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Abstract

Despite the remarkable achievements of large
language models (LLMs) in various tasks,
there remains a linguistic bias that favors high-
resource languages, such as English, often
at the expense of low-resource and regional
languages. To address this imbalance, we
introduce SeaLLMs, an innovative series of
language models that specifically focuses on
Southeast Asian (SEA) languages. SeaLLMs
are built upon popular English-centric mod-
els through continued pre-training with an ex-
tended vocabulary, specialized instruction and
alignment tuning to better capture the intrica-
cies of regional languages. This allows them
to respect and reflect local cultural norms, cus-
toms, stylistic preferences, and legal consider-
ations. Our comprehensive evaluation demon-
strates that SeaLLM models exhibit superior
performance across a wide spectrum of lin-
guistic tasks and assistant-style instruction-
following capabilities relative to comparable
open-source models. Moreover, they outper-
form ChatGPT-3.5 in non-Latin languages,
such as Thai, Khmer, Lao, and Burmese, by
large margins while remaining lightweight and
cost-effective to operate.

1 Introduction

The advent of large language models (LLMs)
has radically transformed the field of natural
language processing, demonstrating remarkable
abilities in text generation, comprehension, and
decision-making tasks (Brown et al., 2020; Ope-
nAI, 2023a,b; Touvron et al., 2023a,b; Thoppilan
et al., 2022; Jiang et al., 2023; Wei et al., 2023;
Bai et al., 2023). While the proficiencies of these
models are extraordinary, the majority of existing
LLMs embody a linguistic hierarchy overwhelm-
ingly dominated by English (Ahuja et al., 2023; Lai
et al., 2023; Zhang et al., 2023). This dominance

∗‡ Equal contributions.
†Corresponding author: l.bing@alibaba-inc.com

undermines the multilingual capability of such
models, with particularly prejudicial outcomes for
lower-resource and regional languages, where data
scarcity and tokenization challenges lead to dispro-
portionately poor model performance. This linguis-
tic disparity not only impedes access to state-of-
the-art AI technologies for non-English-speaking
populations but also risks cultural homogenization
and the loss of linguistic diversity. While hyper-
polyglot models exist (Scao et al., 2022; Muen-
nighoff et al., 2022; Wei et al., 2023), they may pay
a high cost for high-resource language performance
while lacking in multilingual instruction-following
abilities.

Recognizing the urgent need to democratize AI
and empower linguistically diverse regions, we in-
troduce SeaLLMs1, a suite of specialized language
models optimized for Southeast Asian languages2.
These languages, while rich and diverse, often lack
the extensive dataset support available for more
widely spoken languages, resulting in a stark per-
formance gap in existing LLM applications.

As a long-term continuous effort, as of this writ-
ing, SeaLLMs come in three versions (v1, v2,
v2.5). SeaLLM-13B-v1, which was pre-trained
from Llama-2-13B, eclipses the performance of
most available open-source LLMs in a compre-
hensive array of tasks including world knowledge
assessments, language comprehension, and gen-
erative capabilities in SEA languages. For En-
glish and alike, SeaLLMs do not only preserve,
but also demonstrate enhanced performance in
tasks that were part of the original Llama training
set. When evaluated on multilingual instruction-
following tasks with GPT-4 as a judge (Zheng et al.,
2023), SeaLLM-13B-v1 outperforms ChatGPT-3.5
by large margins in less-represented languages such

1https://github.com/DAMO-NLP-SG/SeaLLMs
2English (Eng), Chinese (Zho), Indonesian (Ind), Viet-

namese (Vie), Thai (Tha), Khmer (Khm), Lao, Malay (Msa),
Burmese (Mya) and Tagalog (Tgl)
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Figure 1: Sea-bench (Section 4.2) scores as evaluated by GPT-4 (Zheng et al., 2023) for different models. Each
radar chart compares scores as averaged across 5 categories (left) and 9 languages (right). Detailed breakdown by
each category and language is given in Figure 4 in the Appendix.

as Khmer, Lao or Burmese. Meanwhile, SeaLLM-
7B-v2, which was pre-trained from Mistral-7B
(Jiang et al., 2023), demonstrates better perfor-
mances in math and commonsense reasoning than
comparable baselines, surpassing ChatGPT-3.5 in
reasoning for common SEA languages, while be-
ing much smaller in sizes. Later, SeaLLM-7B-
v2.5, which was further pre-trained from Gemma-
7B (Team et al., 2024), shows significant improve-
ments in SEA languages over SeaLLM-7B-v2.

