaluating dy-
namic topics.

Table 1 also shows that D-LDA and D-ETM have
similar TQ, but exhibit different temporal behavior.
D-LDA generally produces smoother topic tran-
sitions (higher TTS) than D-ETM. Furthermore,
using the temporal evaluation measures, we can
monitor changes in topics over time, as shown in
Appendix D. Table 10 in Appendix E also shows
why the combined measure DTQ is useful for eval-
uating a DTM. It examines the case where topic
diversity is zero, which affects only DTQ, but not
TTQ. D-LLM, a baseline proposed by us, has an
overall low TC, but slightly higher TTC and TTS,
indicating that there is some temporal consistency
while the overall topic quality is low. Details on
how these results were obtained can be found in
Appendix H. It can be concluded that research on
LLM-based dynamic topic models is needed.

6.3 Word Intrusion Assessment of Temporal
Topics

We now investigate the effect of the noise intrusion
level on our measure using the temporal word in-
trusion task presented in Section 5.1. For this task,
a timestamp is randomly chosen from the temporal

D-LDA D-ETM
Dataset TTC TTS TTQ TTC TTS TTQ
NeurIPS 0.97 0.98 0.98 0.95 0.91 0.91
NYT 0.95 0.98 0.94 0.98 0.91 0.96
UN 0.87 0.99 0.94 0.89 0.92 0.88

Table 2: This table shows that all our measures corre-
late well with temporal word intrusion. Shown is the
Spearman’s correlation for temporal word intrusion for
three datasets. All the correlations yield more than 95%
confidence intervals.
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Figure 4: The figure shows temporal topic quality for
different noise levels for one random topic (Topic 44)
per dataset. The TTQ measure decreases continuously
as more intrusion words are added to the topics for all
three datasets.

sequence of one randomly selected target topic for
each model and corpus. Then, one randomly cho-
sen word is replaced by a random intruder word
in the selected topic. This process is repeated for
ten intruder words. The number of intruder words
determines the noise level chosen between one and
ten. We compute Spearman’s correlation on a rank-
ing of both intrusion levels and temporal measures
for each model and dataset.

As shown in Table 2, strong correlations are
obtained for all datasets. This confirms that the
proposed measures decrease as the noise level in-
creases. Figure 4 shows this visually. Overall, the
intrusion results underline the success of the pro-
posed measures in distinguishing between low and
high quality topics and are sensitive the level of
intrusion.

6.4 Human Evaluation of Temporal Topics

In this section, we investigate the correlation be-
tween human evaluation scores and the proposed
automated measures on a random sample of topics
from each dataset. For this purpose, we use the
temporal word-relatedness and smoothness tasks
described in Section 5 and shown in Figure 3. We
also show a correlation with other measures, such
as the simple mean similarity across topics, by us-
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ing topic embeddings.
We randomly select 20 topics from both models

of each dataset for the human survey. For each
topic, we present human raters with a sequence
of five equally spaced time steps. We conduct a
separate study for each corpus. We recruit crowd
workers from Prolific.co and compensate them with
the equivalent of 12 USD/hr. Each participant is
provided with detailed instructions. We follow the
protocol by Hoyle et al. (2021) and recruit a large
number of crowd workers (18) per task to ensure
adequate statistical power. Aggregate human rat-
ings of word relatedness and smoothness for each
topic are calculated by averaging across all valid
respondents.

We use two criteria to identify valid respondents.
The first is based on a control task. Respondents
who fail the control task are excluded from the
analysis. Topics in the control task are created syn-
thetically by randomly selecting words, resulting
in a very low-quality topic in terms of word related-
ness and smooth transitions. Second, we monitor
the time taken to complete the survey. We filter out
outlier respondents based on the median time taken
to complete the survey. These criteria for filtering
out invalid respondents are consistent with previ-
ous studies in the field (Hoyle et al., 2021; Chang
et al., 2009).

The scatter plots in Figure 5 show the correla-
tion of human ratings and temporal measures for
word-relatedness (TTC, bottom) and smoothness
(TTS, top) respectively. Inspection of outlier points
reveals that low human ratings and high temporal
scores often belong to topics with low familiarity
among raters. The figure shows that humans rated
D-LDA topics higher as compared to D-ETM. It
also shows that human ratings are more varied as
compared to the automated measures.

No standard baseline exists for temporal topic
evaluations. Existing work (Blei and Lafferty,
2006; Dieng et al., 2019) is limited to qualitative
evaluations and delivers no quantitative measures.
Following the existing evaluation measures, we de-
rive baselines for topic coherence (B-TC) and topic
smoothness (B-TS). The baseline measure for co-
herence is computed from the average score for
topic coherence over time. For smoothness, we cal-
culated 1− diversity of one topic over time as the
baseline which corresponds to TTS with maximum
window size.

