
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1812–1824
August 11-16, 2024 ©2024 Association for Computational Linguistics

UNICODER : Scaling Code Large Language Model via Universal Code

Tao Sun1 ∗, Linzheng Chai1 *, Jian Yang1 *†, Yuwei Yin2, Hongcheng Guo1,
Jiaheng Liu1, Bing Wang1, Liqun Yang1, Zhoujun Li1

1State Key Laboratory of Complex & Critical Software Environment, Beihang University;
2Department of Computer Science, University of British Columbia

{buaast, challenging, jiaya, hongchengguo}@buaa.edu.cn;
{liujiaheng, bingwang, lqyang, lizj}@buaa.edu.cn; yuweiyin@cs.ubc.ca

Abstract

Intermediate reasoning or acting steps have
successfully improved large language models
(LLMs) for handling various downstream natu-
ral language processing (NLP) tasks. When ap-
plying LLMs for code generation, recent works
mainly focus on directing the models to artic-
ulate intermediate natural-language reasoning
steps, as in chain-of-thought (CoT) prompting,
and then output code with the natural language
or other structured intermediate steps. How-
ever, such output is not suitable for code trans-
lation or generation tasks since the standard
CoT has different logical structures and forms
of expression with the code. In this work, we
introduce the universal code (UniCode) as the
intermediate representation. It is a description
of algorithm steps using a mix of conventions
of programming languages, such as assignment
operator, conditional operator, and loop. Hence,
we collect an instruction dataset UNICODER-
INSTRUCT to train our model UNICODER on
multi-task learning objectives. UNICODER-
INSTRUCT comprises natural-language ques-
tions, code solutions, and the corresponding
universal code. The alignment between the in-
termediate universal code representation and
the final code solution significantly improves
the quality of the generated code. The exper-
imental results demonstrate that UNICODER
with the universal code significantly outper-
forms the previous prompting methods by a
large margin, showcasing the effectiveness of
the structural clues in pseudo-code.1

1 Introduction

The field of code translation and generation has
advanced significantly (Szafraniec et al., 2023;
Yan et al., 2023) with the advent of code-specific
large language models (LLMs). Code LLMs,
such as StarCoder (Li et al., 2023b) and Code-

∗Equal contribution.
†Corresponding Author.

1https://github.com/ASC8384/UniCoder

// Function to split a string into several equal parts and return them as a list of
strings
DEF SPLIT_STRING(string, part_count)

// Loop through the string and extract parts
FOR i FROM 0 TO str_len STEP part_len DO

// If it‘s the last part and the string can’t be divided equally,
// take all remaining characters
IF i + part_len > str_len THEN

part = SUBSTRING(string, i) // Take the substring from i to the end
ELSE

part = SUBSTRING(string, i, i + part_len) // Take the substring of part
length

ENDIF
APPEND(parts, part) // Append the part to the list

ENDFOR
RETURN parts // Return the list of parts

ENDDEF

Problem Description:
Design a function to split a string into several equal parts and to return the parts as a list of strings.

def split_string(string, part_count):
str_len = len(string)
part_len = str_len // part_count
parts = []
for i in range(0, str_len, part_len):

split string
part = string[i: i + part_len]
parts.append(part)

return a list of strings
return parts

function splitString(string, partCount) {
const partLen = Math.floor(strLen /

partCount);
const parts = [];
for (let i = 0; i < partCount; i++) {

let end = (i === partCount - 1) ?
string.length : (i + 1) * partLen;

parts.push(string.substring(i *
partLen, end));

}
return parts;

}

Loop
IF ELSE

Universal Code

Python Javascript

Code LLM

Code LLM Code LLM

Figure 1: An example of UNICODER. The Code LLM
solves the code generation question by “translating”
the pseudocode description (Universal Code) into exe-
cutable code of the target programming language.

Llama (Rozière et al., 2023), are capable of generat-
ing executable code by analyzing natural language
prompts. Chain-of-thought (CoT) prompting (Wei
et al., 2022b) has emerged as the leading technique
in enhancing LLMs, where the intermediate steps
provide a structured pathway from the problem
statement to the solution, effectively mirroring the
human problem-solving process.

Considering the low accuracy of CoT in coder
generation, structure CoT (SCoT) (Li et al., 2023a)
is proposed to minimize the gap between the in-
termediate steps and the generated code. More
intuitively, using a universal code as the intermedi-
ate representation to handle multiple programming
languages (PL) is promising. Here, universal code
is a blueprint for implementing an algorithm, which
helps to make the design of algorithms logically
clear and readily comprehensible. Moreover, it is
universal across different programming languages
(PL-agnostic) since it typically does not follow spe-

1812

https://github.com/ASC8384/UniCoder

cific syntax and omits execution details. Yet, how
the universal code is used for code translation and
generation in multilingual scenarios remains un-
derexplored.

In this work, we scale up the code LLMs to
support multiple programming languages via the
universal code (UniCode), which is used as an
efficient and language-independent intermediate
representation of the key algorithm principles.
Specifically, we first define UniCode by speci-
fying grammar rules and providing paradigms, fol-
lowed by prompting GPT-4 (OpenAI, 2023) to cre-
ate an instruction dataset UNICODER-INSTRUCT

comprising natural-language questions, code so-
lutions, and the corresponding universal code, as
shown in Figure 1. Then, the UNICODER model
is built by performing instruction tuning (Wei
et al., 2022a) on multi-task learning objectives,
including zero-shot question-answer generation
(question→code), question-universal-code gen-
eration (question→UniCode→code), universal-
code-solution translation (UniCode→code), and
Universal-code-of-Thought (UoT) objectives. In
UoT, the model is required to generate the universal
code before the executable code.

UNICODER is evaluated on the Python bench-
mark (Humaneval (Chen et al., 2021) and
MBPP (Austin et al., 2021)) and the extended
multilingual benchmark MultiPL-E. The results
demonstrate that UNICODER consistently achieves
state-of-the-art performance across all languages,
notably surpassing the previous baselines. Further-
more, the ablation study verifies the efficacy of
the proposed method, and extra discussions pro-
vide insights into the effect of our method. The
contributions are summarized as follows:

• We introduce the universal code UniCode,
which is agnostic to programming languages,
allowing LLMs to grasp the essence of algo-
rithms step by step. In addition, the instruction
dataset UNICODER-INSTRUCT is collected
and provided for follow-up research.

• We propose UNICODER, a code generation
method that uses multi-task learning objec-
tives to fine-tune the code LLMs with the
help of UniCode. The objectives include
question-answer generation (QA), question-
universal-code generation (QP), universal-
code-answer translation (PA), and Universal-
code-of-Thought (UoT).