Figure 2 illustrates the four-stage training pro-
cess of SeaLLMs. In the first stage, detailed in Sec-
tion 2.3, we conduct continuous pre-training from
the foundational models (Touvron et al., 2023b;
Jiang et al., 2023) with an extended vocabulary
tailored for SEA languages. Next, we fine-tune
the model in a novel hybrid paradigm with a mix-
ture of multilingual pre-training data and English-
dominant instruction fine-tuning data (Section 3.2).
The following stage subsequently fine-tunes the
model on a balanced and custom-built multilingual
SFT dataset. Finally, we conduct self-preferencing
alignment optimization using the SeaLLM model
itself, without relying on human annotators or more
powerful LLMs (OpenAI, 2023b).

2 Pre-training

2.1 Pre-training Data

The pre-training data comprises a heterogeneous
assortment of documents sourced from several pub-
licly accessible repositories (Suárez et al., 2019;
Raffel et al., 2019; Computer, 2023; Foundation).
Specifically, during the creation of the pre-training
data, we include web-based corpora such as Com-

mon Crawl (Wenzek et al., 2020), journalistic con-
tent such as CC-News, text corpora with expertly-
curated knowledge such as Wikipedia (Founda-
tion), and some scholarly publications. After col-
lecting the data, we employ a language identifier
(Bojanowski et al., 2017) to retain the documents
for the major languages in Southeast Asia, namely
Thai, Vietnamese, Indonesian, Chinese, Khmer,
Lao, Malay, Burmese, and Tagalog, and discard
the remaining ones. Subsequent stages of data re-
finement involve the multiple modules dedicated
to data cleansing and content filtration. We blend
such data with the highest quality English data from
RedPajama subset (Computer, 2023) in more bal-
anced ratios, as we found that such English data are
useful to preserve the original learnt knowledge.

2.2 Vocabulary Expansion
Table 1 describes how expensive it is to process
an under-represented non-Latin language. For ex-
ample, encoding a single sentence in Thai requires
4.3 times more tokens than its English equivalent.
The reason for this is that most English language
models employ a BPE tokenizer (Sennrich et al.,
2016) that inefficiently segments texts from non-
Latin scripts into disproportionately lengthy byte
sequences, which inadequately represent the un-
derlying semantic content, resulting in diminished
model performance (Nguyen et al., 2023). To that
end, we propose a novel vocabulary expansion tech-
nique, as formally described in Algorithm 1 in
the Appendix. This technique involves recursively
merging whole-word and sub-word token pieces of
a new language from a highly multilingual target to-
kenizer (i.e., the NLLB tokenizer (Costa-jussà et al.,
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Figure 2: Complete Training Process of SeaLLMs. It begins with continual pre-training Llama-2 with more data of
regional languages. Then the models undergo specialized fine-tuning process with multilingual SFT data, before
finally being tuned with self-preferencing alignment.

Language ChatGPT’s Llama’s SeaLLM’s

Vie 4.41 3.46 1.48
Zho 2.80 2.36 1.40
Tha 9.09 5.10 1.87
Ind 2.00 2.09 1.36
Khm 15.56 12.14 2.67
Lao 13.29 13.50 2.07
Msa 2.07 2.16 1.50
Mya 17.11 9.85 1.93
Tgl 2.28 2.22 1.91

Eng 1.00 (baseline) 1.19 1.19

Table 1: Averaged compression ratios between the to-
kenized length of texts of each language produced by
different tokenizers versus the baseline tokenized length
of same-meaning English equivalents produced by Chat-
GPT tokenizer (i.e., it costs 15.6x more tokens to en-
code Khmer than English with ChatGPT tokenizer).
SeaLLM’s ratios are applicable only for v1 and v2.