Table 3 shows that TTC correlates better with
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Figure 5: This figure shows that the temporal topic
smoothness and coherence correlate well with the hu-
man evaluation. Correlation (Spearman’s ρ) between
human and temporal topic smoothness (top) and coher-
ence (bottom) for random topics from NeurIPS (left),
NYT (middle) and UN (right) datasets.

Dataset TTC B-TC TTS B-TS
NeurIPS 0.57 0.21 0.83 0.65
NYT 0.63 0.17 0.82 0.83
UN 0.51 -0.02 0.79 0.81

Table 3: This table shows that 1) TTC correlates better
with human evaluation than B-TC 2) TTS correlates bet-
ter or to a similar degree as B-TS with human smooth-
ness evaluation. Spearman’s correlation coefficients
between mean human evaluation and automated mea-
sures. These correlations of proposed measures (TTC
and TTS) are compared to the baseline measures (B-TC
and B-TS). The highest correlations for each pair are
shown in bold.

the human perception of word relatedness in DTMs
than the baseline TC which does not consider tem-
poral transitions. The proposed temporal measures
consistently show a stronger correlation with hu-
man ratings than the baseline among all the datasets.
The TTS also correlates well. However, the base-
line topic smoothness also has a high correlation
with human-perceived smoothness which is to be
expected since it corresponds to TTS with maxi-
mum window size. This suggests that, depending
on the dataset, the TTS measure is fairly robust
with respect to the window size. All correlations
obtained are in 95% confidence intervals.

Figures 7 and 8 in Appendix F show the results
of the human and automated evaluation for word-
relatedness and smoothness, respectively. These
figures indicate that human ratings align with our
proposed temporal measures.
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Dataset sim-wr sim-sm
NeurIPS 0.36 0.44
NYT 0.48 0.87
UN 0.17 0.55

Table 4: This table shows a correlation between mean
similarity measures and human evaluations, such as
word relatedness (sim-wr) and smoothness (sim-sm).

Table 4 shows the correlation between the mean
similarity measure and human evaluations, such as
word relatedness (sim-wr) and smoothness (sim-
sm). The mean similarity measure is calculated
using the topic embedding over time, computed by
averaging pretrained word embeddings. The results
indicate a weak correlation with word relatedness
(sim-wr) and typically a moderate correlation with
smoothness (sim-sm). Furthermore, our method
significantly outperforms these measures by a large
margin.

Additionally, we assessed the inter-rater agree-
ment. For the smoothness task, the mean Spear-
man correlation scores were 0.59 for Neurips, 0.68
for NYT, and 0.62 for UN Debates, indicating
good agreement. In the word relatedness task con-
text, the inter-rater agreement values are 0.18 for
Neurips, 0.21 for NYT, and 0.23 for UN Debates.

7 Conclusion

This paper fills a gap in evaluating temporal char-
acteristics of DTMs such as LLM-based dynamic
models. We complement the existing year-wise
measures by proposing novel temporal measures.
Our proposed temporal measures capture different
aspects of temporal topic changes in DTMs. We
show that our measures are able to better capture
temporal characteristics of topic changes than their
year-wise counterparts and have positive correla-
tion with human evaluations. We show the efficacy
of our measure by evaluating different dynamic
topic models and demonstrating their different tem-
poral characteristics. Our proposed evaluation mea-
sures will improve future comparisons between
DTMs, including LLM-based topic evaluations. In
the future, we want to extend this method also to the
evaluation of sequential decision-making (Li et al.,
2023, 2024), other structured or online topic mod-
els (Ahmadi et al., 2017; Burkhardt and Kramer,
2017a,b) as well as the explicit discovery of tem-
poral anomalies (Ruff et al., 2019; Liznerski et al.,
2024).

Limitations

There are two main limitations to our approach.
The first concerns the human evaluation. Here, we
have to rely on the quality of the answers provided
by the human annotators. Although we took care to
recruit a large number of annotators (18) in order
to reduce the variance of our results, it would be
preferable to have fewer annotators providing high-
quality annotations. This could only be achieved
by training people before they are given the task,
which would require a training protocol. This is
beyond the scope of our study. This issue of human
annotators not being experts in the domain of the
dataset or the given task also affects other studies
and is difficult to solve. Automated measures need
to be validated against human annotations, but hu-
man annotations are never perfect. Therefore, there
will always remain a gap.

