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Abstract

Intermediate reasoning or acting steps have
successfully improved large language models
(LLMs) for handling various downstream natu-
ral language processing (NLP) tasks. When ap-
plying LLMs for code generation, recent works
mainly focus on directing the models to artic-
ulate intermediate natural-language reasoning
steps, as in chain-of-thought (CoT) prompting,
and then output code with the natural language
or other structured intermediate steps. How-
ever, such output is not suitable for code trans-
lation or generation tasks since the standard
CoT has different logical structures and forms
of expression with the code. In this work, we
introduce the universal code (UniCode) as the
intermediate representation. It is a description
of algorithm steps using a mix of conventions
of programming languages, such as assignment
operator, conditional operator, and loop. Hence,
we collect an instruction dataset UNICODER-
INSTRUCT to train our model UNICODER on
multi-task learning objectives. UNICODER-
INSTRUCT comprises natural-language ques-
tions, code solutions, and the corresponding
universal code. The alignment between the in-
termediate universal code representation and
the final code solution significantly improves
the quality of the generated code. The exper-
imental results demonstrate that UNICODER
with the universal code significantly outper-
forms the previous prompting methods by a
large margin, showcasing the effectiveness of
the structural clues in pseudo-code.1

1 Introduction

The field of code translation and generation has
advanced significantly (Szafraniec et al., 2023;
Yan et al., 2023) with the advent of code-specific
large language models (LLMs). Code LLMs,
such as StarCoder (Li et al., 2023b) and Code-

∗Equal contribution.
†Corresponding Author.

1https://github.com/ASC8384/UniCoder

// Function to split a string into several equal parts and return them as a list of
strings
DEF SPLIT_STRING(string, part_count)

// Loop through the string and extract parts
FOR i FROM 0 TO str_len STEP part_len DO

// If it‘s the last part and the string can’t be divided equally,
// take all remaining characters
IF i + part_len > str_len THEN

part = SUBSTRING(string, i) // Take the substring from i to the end
ELSE

part = SUBSTRING(string, i, i + part_len) // Take the substring of part
length

ENDIF
APPEND(parts, part) // Append the part to the list

ENDFOR
RETURN parts // Return the list of parts

ENDDEF

Problem Description:
Design a function to split a string into several equal parts and to return the parts as a list of strings. 

def split_string(string, part_count):
str_len = len(string)
part_len = str_len // part_count
parts = []
for i in range(0, str_len, part_len):

# split string
part = string[i: i + part_len]
parts.append(part)

# return a list of strings
return parts

function splitString(string, partCount) {
const partLen = Math.floor(strLen / 

partCount);
const parts = [];
for (let i = 0; i < partCount; i++) {

let end = (i === partCount - 1) ?
string.length : (i + 1) * partLen;

parts.push(string.substring(i *
partLen, end));

}
return parts;

}

Loop
IF ELSE 

Universal Code

Python Javascript

Code LLM

Code LLM Code LLM

Figure 1: An example of UNICODER. The Code LLM
solves the code generation question by “translating”
the pseudocode description (Universal Code) into exe-
cutable code of the target programming language.

Llama (Rozière et al., 2023), are capable of generat-
ing executable code by analyzing natural language
prompts. Chain-of-thought (CoT) prompting (Wei
et al., 2022b) has emerged as the leading technique
in enhancing LLMs, where the intermediate steps
provide a structured pathway from the problem
statement to the solution, effectively mirroring the
human problem-solving process.

Considering the low accuracy of CoT in coder
generation, structure CoT (SCoT) (Li et al., 2023a)
is proposed to minimize the gap between the in-
termediate steps and the generated code. More
intuitively, using a universal code as the intermedi-
ate representation to handle multiple programming
languages (PL) is promising. Here, universal code
is a blueprint for implementing an algorithm, which
helps to make the design of algorithms logically
clear and readily comprehensible. Moreover, it is
universal across different programming languages
(PL-agnostic) since it typically does not follow spe-
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cific syntax and omits execution details. Yet, how
the universal code is used for code translation and
generation in multilingual scenarios remains un-
derexplored.