• As extensive experiments show, our method

Definition of Universal Code:
1. Comments: Use `//` for single-line
comments and `/* ... */` for multi-
line comments.
2. Variables: Choose clear, type-free
names for variables.
3. Input/Output: Keep input/output
straightforward.
4. Conditionals: Employ `IF`, `ELSIF`,
and `ELSE` with proper indentation.
5. Loops: Use `FOR`, `WHILE`, or
`DO...WHILE` loops, specifying
conditions and indenting code.
6. Functions/Procedures: Name them
descriptively and consider parameters.
7. Formatting: Maintain consistent 2-4
space indentation for clarity.

Example:
```pseudocode
//This is the QuickSort algorithm 
which sorts an array by recursively 
partitioning it around a pivot.
QUICKSORT(Arr[], LOW, HIGH) {

if (LOW < HIGH) {
PIVOT = PARTITION(Arr, LOW, 

HIGH);
QUICKSORT(ARR, LOW, PIVOT – 1);
QUICKSORT(ARR, PIVOT + 1, HIGH);

}
}
```

Figure 2: Definition of the universal code.

UNICODER consistently outperforms the pre-
vious baselines on different benchmarks, in-
cluding HumanEval, MBPP, and MultiPL-E.
To further verify the effectiveness of the uni-
versal code, we propose UNICODER-BENCH

to test the capabilities of code LLMs.

2 UNICODER-INSTRUCT

Definition of Universal Code. Universal code
is designed for expressing algorithms in a form
that is easily understood by humans, blending pro-
gramming language syntax with natural language
descriptions and mathematical notation to outline
the steps of an algorithm without the complexity
of full coding details. It omits machine-specific
implementations to focus on the core logic, making
it a popular choice for documentation in educa-
tional materials and the preliminary design phases
of software development. By abstracting away
from the intricacies of actual code, pseudocode
facilitates clear communication of algorithmic con-
cepts across various programming environments.
The definition of the universal code, as shown in
Figure 2, is based on the following principles:

• Comments: Provide explanations and context
for code segments, making it easier for others
to understand the intent and functionality.

1813

{Definition of Universal Code}
Question
{Question}
Response
{Answer}
Your Task
Please combine the above Question and
Response to comply with the pseudocode
standard to write the corresponding
pseudocode of solution. Adopt a meticulous
methodology, breaking down the generation
process into manageable steps. Just output
the generated pseudocode for the solution
and do not include the Question and
Response in the output.

The output format is as follows, Use
```pseudocode to put the generated 
pseudocode in markdown quotes:

