
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1874–1889
August 11-16, 2024 ©2024 Association for Computational Linguistics

Does DETECTGPT Fully Utilize Perturbation? Bridging Selective
Perturbation to Fine-tuned Contrastive Learning Detector would be Better

Shengchao Liu1, Xiaoming Liu1, ∗, Yichen Wang1, Zehua Cheng1, Chengzhengxu Li1,
Zhaohan Zhang2, Yu Lan1, Chao Shen1

1Faculty of Electronic and Information Engineering, Xi’an Jiaotong University
2Queen Mary University of London

{liusc, yichen.wang, czh2022, czx.li}@stu.xjtu.edu.cn
{xm.liu, ylan2020, chaoshen}@xjtu.edu.cn, zhaohan.zhang@qmul.ac.uk

Abstract
The burgeoning generative capabilities of large
language models (LLMs) have raised grow-
ing concerns about abuse, demanding auto-
matic machine-generated text detectors. De-
tectGPT (Mitchell et al., 2023), a zero-shot
metric-based detector, first introduces pertur-
bation and shows great performance improve-
ment. However, in DetectGPT, the random per-
turbation strategy could introduce noise, and
logit regression depends on the threshold, harm-
ing the generalizability and applicability of
individual or small-batch inputs. Hence, we
propose a novel fine-tuned detector, PECOLA,
bridging metric-based and fine-tuned methods
by contrastive learning on selective perturba-
tion. Selective strategy retains important tokens
during perturbation and weights for multi-pair
contrastive learning. The experiments show
that PECOLA outperforms the state-of-the-art
(SOTA) by 1.20% in accuracy on average on
four public datasets. And we further analyze
the effectiveness, robustness, and generaliza-
tion of the method. 1

1 Introduction

Machine-generated text (MGT) detection is to dis-
criminate MGT from human-written texts (HWT),
preventing abuse of large language models (LLMs),
including academic misconduct (Vasilatos et al.,
2023), spam synthesis (Dou et al., 2020), untrust-
worthy news (Zellers et al., 2019), etc. Currently,
existing MGT detection methods can be mainly
classified into two categories (Wu et al., 2023a;
Wang et al., 2024), i.e., fine-tuned methods (Liu
et al., 2023; Hu et al., 2023; Verma et al., 2023;
OpenAI, 2023; Mao et al., 2024) and zero-shot
metric-based methods (Gehrmann et al., 2019;
Mitchell et al., 2023; Yang et al., 2023; Bao et al.,
2024; Wu et al., 2023b). In general terms, fine-
tuned detector methods can achieve better accuracy

*Corresponding author
1The code and datasets are released at https://github.

com/lsc-1/Pecola.

Yes, the
connection is
bone! You
vibrate the
bones in your
jaw, and that
vibration
carries into
your ear.
Sound
doesn't just
travel in air, it
travels in all
materials.

O
ri

gi
n

al

Connects to a specific sound, the ear is
bone! You vibrate the bones of your jaw
and that vibration travels into your ear.
Sound doesn't just travel in air, it travels
in all the other dimensions that connect
people together.

DetectGPT

Connects to a specific sound, the
connection is bone! You vibrate those
bones of your jaw, and the vibration
carries sound towards your ear. Sound
doesn't just travel in air, it does travel in
all materials.

Pecola

random
perturb

selective
perturb

Perturb

Pecola keeps important words while perturbation
compared to DetectGPT.

Figure 1: Example of the selective strategy perturbation
of PECOLA, which prevent modifying important tokens
(in green). Orange tokens are the perturbed texts.

than zero-shot metric-based methods, especially
generalizable to black-box generators, but are more
costly during data collection, fine-tuning, and run-
ning, in most cases. On the other hand, zero-shot
metric-based methods show better interpretability
than fine-tuned ones.

DetectGPT (Mitchell et al., 2023), as an unsu-
pervised zero-shot metric-based method, first intro-
duces perturbation in MGT detection. Specifically,
it applies random masking to the original input
sample and uses T5 (Raffel et al., 2020) to fill in.
It posits that minor perturbations of MGT tend to
have lower log probability under the base model
than the original sample. The introduction of per-
turbation in DetectGPT surpasses the vanilla log-
probability-based method (Gehrmann et al., 2019)
in white-box settings.

However, DetectGPT still has three significant
defects: (i) DetectGPT’s reliance on the logit re-
gression module’s threshold compromises its gen-
eralization in zero-shot settings and limited to large
batch input, failing on individual inputs. (ii) De-
tectGPT does not fully utilize the perturbation. As
a metrics-based method, it only considers the prob-
ability difference caused by perturbation, which
is overly simplified and slightly indistinguishable.
Perturbation should indeed be a stronger augment

1874

https://github.com/lsc-1/Pecola
https://github.com/lsc-1/Pecola

that carries implicit language pattern information.
(iii) DetectGPT perturbs the original sample ran-
domly and unrestricted, which could introduce
more noise and negatively impact the performance
(Kim et al., 2022). For example, Liu et al. (2023)
find entity-relationship plays a role in the detection,
which might be destroyed in random perturbation
of DetectGPT.

In this paper, we thus propose a Perturbation-
based Contrastive Learning model, PECOLA, for
MGT detection, toward the defects with two stages,
i.e., Selective Strategy Perturbation (Sec. 3.1) and
Token-Level Weighted Multi-Pairwise Contrastive
Learning (Sec. 3.2). Firstly, Selective Strategy Per-
turbation is a token-level rewriting method with
restrictions on modifying important texts (Campos
et al., 2020) to reduce noise. The motivation is
to simulate the human behavior of modification
(Verma and Lee, 2017; Fetaya et al., 2020; Wang
et al., 2019). The perturbation strategy consists
of token removal and substitution, as shown in
Fig. 1. The experiments show that the Selective
Strategy Perturbation method can improve the per-
formance of both metrics-based (i.e., DetectGPT)
and model-based methods. Secondly, we propose a
Multi-Pairwise Contrastive Learning model to pro-
cess the perturbed texts. Different from the logit
regression module in DetectGPT, the trained model
is generalizable without any threshold setting, and
it can deal with individual inputs. Moreover, by
utilizing multi-pairwise contrastive learning, the
model could better utilize perturbation to focus on
the language pattern gap between HWT and MGT.
The importance weight from the perturbation stage
is also reused as contrastive learning weight. No-
tably, by using contrastive learning, PECOLA is
a strong few-shot fine-tuning method, which ef-
fectively bridges and integrates metric-based and
fine-tuned detector categories. Finally, extensive
experiments show PECOLA is significantly supe-
rior to baseline and SOTA methods on four datasets,
PECOLA improves by 1.20% to SOTA on average
under few-shot settings, surpassing the latest meth-
ods by 3.84% among metric-based detectors and
by 1.62% among fine-tuned detectors. Further ex-
periments show that PECOLA is as well better at
generalization, robustness, and effectiveness.

Our contributions are summarized as follows:

• Selective Perturbation: Based on our analy-
sis of various selective perturbation strategies,
we propose a novel method considering to-

ken importance, which reduces the noise and
benefits to both supervised and unsupervised
approaches.

• Bridge Metric and Model-based Detectors:
We utilize a novel fine-tuned contrastive learn-
ing module to replace the logit regression of
DetectGPT (metric-based), which frees the de-
tector from setting the threshold, enables it to
deal with individual input, and can be general-
izable and effective on the few-shot setting by
contrasting perturbed texts with origin ones.

• Outperformance: Our detector PECOLA out-
performs all eight compared models on four
public datasets. And PECOLA is more robust
to the choice of base model and filling model.
Furthermore, we prove its generalization abil-
ity across domains and generators of data.

2 Related Work

Machine-generated Text Detection. While fine-
tuned detectors have proven effective for MGT de-
tection (Wahle et al., 2022; Hu et al., 2023), the re-
quirement for annotated datasets poses a significant
challenge due to the proliferation of unchecked,
high-quality generated texts. To address this chal-
lenge, DetectGPT (Mitchell et al., 2023) and Fast-
DetectGPT (Bao et al., 2024) have demonstrated
strong performance in white-box zero-shot settings.
Similarly, CoCo (Liu et al., 2023) is designed to
detect MGT with low resource annotations, utiliz-
ing a coherence-based contrastive learning model.
Moreover, SeqXGPT (Wang et al., 2023) utilize log
probability lists from white-box LLMs as features;
Sniffer (Shi et al., 2024) and GPT-Who (Venka-
traman et al., 2023) place more emphasis on trac-
ing the origin of MGT. Recently, watermarking
(Kirchenbauer et al., 2023) is introduced to mit-
igate the risk associated with unchecked MGTs
by embedding imperceptible signals within text
outputs during generation. In contrast to previous
methods, our approach integrates data perturbation
with contrastive learning, placing particular empha-
sis on reducing reliance on mask-filling models and
enhancing performance in few-shot scenarios.