2022)), to the existing LLM tokenizer. This new
set of retrieved tokens are then pruned to remove
rarely appearing and low-quality tokens before be-
ing added to the final SeaLLM tokenizer.

Table 1 demonstrates the efficiency of the new
vocabulary. The compression ratio for Thai text has
markedly improved from 4.29 to 1.57, signifying a
2.7-fold increase in the length of Thai text that can
be encoded within the same context constraints. At
the same time, the compression of English text has
experienced a negligible reduction of 0.3%, thus
maintaining its tokenization effectiveness.

We applied our vocabulary expansion for
SeaLLM v1 and v2 with Llama-2 and Mistral-7B
as backbones due to their limit 32K-token vocab-
ulary. However, we did not extend the tokenizer
for SeaLLM-7B-v2.5, which inherits a sufficiently
large 250K-token vocabulary from Gemma-7B.

2.3 Pre-training Process

We organize our pre-training dataset based on the
language of the content and the quality of the data,
as mentioned in Section 2.1. We setup a separate
stream of data for each language, and dynamically
control and balance the sampling ratio of each lan-

guage. We pack multilingual documents into a
single sequence up to the maximum context length.
During the last steps of pre-training, we re-feed the
model with more high quality data, which it has
previously seen, to readjust the model’s learning fo-
cus back towards the high-quality data, improving
the model’s performance.

3 Supervised Fine-tuning (SFT)

3.1 Supervised Fine-tuning Data

Our supervised finetuning (SFT) data consists
of many categories, including text understanding
and processing, math and logical reasoning, user-
centric instruction-following, and natural dialog
data. As most public and open-source SFT data
are English-only (Longpre et al., 2023; Lian et al.,
2023; Mukherjee et al., 2023; Lee et al., 2023),
various techniques were implemented to enhance
the multilingual aspect of the model. These in-
clude sourcing natural data from local websites in
natural settings, selectively translating from En-
glish data, employing self-instruction, and using
advanced prompting techniques (Wang et al., 2022;
Madaan et al., 2023; Nguyen et al., 2023). As
those synthetically generated data may remain in-
correct or low-quality, native speakers3 were then
engaged to further verify, filter, and edit such syn-
thetic responses to finalize the SFT dataset. We find
that engaging the annotators to verify and modify
model-generated responses is more efficient than
having them write responses from scratch. Safety-
related data also played a crucial role in fine-tuning
SeaLLMs. We manually collected and prepared
country-relevant safety data, which covered a broad
range of culturally and legally sensitive topics in
each of these countries. This was necessary as such
topics are often overlooked or may even conflict
with open-source English-centric safety data (Deng
et al., 2023).

For SeaLLM-7B-v2 and SeaLLM-7B-v2.5, we
incorporate significantly more SFT data relating to
math and commonsense reasoning. Such data is

3Hired by our organization, they are not co-authors.
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synthetically generated with SeaLLM-13B-v1, as
well as strong English models (Jiang et al., 2024;
Bai et al., 2023) using a combination of few-shot
paraphrasing and translation techniques (Yu et al.,
2023).

3.2 Supervised Fine-tuning

Pre-train and SFT Hybrid. As our SFT data
is still significantly English due to contributions
of open-source data, directly conducting SFT on
it may overshadow the smaller SEA language
datasets. Therefore, we propose incorporating
an additional step prior to complete fine-tuning,
namely Pre-train & SFT Hybrid. In this step, the
model is further trained on a combination of the
pre-training corpus and a large portion of English
SFT data, leaving the remaining and more balanced
amount of English SFT data to the next stage. Dur-
ing this hybrid stage, the model processes both gen-
eral pre-training content and instruction-following
examples. We mask the source side of the instruc-
tion or supervised data to prevent the model from
overfitting to the training examples and to reduce
the risk of it simply memorizing the input data in-
stead of learning the more generalized ability to
follow instructions.