```pseudocode
{{Offers a pseudocode version of the
solution.}}
```

Figure 3: Prompt of generating UniCode.

• Variables: Enhance code readability and
maintainability by using meaningful names
that convey the purpose of the variables with-
out relying on data type specifications.

• Input/Output: Simplify the interaction with
data entering and leaving the system, ensuring
these operations are clear and easy to trace.

• Conditionals: Clarify decision-making pro-
cesses within the code by using structured and
indented conditional statements that define
clear execution paths.

• Loops: Facilitate the repetition of code blocks
in a controlled manner, with clearly defined
start and end conditions, making the iterative
processes understandable.

• Functions/Procedures: Increase modularity
and reusability by naming functions and pro-
cedures descriptively, and by using parameters
effectively to encapsulate functionality.

• Formatting: Improve the overall visual orga-
nization of the code by applying consistent
indentation, which helps in delineating hierar-
chical structures and logical groupings within
the code.

Construction From Instruction Dataset. For a
programming language L, given the existing code

instruction pair (qα, aα) ∈ DL
s , where qα and aα

are question and answer from DL
s , we create the

universal code instruction dataset DL
uα

by prompt-
ing LLMs to generate the universal code pα and
then add (qα, aα, pα) into DL

uα
. Figure 2 shows the

definition of the code universal and Figure 3 is the
prompt for LLMs to generate UniCode. {Defini-
tion of Universal Code}, {Question}, and {Answer}
denote the slots for definition of the universal code
pα, the question of the instruction data qα, and the
answer of the instruction aα, respectively. Given K
different programming languages Lall = {Lk}Kk=1,
the multilingual programming instruction dataset
with the universal code Duα = {DLk

uα
}Kk=1 are

created for supervised fine-tuning (SFT) (Ouyang
et al., 2022). In this work, we adopt the open-
source instruction dataset.

Construction From Code Snippets. For the un-
supervised data (code snippets) widely existing on
many websites (e.g., GitHub), we also construct
the instruction dataset with the universal code from
raw code snippets. Specifically, we ask the LLM
to generate the question qβ and the corresponding
code answer aβ pair based on the original code
snippet c using the prompt “Please generate the
self-contained question and answer based on the
given code snippet”. Then, we generate UniCode
pβ and construct (qβ, aβ, pβ) triplets the same way
as in Paragraph 2. In addition, an LLM scorer
is applied to filter out the low-quality (qβ, aβ, pβ)
triplets. Therefore, given raw code snippets of
different programming languages Lk ∈ {Lk}Kk=1,
we can construct instruction dataset with the uni-
versal code Duβ

= {DLk
uβ

}Kk=1 directly from such
unsupervised data. Finally, we combine these two
instruction datasets to obtain Du = Duα ∪ Duβ

,
where DLk

u = D
u
Lk
α

∪ D
u
Lk
β

for each program

langauge Lk ∈ Lall.

Evaluation Task for Universal Code. To test the
capability of the LLMs in generating UniCode
from questions and translating UniCode into an-
swers, we design a code reconstruction task for
evaluation. Given the code snippet c, we require
the LLM to generate UniCode p and then trans-
late it into the code c′. The evaluation metric is
not the similarity between c and c′ but whether the
restored code c′ can pass the test cases. We expand
the HumanEval and MBPP datasets to create our
benchmark UNICODER-BENCH comprising 164
HumanEval samples and 500 MBPP test samples.

1814



Universal Code

Problem Description: Write a for 
loop that iterates from 1 to 10 and 
prints out the current number on 
each iteration.

Javascript:
for (let i = 1; i <= 10; i++){

console.log(i);
}

Python:
for i in range(1, 11):

print(i)

C#:
for (int i = 1; i <= 10; i++)
{

Console.WriteLine(i);
}

Code Summarization: 
Each of these loops will print 
out the numbers from 1 to 10, 
inclusive, on separate lines or 
to the console.

C++:
for (int i = 1; i <= 10; ++i){

std::cout << i << std::endl;
}

Javascript:
for (let i = 1; i <= 10; i++){

console.log(i);
}

Python:
for i in range(1, 11):

print(i)

C#:
for (int i = 1; i <= 10; i++)
{

Console.WriteLine(i);
}

C++:
for (int i = 1; i <= 10; ++i){

std::cout << i << std::endl;
}

Universal Code N:
// This loop prints 
numbers from 1 to 10
FOR i = 1 TO 10 DO

// Output the 
current value of i

PRINT(i)
ENDFOR

Universal Code N:
counter = 1
WHILE counter <= 10 DO 

PRINT counter 
INCREMENT counter 

END WHILE

Multilingual Code &
Problem Solution

(a) Universal Code

Universal Code

Code LLM Step 1

Multilingual Code

Universal Code
Step 2

Multilingual Code &
Problem Solution

Code LLM

(b) Framework

+

Figure 4: Overview of UNICODER. (a) The function of universal code UniCode; (b) The framework of our method
UNICODER. The universal code as the intermediate representation, our proposed framework can support code
generation, code translation, and code summarization. In (a), the LLM encodes the code snippets of multilingual
programming languages or the problem description questions into UniCode. Then UniCode is translated into the
target output, i.e., the executable code of multilingual programming languages with a descriptive code summarization.
In (b), we first ask the LLM to generate UniCode with few-shot prompts. In the second stage, the instruction
dataset, containing questions, answers, and UniCode, is fed into the code LLM for fine-tuning.

3 UNICODER

3.1 Model Overview

In Figure 4, we first define the concept of the uni-
versal code with the essential components and then
prompt the LLM to generate UniCode p based
on the existing instruction data (questions q and
answers a) and the raw code snippets c. UniCode
is regarded as the intermediate representation for
different tasks, including code generation, code
translation, and code summarization. Our proposed
model UNICODER is trained on the instruction
dataset Du with the multilingual objectives to fully
unleash the potential of UniCode.

3.2 Code LLM with Universal Code

Given the instructions dataset with K multilingual
programming languages Du = {DLk

u }Kk=1, the pre-
trained code LLM M trained on Du can support
Universal-code-of-Thought (UoT). It can be de-
scribed as:

P (p, a|q) = P (p|q;M)P (a|q, p;M) (1)

where q (question) and a (answer) are the instruc-
tion pair from Du. Given the question q, the code
LLM M first generates UniCode p and then out-
puts the final answer a, where p provides key algo-
rithm ideas with natural language comments.

3.3 Multi-task Supervised Fine-tuning
To fully unleash the potential of the UniCode, we
design multiple objectives to enhance the under-
standing and generation capability of code LLM.

Multi-task Fine-tuning.

Lall = Lqa + Lqp + Lpa + Luot (2)

where Lqa is the question-answer generation objec-
tive, Lqp is the question-universal-code generation
objective, Lpa is the universal-code-answer trans-
lation objective, and Luot is the Universal-code-of-
Thought (UoT) objective.