Perturbation. Data perturbation methods find fre-
quent application in text classification tasks (Gao
et al., 2022; Shum et al., 2023), which is commonly
employed through the technique of consistency reg-
ularization (Xie et al., 2020; Chen et al., 2020).

1875

Input Texts

0.0646

0.0767
0.0767

0.1069
0.1069 0.1069 0.106 0.10

Token Importance

Selective Strategy Perturbation

PLM-
Encoder

Multi-Contrastive Objective

𝓛 = 𝓛𝒄𝒆 + 𝝀𝓛𝒄𝒐𝒏

Joint Optimization via SGD
Fine-tuning

Token-Level Weighted Multi-
Pairwise Contrastive Learning

The inner ear is made up of tin
y sensors called hair cells that
detect the movement of the bo
nes in our head and send signal
s to the brain, which interprets
these signals as sound. …

By Machine?

Or

By Human?

<mask> inner ear is made up
of tiny sensors called hair <m
ask> that detect the <mask>
of the bones in our head <ma
sk> send signals to the brain,
<mask> interprets these sign
als as sound. …

YAKE
Select & Rank

Selective Masking

Strategies

Mask-Filling
LM*

Substitution

Original

(6)

(6)

(6)

(6)

(7)

𝑠𝑗
𝑓𝑖𝑙𝑙

𝑠𝑖
𝑚𝑎𝑠𝑘𝑠𝑗

𝑚𝑎𝑠𝑘

s𝑗

𝑠𝑖
𝑓𝑖𝑙𝑙

s𝑖

(7)

(6)

(6)

(7)

Token-
Level

Weight

LLM free

YAKE

Figure 2: Overview of PECOLA. In the Selective Strategy Perturbation stage (Sec. 3.1), we use the YAKE algorithm
to score token importance and then selective masking based on probability. Then, we fill in the masks with a
mark-filling language model. In the Contrastive Learning stage (Sec. 3.2), we design a multi-pairwise method
with token-level weights also from tokens importance. Yellow arrows represent attraction and blue ones represent
repulsion. The model is optimized by combining cross-entropy (CE) loss Lce and contrastive loss Lcon. * Our
method, different from DetectGPT, is generalizable on any mask-filling language model.

Nevertheless, in MGT detection, previous pertur-
bation methods have exhibited certain limitations.
For instance, they often resort to randomly select-
ing target tokens for synonym replacement (Wang
et al., 2018), deletion, insertion (Wei and Zou,
2019), rewriting by LLMs (Mao et al., 2024), and
fine-tuning pre-trained language models (PLMs)
to fill text spans of variable lengths (Gao et al.,
2022). While these methods do enhance text di-
versity, the indiscriminate replacement of tokens
without guided rules can lead to the generation of
less reliable texts. Wang et al. (2024) utilize pertur-
bations as stress test approaches for the robustness
of MGT detectors to show their loopholes. These
limitations motivate us to devise data perturbation
methods tailored for MGT detection. Our approach,
with selective perturbation, aims to better represent
meaningful recombination spaces while preserving
the inherent semantic features of the text, ultimately
enhancing the diversity of samples.

Constrastive Learning. Contrastive learning is an
effective solution method to the issues that solely
relying on cross-entropy classification loss would
lead to a lack of robustness and suboptimal gen-
eralization (Tack et al., 2020; Hu et al., 2023). In
limited labeled data task (Gunel et al., 2021), in-
troduce a robust contrastive learning method to
capture the similarities between the same instances
in the representation space while separating those
of different classes. Similarly, out-of-distribution

(OOD) usually leads to severe semantic shift is-
sues during inference, prompting another approach
based on margin contrastive learning (Zhou et al.,
2021). Differently, our method focuses more on the
changes of the rephrase space in data distribution
after perturbation, and strives to reduce reliance on
the mask-filling models in few-shot learning.

3 Methodology

As shown in Fig. 2, the workflow of PECOLA

mainly consists of two stages: Selective Strategy
Perturbation and Supervised Contrastive Learning,
which joined the advantage of metric-based and
model-based detection methods, respectively.

3.1 Selective Strategy Perturbation
In this work, we present a token-level selective
strategy perturbation method to relieve the informa-
tion loss caused by the random masking used in De-
tectGPT. Our approach involves adapting the mask-
selection probability for each text token based on
its importance, thus generating perturbed inputs
with strategically placed masks. Additionally, we
harness LLMs to populate the masks, creating filled
perturbation inputs. This step effectively intro-
duces a diverse range of perturbation information
into our detection model.
Token Importance Assessment. To accurately as-
sess the significance of tokens within the text and
mitigate information loss stemming from random

1876

masking, we expand upon the YAKE algorithm
(Campos et al., 2020) to operate at the token level.
The YAKE algorithm builds upon certain assump-
tions (Machado et al., 2009), which posit that the
importance of a candidate word decreases as the
richness of the vocabulary surrounding it increases.
This fundamental assumption remains applicable
when processing text at the token level, i.e., token
importance assessment.

Specifically, considering a training set S com-
prising i inputs, for each text input si ∈ S con-
taining n tokens (i.e., si = {e1i , e2i , . . . , eni }), we
employ the YAKE algorithm to compute a score
for each token e. Tokens with scores falling below
the specified threshold α are then incorporated into
the set of important tokens Ki:

Ki =

{
Ki ∪ {eni } , if Score(eni) < α

Ki, otherwise
, (1)

where Score(eni) represents the YAKE score calcu-
lated by token eni . The higher the score, the lower
the importance of the token eni in si.
Mask Position Selection. After getting the im-
portant tokens set Ki of each text input si, we use
special token [MASK] to replace some of the tokens
in the text input to construct masked perturbation
input smask

i . In order to relieve the information loss
caused by masking perturbation, we add regulariza-
tion to the vanilla random masking method and use
a selective masking strategy to prevent important
tokens from being masked.

Given an input text si =
{
e1i , e

2
i , . . . , e

n
i

}
, we

use the selective masking strategy to traverse each
token and determine whether to mask it based on
the token’s importance. The probability of token
eni being masked is specifically defined as:

Pn
i = 1[eni /∈Ki]P, (2)

where P is the mask ratio, and 1[eni /∈Ki] represents
an indicator function with a value of 1 if and only
if the condition eni /∈ Ki is satisfied, otherwise,
it is 0. Then we gather all masked perturbation
inputs {smask

1 , ..., smask
i } and include them in the

training set to give the model masked perturbation,
improving model robustness.
Mask-Filling. Additionally, we utilize PLMs,
e.g., T5 (Raffel et al., 2020) or RoBERTa (Liu
et al., 2019) etc., to fill the masked perturbation
inputs and create the filled perturbation inputs
{sfill1 , . . . , sfilli }. Similar to the above, we in-

clude all filled perturbation inputs in the train-
ing set and obtain the final training set S =
{s1, . . . , si, smask

1 , . . . , smask
i , sfill1 . . . , sfilli }.

3.2 Token-Level Weighted Multi-Pairwise
Contrastive Learning

Importance-based Feature Reconstruction. Ex-
isting MGT methods (Liu et al., 2023) often uni-
formly extract all token information in the text,
ignoring the huge impact of a few important to-
kens on the detection model. In this work, we
reconstruct the token feature extracted by PLM ac-
cording to the importance of the token in the input
text, allowing the detection model to focus more on
important token information. We assign adaptive
weights to all tokens in the input:

wn
i =

{
1− Score(eni), if eni ∈ Ki

0, otherwise
, (3)

where wn
i represents the assign adaptive weight of

the n-th token of the i-th input in the training set.
After that, we use the last hidden layer embedding
of the outputs in the base PLMs to extract input
features:

Hi = PLM(si), (4)

where Hi contains the features of all tokens in the
input si, i.e., Hi = {h1i , h2i , . . . , hni }. We use the
weight of the corresponding token to reconstruct
its features:

hni = hni (1 + wn
i). (5)

By using feature reconstruction, we assign more
weight to important tokens. This allows our de-
tection model to concentrate on the characteristic
information of these important tokens.
Multi-Pairwise Contrastive Learning. Consider-
ing that existing works (Gunel et al., 2021; Zhou
et al., 2021; Liu et al., 2023) mainly concentrate on
single-input feature learning while overlooking in-
put correlations, we introduce contrastive learning
into MGT. It enables PECOLA to discern the dis-
tinct featurinputes of variously labeled data, more
accurately capture input features, and significantly
enhance performance in few-shot setting.