Supervised Fine-tuning. We conduct supervised
fine-tuning by compiling instructions from a vari-
ety of sources explained in Section 3.1, combin-
ing them at random into a single, consolidated se-
quence to maximize efficiency. To enhance the
multi-turn conversation capability, in the later stage
of fine-tuning, we further artificially create multi-
turn conversations by randomly joining several
single-turn instructions together.

3.3 Self-Preferencing Optimization

Alignment from human feedback preference has
been key to the success of many AI-assistant lan-
guage models (Stiennon et al., 2020; Touvron et al.,
2023b; Rafailov et al., 2023; Ouyang et al., 2022).
To save the cost of human preference annotation
work, some have sought to use powerful LLMs like
GPT-4 (OpenAI, 2023b) to play the part of a pref-
erence data generator (Tunstall et al., 2023). How-
ever, that may not even be feasible for low-resource
non-Latin languages because of the unfavorable to-
kenization of ChatGPT as explained in Section 2.2.
In other words, even short prompts would exceed
their context-length and the API-call costs would
explode by up to 17 times.

Therefore, we use our own SeaLLM SFT mod-
els to generate preference data by asking it to in-
dicate its preference between two of its own re-
sponses, given a question based on certain human-
written criteria. To eliminate position bias, we
swap the order of the responses and remove sam-
ples with inconsistent preference. The data is
later used to employ direct preference optimiza-
tion (Rafailov et al., 2023) to significantly improve
the model abilities as an assistant. As such, unlike
other works (Mukherjee et al., 2023; Tunstall et al.,
2023), our models are free from relying on pow-
erful close-sourced models like GPT-4 to improve
the performance in low-resource languages. Our
self-preferencing method also shares certain fla-
vors with another self-rewarding mechanism (Yuan
et al., 2024).4

4 Evaluation

4.1 Model Variants
We trained multiple variants of SeaLLMs, as speci-
fied in the following.

• SeaLLM-7B-v1: Trained from Llama-2-7B,
it supports the 10 official languages used in
Southeast Asia.

• SeaLLM-13B-v1: Trained from Llama-2-
13B, it outperforms ChatGPT-3.5 in most non-
Latin SEA languages (Khm, Lao, Mya and
Tha) by large margins.

• SeaLLM-7B-v2: Trained from Mistral-7B, it
outperforms SeaLLM-13B-v1 by far in higher-
resource SEA languages (Vie, Ind, Tha), and
surpasses ChatGPT-3.5 in math reasoning in
SEA languages.

• SeaLLM-7B-v2.5: Trained from Gemma-7B,
it outperforms SeaLLM-7B-v2 and SeaLLM-
13B-v1 remarkably and surpasses ChatGPT-
3.5 in various aspects in SEA languages, espe-
cially non-Latin languages.

4.2 Sea-bench Peer Comparison
While there are popular benchmarks to evaluate
LLMs as a helpful assistant, such as MT-bench
(Zheng et al., 2023), they are only English-based
and not suitable for evaluating performances in
low-resource languages. Due to such a lack of
multilingual benchmarks for assistant-style models,

4Our work was publicly available before Yuan et al. (2024).
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Model M3Exam MMLU

Eng Zho Vie Ind Tha Eng

ChatGPT-3.5 75.46 60.20 58.64 49.27 37.41 70.00

SeaLion-7b 23.80 25.87 27.11 24.28 20.29 26.87
Llama-2-13b 61.17 43.29 39.97 35.50 23.74 53.50
Polylm-13b 32.23 29.26 29.01 25.36 18.08 22.94

SeaLLM-7B-v1 54.89 39.30 38.74 32.95 25.09 47.16
SeaLLM-13B-v1 62.69 44.50 46.45 39.28 36.39 52.68
SeaLLM-7B-v2 70.91 55.43 51.15 42.25 35.52 61.89