Here, we introduce all four training objectives.
For all the following objectives, the multilingual
corpora Du = {DLk

u }Kk=1 are given. M is the
code LLM and K is the number of programming
languages.

Question-Answer Objective. The training ob-
jective Lqa of the standard instruction fine-tuning
can be described as:

Lqa = −
K∑

k=1

E
q,a∼D

Lk
u

[logP (a|q;M)] (3)

where q and a are the question and answer pair.

Question-Universal-Code Objective. The train-
ing objective Lqp of the auxiliary universal code

1815



generation task can be described as:

Lqp = −
K∑

k=1

Eq,p∼DLk
[logP (p|q;M)] (4)

where q and p are the question and UniCode.

Universal-Code-Answer Objective. The train-
ing objective Lpa of generating the executable code
answer from UniCode can be described as:

Lpa = −
K∑

k=1

Ep,a∼DLk
[logP (a|p;M)] (5)

where p and a are UniCode and the answer.

Universal-Code-of-Thought Objective. The
training objective Luot of generating UniCode
and then the executable code answer can be
described as:

Luot = −
K∑

k=1

Eq,p,a∼DLk
[logP (p, a|q;M)] (6)

where q, a, and p are the question, answer, and
UniCode, respectively.

4 Experimental Setup

4.1 Instruction Dataset

GPT-4 (gpt-4-1106-preview) (OpenAI,
2023) is used as the foundation model to generate
the UNICODER-INSTRUCT. We randomly extract
code snippets within 1024 tokens from the
StarCoder dataset (Li et al., 2023b) and let GPT-4
summarize the code snippets as the universal code.
Based on each code snippet and the corresponding
universal code, a self-contained coding problem
with a correct solution is created.

4.2 Baselines

Proprietary Models. Based on a neural architec-
ture known as generative pre-trained Transform-
ers (GPT) (Vaswani et al., 2017; Radford et al.,
2018), GPT-3.5 and GPT-4 are LLMs trained on
massive datasets of text, code, math equations, and
more. They are also trained to follow instruc-
tions (Ouyang et al., 2022), which allows them
to generate human-like responses. We use GPT-
3.5 Turbo and GPT-4 as the proprietary models
because they perform excellently in various code
understanding and generation tasks.

Open-Source Models. To narrow the gap be-
tween open-source and closed-source models, a se-
ries of open-source models and instruction datasets
are proposed to improve code LLMs and bootstrap
their instruction-following ability. Starcoder (Li
et al., 2023b), Code Llama (Rozière et al., 2023),
and DeepSeek-Coder (Guo et al., 2024a) with dif-
ferent model sizes are introduced into the based
model. OctoCoder (Muennighoff et al., 2023),
WiazrdCoder (Luo et al., 2023), MagiCoder (Wei
et al., 2023), and WaveCoder (Yu et al., 2023) are
further fine-tuned on these based code LLMs.

Decontainmation. We apply data decontamina-
tion before training our UNICODER models to
decontaminate the code snippets from the star-
coder data (Li et al., 2023b), by removing ex-
act matches from HumanEval (Chen et al., 2021),
MBPP (Austin et al., 2021), DS-1000 (Lai et al.,
2023), and GSM8K (Cobbe et al., 2021).

4.3 Evaluation Benchmark

HumanEval. The HumanEval test set (Chen
et al., 2021) is a crafted collection of 164 Python
programming problems to test the abilities of code
generation models. For each problem, there are
roughly 9.6 test cases to check whether the gen-
erated code works as intended. Humaneval has
become one of the most popular benchmarks to
measure how well these code-writing AI models
perform, making it a key tool in the field of AI and
machine learning for coding.

MBPP. The MBPP dataset (Austin et al., 2021),
comprising approximately 1,000 Python program-
ming challenges sourced from a crowd of contrib-
utors, is tailored for beginners in programming,
focusing on core principles and the usage of the
standard library. The MBPP test set comprised of
500 problems is selected to evaluate the few-shot
inference of the code LLMs.

MultiPL-E. The MuliPL-E test set (Cassano
et al., 2022) translates the original HumanEval
test set to other 18 programming languages, i.e.,
Javascript, Java, Typescript, C++, and Rust. We
use the MultiPL-E to evaluate the multilingual ca-
pabilities of the code LLMs.

4.4 Evaluation Metrics

Pass@k. We adopt the Pass@k metric (Chen
et al., 2021) to improve the reliability of our evalu-
ation. We then count the total number of success-

1816



fully passing test cases, denoted as k, to compute
the Pass@k, thereby enhancing the accuracy and
consistency of the performance assessment.

Pass@k = E

[
1−

(
n

k−c

)
(
n
k

)
]

(7)

where n is the total number of generated samples
for each problem, and c is the number of correct
generated code snippets passing all the test cases
(n > k ≥ c).

4.5 Impletmentation Details
We expand the open-source Evol-Instruct dataset
evol-code-alpaca-v1 (Xu et al., 2023) with
nearly 110K samples into the instruction dataset
with the universal code. For the code snippets
collected from starcoderdata 2, we choose 5K
code snippets of each language (Python, Javascript,
C++, Java, Rust, and Go) to construct the syn-
thetic instruction dataset with universal code. Fi-
nally, we obtain the instruction dataset UNICODER-
INSTRUCT contains nearly 140K training sam-
ples. Code-Llama and DeepSeek-Coder-Base are
used as the foundational code LLMs for super-
vised fine-tuning (SFT). We fine-tune these foun-
dation LLMs on nearly 150K samples generated
from evol-codealpaca-v1 and the starcoder
pre-training data. UNICODER is fine-tuned on
Standford_Alpaca3 with 8 NVIDIA A100-
80GB GPUs. The learning rate first increases into
8× 10−5 with 50 warmup steps and then adopts a
cosine decay scheduler. We adopt the Adam opti-
mizer (Kingma and Ba, 2015) with a global batch
size of 128 samples, truncating sentences to 1536
tokens.

5 Results and Discussion

5.1 Main Results
Python Code Generation. Table 1 shows that
UNICODER significantly beats previous strong
open-source baselines using UoT, closing the
gap with GPT-3.5 and GPT-4. Magicoder (Wei
et al., 2023) and Wavecoder (Yu et al., 2023) both
prove the effectiveness of instruction datasets from
code snippets. Further, UNICODER outperforms
the WizardCoder with 15B parameters and Evol-
Instruct techniques with the help of the UniCode.

2https://huggingface.co/datasets/
bigcode/starcoderdata

3https://github.com/tatsu-lab/
stanford_alpaca

Multilingual Code Understanding. Table 2
shows that UNICODER significantly outperforms
strong baselines Magicoder and WaveCoder, which
both leverage the code snippets to construct the
instruction dataset. Given the multilingual correct
code snippet, the code LLM is tasked to generate
an explanation of the code and then regenerate the
code only based on its own explanation. For the
different backbones (Code Llama and Deepseek-
Coder), our method beats most previous methods,
especially in other languages, which demonstrates
that UNICODER-INSTRUCT can bring the capabil-
ity of multilingual understanding and generation.

5.2 Discussion
Ablation Study. To verify the efficacy of each
component, we conduct the ablation study step by
step on HumanEval and MBPP. In Table 3, we ob-
serve that removing the multi-tasks objective (only
keeping the UoT objective: Equation 6) will have a