In this work, we scale up the code LLMs to
support multiple programming languages via the
universal code (UniCode), which is used as an
efficient and language-independent intermediate
representation of the key algorithm principles.
Specifically, we first define UniCode by speci-
fying grammar rules and providing paradigms, fol-
lowed by prompting GPT-4 (OpenAI, 2023) to cre-
ate an instruction dataset UNICODER-INSTRUCT

comprising natural-language questions, code so-
lutions, and the corresponding universal code, as
shown in Figure 1. Then, the UNICODER model
is built by performing instruction tuning (Wei
et al., 2022a) on multi-task learning objectives,
including zero-shot question-answer generation
(question→code), question-universal-code gen-
eration (question→UniCode→code), universal-
code-solution translation (UniCode→code), and
Universal-code-of-Thought (UoT) objectives. In
UoT, the model is required to generate the universal
code before the executable code.

UNICODER is evaluated on the Python bench-
mark (Humaneval (Chen et al., 2021) and
MBPP (Austin et al., 2021)) and the extended
multilingual benchmark MultiPL-E. The results
demonstrate that UNICODER consistently achieves
state-of-the-art performance across all languages,
notably surpassing the previous baselines. Further-
more, the ablation study verifies the efficacy of
the proposed method, and extra discussions pro-
vide insights into the effect of our method. The
contributions are summarized as follows:

• We introduce the universal code UniCode,
which is agnostic to programming languages,
allowing LLMs to grasp the essence of algo-
rithms step by step. In addition, the instruction
dataset UNICODER-INSTRUCT is collected
and provided for follow-up research.

• We propose UNICODER, a code generation
method that uses multi-task learning objec-
tives to fine-tune the code LLMs with the
help of UniCode. The objectives include
question-answer generation (QA), question-
universal-code generation (QP), universal-
code-answer translation (PA), and Universal-
code-of-Thought (UoT).

• As extensive experiments show, our method

Definition of Universal Code:
1. Comments: Use `//` for single-line 
comments and `/* ... */` for multi-
line comments.
2. Variables: Choose clear, type-free 
names for variables.
3. Input/Output: Keep input/output 
straightforward.
4. Conditionals: Employ `IF`, `ELSIF`, 
and `ELSE` with proper indentation.
5. Loops: Use `FOR`, `WHILE`, or 
`DO...WHILE` loops, specifying 
conditions and indenting code.
6. Functions/Procedures: Name them 
descriptively and consider parameters.
7. Formatting: Maintain consistent 2-4 
space indentation for clarity.

Example:
```pseudocode
//This is the QuickSort algorithm 
which sorts an array by recursively 
partitioning it around a pivot.
QUICKSORT(Arr[], LOW, HIGH) {

if (LOW < HIGH) {
PIVOT = PARTITION(Arr, LOW, 

HIGH);
QUICKSORT(ARR, LOW, PIVOT – 1);
QUICKSORT(ARR, PIVOT + 1, HIGH);

}
}
```

Figure 2: Definition of the universal code.

UNICODER consistently outperforms the pre-
vious baselines on different benchmarks, in-
cluding HumanEval, MBPP, and MultiPL-E.
To further verify the effectiveness of the uni-
versal code, we propose UNICODER-BENCH

to test the capabilities of code LLMs.

2 UNICODER-INSTRUCT

Definition of Universal Code. Universal code
is designed for expressing algorithms in a form
that is easily understood by humans, blending pro-
gramming language syntax with natural language
descriptions and mathematical notation to outline
the steps of an algorithm without the complexity
of full coding details. It omits machine-specific
implementations to focus on the core logic, making
it a popular choice for documentation in educa-
tional materials and the preliminary design phases
of software development. By abstracting away
from the intricacies of actual code, pseudocode
facilitates clear communication of algorithmic con-
cepts across various programming environments.
The definition of the universal code, as shown in
Figure 2, is based on the following principles:

• Comments: Provide explanations and context
for code segments, making it easier for others
to understand the intent and functionality.
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{Definition of Universal Code}
### Question
{Question}
### Response
{Answer}
### Your Task
Please combine the above Question and 
Response to comply with the pseudocode 
standard to write the corresponding 
pseudocode of solution. Adopt a meticulous 
methodology, breaking down the generation 
process into manageable steps. Just output 
the generated pseudocode for the solution 
and do not include the Question and 
Response in the output.