SeaLLM-7B-v2.5 76.87 62.54 63.11 48.64 46.86 64.05

Table 2: Multilingual world knowledge accuracy evaluation across multiple languages and various models of
different sizes.

we engaged native linguists to build a multilingual
test set with instructions that cover SEA languages,
called Sea-bench. The linguists sourced such data
by translating open-source English test sets, col-
lecting real user questions from local forums and
websites, collecting real math and reasoning ques-
tions from reputable sources, as well as writing test
instructions themselves. Our Sea-Bench consists
of diverse categories of instructions to evaluate the
models, as follows:

• Task-solving: This type of data comprises var-
ious text understanding and processing tasks,
such as summarization, translation, etc.

• Math-reasoning: This includes math problems
and logical reasoning tasks.

• General-instruction data: This consists of gen-
eral user-centric instructions, which evaluate
the model’s ability in general knowledge and
writing.

• NaturalQA: This consists of queries posted
by real users, often in popular local forums,
with a variety of subjects and topics of local
interest. The aim is to test the model’s capac-
ity to understand and respond coherently to
colloquial language, natural expressions and
idiomatic language, and locally contextual-
ized references.

• Safety: This includes both general safety
and local context-related safety instructions.
While most general safety questions are trans-
lated from open sources, other local country-
specific safety instructions are written by lin-
guists of each language.

As inspired by MT-bench (Zheng et al., 2023),
we evaluate and compare SeaLLMs with well-
known and state-of-the-art models using GPT-4
as a judge in a score-based grading metrics and a
peer comparison (or pairwise comparison) manner.

Figure 1 compares our SeaLLM (v2, v2.5) chat
models with Qwen1.5-7B-chat (Bai et al., 2023)
and the widely reputed ChatGPT-3.55 (OpenAI,
2023a). In the “By Category” chart, SeaLLM-7B-
v2.5 performs on par with or surpasses ChatGPT-
3.5 across various linguistic and writing tasks. This
is largely thanks to the large gap in low-resource
non-Latin languages, such as Burmese (Mya), Lao,
Khmer and Thai, as seen in the “By language” chart
on the right in Figure 1.

Model Languages MT-bench

GPT-4-turbo Multi 9.32

Mixtral-8x7B (46B) Multi 8.3
Starling-LM-7B-alpha Mono (Eng) 8.0

OpenChat-3.5-7B Mono (Eng) 7.81
SeaLLM-7B-v2 Multi 7.54

SeaLLM-7B-v2.5 Multi 7.43
Llama-2-70B-chat Mono 6.86
Mistral-7B-instruct Mono 6.84
SeaLLM-13B-v1 Multi 6.32

Table 3: MT-Bench scores (Zheng et al., 2023) for
closed, open, multilingual and monolingual (as indi-
cated by their authors on Huggingface.) models.

4.3 MT-bench
We also compare our models with certain baselines
on the English MT-Bench (Zheng et al., 2023) in
Table 3. As shown, SeaLLM-7B-v2 model demon-
strates outstanding ability in English, given its size.

5gpt-3.5-turbo June 2023 version.
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Model Eng Zho Vie Ind Tha
GSM8K MATH GSM8K MATH GSM8K MATH GSM8K MATH GSM8K MATH

ChatGPT-3.5 80.8 34.1 48.2 21.5 55.0 26.5 64.3 26.4 35.8 18.1
Qwen1.5-7B-chat 56.8 15.3 40.0 2.7 37.7 9.0 36.9 7.7 21.9 4.7
SeaLLM-7B-v2 78.2 27.5 53.7 17.6 69.9 23.8 71.5 24.4 59.6 22.4

SeaLLM-7B-v2.5 78.5 34.9 51.3 22.1 72.3 30.2 71.5 30.1 62.0 28.4

Table 4: GSM8K and MATH scores (Cobbe et al., 2021; Hendrycks et al., 2021b) and their translated-versions in
Chinese, Vietnamese, Indonesian and Thai, under zero-shot chain-of-thought prompting for different models.