−1.6 performance drop in HumanEval and a −1.3
drop in MBPP. Removing UniCode will further
degrade the performance. The results support the
effectiveness of each component of UNICODER.

Effect on Universal Code. To discuss the effect
of the different formats of the universal code, we
use different definitions of universal code for UNI-
CODER. Specifically, we randomly sample 5K
samples to generate the instruction dataset with
different formats of UniCode.

• UniCode 1: It describes the naming conven-
tions, variable declaration, operators, condi-
tional statements, loops, and function struc-
ture that pseudocode should have.

• UniCode 2: It separates the first set of stan-
dards and provides code examples for each,
instead of applying them all together in the
examples.

• UniCode 3: It describes the code structure,
variable rules, control structures, functions,
comments, and assignment rules that pseu-
docode should have.

• UniCode 4: It is similar to the first standard
but specifies type-free names for variables.

• UniCode 5: It provides an abstract, high-
level architectural description, without setting
standards for the code itself.

• UniCode 6: It uses latex algorithm and algo-
rithmic packages for description.

1817

https://huggingface.co/datasets/bigcode/starcoderdata
https://huggingface.co/datasets/bigcode/starcoderdata
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca


Models Base Model Params Instruction Data Model Weight HumanEval MBPP

Proprietary Models

GPT-3.5 - - - - 72.6 81.6
GPT-4 - - - - 85.4 83.0

Open-source Models

StarCoder (Li et al., 2023b) - 15B ✗ ✓ 33.6 43.3
WizardCoder (Luo et al., 2023) StarCoder 15B ✓ ✓ 57.3 51.8
OctoCoder (Muennighoff et al., 2023) StarCoder 15B ✓ ✓ 46.2 43.5
WaveCoder-SC (Muennighoff et al., 2023) StarCoder 15B ✓ ✓ 50.5 51.0

Code-Llama (Rozière et al., 2023) - 7B ✗ ✓ 33.5 41.4
Code-Llama-Instruct (Rozière et al., 2023) Code Llama 7B ✓ ✓ 34.8 44.4
WaveCoder-CL (Yu et al., 2023) Code Llama 7B ✓ ✓ 48.1 47.2
Magicoder-CL (Wei et al., 2023) Code Llama 7B ✓ ✓ 60.4 64.2
UNICODER (our method) Code Llama 7B ✓ ✓ 65.4 65.2

DeepseekCoder (Guo et al., 2024a) - 6.7B ✗ ✓ 49.4 60.6
WaveCoder-DS (Yu et al., 2023) Deepseek-Coder 6.7B ✓ ✓ 64.0 62.8
UNICODER (our method) Deepseek-Coder 6.7B ✓ ✓ 70.6 64.3

Table 1: Evaluation results of Pass@1 on the HumanEval and MBPP benchmark. We use self-reported scores
whenever available. All methods use greedy decoding and We use the reported scores of the previous work.

Model Params
Programming Language

Java Javascript C++ PHP Swift Rust Avg.

Proprietary models

GPT-3.5 - 69.2 67.1 63.4 60.9 - - -
GPT-4 - 81.6 78.0 76.4 77.2 - - -

Open-source models

CodeLlama (Rozière et al., 2023) 34B 40.2 41.7 41.4 40.4 35.3 38.7 39.6
CodeLlama-Python (Rozière et al., 2023) 34B 39.5 44.7 39.1 39.8 34.3 39.7 39.5
CodeLlama-Instruct (Rozière et al., 2023) 34B 41.5 45.9 41.5 37.0 37.6 39.3 40.5
WizardCoder-CL (Luo et al., 2023) 34B 44.9 55.3 47.2 47.2 44.3 46.2 47.5

StarCoderBase (Li et al., 2023b) 15B 28.5 31.7 30.6 26.8 16.7 24.5 26.5
StarCoder (Li et al., 2023b) 15B 30.2 30.8 31.6 26.1 22.7 21.8 27.2
WizardCoder-SC (Luo et al., 2023) 15B 35.8 41.9 39.0 39.3 33.7 27.1 36.1

CodeLlama (Rozière et al., 2023) 7B 29.3 31.7 27.0 25.1 25.6 25.5 27.4
CodeLlama-Python (Rozière et al., 2023) 7B 42.4 51.9 42.3 46.5 29.4 33.6 29.7
UNICODER (Our method) 7B 46.4 50.2 39.2 40.4 41.2 32.4 41.6

Table 2: Evaluation results of Pass@1 (%) performance on the MultiPL-E benchmark. The baseline results are
partly from the previous work (Wei et al., 2023).

ID Methods HumanEval MBPP

① UNICODER 70.6 64.3
② ① - Multi-tasks Objective 67.4 60.2
③ ② - Universal Code 66.8 59.8

Table 3: Ablation study of our proposed method on
HumanEval and MBPP. UNICODER is fine-tuned on the
UNICODER-INSTRUCT with the multi-task objectives.

In Table 4, we can observe that the evaluation
results of UniCode 1∼UniCode 4 have better
performance. Compared to the universal code
format UniCode 5 and UniCode 6, UniCode
1∼UniCode 4 has a clear definition and common
structure, which brings more support for code gen-
eration. Notably, the experiment ⑦ performs the
best by combing the training data of ①∼④. The
experimental results show that the concrete defi-

ID Methods HumanEval MBPP

① UniCode 1 53.2 51.5
② UniCode 2 52.8 51.2
③ UniCode 3 53.5 50.5
④ UniCode 4 53.8 49.5
⑤ UniCode 5 49.5 50.2
⑥ UniCode 6 48.2 48.4
⑦ UniCode 1∼4 55.5 52.2

Table 4: Evaluation results of our method with different
formats of the universal code.

nition of UniCode and the combination of it can
effectively improve the model performance.

5.3 Code-UniCode-Code

To compare the capabilities of different code
LLMs, we create a test set by prompting the code

1818



Method Params Python Other Languages

Code-Llama-Instruct 7B 33.3 26.2
Code-Llama-Alpaca 7B 44.2 29.1

UNICODER 7B 45.2 31.3

Table 5: Pass@1 scores of our method UNICODER and
two Code-Llama baselines for Code-UniCode-Code.

LLM to generate UniCode and translate it into
the executable code. We check the correctness
of each translated code with the test cases, de-
noted as Pass@1 of the universal code. Code-
Llama-7B is fine-tuned on the Code Alpaca dataset
and our dataset UNICODER-INSTRUCT separately.
The results of fine-tuned Code-Llama models on
UNICODER-BENCH are shown in Table 5. Our
method UNICODER is more accurate in passing the
test cases than the Code-Llama baselines, demon-
strating its excellent code understanding and gener-
ation abilities.

6 Related Work

Code Understanding and Generation. Code un-
derstanding and generation as the key tasks to sub-
stantially facilitate the project development pro-
cess, including code generation (Chen et al., 2021;
Austin et al., 2021; Zhang et al., 2023), code trans-
lation (Szafraniec et al., 2023), automated test-
ing (Deng et al., 2023), bug fixing (Muennighoff
et al., 2023), code refinement (Liu et al., 2023c),
code question answering (Liu and Wan, 2021), and
code summarization (Ahmad et al., 2020). Re-
searchers Chai et al. (2023) have undertaken ex-
tensive endeavors to bridge natural language and
programming languages. With less ambiguous
prompt styles, Mishra et al. (2023) using pseu-
docode improves the performance of NLP tasks.
Oda et al. (2015) uses traditional machine learn-
ing to achieve code to pseudocode conversion.
Jiang et al. (2022) also shows that designers and
programmers can speed up the prototyping pro-
cess, and ground communication between collab-
orators via prompt-based prototyping. To verify
that the generated code is correct, there are some
code synthesis evaluation frameworks, including
EvalPlus (Liu et al., 2023b), HumanEval (Chen
et al., 2021), HumanEval-X (Zheng et al., 2023),
and MBPP (Austin et al., 2021).

Large Language Models for Code. Since Code-
BERT (Feng et al., 2020) first connected code tasks
with pre-trained models, large language models
for code have developed rapidly, demonstrating ex-

traordinary performance on almost all code tasks,
rather than a single task. Prominent large models
include Codex (Chen et al., 2021), AlphaCode (Li
et al., 2022), SantaCoder (Allal et al., 2023), Star-