The output format is as follows, Use 
```pseudocode to put the generated 
pseudocode in markdown quotes:

```pseudocode
{{Offers a pseudocode version of the 
solution.}}
```

Figure 3: Prompt of generating UniCode.

• Variables: Enhance code readability and
maintainability by using meaningful names
that convey the purpose of the variables with-
out relying on data type specifications.

• Input/Output: Simplify the interaction with
data entering and leaving the system, ensuring
these operations are clear and easy to trace.

• Conditionals: Clarify decision-making pro-
cesses within the code by using structured and
indented conditional statements that define
clear execution paths.

• Loops: Facilitate the repetition of code blocks
in a controlled manner, with clearly defined
start and end conditions, making the iterative
processes understandable.

• Functions/Procedures: Increase modularity
and reusability by naming functions and pro-
cedures descriptively, and by using parameters
effectively to encapsulate functionality.

• Formatting: Improve the overall visual orga-
nization of the code by applying consistent
indentation, which helps in delineating hierar-
chical structures and logical groupings within
the code.

Construction From Instruction Dataset. For a
programming language L, given the existing code

instruction pair (qα, aα) ∈ DL
s , where qα and aα

are question and answer from DL
s , we create the

universal code instruction dataset DL
uα

by prompt-
ing LLMs to generate the universal code pα and
then add (qα, aα, pα) into DL

uα
. Figure 2 shows the

definition of the code universal and Figure 3 is the
prompt for LLMs to generate UniCode. {Defini-
tion of Universal Code}, {Question}, and {Answer}
denote the slots for definition of the universal code
pα, the question of the instruction data qα, and the
answer of the instruction aα, respectively. Given K
different programming languages Lall = {Lk}Kk=1,
the multilingual programming instruction dataset
with the universal code Duα = {DLk

uα
}Kk=1 are

created for supervised fine-tuning (SFT) (Ouyang
et al., 2022). In this work, we adopt the open-
source instruction dataset.

Construction From Code Snippets. For the un-
supervised data (code snippets) widely existing on
many websites (e.g., GitHub), we also construct
the instruction dataset with the universal code from
raw code snippets. Specifically, we ask the LLM
to generate the question qβ and the corresponding
code answer aβ pair based on the original code
snippet c using the prompt “Please generate the
self-contained question and answer based on the
given code snippet”. Then, we generate UniCode
pβ and construct (qβ, aβ, pβ) triplets the same way
as in Paragraph 2. In addition, an LLM scorer
is applied to filter out the low-quality (qβ, aβ, pβ)
triplets. Therefore, given raw code snippets of
different programming languages Lk ∈ {Lk}Kk=1,
we can construct instruction dataset with the uni-
versal code Duβ

= {DLk
uβ

}Kk=1 directly from such
unsupervised data. Finally, we combine these two
instruction datasets to obtain Du = Duα ∪ Duβ

,
where DLk

u = D
u
Lk
α

∪ D
u
Lk
β

for each program

langauge Lk ∈ Lall.

Evaluation Task for Universal Code. To test the
capability of the LLMs in generating UniCode
from questions and translating UniCode into an-
swers, we design a code reconstruction task for
evaluation. Given the code snippet c, we require
the LLM to generate UniCode p and then trans-
late it into the code c′. The evaluation metric is
not the similarity between c and c′ but whether the
restored code c′ can pass the test cases. We expand
the HumanEval and MBPP datasets to create our
benchmark UNICODER-BENCH comprising 164
HumanEval samples and 500 MBPP test samples.
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Universal Code

Problem Description: Write a for 
loop that iterates from 1 to 10 and 
prints out the current number on 
each iteration.

Javascript:
for (let i = 1; i <= 10; i++){

console.log(i);
}

Python:
for i in range(1, 11):

print(i)

C#:
for (int i = 1; i <= 10; i++)
{

Console.WriteLine(i);
}

Code Summarization: 
Each of these loops will print 
out the numbers from 1 to 10, 
inclusive, on separate lines or 