Given a batch training data {si}Mi=1, where M
is the batch size, we calculate the positive class
contrastive loss and negative class contrastive loss
on the last hidden layer embedding of the first token
output h1i from the base PLM:

Lpos =
M∑

i=1

1

|Pt(i)|
∑

p∈Pt(i)

∥(h1
i − h1

p)∥2, (6)

1877

Lneg =
M∑

i=1

1

|Nt(i)|
∑

n∈Nt(i)

max
(
0, ξ − ∥(h1

i − h1
n)∥2

)
,

(7)

where Pt(i) represents the samples with the same
label as the i-th sample in the batch, and Nt(i)
represents the ones with different labels as the i-
th sample. And ξ is the maximum L2 distance
between pairs of inputs from the same class in the
batch of training data:

ξ =
M

max
i=1

max
p∈Pt(i)

∥h1i − h1p∥2. (8)

This adaptive margin ensures that the model is
steered to maintain discriminative embeddings de-
spite data perturbation during training. Then we
get the following contrastive loss as:

Lcon =
1

M
(Lpos + Lneg). (9)

For supervised learning tasks, we utilize the cross-
entropy classification loss Lce to train our detection
model. By adjusting the weight λ to balance the
impact of various losses on the model, our total
loss is given by the following:

L = Lce + λLcon. (10)

4 Experiments

4.1 Experiment Settings

To demonstrate the effectiveness of PECOLA, we
conduct extensive experiments on four open-source
datasets under few-shot learning settings.

Datasets. Grover (Zellers et al., 2019), generated
by the transformer-based news generator Grover-
Mega (1.5B); GPT-2, a webtext dataset provided
by OpenAI (2019) based on GPT-2 XL (1.5B);
GPT-3.5, a news-style dataset constructed by CoCo
(Liu et al., 2023) using the text-DaVinci-003 model
(175B); HC3 (Guo et al., 2023), involving open
domains, finance, healthcare, law, and psychology
texts, composed of comparative responses from
human experts and ChatGPT.

Few-shot Learning Settings. We randomly sam-
ple 32, 64, 128 and 512 samples from the original
training set, while keeping the balance of machine
and human categories. More details are provided
in Appendix A.1.

4.2 Comparison Models

We compare PECOLA with both unsupervised and
supervised MGT detection methods:
RoBERTa (Liu et al., 2019), supervised methods
via standard fine-tuning PLMs as classifiers. We
use RoBERTa-base (125M).
GLTR (Gehrmann et al., 2019), a metric-based
detector and based on next-token probability. We
follow the setting of Guo et al. (2023), utilizing
the Test-2 feature. For a fair comparison with fine-
tuning methods, we first use the few-shot training
samples to settle the threshold and adapt the fixed
threshold in the test set.2

CE+SCL (Gunel et al., 2021), a fine-tuned detec-
tor, used in conjunction with the Cross-Entropy
(CE) loss, exhibiting impressive performance in
few-shot learning settings.
CE+Margin (Zhou et al., 2021), a contrastive learn-
ing approach focuses on separating OOD instances
from In-Distribution (ID) instances, aiming to mini-
mize the L2 distance between instances of the same
label. We train the detector by combining CE loss.
IT:Clust (Shnarch et al., 2022), a general text clas-
sification method that employs unsupervised clus-
tering as an intermediate for fine-tuning PLMs, uti-
lizing RoBERTa-base.
CoCo (Liu et al., 2023) utilizes coherence graph
representation and contrastive learning to improve
supervised fine-tuning methods in both inadequate
and adequate data resource scenarios.
DetectGPT (Mitchell et al., 2023), a zero-shot
metric-based MGT detector, using T5-large (Raffel
et al., 2020) to perturb texts. Same as GLTR, we
fix the threshold.3

Fast-DetectGPT (Bao et al., 2024), an optimized
zero-shot detector, building upon the foundation
of DetectGPT, and utilizes a surrogate GPT-Neo
(2.7B) (Black et al., 2022) model for scoring.

4.3 Performance Comparison

As shown in Table 1, PECOLA surpasses the com-
petitors on all datasets in the few-shot MGT de-
tection task. Specifically, compared with the best

2The base model of GLTR is chosen based on the generator
of the dataset: for GPT-2 and Grover datasets, we use GPT-2
Small (124M); and for GPT-3.5 and HC3 datasets, we use GPT-
J (6B) (Wang, 2021), which is the best open-source model to
simulate ChatGPT and GPT-3.5 empirically.

3For all four datasets (including HC3 and GPT-3.5
datasets), we use GPT-2 Small (124M) as the base model
to calculate the likelihood. The reason is Mireshghallah et al.
(2023) find that small model is better black-box detector for
DetectGPT.

1878

Dataset Metric Shot RoBERTa GLTR† CE+SCL CE+Margin IT:Clust CoCo* DetectGPT†
* Fast-Detect.†* PECOLA

G
ro

ve
r

Acc

32 48.8310.31 56.61 55.864.43 56.793.31 41.573.58 51.608.42 55.02 56.06 59.031.63

64 56.883.03 56.61 57.572.63 58.922.17 46.452.20 58.2710.21 54.61 60.33 60.941.56

128 59.281.91 58.48 60.333.41 60.443.85 50.723.70 58.975.53 55.78 60.33 63.601.71

512 70.391.21 62.26 72.381.73 72.151.16 56.080.87 70.075.54 55.56 62.50 73.120.84

F1

32 44.138.82 52.77 51.563.03 53.212.24 40.793.66 47.332.63 51.09 56.67 53.950.94

64 52.881.52 52.77 53.391.16 54.991.75 46.101.25 44.703.53 48.07 57.92 55.481.35

128 54.691.18 54.47 55.742.21 55.542.40 51.374.80 51.442.13 53.78 54.89 58.981.58

512 64.493.17 57.11 67.022.12 66.251.65 51.800.49 65.153.76 53.32 61.29 68.241.64

G
PT

-2

Acc

32 70.534.10 75.99 69.325.19 70.002.33 51.021.66 71.697.07 68.59 71.88 75.421.80

64 74.412.47 75.76 73.773.54 74.041.42 54.322.73 73.201.42 71.12 71.88 78.921.14

128 79.772.04 75.77 80.181.25 80.931.26 59.662.83 79.444.80 71.74 71.88 82.580.49

512 84.071.46 75.86 84.761.19 84.891.17 71.593.23 84.300.58 71.74 74.06 85.750.69

F1

32 66.575.09 72.45 64.898.13 69.892.38 48.453.72 71.1911.05 65.50 70.00 75.101.99

64 73.912.69 70.87 72.324.31 73.941.40 53.873.00 69.792.03 66.58 70.97 78.881.17

128 79.492.26 71.16 80.001.35 80.791.34 59.482.79 76.107.37 66.13 71.88 82.540.51

512 84.011.52 75.56 84.721.25 84.861.24 70.424.26 83.880.79 66.13 74.64 85.720.70

G
PT

-3
.5

Acc

32 90.547.26 92.55 92.443.19 92.852.44 61.824.30 93.271.44 84.42 89.10 95.800.68

64 96.850.84 91.00 96.861.67 97.320.58 77.706.92 95.761.52 82.58 89.65 98.010.31

128 97.501.24 91.60 98.000.46 98.000.18 92.544.01 96.260.89 85.33 89.85 98.060.12

512 98.970.18 92.60 98.990.80 98.920.28 98.131.20 98.050.47 85.57 90.62 99.140.15

F1

32 90.277.77 92.71 92.423.20 92.812.49 60.954.67 92.721.54 84.43 89.76 95.800.68

64 96.840.84 91.49 96.861.67 97.470.30 77.337.31 95.451.54 86.16 89.92 98.010.31

128 97.501.24 91.96 98.000.46 98.000.18 92.504.07 97.570.92 86.13 89.77 98.060.12