The second limitation of automated topic evalua-
tion, in general, is the reference corpus. Automated
measures are calculated with respect to a reference
corpus. If words or topics are not present in the ref-
erence corpus (for whatever reason), the result will
be suboptimal. This is especially true for temporal
topics, where the number of documents for selected
time steps may be small, which could lead to the
respective topics not being present in the reference
corpus. This could be addressed in the future by
selecting the reference corpus more carefully, or
possibly by selecting an external reference corpus.
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A Dataset Details

We study our evaluation measure using three dif-
ferent datasets: NeurIPS, New York Times, and
UN General Debates. The table 5 shows corpus
statistics for the datasets.

Dataset NeurIPS NYT UN
Domain Science News Politics
Number of Docs 9,679 274,665 8,481
Vocab Size 3,102 8,240 3,005

Table 5: Corpus Statistics. Shows the dataset that
varies in the domain, document number, and vocab
size. The NeurIPS is from (Swami, 2020), NYT is
from (Sandhaus, 2008) and UN General Debates is from
(Jankin Mikhaylov et al., 2017).

B Preprocessing Details

The datasets undergo a series of preprocessing
steps, which include converting the text to low-
ercase, eliminating stopwords, and removing punc-
tuation marks. Tokenization is performed using
Spacy (Honnibal and Montani, 2017), and further
refinement involves removing words that appear in
less than a specified percentage (min_df) of the doc-
uments, as well as words that occur in more than
a specified percentage (max_df) of the documents,
using count vectorizer. The min_df for the New
York Times (NYT) dataset was determined to be
0.3% after observing that a min_df of 5% yielded
a vocabulary size of 564, which was considered
insufficient for a large dataset. Table 6 shows the
cut-off parameters used for the different datasets.

Dataset min_df max_df vocab size
NeurIPS 5% 95% 3,102
UN Debates 5% 95% 3,005
NYT 0.3% 95% 9,046

Table 6: The table shows the vocab size that results from
removing words that occur in less than min_df percent
of the documents and words that occur in more than
max_df percent of the documents.

C Model Training Details

Expanding subsection 6.1, here we explain how
hyperparameters are set for each topic model.

D-LDA For training the model, we use the Gen-
sim python wrapper for dynamic topic models
(DTM). We slice all datasets by year. As a result,
every time slice contains all documents from that
year. For each dataset, we ran 50 iterations with
an alpha value of 0.01, which is a hyperparameter
affecting the sparsity of the document topics for
each time slice in the LDA models. In addition, we
used top_chain_var values of 0.005.
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D-ETM Using the skip-gram model, a 300-
dimensional word embedding is obtained (Mikolov
et al., 2013). The batch size for all datasets was 100
documents. We used the perplexity score on the
validation set as stopping criteria for all datasets.
The learning rate is set to a default value of 0.001.
The hyperparameters delta, sigma, and gamma in
D-ETM are set to 0.005 as suggested by the au-
thors. A random selection of 80% of documents
is used for training, 10% for testing, and 10% for
validation.

D Qualitative results

A topic’s temporal topic quality is determined by
how smoothly its words change over time. The
temporal topic quality is calculated in terms of
temporal topic coherence (TTC) and temporal topic
smoothness (TTS). The concept of TTS is shown
in the top row of Figure 6. Topic 19 (top-left)
illustrates an instance of topic words exhibiting
smooth transitions. During the year 1988-1989, the
TTS remains 1.0, indicating a lack of change in
the topic words. Table 7 provides a depiction of
Topic 19 during this time frame. Furthermore, in
the scenario where consecutive TTS score reach
1.0, the TTC score remains unchanged, as the topic
words have not undergone any changes.

Table 8 provides empirical evidence within the
D-ETM model, demonstrating that Topic 8 expe-
rienced a relatively low TTS score between 1998-
1999. Notably, despite the decline in TTS score, the
corresponding topic remained largely unchanged,
as indicated by the nearly same TTC score that
did not exhibit a significant decrease. The same
analysis applies to Topic 21, which represents a
topic with drastic changes in its words. The TTS
and TTC scores are observed to be low between
1992-1993, indicating a radical shift in the topic.
Table 9 shows topic 21 during this time. As the
table shows there is a change from the topic of rule
extraction to a topic on image object recognition at
this point in time. This change can also be seen in
temporal topic quality (TTQ) in Figure 6 wherein
1992-1993 the TTQ score is low.

The temporal topic coherence is calculated based
on NPMI for D-LDA and D-ETM. Whereas D-
LDA in general shows relatively unchanged tem-
poral topic coherence over time, D-ETM exhibits
more variance in TTC.