to the console.

C++:
for (int i = 1; i <= 10; ++i){

std::cout << i << std::endl;
}

Javascript:
for (let i = 1; i <= 10; i++){

console.log(i);
}

Python:
for i in range(1, 11):

print(i)

C#:
for (int i = 1; i <= 10; i++)
{

Console.WriteLine(i);
}

C++:
for (int i = 1; i <= 10; ++i){

std::cout << i << std::endl;
}

Universal Code N:
// This loop prints 
numbers from 1 to 10
FOR i = 1 TO 10 DO

// Output the 
current value of i

PRINT(i)
ENDFOR

Universal Code N:
counter = 1
WHILE counter <= 10 DO 

PRINT counter 
INCREMENT counter 

END WHILE

Multilingual Code &
Problem Solution

(a) Universal Code

Universal Code

Code LLM Step 1

Multilingual Code

Universal Code
Step 2

Multilingual Code &
Problem Solution

Code LLM

(b) Framework

+

Figure 4: Overview of UNICODER. (a) The function of universal code UniCode; (b) The framework of our method
UNICODER. The universal code as the intermediate representation, our proposed framework can support code
generation, code translation, and code summarization. In (a), the LLM encodes the code snippets of multilingual
programming languages or the problem description questions into UniCode. Then UniCode is translated into the
target output, i.e., the executable code of multilingual programming languages with a descriptive code summarization.
In (b), we first ask the LLM to generate UniCode with few-shot prompts. In the second stage, the instruction
dataset, containing questions, answers, and UniCode, is fed into the code LLM for fine-tuning.

3 UNICODER

3.1 Model Overview

In Figure 4, we first define the concept of the uni-
versal code with the essential components and then
prompt the LLM to generate UniCode p based
on the existing instruction data (questions q and
answers a) and the raw code snippets c. UniCode
is regarded as the intermediate representation for
different tasks, including code generation, code
translation, and code summarization. Our proposed
model UNICODER is trained on the instruction
dataset Du with the multilingual objectives to fully
unleash the potential of UniCode.

3.2 Code LLM with Universal Code

Given the instructions dataset with K multilingual
programming languages Du = {DLk

u }Kk=1, the pre-
trained code LLM M trained on Du can support
Universal-code-of-Thought (UoT). It can be de-
scribed as:

P (p, a|q) = P (p|q;M)P (a|q, p;M) (1)

where q (question) and a (answer) are the instruc-
tion pair from Du. Given the question q, the code
LLM M first generates UniCode p and then out-
puts the final answer a, where p provides key algo-
rithm ideas with natural language comments.

3.3 Multi-task Supervised Fine-tuning
To fully unleash the potential of the UniCode, we
design multiple objectives to enhance the under-
standing and generation capability of code LLM.

Multi-task Fine-tuning.

Lall = Lqa + Lqp + Lpa + Luot (2)

where Lqa is the question-answer generation objec-
tive, Lqp is the question-universal-code generation
objective, Lpa is the universal-code-answer trans-
lation objective, and Luot is the Universal-code-of-
Thought (UoT) objective.

Here, we introduce all four training objectives.
For all the following objectives, the multilingual
corpora Du = {DLk

u }Kk=1 are given. M is the
code LLM and K is the number of programming
languages.

Question-Answer Objective. The training ob-
jective Lqa of the standard instruction fine-tuning
can be described as:

Lqa = −
K∑

k=1

E
q,a∼D

Lk
u

[logP (a|q;M)] (3)

where q and a are the question and answer pair.

Question-Universal-Code Objective. The train-
ing objective Lqp of the auxiliary universal code
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generation task can be described as:

Lqp = −
K∑

k=1

Eq,p∼DLk
[logP (p|q;M)] (4)

where q and p are the question and UniCode.

Universal-Code-Answer Objective. The train-
ing objective Lpa of generating the executable code
answer from UniCode can be described as:

Lpa = −
K∑

k=1

Ep,a∼DLk
[logP (a|p;M)] (5)

where p and a are UniCode and the answer.

Universal-Code-of-Thought Objective. The
training objective Luot of generating UniCode
and then the executable code answer can be
described as:

Luot = −
K∑

k=1

Eq,p,a∼DLk
[logP (p, a|q;M)] (6)