512 98.850.40 92.71 98.930.21 98.920.28 98.131.20 97.880.50 86.20 90.62 99.140.15

H
C

3

Acc

32 93.361.50 97.30 95.331.81 95.461.71 77.008.05 92.111.71 94.54 87.70 97.190.16

64 96.970.74 98.13 97.810.41 97.810.31 91.692.34 95.501.27 95.03 88.87 98.590.14

128 97.560.38 98.29 98.170.30 98.140.36 95.431.15 97.571.09 95.10 88.87 98.630.32

512 98.850.40 98.31 98.930.21 98.990.20 97.980.47 98.581.18 95.13 90.62 99.150.11

F1

32 93.341.52 97.30 95.321.82 95.451.72 76.478.77 92.071.56 94.29 88.39 97.190.16

64 96.970.74 98.12 97.810.41 97.810.32 91.672.34 95.501.19 94.95 89.92 98.590.14

128 97.560.38 98.29 98.170.30 98.140.36 95.431.15 97.591.05 95.01 89.92 98.630.32

512 98.850.40 98.31 98.930.21 98.990.20 97.980.47 98.591.16 95.05 91.06 99.150.11

Table 1: Comparison of PECOLA to baseline methods in few-shot MGT detection. The results are average values of
10 runs with different random seeds. The subscript means the standard deviation (e.g., 99.150.11 means 99.15 ±
0.11). † Zero-shot model-based methods’ results are deterministic, so we do not report standard deviation. Also,
these methods must have the white-box generator as the base model, which is different from the black-box settings
of other model-based methods. Asterisk (*) denotes the latest SOTA method. And we also conduct a more in-depth
test on the entire training set in Appendix C.3.

competitor, PECOLA achieves accuracy and F1-
score improvement of 2.04% and 1.42%, 1.71%
and 2.55% on Grover and GPT2 datasets. On
GPT3.5 and HC3 datasets, PECOLA still ensures
0.86% and 0.68%, 0.21% and 0.22% performance
improvement with greater stability. The results
prove the effectiveness of PECOLA, which inte-
grates the advantage of unsupervised (perturbation
for metric-based) and supervised (contrastive learn-
ing for model-based) MGT detection methods.

Moreover, the unsupervised learning methods
tend to show better performance in extremely few
shot scenarios. Unsurprisingly, unsupervised meth-
ods do not see a notable performance improvement

with the increase in the number of training samples,
which causes them to outperform on the fewest shot
settings initially but soon be surpassed. As for the
deception of generators, Grover appears to be the
hardest to detect, while other models are relatively
“honest” to detectors. It might have originated from
the adversarial training strategy of Grover, while
the bulit-in detector module adversarially shifts the
LLM’s detectable features. More interestingly, ad-
vanced language models show a weaker ability to
cheat detectors. Most detectors achieve around
98% in accuracy on the GPT-3.5 and HC3 datasets,
which is consistent with the conclusion from Liu
et al. (2023); Chen et al. (2023). We hypothesize

1879

that the easy-to-detect nature may originate from
the lack of semantics diversity in GPT-3.5 and Chat-
GPT as they use RLHF (Kirk et al., 2023).

4.4 Ablation Study

To illustrate the effectiveness of the PECOLA com-
ponents, we do the ablation experiments on the
Selective Strategy Perturbation stage and the Con-
trastive Learning stage on the 64-example GPT-2
dataset. We also demonstrate the Scalability of
PECOLA in Appendix C.1.

Method Acc F1

w/o. mask 78.001.40 77.931.43

w/o. mask-fill 77.781.82 77.721.83

w/o. mask.CLw 75.802.22 75.232.46

w/o. mask-fill. CLw 75.561.47 75.101.73

w/o. CLw 76.601.69 76.221.65

w/o. w 78.021.56 77.931.57

PECOLA 78.921.14 78.881.17

Table 2: Ablation study result of PECOLA.

Ablation on Selective Strategy Perturbation. In
PECOLA, the data used for training primarily in-
cludes original texts, selected mask texts, and mask-
filled texts. We remove each part of the data in
training, i.e., (i) w/o. mask, refers to not using
selected mask texts for training; (ii) w/o. mask-fill,
not using mask-filling texts for training.

Ablation on Contrastive Learning. It primarily
investigates the impact of CE and contrastive loss.
(i) w/o. CLw refers to the model ablating weighted
contrastive learning; (ii) w/o. w refers to the model
including contrastive learning but ablating weight.

As demonstrated in Table 2, in scenarios employ-
ing only the CE loss, the Selective Strategy Per-
turbation method contributes to significant perfor-
mance improvement. Moreover, the introduction
of weighting further enhances accuracy when com-
pared to the direct use of margin loss. It reveals the
validation of bridging the metric-based and model-
based detectors, i.e., employing the Selective Strat-
egy Perturbation method to evaluate the token im-
portance for the multi-pairwise contrastive learning
method. Furthermore, within the overall frame-
work, the removal of the select mask text results
in a more rapid decrease in accuracy compared to
the removal of the mask-filling text. This finding
substantiates that the Token-Level Weighted Multi-
Pairwise Contrastive Learning method can better

focus on the alterations in the rephrased space fol-
lowing the application of Selective Strategy Pertur-
bation to the text.

4.5 Discussion and Analysis

4.5.1 Model Qualities
We analyze the model qualities, including robust-
ness and affinity in this section. Here, we test on
the 10,000-example GPT-2 test dataset, and the
perturbation scale is set to 15%.

Analysis on Robustness. To validate the robust-
ness of PECOLA in the few-shot learning settings,
we apply four post hoc perturbation operations for
each token in the test dataset randomly, i.e., dele-
tion, replacement, insertion, and repetition. As
indicated in Table 3, for each perturbation method
employed, our decline rate is consistently lower
compared to the baseline RoBERTa. On average,
PECOLA maintains a 5.66% higher accuracy and
an 8.77% superior F1-score. Specifically, in the
deletion method, where we introduce a 15% ran-
dom perturbation, it is noteworthy that the accuracy
of PECOLA decreases merely 1.64%, underscoring
its remarkable robustness.

Model RoBERTa PECOLA

Metric Acc F1 Acc F1

Original 74.412.47 73.912.69 78.921.14 78.881.17

Delete 71.775.88(-2.640) 70.428.05(-3.490) 77.281.79(-1.640) 77.062.03(-1.820)

Repeat 64.696.63(-9.720) 61.749.20(-12.17) 69.744.83(-9.180) 67.876.24(-11.01)

Insert 50.750.67(-23.66) 36.441.60(-37.47) 57.612.52(-21.31) 49.294.57(-29.59)

Replace 52.041.58(-22.37) 39.483.59(-34.43) 57.252.21(-21.67) 48.893.93(-29.99)

Average 59.81 (-14.60) 52.02 (-21.89) 65.47 (-13.45) 60.78 (-18.10)

Table 3: Model robustness to four perturbations.

Analysis on Affinity. Affinity pertains to alter-
ations in data distribution resulting from pertur-
bations, quantified by observing the fluctuations
in accuracy. We demonstrate the superiority of
the selective masking method over the random
masking method using the Affinity metric, follow-
ing the setting of DetectGPT. We applied a 15%
mask proportion with a span of 2 tokens on the
test dataset and simultaneously employed T5-Large
(Raffel et al., 2020) as the mask-filling model. We
trained RoBERTa-base and PECOLA on the 64-
example GPT2 dataset. As shown in Table 4, in
comparison to the random masking perturbation
method utilized in DetectGPT, we observe a 1.92%
and 0.49% increase in Affinity when employing
the selective masking method. Additionally, the
mask-filling method yields affinity improvements

1880

of 3.38% and 1.32% for RoBERTa and PECOLA

models, respectively. These results illustrate that
the Selective Multi-Strategy Perturbation method
effectively preserves more distinguishable features
between MGTs and HWTs.

Model RoBERTa PECOLA

Random Mask DetectGPT -2.64 -1.64
Selective Mask PECOLA -0.72 -1.15
Mask-Filling DetectGPT -4.72 -2.66
Mask-Filling PECOLA -1.34 -1.34

Table 4: Affinity of DetectGPT’s and PECOLA’s mask-
ing strategy on RoBERTa and PECOLA.