Year words in Topic 19 TTS TTC
1988 connectionist human figure 1.0 0.098

systems research science
knowledge performance
target rules

1989 connectionist figure human 1.0 0.098
rules knowledge target
performance science research
systems

1990 figure connectionist rules 0.9 0.093
human target knowledge
performance science research
information

Table 7: Topic 19 from D-LDA model using NeurIPS
dataset, which shows the smoothness in topic during the
year 1988-89, when TTS in Figure 6 is 1.0, which is
between the current year and previous year.
Year words in Topic 8 TTS TTC
1996 position hand task user 0.7 0.127

location based object
body target robot

1997 object position hand task 0.6 0.126
robot user direction
location right coordinates

1998 position hand human line 0.3 0.105
movement direction motor
task object location

1999 spatial localization location 0.3 0.104
light position human temporal
subjects robot subject

Table 8: Topic 8 from the D-ETM model using the
NeurIPS dataset, which shows low smoothness in 1998–
1999, but TTC remains nearly the same. This is shown
in Figure 6 where the TTS score is 0.3 which is between
the current year and previous year.

E Efficacy of year-wise Topic Evaluation

In this section, we establish the efficacy of year-
wise topic evaluation measures for evaluating
DTMs. To this end, we construct synthetic top-
ics which behave as proxies to output of a poor
topic model. For the synthetic topics, we randomly
select one topic from each model and dataset and
repeat it while removing all other topics. The syn-
thetic topics work as an extreme case of component
collapse in a DTM. The results of this experiment
are shown in Table 10. For all the synthetic ver-
sions of the three datasets, year-wise TQ is zero
(because TD is zero). Hence, the overall DTQ is
low as compared to TTQ. This establishes the effi-
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Year words in Topic 21 TTS TTC
1990 rules rule cell extraction 0.7 0.099

group clustering groups
cluster expert clusters

1991 rules rule extraction 0.5 0.068
extracted group expert
groups clustering
induction self

1992 rules rule children expert 0.2 0.027
extraction features view
self image feature

1993 image surface view 0.8 0.190
recognition object matching
images correspondence views
objects

Table 9: Topic 21 from D-ETM model using NeurIPS
dataset, which shows the change in topic during the year
1992-1993, when TTS in Figure 6 is 0.20 and TTC is
0.027 which is between the current year and previous
year.

cacy of combining both TTQ and TQ in the form
of DTQ when evaluating DTMs.

F Human Evaluations

In this section, we report the results of the human
rating survey. We show the results of the automatic
and human ratings of the randomly selected 20 top-
ics from each model and dataset in Figure 7 and 8
for word relatedness and smoothness, respectively.
The average human ratings from the survey are con-
sistent and in line with the previous studies (Hoyle
et al., 2021; Röder et al., 2015).

Furthermore, the instruction provided to human
for rating task is shown in Figure 9. The figure de-
picts a sequence of words list, serving as a sample
for establishing the definitions of word-relatedness
and smooth transitions within the context of the
study. Prior to the start of the survey, participants
were briefed on what data would be collected and
for what purpose it would be used. And during the
course of this study, no personal data was collected.

G Word Intrusion Assessment of TTQ

In this section, we continue the assessment of tem-
poral topic quality w.r.t the intrusion levels as dis-
cussed in Section 6.3. The result is shown in Figure
4. A consistent decrease in TTQ is observed for
both models, with an increase in intrusion levels.
This relationship is also backed by the correlations

discussed in Table 2. In all the cases, a strong cor-
relation can be observed. From the intrusion task,
we conclude that the TTQ measure is adequate in
measuring even small changes in temporal topic
quality.

H Dynamic Cluster Model utilizing a
pre-trained LLM

D-LLM The Dynamic Large Language Model (D-
LLM) was formulated based on the methodology
outlined by Sia et al. (Sia et al., 2020). However,
we adapted the static model to a dynamic setting,
where the initialization of a model in each times-
tamp is done using the cluster mean from the previ-
ous timestamp. Following Sia et al., we used word
embedding representations derived from a large
language model (we used “paraphrase-distilroberta-
base-v1”, a variant of the sentence-transformer ar-
chitecture). We then applied a Gaussian mixture
model (GMM) to obtain k = 50 clusters and used
TF-IDF for reranking. With a convergence thresh-
old set at 1e-3, the GMM algorithm executes 100
iterations for the Expectation-Maximization (EM)
procedure. In contrast to the methodology em-
ployed by Sia et al., our approach uniformly ap-
plies 50 topics across all datasets. Furthermore,
with a window size of 10, we utilize Normalized
Pointwise Mutual Information (NPMI) for our eval-
uation metics. As a result of adapting the static
model to a dynamic context, the number of doc-
uments accessible for training per year has been
reduced compared to static model.