where q, a, and p are the question, answer, and
UniCode, respectively.

4 Experimental Setup

4.1 Instruction Dataset

GPT-4 (gpt-4-1106-preview) (OpenAI,
2023) is used as the foundation model to generate
the UNICODER-INSTRUCT. We randomly extract
code snippets within 1024 tokens from the
StarCoder dataset (Li et al., 2023b) and let GPT-4
summarize the code snippets as the universal code.
Based on each code snippet and the corresponding
universal code, a self-contained coding problem
with a correct solution is created.

4.2 Baselines

Proprietary Models. Based on a neural architec-
ture known as generative pre-trained Transform-
ers (GPT) (Vaswani et al., 2017; Radford et al.,
2018), GPT-3.5 and GPT-4 are LLMs trained on
massive datasets of text, code, math equations, and
more. They are also trained to follow instruc-
tions (Ouyang et al., 2022), which allows them
to generate human-like responses. We use GPT-
3.5 Turbo and GPT-4 as the proprietary models
because they perform excellently in various code
understanding and generation tasks.

Open-Source Models. To narrow the gap be-
tween open-source and closed-source models, a se-
ries of open-source models and instruction datasets
are proposed to improve code LLMs and bootstrap
their instruction-following ability. Starcoder (Li
et al., 2023b), Code Llama (Rozière et al., 2023),
and DeepSeek-Coder (Guo et al., 2024a) with dif-
ferent model sizes are introduced into the based
model. OctoCoder (Muennighoff et al., 2023),
WiazrdCoder (Luo et al., 2023), MagiCoder (Wei
et al., 2023), and WaveCoder (Yu et al., 2023) are
further fine-tuned on these based code LLMs.

Decontainmation. We apply data decontamina-
tion before training our UNICODER models to
decontaminate the code snippets from the star-
coder data (Li et al., 2023b), by removing ex-
act matches from HumanEval (Chen et al., 2021),
MBPP (Austin et al., 2021), DS-1000 (Lai et al.,
2023), and GSM8K (Cobbe et al., 2021).

4.3 Evaluation Benchmark

HumanEval. The HumanEval test set (Chen
et al., 2021) is a crafted collection of 164 Python
programming problems to test the abilities of code
generation models. For each problem, there are
roughly 9.6 test cases to check whether the gen-
erated code works as intended. Humaneval has
become one of the most popular benchmarks to
measure how well these code-writing AI models
perform, making it a key tool in the field of AI and
machine learning for coding.

MBPP. The MBPP dataset (Austin et al., 2021),
comprising approximately 1,000 Python program-
ming challenges sourced from a crowd of contrib-
utors, is tailored for beginners in programming,
focusing on core principles and the usage of the
standard library. The MBPP test set comprised of
500 problems is selected to evaluate the few-shot
inference of the code LLMs.

MultiPL-E. The MuliPL-E test set (Cassano
et al., 2022) translates the original HumanEval
test set to other 18 programming languages, i.e.,
Javascript, Java, Typescript, C++, and Rust. We
use the MultiPL-E to evaluate the multilingual ca-
pabilities of the code LLMs.

4.4 Evaluation Metrics

Pass@k. We adopt the Pass@k metric (Chen
et al., 2021) to improve the reliability of our evalu-
ation. We then count the total number of success-
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fully passing test cases, denoted as k, to compute
the Pass@k, thereby enhancing the accuracy and
consistency of the performance assessment.

Pass@k = E

[
1−

(
n

k−c

)
(
n
k

)
]

(7)

where n is the total number of generated samples
for each problem, and c is the number of correct
generated code snippets passing all the test cases
(n > k ≥ c).

4.5 Impletmentation Details
We expand the open-source Evol-Instruct dataset
evol-code-alpaca-v1 (Xu et al., 2023) with
nearly 110K samples into the instruction dataset
with the universal code. For the code snippets
collected from starcoderdata 2, we choose 5K
code snippets of each language (Python, Javascript,
C++, Java, Rust, and Go) to construct the syn-
thetic instruction dataset with universal code. Fi-
nally, we obtain the instruction dataset UNICODER-
INSTRUCT contains nearly 140K training sam-
ples. Code-Llama and DeepSeek-Coder-Base are
used as the foundational code LLMs for super-