Analysis on Diversity Conversely, diversity as-
sesses the range and variability of perturbed data,
utilizing metrics Dist-1 and Dist-2 (Celikyilmaz
et al., 2020). Here, we use three common per-
turbation methods to demonstrate the importance
of not arbitrarily changing important tokens and
the significance of select masks. (1) Token Sub-
stitution (TS, Zhang et al. 2015), replaces tokens
with synonyms from WordNet (Miller, 1992); (2)
SwitchOut (SO, Wang et al. 2018), uniformly sam-
ples and randomly substitutes from the vocabu-
lary of test samples; and (3) Two-stage (TWs, Wei
et al. 2021) trains the mask-filling model on the
original data.

The ideal perturbation result is to have high
Affinity scores while ensuring high Diversity scores
(Celikyilmaz et al., 2020). As shown in Table 5,
through Selective Strategy Perturbation, models
achieve better diversity with high distribution shifts.
And the overall improvement in Affinity by over
18% also shows greater diversity than the original
data. The above results demonstrate the superiority
of our perturbation method.

Method Affinity Dist-1 Dist-2

TS -20.00 3.38 43.43
TO -22.06 6.81 53.61
TWs -21.13 3.24 41.85
Original - 8.70 50.32

PECOLA -1.34 15.59 57.01

Table 5: Affinity and Diversity on GPT-2 datasets.

4.5.2 Analysis on Selective Strategies
In this section, we compare various strategies
for selection in PECOLA. Beyond the PECOLA’s

importance-based perturbation method and random
perturbation method (DetectGPT), we experiment
with two other perturbation strategies: rank-based
perturbation and keyword-based perturbation. In
rank-based perturbation, we use the rescaled rank
of next-token probability on GPT2-medium as
the weight for perturbation position selection. In
keyword-based perturbation, we prevent changes in
the keywords extracted by the VLT-5 model (Pęzik
et al., 2022) during perturbation. As shown in Ta-
ble 6, the experimental results of selective perturba-
tion outperform the random perturbation method by
1.20%, 2.04%, and 2.49% in average accuracy on
the 64-example GPT2 dataset. And the importance-
based strategy is the highest.

Method Random Prob. Rank Keyword Importance

Yake 76.051.83 77.350.73 78.551.65 78.921.14

Perplexity 75.531.14 76.631.03 77.111.80 77.631.30

Table 6: Different strategies for perturbation and token-
level weighting, namely Random (DetectGPT), Prob.
Rank (GPT2-medium), Keyword (VLT-5), Importance
(PECOLA).

Further, we test the mask-filling failure ratio
across the above strategies to interpret our outper-
formance. We find that the random strategy leads
to more masking-filling failures than selective ones,
which cause execution errors. Results in Table 7
indicate that selective strategy based on token im-
portance performs the best, decreasing the failure
ratio by 3.64% than random.

Method Random Prob. Rank Keyword Importance

Ratio (%) 9.20 7.83 7.80 5.56

Table 7: Mask-filling failure ratio of different perturba-
tion strategies.

4.5.3 Generalization on Mask-Filling Models
We study the influence of various mask-filling mod-
els on the performance of PECOLA, including Bert
(110M; Devlin et al. 2019), Bart (139M; Mike
et al. 2020), GPT-2 (380M; Radford et al. 2019),
Twhin-bert (279M; Zhang et al. 2023), XLM
(279M; Alexis et al. 2020), XLNet (110M; Yang
et al. 2019), RoBERTa (125M; Liu et al. 2019), and
LLaMA-2 (7B; Touvron et al. 2023). As depicted
in Fig. 3, the results of all mask-filling models sur-
pass the baseline in terms of accuracy. Furthermore,
the fluctuation of PECOLA’s performance across

1881

different mask-filling models is relatively slight. It
confirms that PECOLA is not reliant on a specific
filling model, showing great generalization capa-
bility. The remaining full experimental results of
different mask-filling models are in Appendix C.2.

BART
BERT

GPT2

Tw
hin

-B
ert XLM

LL
aM

a-2

Rob
ert

a T5
40

50

60

70

80

90

100

110

Ac
cu

ra
cy

(%
)

59.68 57.40 58.63 57.76 59.12 58.89 59.69 60.94

Grover

BART
BERT

GPT2

Tw
hin

-B
ert XLM

LL
aM

a-2

Rob
ert

a T5
40

50

60

70

80

90

100

110

Ac
cu

ra
cy

(%
)

78.20 77.32 77.63 77.80 77.98 78.92 78.26 78.92

GPT2

BART
BERT

GPT2

Tw
hin

-B
ert XLM

LL
aM

a-2

Rob
ert

a T5
40

50

60

70

80

90

100

110

Ac
cu

ra
cy

(%
)

98.05 97.08 97.68 97.59 98.05 98.21 97.63 98.01

GPT3.5

BART
BERT

GPT2

Tw
hin

-B
ert XLM

LL
aM

a-2

Rob
ert

a T5
40

50

60

70

80

90

100

110

Ac
cu

ra
cy

(%
)

98.77 97.99 98.30 98.66 97.89 98.78 98.60 98.59

HC3

Figure 3: Result of generalizing on various mask-filling
models.

4.5.4 Generalization on Data
Cross-domain. We evaluate PECOLA on the
HC3 dataset crossing three QA domains, namely
Medicine, Finance, and Computer Science. The
meta-information details are in Appendix A.2. For
the three domains of data, we use one of them
as training data (64-shot), and the remaining do-
mains of data as testing data. The results in Table 8
show that PECOLA is more effective than the best
baseline and SOTA method on average. For exam-
ple, compared to Roberta, PECOLA outperforms by
4.61% in three domains on average. And PECOLA

maintains a 1.63% higher accuracy on average than
SOTA DetectGPT.

Domain Medicine Finance Comp. Sci. Average

RoBERTa 62.974.09 86.083.63 90.645.07 79.90
DetectGPT 80.48 85.17 82.98 82.88
PECOLA 70.867.83 89.342.93 93.323.64 84.51

Table 8: Results of cross-domain in terms of accuracy.

Cross-generator. We generalize PECOLA between
News articles (GPT3.5 dataset) and QA answers
(HC3 dataset) on the 64-shot settings. As shown in
Table 9, when the GPT-3.5 dataset is the training
set, PECOLA outperforms by 10.21%; and when
the HC3 dataset is the training set, PECOLA outper-
forms by 6.98% to the best competitor.

Dataset GPT3.5→HC3 HC3→GPT3.5 Average

RoBERTa 64.601.96 62.672.41 63.64
DetectGPT 77.11 72.66 74.89
PECOLA 78.798.19 72.876.06 75.83

Table 9: Results of cross-generator in terms of accuracy.

4.5.5 Detecting Shorter Texts

To examine the efficiency of PECOLA to detect the
short MGTs, we chunk the samples of GPT-2 and
HC3 datasets into segments of 50, 100, and 200
tokens. As shown in Fig. 4, PECOLA consistently
outperforms RoBERTa, with an average accuracy
outperformance of 4.16% and 2.13% on the GPT-2
and HC3 datasets. And the relative performance
decrease of PECOLA while the length shrinking is
much less than RoBERTa.

0 20 40 60 80 100
Accuracy(%)

445

200

100

50

Th
e

st
at

is
tic

s
of

 to
ke

ns

78.92

74.41

71.15

67.84

65.14

60.77

63.01

59.44

GPT2

0 20 40 60 80 100
Accuracy(%)

260

200

100

50

98.59

96.97

97.14

94.26

92.43

90.46

84.69

82.62

HC3

PECOLA Roberta

Figure 4: Performance of PECOLA and RoBERTa to
detect shorter texts. The average token number of the
original GPT-2 and HC3 datasets are 445 and 260.

5 Conclusion

In this paper, we introduce PECOLA, a novel
machine-generated text detection method that ef-
fectively bridges and integrates metric-based and
fine-tuned detectors for MGT detection. To re-
lieve the information loss caused by the random
masking used in DetectGPT, we present a token-
level selective strategy perturbation method. To bet-
ter distinguish meaningful recombination spaces
and reduce reliance on the mask-filling models, we
present a token-level weighted multi-pairwise con-
trastive learning method. In few-shot settings, ex-
perimental results show that PECOLA significantly
enhances the performance of PLMs in MGT de-
tection. Subsequent analytical experiments vali-
date PECOLA’s effectiveness, robustness, general-
ization, and capability in detecting short texts.