coder (Li et al., 2023b), WizardCoder (Luo et al.,
2023), InCoder (Fried et al., 2022), CodeT5 (Wang
et al., 2021), CodeGeeX (Zheng et al., 2023),
Code Llama (Rozière et al., 2023), and Code-
QWen (Bai et al., 2023). To improve the perfor-
mance of code generation, researchers used opti-
mized prompts (Liu et al., 2023a; Reynolds and
McDonell, 2021; Zan et al., 2023; Beurer-Kellner
et al., 2023), bring test cases (Chen et al., 2023)
and collaborative roles (Dong et al., 2023). There
are also some related studies on using large lan-
guage models for other code tasks, such as dy-
namic programming (Dagan et al., 2023), com-
piler optimization (Cummins et al., 2023), multi-
lingual prompts (Di et al., 2023), and program of
thoughts (Chen et al., 2022) (PoT).

Chain-of-Thought Prompting. To unleash the
potential of LLMs in addressing complex reason-
ing tasks, chain-of-thought (CoT) prompting (Wei
et al., 2022b; Kojima et al., 2022) extends in-
context learning with step-by-step reasoning pro-
cesses, which handles complex reasoning tasks in
the field of the code and mathematics by encour-
aging them to engage in step-by-step reasoning
processes. Following this line of research, X-of-
Thought (XoT) reasoning (CoT and its structural
variants further) (Chai et al., 2024; Yao et al., 2023;
Li et al., 2023a; Lei et al., 2023; Guo et al., 2023; Ji
et al., 2024; Guo et al., 2024b) further expands the
capabilities and applications of LLMs in complex
reasoning and planning scenarios.

Intermediate Repersentation In the field of nat-
ural language processing, there exist many works
using intermediate representation (Gan et al., 2021;
Yang et al., 2022, 2024, 2019, 2020b,a; Liang et al.,
2024), such as text generation and translation. The
universal code is used as the intermediate repre-
sentation, which typically omits details that are
essential for the machine implementation of the
algorithm. We perform the coarse-to-fine pattern
for the code generation and translation, where the
universal code first summarizes the algorithm pro-
cess and then the programming language gives the
accurate solution. The Unicode provides explicit
help for code generation such as Chain-of-thought
in LLM.

1819



7 Conclusion

In this work, we put forth a state-of-the-art
framework UNICODER for both code translation
and code generation. Using the universal code
UniCode as the intermediate representation, we
effectively bridge different programming languages
and facilitate code tasks. In addition, we collect a
dataset UNICODER-INSTRUCT with 140K instruc-
tion instances from existing instruction datasets
and the raw code snippets. After being fine-tuned
on UNICODER-INSTRUCT with multi-task learn-
ing objectives, our model generates UniCode and
translates it into the final answer (executable code).
The evaluation results on code translation and gen-
eration tasks demonstrate that our method signifi-
cantly improves the generalization ability, showing
the efficacy and superiority of UNICODER.

Limitations

We acknowledge the following limitations of this
study: (1) The evaluation focuses on benchmark
datasets (Humaneval, MBPP, and MultiPL-E), and
the model’s effectiveness in real-world program-
ming scenarios or industry applications is not fully
explored. (2) Our method is developed and eval-
uated primarily on programming language bench-
marks. Its effectiveness in other domains or for non-
programming-related tasks is not assessed, which
limits the generalizability of our findings.

Acknowledege

This work was supported in part by the Na-
tional Natural Science Foundation of China (Grant
Nos. U1636211, U2333205, 61672081, 62302025,
62276017), a fund project: State Grid Co., Ltd.
Technology R&D Project (ProjectName: Research
on Key Technologies of Data Scenario-based Se-
curity Governance and Emergency Blocking in
Power Monitoring System, Proiect No.: 5108-
202303439A-3-2-ZN), the 2022 CCF-NSFOCUS
Kun-Peng Scientific Research Fund and the Open-
ing Project of Shanghai Trusted Industrial Control
Platform and the State Key Laboratory of Com-
plex & Critical Software Environment (Grant No.
SKLSDE-2021ZX-18).

References
Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,

and Kai-Wei Chang. 2020. A transformer-based ap-
proach for source code summarization. In Proceed-

ings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online,
July 5-10, 2020, pages 4998–5007. Association for
Computational Linguistics.

Loubna Ben Allal, Raymond Li, Denis Kocetkov,
Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, et al. 2023. SantaCoder: Don’t
reach for the stars! arXiv preprint arXiv:2301.03988.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609, abs/2309.16609.

Luca Beurer-Kellner, Marc Fischer, and Martin T.
Vechev. 2023. Prompting is programming: A query
language for large language models. Proc. ACM
Program. Lang., 7(PLDI):1946–1969.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, et al. 2022. Multipl-e: A scal-
able and extensible approach to benchmarking neural
code generation. arXiv preprint arXiv:2208.08227.

Linzheng Chai, Jian Yang, Tao Sun, Hongcheng Guo,
Jiaheng Liu, Bing Wang, Xinnian Liang, Jiaqi Bai,
Tongliang Li, Qiyao Peng, and Zhoujun Li. 2024.
xcot: Cross-lingual instruction tuning for cross-
lingual chain-of-thought reasoning. arXiv preprint
arXiv:2401.07037, abs/2401.07037.

Yekun Chai, Shuohuan Wang, Chao Pang, Yu Sun,
Hao Tian, and Hua Wu. 2023. Ernie-code: Be-
yond english-centric cross-lingual pretraining for pro-
gramming languages. In Findings of the Association
for Computational Linguistics: ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 10628–10650. Asso-
ciation for Computational Linguistics.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023.
Codet: Code generation with generated tests. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

1820

https://doi.org/10.18653/V1/2020.ACL-MAIN.449
https://doi.org/10.18653/V1/2020.ACL-MAIN.449
https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2309.16609
https://doi.org/10.1145/3591300
https://doi.org/10.1145/3591300
https://doi.org/10.48550/ARXIV.2401.07037
https://doi.org/10.48550/ARXIV.2401.07037
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.676
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.676
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.676
https://openreview.net/pdf?id=ktrw68Cmu9c


Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. arXiv
preprint arXiv:2107.03374, abs/2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, abs/2211.12588.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Chris Cummins, Volker Seeker, Dejan Grubisic,
Mostafa Elhoushi, Youwei Liang, Baptiste Rozière,
Jonas Gehring, Fabian Gloeckle, Kim M. Hazelwood,
Gabriel Synnaeve, and Hugh Leather. 2023. Large
language models for compiler optimization. arXiv
preprint arXiv:2309.07062, abs/2309.07062.

Gautier Dagan, Frank Keller, and Alex Lascarides. 2023.
Dynamic planning with a LLM. arXiv preprint
arXiv:2308.06391, abs/2308.06391.

Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang,
Shizhuo Dylan Zhang, Shujing Yang, and Lingming