vised fine-tuning (SFT). We fine-tune these foun-
dation LLMs on nearly 150K samples generated
from evol-codealpaca-v1 and the starcoder
pre-training data. UNICODER is fine-tuned on
Standford_Alpaca3 with 8 NVIDIA A100-
80GB GPUs. The learning rate first increases into
8× 10−5 with 50 warmup steps and then adopts a
cosine decay scheduler. We adopt the Adam opti-
mizer (Kingma and Ba, 2015) with a global batch
size of 128 samples, truncating sentences to 1536
tokens.

5 Results and Discussion

5.1 Main Results
Python Code Generation. Table 1 shows that
UNICODER significantly beats previous strong
open-source baselines using UoT, closing the
gap with GPT-3.5 and GPT-4. Magicoder (Wei
et al., 2023) and Wavecoder (Yu et al., 2023) both
prove the effectiveness of instruction datasets from
code snippets. Further, UNICODER outperforms
the WizardCoder with 15B parameters and Evol-
Instruct techniques with the help of the UniCode.

2https://huggingface.co/datasets/
bigcode/starcoderdata

3https://github.com/tatsu-lab/
stanford_alpaca

Multilingual Code Understanding. Table 2
shows that UNICODER significantly outperforms
strong baselines Magicoder and WaveCoder, which
both leverage the code snippets to construct the
instruction dataset. Given the multilingual correct
code snippet, the code LLM is tasked to generate
an explanation of the code and then regenerate the
code only based on its own explanation. For the
different backbones (Code Llama and Deepseek-
Coder), our method beats most previous methods,
especially in other languages, which demonstrates
that UNICODER-INSTRUCT can bring the capabil-
ity of multilingual understanding and generation.

5.2 Discussion
Ablation Study. To verify the efficacy of each
component, we conduct the ablation study step by
step on HumanEval and MBPP. In Table 3, we ob-
serve that removing the multi-tasks objective (only
keeping the UoT objective: Equation 6) will have a
−1.6 performance drop in HumanEval and a −1.3
drop in MBPP. Removing UniCode will further
degrade the performance. The results support the
effectiveness of each component of UNICODER.

Effect on Universal Code. To discuss the effect
of the different formats of the universal code, we
use different definitions of universal code for UNI-
CODER. Specifically, we randomly sample 5K
samples to generate the instruction dataset with
different formats of UniCode.

• UniCode 1: It describes the naming conven-
tions, variable declaration, operators, condi-
tional statements, loops, and function struc-
ture that pseudocode should have.

• UniCode 2: It separates the first set of stan-
dards and provides code examples for each,
instead of applying them all together in the
examples.

• UniCode 3: It describes the code structure,
variable rules, control structures, functions,
comments, and assignment rules that pseu-
docode should have.

• UniCode 4: It is similar to the first standard
but specifies type-free names for variables.

• UniCode 5: It provides an abstract, high-
level architectural description, without setting
standards for the code itself.

• UniCode 6: It uses latex algorithm and algo-
rithmic packages for description.
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Models Base Model Params Instruction Data Model Weight HumanEval MBPP

Proprietary Models

GPT-3.5 - - - - 72.6 81.6
GPT-4 - - - - 85.4 83.0

Open-source Models

StarCoder (Li et al., 2023b) - 15B ✗ ✓ 33.6 43.3
WizardCoder (Luo et al., 2023) StarCoder 15B ✓ ✓ 57.3 51.8
OctoCoder (Muennighoff et al., 2023) StarCoder 15B ✓ ✓ 46.2 43.5
WaveCoder-SC (Muennighoff et al., 2023) StarCoder 15B ✓ ✓ 50.5 51.0

Code-Llama (Rozière et al., 2023) - 7B ✗ ✓ 33.5 41.4
Code-Llama-Instruct (Rozière et al., 2023) Code Llama 7B ✓ ✓ 34.8 44.4
WaveCoder-CL (Yu et al., 2023) Code Llama 7B ✓ ✓ 48.1 47.2
Magicoder-CL (Wei et al., 2023) Code Llama 7B ✓ ✓ 60.4 64.2
UNICODER (our method) Code Llama 7B ✓ ✓ 65.4 65.2

DeepseekCoder (Guo et al., 2024a) - 6.7B ✗ ✓ 49.4 60.6
WaveCoder-DS (Yu et al., 2023) Deepseek-Coder 6.7B ✓ ✓ 64.0 62.8
UNICODER (our method) Deepseek-Coder 6.7B ✓ ✓ 70.6 64.3

Table 1: Evaluation results of Pass@1 on the HumanEval and MBPP benchmark. We use self-reported scores