1882

Acknowledgements

We thank all the anonymous reviewers and the
area chair for their helpful feedback, which
aided us in greatly improving the paper. This
work is supported by National Key R&D Pro-
gram (2023YFB3107400), National Natural Sci-
ence Foundation of China (62272371, 62103323,
U21B2018, 62161160337, U20B2049), Initia-
tive Postdocs Supporting Program (BX20190275,
BX20200270), China Postdoctoral Science Founda-
tion (2019M663723, 2021M692565), Fundamental
Research Funds for the Central Universities under
grant (xzy012024144), and Shaanxi Province Key
Industry Innovation Program (2021ZDLGY01-02).

Limitations

In this work, we focus on MGT detection in few-
shot learning settings. The next phase will involve
a more comprehensive performance comparison
based on full datasets. Secondly, our method men-
tions the score threshold, if the threshold is too
high or too low, it will not serve the purpose of
perturbation. How to automate and flexibly design
a strict threshold is also a direction for our next
phase of improvement. Thirdly, for short texts, our
perturbation method faces similar limitations, as it
is difficult to extract the most relevant keywords.
Thus, perturbation introduces more uncontrollable
noise, which poses a challenge for us to address
in the future. Fourth, We hope that the present
work can inspire future applications in fields like
machine-generated images and videos, creating a
universal approach to apply in the direction of ma-
chine generation.

Ethics Statement

PECOLA aims to help users use our method to more
reasonably and accurately identify MGT. Our goal
is to develop a universal method applicable to other
fields such as images and audio, and inspire the
advancement of the stronger detector of MGTs and
prevent all potential negative uses of language mod-
els. We do not wish our work to be maliciously
used to counter detectors. The datasets mentioned
in this paper are all public.

References
Conneau Alexis, Khandelwal Kartikay, Goyal Naman,

Chaudhary Vishrav, Wenzek Guillaume, Guzmán
Francisco, Grave Edouard, Ott Myle, Zettlemoyer

Luke, and Stoyanov Veselin. 2020. Unsupervised
cross-lingual representation learning at scale. In An-
nual Meeting of the Association for Computational
Linguistics, pages 8440–8451.

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi
Yang, and Yue Zhang. 2024. Fast-detectGPT: Effi-
cient zero-shot detection of machine-generated text
via conditional probability curvature. In The Twelfth
International Conference on Learning Representa-
tions.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar van der Wal. 2023. Pythia:
A suite for analyzing large language models across
training and scaling. In International Conference on
Machine Learning.

Sid Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al.
2022. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745.

Ricardo Campos, Vítor Mangaravite, Arian Pasquali,
Alípio Jorge, Célia Nunes, and Adam Jatowt. 2020.
Yake! keyword extraction from single documents
using multiple local features. Information Sciences,
509:257–289.

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao.
2020. Evaluation of text generation: A survey. Com-
puting Research Repository, abs/2006.14799.

Jiaao Chen, Zichao Yang, and Diyi Yang. 2020. Mixtext:
Linguistically-informed interpolation of hidden space
for semi-supervised text classification. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 2147–2157.

Yutian Chen, Hao Kang, Vivian Zhai, Liangze Li,
Rita Singh, and Bhiksha Ramakrishnan. 2023. Gpt-
sentinel: Distinguishing human and chatgpt gener-
ated content. arXiv preprint arXiv:2305.07969.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In North American Chapter of the Association
for Computational Linguistics.

Yingtong Dou, Guixiang Ma, Philip S Yu, and Sihong
Xie. 2020. Robust spammer detection by nash rein-
forcement learning. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge dis-
covery & data mining, pages 924–933.

Ethan Fetaya, Joern-Henrik Jacobsen, Will Grathwohl,
and Richard Zemel. 2020. Understanding the limi-
tations of conditional generative models. In Interna-
tional Conference on Learning Representations.

1883

https://openreview.net/forum?id=Bpcgcr8E8Z
https://openreview.net/forum?id=Bpcgcr8E8Z
https://openreview.net/forum?id=Bpcgcr8E8Z

Jun Gao, Changlong Yu, Wei Wang, Huan Zhao, and
Ruifeng Xu. 2022. Mask-then-fill: A flexible and
effective data augmentation framework for event ex-
traction. In Conference on Empirical Methods in
Natural Language Processing.

Sebastian Gehrmann, Hendrik Strobelt, and Alexan-
der M Rush. 2019. Gltr: Statistical detection and
visualization of generated text. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
111–116.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves Stoy-
anov. 2021. Supervised contrastive learning for pre-
trained language model fine-tuning. In International
Conference on Learning Representations.

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang,
Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng
Wu. 2023. How close is chatgpt to human experts?
comparison corpus, evaluation, and detection. arXiv
preprint arXiv:2301.07597.

Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. 2023.
Radar: Robust ai-text detection via adversarial learn-
ing. arXiv preprint arXiv:2307.03838.

Hazel H Kim, Daecheol Woo, Seong Joon Oh, Jeong-
Won Cha, and Yo-Sub Han. 2022. Alp: Data augmen-
tation using lexicalized pcfgs for few-shot text clas-
sification. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 10894–
10902.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023.
A watermark for large language models. arXiv
preprint arXiv:2301.10226.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis,
Jelena Luketina, Eric Hambro, Edward Grefenstette,
and Roberta Raileanu. 2023. Understanding the ef-
fects of rlhf on llm generalisation and diversity. arXiv
preprint arXiv:2310.06452.

Xiaoming Liu, Zhaohan Zhang, Yichen Wang, Hang
Pu, Yu Lan, and Chao Shen. 2023. Coco: Coherence-
enhanced machine-generated text detection under low
resource with contrastive learning. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 16167–16188.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

David Machado, Tiago Barbosa, Sebastião Pais, Bruno
Martins, and Gaël Dias. 2009. Universal mobile
information retrieval. In Universal Access in Human-
Computer Interaction. Intelligent and Ubiquitous In-
teraction Environments: 5th International Confer-
ence, UAHCI 2009, Held as Part of HCI Interna-
tional 2009, San Diego, CA, USA, July 19-24, 2009.
Proceedings, Part II 5, pages 345–354. Springer.

Chengzhi Mao, Carl Vondrick, Hao Wang, and Junfeng
Yang. 2024. Raidar: generative AI detection via
rewriting. In The Twelfth International Conference
on Learning Representations.

Lewis Mike, Liu Yinhan, Goyal Naman, Ghazvinine-
jad Marjan, Mohamed Abdelrahman, Levy Omer,
Stoyanov Ves, and Zettlemoyer Luke. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and compre-
hension. In Annual Meeting of the Association for
Computational Linguistics, pages 7871–7880.

George A. Miller. 1992. WordNet: A lexical database
for English. In Speech and Natural Language: Pro-
ceedings of a Workshop Held at Harriman, New York,
February 23-26, 1992.

Fatemehsadat Mireshghallah, Justus Mattern, Sicun
Gao, Reza Shokri, and Taylor Berg-Kirkpatrick.
2023. Smaller language models are better black-
box machine-generated text detectors. arXiv preprint
arXiv:2305.09859.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D. Manning, and Chelsea Finn. 2023.
Detectgpt: Zero-shot machine-generated text detec-
tion using probability curvature. ICML 2023.

OpenAI. 2019. Gpt-2 output dataset. Website.

OpenAI. 2023. Ai text classifier. Website.

Piotr Pęzik, Agnieszka Mikołajczyk-Bareła, Adam
Wawrzyński, Bartłomiej Nitoń, and Maciej Ogrod-
niczuk. 2022. Keyword extraction from short texts
with a text-to-text transfer transformer. ACIIDS
(Companion), 1716:530–542.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1:9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21:5485–5551.

Yuhui Shi, Qiang Sheng, Juan Cao, Hao Mi, Beizhe
Hu, and Danding Wang. 2024. Ten words only still
help: Improving black-box ai-generated text detec-
tion via proxy-guided efficient re-sampling. CoRR,
abs/2402.09199.

Eyal Shnarch, Ariel Gera, Alon Halfon, Lena Dankin,
Leshem Choshen, Ranit Aharonov, and Noam
Slonim. 2022. Cluster & tune: Boost cold start per-
formance in text classification. In Annual Meeting of
the Association for Computational Linguistics, page
7639–7653.