Zhang. 2023. Large language models are edge-case
fuzzers: Testing deep learning libraries via fuzzgpt.
arXiv preprint arXiv:2304.02014, abs/2304.02014.

Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting
Cai, Yang Cao, Chaoyu Chen, Dajun Chen, Hongwei
Chen, Liang Chen, Gang Fan, Jie Gong, Zi Gong,
Wen Hu, Tingting Guo, Zhichao Lei, Ting Li, Zheng
Li, Ming Liang, Cong Liao, Bingchang Liu, Jiachen
Liu, Zhiwei Liu, Shaojun Lu, Min Shen, Guangpei
Wang, Huan Wang, Zhi Wang, Zhaogui Xu, Jiawei
Yang, Qing Ye, Gehao Zhang, Yu Zhang, Zelin Zhao,
Xunjin Zheng, Hailian Zhou, Lifu Zhu, and Xiany-
ing Zhu. 2023. Codefuse-13b: A pretrained multi-
lingual code large language model. arXiv preprint
arXiv:2310.06266, abs/2310.06266.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2023.
Self-collaboration code generation via chatgpt. arXiv
preprint arXiv:2304.07590, abs/2304.07590.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and nat-
ural languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1536–1547. Association
for Computational Linguistics.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida I.
Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen
tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022.
Incoder: A generative model for code infilling
and synthesis. arXiv preprint arXiv:2204.05999,
abs/2204.05999.

Shiwei Gan, Yafeng Yin, Zhiwei Jiang, Lei Xie, and
Sanglu Lu. 2021. Skeleton-aware neural sign lan-
guage translation. In MM ’21: ACM Multimedia
Conference, Virtual Event, China, October 20 - 24,
2021, pages 4353–4361. ACM.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. 2024a. Deepseek-coder:
When the large language model meets programming–
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Hongcheng Guo, Jian Yang, Jiaheng Liu, Liqun Yang,
Linzheng Chai, Jiaqi Bai, Junran Peng, Xiaorong
Hu, Chao Chen, Dongfeng Zhang, Xu Shi, Tieqiao
Zheng, Liangfan Zheng, Bo Zhang, Ke Xu, and Zhou-
jun Li. 2023. OWL: A large language model for IT
operations. CoRR, abs/2309.09298.

Hongcheng Guo, Wei Zhang, Anjie Le, Jian Yang, Jia-
heng Liu, Zhoujun Li, Tieqiao Zheng, Shi Xu, Run-
qiang Zang, Liangfan Zheng, et al. 2024b. Lemur:
Log parsing with entropy sampling and chain-of-
thought merging. arXiv preprint arXiv:2402.18205.

Hangyuan Ji, Jian Yang, Linzheng Chai, Chaoren Wei,
Liqun Yang, Yunlong Duan, Yunli Wang, Tianzhen
Sun, Hongcheng Guo, Tongliang Li, et al. 2024. Sev-
enllm: Benchmarking, eliciting, and enhancing abili-
ties of large language models in cyber threat intelli-
gence. arXiv preprint arXiv:2405.03446.

Ellen Jiang, Kristen Olson, Edwin Toh, Alejandra
Molina, Aaron Donsbach, Michael Terry, and Car-
rie J. Cai. 2022. Promptmaker: Prompt-based proto-
typing with large language models. In CHI ’22: CHI
Conference on Human Factors in Computing Systems,
New Orleans, LA, USA, 29 April 2022 - 5 May 2022,
Extended Abstracts, pages 35:1–35:8. ACM.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,

1821

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://doi.org/10.48550/ARXIV.2211.12588
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.48550/ARXIV.2309.07062
https://doi.org/10.48550/ARXIV.2309.07062
https://doi.org/10.48550/ARXIV.2308.06391
https://doi.org/10.48550/ARXIV.2304.02014
https://doi.org/10.48550/ARXIV.2304.02014
https://doi.org/10.48550/ARXIV.2310.06266
https://doi.org/10.48550/ARXIV.2310.06266
http://arxiv.org/abs/2304.07590
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://doi.org/10.1145/3474085.3475577
https://doi.org/10.1145/3474085.3475577
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://doi.org/10.48550/ARXIV.2309.09298
https://doi.org/10.48550/ARXIV.2309.09298
https://doi.org/10.1145/3491101.3503564
https://doi.org/10.1145/3491101.3503564
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980


ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems 35: An-
nual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau Yih,
Daniel Fried, Sida I. Wang, and Tao Yu. 2023. DS-
1000: A natural and reliable benchmark for data sci-
ence code generation. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 18319–18345.
PMLR.

Bin Lei, Pei-Hung Lin, Chunhua Liao, and Caiwen
Ding. 2023. Boosting logical reasoning in large
language models through a new framework: The
graph of thought. arXiv preprint arXiv:2308.08614,
abs/2308.08614.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023a. Struc-
tured chain-of-thought prompting for code genera-
tion. arXiv preprint arXiv:2305.06599.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi,
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov,
Zhiruo Wang, Rudra Murthy V, Jason Stillerman,
Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa-
Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam
Singh, Sasha Luccioni, Paulo Villegas, Maxim Ku-
nakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hai-
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer-
nite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2023b. StarCoder: May the source
be with you! arXiv preprint arXiv:2305.06161,
abs/2305.06161.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando

de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-level code generation with
AlphaCode. arXiv preprint arXiv:2203.07814,
abs/2203.07814.

Yaobo Liang, Quanzhi Zhu, Junhe Zhao, and Nan Duan.
2024. Machine-created universal language for cross-
lingual transfer. In Thirty-Eighth AAAI Conference
on Artificial Intelligence, AAAI 2024, Thirty-Sixth
Conference on Innovative Applications of Artificial
Intelligence, IAAI 2024, Fourteenth Symposium on
Educational Advances in Artificial Intelligence, EAAI
2014, February 20-27, 2024, Vancouver, Canada,
pages 18617–18625. AAAI Press.

Chao Liu, Xuanlin Bao, Hongyu Zhang, Neng Zhang,
Haibo Hu, Xiaohong Zhang, and Meng Yan. 2023a.
Improving chatgpt prompt for code generation. arXiv
preprint arXiv:2305.08360, abs/2305.08360.

Chenxiao Liu and Xiaojun Wan. 2021. CodeQA: A
question answering dataset for source code compre-
hension. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 16-20 November,
2021, pages 2618–2632. Association for Computa-
tional Linguistics.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023b. Is your code generated by chat-
gpt really correct? rigorous evaluation of large lan-
guage models for code generation. arXiv preprint
arXiv:2305.01210, abs/2305.01210.

Yue Liu, Thanh Le-Cong, Ratnadira Widyasari,
Chakkrit Tantithamthavorn, Li Li, Xuan-Bach Dinh
Le, and David Lo. 2023c. Refining ChatGPT-
generated code: Characterizing and mitigating code
quality issues. arXiv preprint arXiv:2307.12596,
abs/2307.12596.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. WizardCoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Mayank Mishra, Prince Kumar, Riyaz Bhat,
Rudra Murthy V, Danish Contractor, and Srikanth
Tamilselvam. 2023. Prompting with pseudo-code
instructions. arXiv preprint arXiv:2305.11790,
abs/2305.11790.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and
Shayne Longpre. 2023. OctoPack: Instruction tun-
ing code large language models. arXiv preprint