whenever available. All methods use greedy decoding and We use the reported scores of the previous work.

Model Params
Programming Language

Java Javascript C++ PHP Swift Rust Avg.

Proprietary models

GPT-3.5 - 69.2 67.1 63.4 60.9 - - -
GPT-4 - 81.6 78.0 76.4 77.2 - - -

Open-source models

CodeLlama (Rozière et al., 2023) 34B 40.2 41.7 41.4 40.4 35.3 38.7 39.6
CodeLlama-Python (Rozière et al., 2023) 34B 39.5 44.7 39.1 39.8 34.3 39.7 39.5
CodeLlama-Instruct (Rozière et al., 2023) 34B 41.5 45.9 41.5 37.0 37.6 39.3 40.5
WizardCoder-CL (Luo et al., 2023) 34B 44.9 55.3 47.2 47.2 44.3 46.2 47.5

StarCoderBase (Li et al., 2023b) 15B 28.5 31.7 30.6 26.8 16.7 24.5 26.5
StarCoder (Li et al., 2023b) 15B 30.2 30.8 31.6 26.1 22.7 21.8 27.2
WizardCoder-SC (Luo et al., 2023) 15B 35.8 41.9 39.0 39.3 33.7 27.1 36.1

CodeLlama (Rozière et al., 2023) 7B 29.3 31.7 27.0 25.1 25.6 25.5 27.4
CodeLlama-Python (Rozière et al., 2023) 7B 42.4 51.9 42.3 46.5 29.4 33.6 29.7
UNICODER (Our method) 7B 46.4 50.2 39.2 40.4 41.2 32.4 41.6

Table 2: Evaluation results of Pass@1 (%) performance on the MultiPL-E benchmark. The baseline results are
partly from the previous work (Wei et al., 2023).

ID Methods HumanEval MBPP

① UNICODER 70.6 64.3
② ① - Multi-tasks Objective 67.4 60.2
③ ② - Universal Code 66.8 59.8

Table 3: Ablation study of our proposed method on
HumanEval and MBPP. UNICODER is fine-tuned on the
UNICODER-INSTRUCT with the multi-task objectives.

In Table 4, we can observe that the evaluation
results of UniCode 1∼UniCode 4 have better
performance. Compared to the universal code
format UniCode 5 and UniCode 6, UniCode
1∼UniCode 4 has a clear definition and common
structure, which brings more support for code gen-
eration. Notably, the experiment ⑦ performs the
best by combing the training data of ①∼④. The
experimental results show that the concrete defi-

ID Methods HumanEval MBPP

① UniCode 1 53.2 51.5
② UniCode 2 52.8 51.2
③ UniCode 3 53.5 50.5
④ UniCode 4 53.8 49.5
⑤ UniCode 5 49.5 50.2
⑥ UniCode 6 48.2 48.4
⑦ UniCode 1∼4 55.5 52.2

Table 4: Evaluation results of our method with different
formats of the universal code.

nition of UniCode and the combination of it can
effectively improve the model performance.

5.3 Code-UniCode-Code

To compare the capabilities of different code
LLMs, we create a test set by prompting the code
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Method Params Python Other Languages

Code-Llama-Instruct 7B 33.3 26.2
Code-Llama-Alpaca 7B 44.2 29.1

UNICODER 7B 45.2 31.3

Table 5: Pass@1 scores of our method UNICODER and
two Code-Llama baselines for Code-UniCode-Code.

LLM to generate UniCode and translate it into
the executable code. We check the correctness
of each translated code with the test cases, de-
noted as Pass@1 of the universal code. Code-
Llama-7B is fine-tuned on the Code Alpaca dataset
and our dataset UNICODER-INSTRUCT separately.
The results of fine-tuned Code-Llama models on
UNICODER-BENCH are shown in Table 5. Our
method UNICODER is more accurate in passing the
test cases than the Code-Llama baselines, demon-
strating its excellent code understanding and gener-
ation abilities.

6 Related Work

Code Understanding and Generation. Code un-
derstanding and generation as the key tasks to sub-
stantially facilitate the project development pro-
cess, including code generation (Chen et al., 2021;
Austin et al., 2021; Zhang et al., 2023), code trans-
lation (Szafraniec et al., 2023), automated test-
ing (Deng et al., 2023), bug fixing (Muennighoff
et al., 2023), code refinement (Liu et al., 2023c),
code question answering (Liu and Wan, 2021), and
code summarization (Ahmad et al., 2020). Re-
searchers Chai et al. (2023) have undertaken ex-
tensive endeavors to bridge natural language and
programming languages. With less ambiguous
prompt styles, Mishra et al. (2023) using pseu-
docode improves the performance of NLP tasks.
Oda et al. (2015) uses traditional machine learn-
ing to achieve code to pseudocode conversion.
Jiang et al. (2022) also shows that designers and
programmers can speed up the prototyping pro-
cess, and ground communication between collab-
orators via prompt-based prototyping. To verify