Table 11 shows the results. In particular, the
temporal topic smoothness is lower compared to D-
LDA and D-ETM. Additionally, the overall DTQ
score is also low. TTC and TTS show a limited
temporal consistency of topics, which is confirmed
by the qualitative examination of the topics. As
these results show, our proposed baseline for LLM-
based dynamic topic models, the D-LLM model, is
not competitive. Clearly, further research is needed
to be able to extract dynamic topics from LLMs.

I Abbreviations

The abbreviations used throughout this paper are
detailed in Table 12. This table provides a compre-
hensive description of each abbreviation to ensure
clarity and ease of understanding for the reader.
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Figure 6: Shows how temporal topic smoothness changes over year for five topics generated by D-LDA (top-left)
and D-ETM (top-right) for NeurIPS dataset. Shows how temporal topic coherence changes over year for five topics
generated by D-LDA (middle-left) and D-ETM (middle-right) based on NPMI score. Shows how temporal topic
quality (TTQ) changes over year for five topics generated by D-LDA (bottom-left) and D-ETM (bottom-right).
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D-LDA D-ETM
year-wise temporal (ours) year-wise temporal (ours)

Dataset TC TD TQ TTC TTS TTQ DTQ TC TD TQ TTC TTS TTQ DTQ
NeurIPS .08 .97 .08 .17 .94 .16 .12 .07 0.97 .07 .14 .72 .10 .09
NeurIPS∗ .05 .00 .00 .13 .94 .12 .06 .17 .00 .00 .11 .78 .08 .04
NYT .13 .96 .12 .20 .95 .19 .16 .13 .98 .13 .15 .60 .12 .13
NYT∗ .18 .00 .00 .21 .94 .20 .10 .19 .00 .00 .09 .71 .07 .03
UN Debates .06 .94 .05 .15 .96 .15 .10 .06 .96 .06 .14 .82 .12 .09
UN Debates∗ .01 .00 .00 .06 .95 .06 .03 .12 .00 .00 .09 .79 .08 .04
diff

Table 10: This table demonstrates the need of having year-wise measures in the DTQ. We construct synthetic
datasets (marked with ∗) where we randomly select a topic and repeat it. The synthetic topics now work as proxy for
the extreme case of component collapse in case of DTMs. On the synthetic topics, the year-wise measures record
lower TQ scores as compared to the original topics, whereas the temporal measures show similar values.

D-LLM
year-wise temporal (ours)

Dataset TC TD TQ TTC TTS TTQ DTQ
NeurIPS -.017 .904 -.015 .004 .256 .011 -.002
NeurIPS∗ -.017 .904 -.015 .000 .060 .000 -.007
NYT -.009 .964 -.009 -.007 .197 .014 .003
NYT∗ -.009 .964 -.009 .000 .072 .000 -.004
UN Debates -.015 .883 -.013 .004 .232 .009 -.002
UN Debates∗ -.015 .883 -.013 .000 .008 .000 -.006
diff

Table 11: The table shows the performance of the Dynamic Large Language Model (D-LLM) in terms of both
year-wise (TC, TD, TQ) and temporal (TTC, TTS, TTQ) measures. These measures are computed based on the
NPMI scores on three real-world datasets of NeurIPS, NYT, and UN General Debates. The synthetic datasets is
marked with ∗, where we randaomly select a topic and repeat it. Compared to the original topics, the temporal
measures result in lower scores on the shuffled topics, whereas the year-wise measures remain unchanged.
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Figure 7: The mean and variance for the automated
measure of TTC and human evaluation results for the
three datasets of (right) NeurIPS, (middle) NYT and
(right) UN.
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Figure 8: The mean and variance for the automated
measure of TTS and human evaluation results for the
three datasets of (right) NeurIPS, (middle) NYT and
(right) UN.

175



Abbreviation Description
DTM Dynamic Topic Model
DTQ Dynamic Topic Quality

D-ETM Dymaic Embedded Topic Model
D-LDA Dynamic Latent Dirichlet Allocation
D-LLM Dynamic Large Language Model
NPMI Normalized Pointwise Mutual Information

TC Topic Coherence
TD Topic Diversity
TO Topic Overlap
TQ Topic Quality

TTC Temporal Topic Coherence
TTS Temporal Topic Smoothness
TTQ Temporal Topic Quality

Table 12: Abbreviations and their Descriptions

Figure 9: The instructions provided to human partici-
pants engaged in topic rating tasks.
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