arXiv:2308.07124, abs/2308.07124.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig,
Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. 2015. Learning to generate

1822

http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://doi.org/10.48550/ARXIV.2308.08614
https://doi.org/10.48550/ARXIV.2308.08614
https://doi.org/10.48550/ARXIV.2308.08614
https://arxiv.org/abs/2305.06599
https://arxiv.org/abs/2305.06599
https://arxiv.org/abs/2305.06599
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.48550/arXiv.2305.06161
https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2203.07814
https://doi.org/10.1609/AAAI.V38I17.29824
https://doi.org/10.1609/AAAI.V38I17.29824
https://arxiv.org/abs/2305.08360
https://doi.org/10.18653/v1/2021.findings-emnlp.223
https://doi.org/10.18653/v1/2021.findings-emnlp.223
https://doi.org/10.18653/v1/2021.findings-emnlp.223
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://doi.org/10.48550/arXiv.2307.12596
https://doi.org/10.48550/arXiv.2307.12596
https://doi.org/10.48550/arXiv.2307.12596
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2305.11790
https://arxiv.org/abs/2305.11790
https://arxiv.org/abs/2308.07124
https://arxiv.org/abs/2308.07124
https://doi.org/10.1109/ASE.2015.36


pseudo-code from source code using statistical ma-
chine translation (T). In 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing, ASE 2015, Lincoln, NE, USA, November 9-13,
2015, pages 574–584. IEEE Computer Society.

OpenAI. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training. OpenAI blog.

Laria Reynolds and Kyle McDonell. 2021. Prompt
programming for large language models: Beyond the
few-shot paradigm. In CHI ’21: CHI Conference
on Human Factors in Computing Systems, Virtual
Event / Yokohama Japan, May 8-13, 2021, Extended
Abstracts, pages 314:1–314:7. ACM.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code Llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950.

Marc Szafraniec, Baptiste Rozière, Hugh Leather,
Patrick Labatut, François Charton, and Gabriel Syn-
naeve. 2023. Code translation with compiler repre-
sentations. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Ki-
gali, Rwanda, May 1-5, 2023. OpenReview.net.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. CodeT5: Identifier-aware unified
pre-trained encoder-decoder models for code un-
derstanding and generation. arXiv preprint
arXiv:2109.00859.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022a. Finetuned
language models are zero-shot learners. In The Tenth

International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022b. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code
is all you need. arXiv preprint arXiv:2312.02120,
abs/2312.02120.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and
Wen Wang. 2023. Codetransocean: A comprehen-
sive multilingual benchmark for code translation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, Singapore, December 6-10,
2023, pages 5067–5089. Association for Computa-
tional Linguistics.

Jian Yang, Hongcheng Guo, Yuwei Yin, Jiaqi Bai,
Bing Wang, Jiaheng Liu, Xinnian Liang, Linzheng
Chai, Liqun Yang, and Zhoujun Li. 2024. m3p:
Towards multimodal multilingual translation with
multimodal prompt. In Proceedings of the 2024
Joint International Conference on Computational
Linguistics, Language Resources and Evaluation,
LREC/COLING 2024, 20-25 May, 2024, Torino, Italy,
pages 10858–10871. ELRA and ICCL.

Jian Yang, Shuming Ma, Dongdong Zhang, Zhoujun Li,
and Ming Zhou. 2020a. Improving neural machine
translation with soft template prediction. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online,
July 5-10, 2020, pages 5979–5989. Association for
Computational Linguistics.

Jian Yang, Shuming Ma, Dongdong Zhang, Shuangzhi
Wu, Zhoujun Li, and Ming Zhou. 2020b. Alternat-
ing language modeling for cross-lingual pre-training.
In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pages
9386–9393. AAAI Press.

Jian Yang, Yuwei Yin, Shuming Ma, Dongdong Zhang,
Shuangzhi Wu, Hongcheng Guo, Zhoujun Li, and
Furu Wei. 2022. UM4: unified multilingual multiple
teacher-student model for zero-resource neural ma-
chine translation. In Proceedings of the Thirty-First

1823

https://doi.org/10.1109/ASE.2015.36
https://doi.org/10.1109/ASE.2015.36
https://arxiv.org/abs/2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://openai.com/research/language-unsupervised
https://openai.com/research/language-unsupervised
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://arxiv.org/abs/2308.12950
https://openreview.net/pdf?id=XomEU3eNeSQ
https://openreview.net/pdf?id=XomEU3eNeSQ
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2312.02120
https://doi.org/10.48550/ARXIV.2312.02120
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://aclanthology.org/2023.findings-emnlp.337
https://aclanthology.org/2023.findings-emnlp.337
https://aclanthology.org/2024.lrec-main.948
https://aclanthology.org/2024.lrec-main.948
https://aclanthology.org/2024.lrec-main.948
https://doi.org/10.18653/V1/2020.ACL-MAIN.531
https://doi.org/10.18653/V1/2020.ACL-MAIN.531
https://doi.org/10.1609/AAAI.V34I05.6480
https://doi.org/10.1609/AAAI.V34I05.6480
https://doi.org/10.24963/IJCAI.2022/618
https://doi.org/10.24963/IJCAI.2022/618
https://doi.org/10.24963/IJCAI.2022/618


International Joint Conference on Artificial Intelli-
gence, IJCAI 2022, Vienna, Austria, 23-29 July 2022,
pages 4454–4460. ijcai.org.

Ze Yang, Wei Wu, Jian Yang, Can Xu, and Zhoujun Li.
2019. Low-resource response generation with tem-
plate prior. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Nat-
ural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019, pages 1886–
1897. Association for Computational Linguistics.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601, abs/2305.10601.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qi-
ufeng Yin. 2023. Wavecoder: Widespread and
versatile enhanced instruction tuning with refined
data generation. arXiv preprint arXiv:2312.14187,
abs/2312.14187.

Daoguang Zan, Ailun Yu, Bo Shen, Jiaxin Zhang, Tai-
hong Chen, Bing Geng, Bei Chen, Jichuan Ji, Yafen
Yao, Yongji Wang, and Qianxiang Wang. 2023. Can
programming languages boost each other via in-
struction tuning? arXiv preprint arXiv:2308.16824,
abs/2308.16824.

Fengji Zhang, Bei Chen, Yue Zhang, Jin Liu, Daoguang
Zan, Yi Mao, Jian-Guang Lou, and Weizhu Chen.
2023. RepoCoder: Repository-level code comple-
tion through iterative retrieval and generation. arXiv
preprint arXiv:2303.12570, abs/2303.12570.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.
Codegeex: A pre-trained model for code generation
with multilingual evaluations on humaneval-x. arXiv
preprint arXiv:2303.17568, abs/2303.17568.

1824

https://doi.org/10.18653/V1/D19-1197
https://doi.org/10.18653/V1/D19-1197
https://doi.org/10.48550/ARXIV.2305.10601
https://doi.org/10.48550/ARXIV.2305.10601
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://arxiv.org/abs/2308.16824
https://arxiv.org/abs/2308.16824
https://arxiv.org/abs/2308.16824
https://doi.org/10.48550/arXiv.2303.12570
https://doi.org/10.48550/arXiv.2303.12570
https://doi.org/10.48550/ARXIV.2303.17568
https://doi.org/10.48550/ARXIV.2303.17568