1884

https://openreview.net/forum?id=bQWE2UqXmf
https://openreview.net/forum?id=bQWE2UqXmf
https://aclanthology.org/H92-1116
https://aclanthology.org/H92-1116
https://github.com/openai/gpt-2-output-dataset
https://beta.openai.com/ai-text-classifier
https://doi.org/10.48550/arXiv.2402.09199
https://doi.org/10.48550/arXiv.2402.09199
https://doi.org/10.48550/arXiv.2402.09199

KaShun Shum, Shizhe Diao, and Tong Zhang. 2023.
Automatic prompt augmentation and selection with
chain-of-thought from labeled data. arXiv preprint
arXiv:2302.12822.

Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jin-
woo Shin. 2020. Csi: Novelty detection via con-
trastive learning on distributionally shifted instances.
Advances in neural information processing systems,
33:11839–11852.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Christoforos Vasilatos, Manaar Alam, Talal Rahwan,
Yasir Zaki, and Michail Maniatakos. 2023. Howkgpt:
Investigating the detection of chatgpt-generated uni-
versity student homework through context-aware per-
plexity analysis. arXiv preprint arXiv:2305.18226.

Saranya Venkatraman, Adaku Uchendu, and Dongwon
Lee. 2023. Gpt-who: An information density-based
machine-generated text detector. arXiv preprint
arXiv:2310.06202.

Rakesh Verma and Daniel Lee. 2017. Extractive summa-
rization: Limits, compression, generalized model and
heuristics. Computación y Sistemas, 21:787–798.

Vivek Verma, Eve Fleisig, Nicholas Tomlin, and Dan
Klein. 2023. Ghostbuster: Detecting text ghost-
written by large language models. arXiv preprint
arXiv:2305.15047.

Jan Philip Wahle, Terry Ruas, Frederic Kirstein, and
Bela Gipp. 2022. How large language models are
transforming machine-paraphrase plagiarism. In
Conference on Empirical Methods in Natural Lan-
guage Processing, page 952–963.

Ben Wang. 2021. Mesh-Transformer-JAX: Model-
Parallel Implementation of Transformer Lan-
guage Model with JAX. https://github.com/
kingoflolz/mesh-transformer-jax.

Pengyu Wang, Linyang Li, Ke Ren, Botian Jiang, Dong
Zhang, and Xipeng Qiu. 2023. SeqXGPT: Sentence-
level AI-generated text detection. In The 2023 Con-
ference on Empirical Methods in Natural Language
Processing.

Sheng Wang, Jinjiao Lian, Yuzhong Peng, Baoqing Hu,
and Hongsong Chen. 2019. Generalized reference
evapotranspiration models with limited climatic data
based on random forest and gene expression pro-
gramming in guangxi, china. Agricultural Water
Management, 221:220–230.

Xinyi Wang, Hieu Pham, Zihang Dai, and Graham Neu-
big. 2018. Switchout: an efficient data augmentation
algorithm for neural machine translation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 856–861.

Yichen Wang, Shangbin Feng, Abe Bohan Hou, Xiao
Pu, Chao Shen, Xiaoming Liu, Yulia Tsvetkov, and
Tianxing He. 2024. Stumbling blocks: Stress testing
the robustness of machine-generated text detectors
under attacks. arXiv preprint arXiv:2402.11638.

Jason Wei, Chengyu Huang, Soroush Vosoughi,
Yu Cheng, and Shiqi Xu. 2021. Few-shot text
classification with triplet networks, data augmen-
tation, and curriculum learning. arXiv preprint
arXiv:2103.07552.

Jason Wei and Kai Zou. 2019. Eda: Easy data aug-
mentation techniques for boosting performance on
text classification tasks. In Conference on Empiri-
cal Methods in Natural Language Processing, pages
6381–6387.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Junchao Wu, Shu Yang, Runzhe Zhan, Yulin Yuan,
Derek F Wong, and Lidia S Chao. 2023a. A sur-
vey on llm-gernerated text detection: Necessity,
methods, and future directions. arXiv preprint
arXiv:2310.14724.

Kangxi Wu, Liang Pang, Huawei Shen, Xueqi Cheng,
and Tat-Seng Chua. 2023b. LLMDet: A third party
large language models generated text detection tool.
In The 2023 Conference on Empirical Methods in
Natural Language Processing.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and
Quoc Le. 2020. Unsupervised data augmentation for
consistency training. Advances in neural information
processing systems, 33:6256–6268.

Xianjun Yang, Wei Cheng, Linda Petzold, William Yang
Wang, and Haifeng Chen. 2023. Dna-gpt: Divergent
n-gram analysis for training-free detection of gpt-
generated text. arXiv preprint arXiv:2305.17359.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. Advances in neural information processing
systems, 32.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

1885

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://openreview.net/forum?id=uemYdRTVvP
https://openreview.net/forum?id=uemYdRTVvP
https://openreview.net/forum?id=tauoKi9IWO
https://openreview.net/forum?id=tauoKi9IWO

Xinyang Zhang, Yury Malkov, Omar Florez, Serim
Park, Brian McWilliams, Jiawei Han, and Ahmed
El-Kishky. 2023. Twhin-bert: A socially-enriched
pre-trained language model for multilingual tweet
representations at twitter. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 5597–5607.

Wenxuan Zhou, Fangyu Liu, and Muhao Chen. 2021.
Contrastive out-of-distribution detection for pre-
trained transformers. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1100–1111.

1886

A Implementation Details

This part mentions the hyperparameter settings and
meta-information of the HC3 dataset.

A.1 Hyperparameter Details

Experiments evaluating competitors and PECOLA

follow the setting of CoCo (Liu et al., 2023). The
hyperparameter settings of all the methods in the
experiment as shown in Table 10. We randomly
select 10 different seeds for experiments, and report
average test accuracy and F1-score.

Parameter Value

Training Epochs 30
Optimizer AdamW
Learning rate 1e-5
Weight Decay 0.01
Batch Size 16
Mask Gap 2
Mask Proportion 10%
Score threshold 0.4
Pre-trained model RoBERTa-base

Table 10: Implementation details of hyperparameters.

A.2 Dataset Meta Information

We evaluate PECOLA effectiveness from domains
and generators on the HC3 dataset, which primarily
includes Medicine, Finance, and Computer Science
domain QA, as shown in Table 11.

Domain Medicine Finance Comp. Sci.

Size 2585 8436 1684

Table 11: Meta-information of the HC3 dataset.

B Effect of Hyperparameters

In PECOLA, the primary hyperparameters include
the mask proportion, mask gap of perturbation, and
score threshold. The perturbation proportion refers
to the mask rate in the texts. The perturbation mask
gap ensures that several tokens following a masked
token remain unmasked, and score threshold to
control the number of Most Relevant Keywords.

B.1 Perturbation Proportion and Mask Gap

We evaluate the impact of different perturbation
ratios and mask gap on accuracy, and perform a
minor scan in a few-shot learning settings with a
set of mask proportions {5, 8, 10, 15, 17, 20} and
mask gap {0, 1, 2, 3, 4, 5}, average the results for
each combination of parameters. And a mask gap
of 2 and a perturbation ratio of 10% achieve the
maximum average values. As shown in Fig. 5, it is
found that the combination of a mask gap of 2 and
a mask proportion of 10% yielded the best results,
on the 64-example GPT-2 dataset.

0 1 2 3 4 5 average
Masked Gap (0-5) tokens

av
er

ag
e

20
17

15
10

8
5

M
as

k
Ra

tio
(%

)

76.58 76.40 77.18 76.24 76.26 76.78 76.57

75.50 73.45 76.66 73.78 73.99 75.35 74.79

75.95 76.70 75.99 76.61 75.81 76.30 76.23

76.99 77.10 76.75 76.67 77.31 77.02 76.97

77.19 77.45 78.92 76.87 77.05 77.15 77.43

76.88 76.75 77.95 76.56 76.32 78.27 77.12

76.99 76.95 76.82 76.96 77.13 76.59 76.90

ACC

74

75

76

77

78

Figure 5: Impact of varying the number of perturbations
and mask gap in PECOLA, we use T5-large (Raffel et al.,
2020) as the mask-filling model. For each combination,
we conduct tests on ten randomly select seeds.