that the generated code is correct, there are some
code synthesis evaluation frameworks, including
EvalPlus (Liu et al., 2023b), HumanEval (Chen
et al., 2021), HumanEval-X (Zheng et al., 2023),
and MBPP (Austin et al., 2021).

Large Language Models for Code. Since Code-
BERT (Feng et al., 2020) first connected code tasks
with pre-trained models, large language models
for code have developed rapidly, demonstrating ex-

traordinary performance on almost all code tasks,
rather than a single task. Prominent large models
include Codex (Chen et al., 2021), AlphaCode (Li
et al., 2022), SantaCoder (Allal et al., 2023), Star-
coder (Li et al., 2023b), WizardCoder (Luo et al.,
2023), InCoder (Fried et al., 2022), CodeT5 (Wang
et al., 2021), CodeGeeX (Zheng et al., 2023),
Code Llama (Rozière et al., 2023), and Code-
QWen (Bai et al., 2023). To improve the perfor-
mance of code generation, researchers used opti-
mized prompts (Liu et al., 2023a; Reynolds and
McDonell, 2021; Zan et al., 2023; Beurer-Kellner
et al., 2023), bring test cases (Chen et al., 2023)
and collaborative roles (Dong et al., 2023). There
are also some related studies on using large lan-
guage models for other code tasks, such as dy-
namic programming (Dagan et al., 2023), com-
piler optimization (Cummins et al., 2023), multi-
lingual prompts (Di et al., 2023), and program of
thoughts (Chen et al., 2022) (PoT).

Chain-of-Thought Prompting. To unleash the
potential of LLMs in addressing complex reason-
ing tasks, chain-of-thought (CoT) prompting (Wei
et al., 2022b; Kojima et al., 2022) extends in-
context learning with step-by-step reasoning pro-
cesses, which handles complex reasoning tasks in
the field of the code and mathematics by encour-
aging them to engage in step-by-step reasoning
processes. Following this line of research, X-of-
Thought (XoT) reasoning (CoT and its structural
variants further) (Chai et al., 2024; Yao et al., 2023;
Li et al., 2023a; Lei et al., 2023; Guo et al., 2023; Ji
et al., 2024; Guo et al., 2024b) further expands the
capabilities and applications of LLMs in complex
reasoning and planning scenarios.

Intermediate Repersentation In the field of nat-
ural language processing, there exist many works
using intermediate representation (Gan et al., 2021;
Yang et al., 2022, 2024, 2019, 2020b,a; Liang et al.,
2024), such as text generation and translation. The
universal code is used as the intermediate repre-
sentation, which typically omits details that are
essential for the machine implementation of the
algorithm. We perform the coarse-to-fine pattern
for the code generation and translation, where the
universal code first summarizes the algorithm pro-
cess and then the programming language gives the
accurate solution. The Unicode provides explicit
help for code generation such as Chain-of-thought
in LLM.
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7 Conclusion

In this work, we put forth a state-of-the-art
framework UNICODER for both code translation
and code generation. Using the universal code
UniCode as the intermediate representation, we
effectively bridge different programming languages
and facilitate code tasks. In addition, we collect a
dataset UNICODER-INSTRUCT with 140K instruc-
tion instances from existing instruction datasets
and the raw code snippets. After being fine-tuned
on UNICODER-INSTRUCT with multi-task learn-
ing objectives, our model generates UniCode and
translates it into the final answer (executable code).
The evaluation results on code translation and gen-
eration tasks demonstrate that our method signifi-
cantly improves the generalization ability, showing
the efficacy and superiority of UNICODER.

Limitations

We acknowledge the following limitations of this
study: (1) The evaluation focuses on benchmark
datasets (Humaneval, MBPP, and MultiPL-E), and
the model’s effectiveness in real-world program-
ming scenarios or industry applications is not fully
explored. (2) Our method is developed and eval-
uated primarily on programming language bench-
marks. Its effectiveness in other domains or for non-
programming-related tasks is not assessed, which
limits the generalizability of our findings.
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