B.2 Score Threshold

In the main experiment, all datasets use a com-
mon score threshold of 0.4, and it may not be the
best choice for different datasets, because with the
change in data type and text length, the gold key-
words often vary. Therefore, as shown in Fig. 6, we
discuss the performance changes of four datasets
with different score threshold in few-shot learning
settings. An excessively high score threshold re-
sults in too many most relevant keywords, failing
to effectively perturb the data, hence not signifi-
cantly improving accuracy. Similarly, a too low
score threshold can lead to more random perturba-
tions. Therefore, the selection of the score thresh-
old should be stringent.

1887

0.1 0.2 0.3 0.4 0.5 0.6
Score Threshold

0.56

0.57

0.58

0.59

0.60

0.61

0.62

Gr
ov

er

Accuracy
F1

0.1 0.2 0.3 0.4 0.5 0.6
Score Threshold

0.7725

0.7750

0.7775

0.7800

0.7825

0.7850

0.7875

0.7900

Gp
t2

Accuracy
F1

0.1 0.2 0.3 0.4 0.5 0.6
Score Threshold

0.977

0.978

0.979

0.980

0.981

0.982

Gp
t3

.5

Accuracy & F1

0.1 0.2 0.3 0.4 0.5 0.6
Score Threshold

0.977

0.978

0.979

0.980

0.981

0.982

HC
3

Accuracy & F1

Figure 6: Effect of score threshold on model performance. In the GPT3.5 and HC3 datasets (sub-figure 3 and 4),
accuracy and F1-score coincide.

C Efficiency of PECOLA

C.1 Scalability of Base Models at Different
Scales

We adopt Pythia (Biderman et al., 2023) as the
base model of PECOLA with different scales, i.e.,
70M, 160M, 410M, 1B, and 1.4B. We train and do
experiments on one NVIDIA A100 GPU, and the
performance and time consumption are in Table 12.
With the increase in model size, both accuracy and
F1-score show upward trends, while the time in-
crease is linear, which is reasonable.

C.2 Impact of the Chosen Mask-filling Models

This section shows the full experimental results of
different mask-filling models, as shown in Table 13,
the experimental results confirm the same out-
comes as in the few-shot learning settings, where
the T5 filling model does not perform the best
across all datasets. All the above models are ob-
tained from huggingface transformers (Wolf et al.,
2020). And we do not intervene in the temperature
sampling of the mask-filling model, setting it all to
1.

C.3 Further Experiments on Full Datasets

To demonstrate Pecola’s superiority over the whole
training set, we conduct a more in-depth test, as
shown in Table 14. We train the detector using
10,000 samples from the Grover, GPT-2, and HC3

datasets, and 7,000 samples from GPT-3.5 as our
training sets. Comparatively, PECOLA outperforms
the second-best results in accuracy and F1-score by
0.13% and 1.56%, 0.80% and 0.83%, 0.05% and
0.05%, 0.03% and 0.03% respectively, across four
datasets.

1888

Model 70M 160M 410M 1B 1.4B

Acc 58.420.70 63.660.17 71.071.63 72.131.63 74.051.77

F1 58.030.79 63.540.28 70.87 1.92 71.752.67 73.851.55

Per epoch 16s 34s 85s 97s 113s
Single data 2.2ms 7.0ms 13.8ms 14.1ms 16.6ms

Table 12: Results of fine-tuning PECOLA with Pythia models of various scales, on the 64-example GPT2 dataset.
We also demonstrate the training time per epoch and the single data test time.

Dataset Method Shot BART Bert GPT-2 Twhin Bert XLM XLNet RoBERTa T5

G
ro

ve
r

Acc
128 62.042.51 61.551.74 62.821.24 61.002.20 61.820.82 60.160.43 63.101.76 63.601.71

512 72.241.54 71.671.04 72.621.12 72.781.14 72.130.64 72.721.03 73.250.84 73.120.84

F1
128 57.801.28 57.601.93 58.550.80 56.740.48 57.600.92 56.620.64 58.291.12 58.981.58

512 66.252.34 65.561.76 66.722.00 68.491.04 66.382.21 67.502.61 67.491.68 68.241.64

Recall
128 58.030.99 57.912.08 58.720.87 57.180.86 57.781.04 57.000.80 58.310.99 57.891.44

512 65.852.66 64.871.71 66.012.06 68.111.16 65.872.46 67.053.04 66.731.68 66.511.64

G
PT

-2

Acc
128 82.161.04 80.770.48 82.421.05 82.170.40 81.150.31 81.260.36 81.271.20 82.580.49

512 85.410.66 85.430.53 85.520.57 85.720.39 85.100.27 85.130.60 85.750.55 85.750.69

F1
128 82.121.07 80.670.54 82.381.08 82.120.38 81.110.34 81.240.37 81.161.27 82.540.51

512 85.400.67 85.410.53 85.720.70 85.720.39 85.100.27 85.130.60 85.750.55 85.720.70

Recall
128 82.151.05 80.750.48 82.010.68 82.170.40 81.150.31 81.260.36 81.251.20 82.570.49

512 85.410.66 85.430.53 85.800.27 85.720.39 85.100.27 85.130.60 85.750.55 85.520.57

G
PT

-3
.5

Acc
128 98.240.16 98.090.25 98.090.10 98.110.11 97.980.14 98.130.08 98.010.18 98.630.32

512 99.190.13 99.050.15 99.130.17 98.890.21 98.880.21 99.230.26 99.160.14 99.150.11

F1
128 98.240.16 98.090.25 98.090.10 98.110.11 97.980.14 98.130.08 98.010.18 98.630.32

512 99.190.13 99.050.15 99.130.17 98.890.21 98.880.21 99.230.26 99.160.14 99.150.11

Recall
128 98.240.16 98.090.25 98.090.10 98.110.11 97.980.14 98.130.08 98.010.18 98.630.32

512 99.190.13 99.050.15 99.130.17 98.890.21 98.880.21 99.230.26 99.160.14 99.150.11

H
C

3

Acc
128 98.630.18 98.030.40 98.590.16 98.580.22 98.240.09 98.350.12 98.790.32 98.060.12

512 98.820.35 98.450.21 98.960.25 98.830.24 98.800.38 98.800.30 99.020.23 99.140.15

F1
128 98.630.18 98.030.40 98.590.16 98.580.22 98.240.09 98.350.12 98.790.32 98.060.12

512 98.820.35 98.450.21 98.960.25 98.830.24 98.800.38 98.800.30 99.020.23 99.140.15

Reacall
128 98.630.18 98.030.40 98.590.16 98.580.22 98.240.09 98.350.12 98.790.32 98.630.32

512 98.820.35 98.450.21 98.960.25 98.830.24 98.800.38 98.800.30 99.020.23 99.150.11

Table 13: The full MGT detection performance of different mask-filling models on four datasets. We use the model
version with the same level model size, i.e. base version for most models.

Dataset Shot Metric RoBERTa GLTR CE+SCL CE+Margin IT:Clust CoCo DetectGPT Fast-Detect. PECOLA

Grover 10000
Acc 86.130.47 60.40 86.570.44 86.250.81 72.653.44 85.230.20 61.42 65.49 86.700.37

F1 84.070.91 59.82 84.950.56 85.101.27 63.215.02 83.670.56 54.28 63.29 86.660.33

GPT-2 10000
Acc 89.561.18 77.55 90.190.60 90.300.41 81.652.14 89.780.04 78.74 80.06 91.100.09

F1 89.511.15 76.39 90.150.61 90.270.40 81.543.20 89.010.07 71.13 80.64 91.100.10

GPT-3.5 7000
Acc 99.890.03 93.50 99.740.04 99.900.03 99.090.31 99.440.12 90.80 94.72 99.950.01

F1 99.890.03 93.58 99.740.04 99.900.03 99.090.31 99.440.12 89.14 94.76 99.950.01

HC3 10000
Acc 99.840.08 98.39 99.890.01 99.860.03 98.800.67 99.460.24 95.13 98.32 99.920.01

F1 99.840.08 98.49 99.890.01 99.860.03 98.800.67 99.460.24 95.05 98.02 99.920.01

Table 14: Performance comparison of PECOLA to baseline methods on the full datasets. The results are average
values of 5 runs with different random seeds. Bold shows the best and second-best results within each column.

1889