Figure 3: Translation chrF++ scores of various models
for both SEA languages to English and English to SEA
languages directions.

It is also a rare multilingual model in the 7B realm,
especially since it focuses on non-mainstream lan-
guages.

4.4 World Knowledge

In this section, we evaluate our models and rep-
utable chat baselines (Touvron et al., 2023b; Wei
et al., 2023; OpenAI, 2023a) in terms of world
knowledge. For knowledge across languages, we
use the M3Exam benchmark (Zhang et al., 2023),
which consists of real questions from human exam
papers with various degrees of difficulty, rang-
ing from primary school to high school examina-
tions. We evaluate M3Exam with 3-shot native-
instruction prompts across English, Chinese, Viet-
namese, Indonesian and Thai. We also evaluate
our models with the well-known English-centric
MMLU benchmark (Hendrycks et al., 2021a).

Table 2 details the evaluations of world knowl-
edge across multiple languages and models of dif-
ferent sizes. SeaLLM-7B-v2.5 exhibits the best
performance given its size and is competitive to
GPT-3.5.

4.5 Math Reasoning

Table 4 shows the GSM8K and MATH scores
(Cobbe et al., 2021; Hendrycks et al., 2021b) for
zero-shot chain-of-thought prompting for English
and their translated version in Chinese, Vietnamese,
Indonesian and Thai. As shown, SeaLLM-7B-v2.5

shows competitive English performance in math
reasoning compared to open-source models, with
78.5 in GSM8K and 34.9 in MATH. It also ex-
ceeds GPT-3.5 in SEA languages. This is achieved
by scaling supervised and preference data in math
reasoning in multilingual settings.

4.6 Machine Translation
To benchmark the machine translation performance
of our SeaLLMs, we evaluate 4-shot chrF++ scores
on the test sets from Flores-200 (Costa-jussà et al.,
2022). As can be seen from Figure 3, SeaLLM-
13B exhibits clear superiority over ChatGPT-3.5 in
low-resource languages, such as Lao and Khmer,
while maintaining comparable performance with
ChatGPT-3.5 in most higher resource languages
(e.g., Vietnamese and Indonesian). We believe our
SeaLLMs will play a key role in facilitating com-
munication and cultural exchange across commu-
nities in Southeast Asia.

5 Conclusion

In conclusion, our research presents a substantial
advance in the development of equitable and cul-
turally aware AI with the creation of SeaLLMs, a
specialized suite of language models attuned to
the linguistic and cultural landscapes of South-
east Asia. Through rigorous pre-training enhance-
ments and culturally tailored fine-tuning processes,
SeaLLMs have demonstrated exceptional profi-
ciency in language understanding and generation
tasks, challenging the performance of dominant
players such as ChatGPT-3.5, particularly in SEA
languages. The models’ attunement to local norms
and legal stipulations—validated by human evalua-
tions—establishes SeaLLMs as not only a technical
breakthrough but a socially responsive innovation,
poised to democratize access to high-quality AI
language tools across linguistically diverse regions.
This work lays a foundation for further research
into language models that respect and uphold the
rich tapestry of human languages and cultures, ulti-
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mately driving the AI community towards a more
inclusive future.

6 Limitations

SeaLLMs are among the most linguistically di-
verse multilingual large language models with re-
markable abilities in languages beyond mainstream.
However, they do not come without limitations.
First, they only scratch the surface of the regionally
linguistic diversity with 9 most common and repre-
sentative languages, while there are hundreds other
languages spoken in the Southeast Asia, such as
Javanese and Tamil. Second, despite outperform-
ing other popular models in non-Latin low-resource
languages, SeaLLM models still suffer from consid-
erable hallucination and degeneration under certain
circumstances for languages such as Burmese and
Lao. Mild hallucination is still inevitable for other
common languages.
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A Vocabulary Expansion

Algorithm 1 explains in details how we perform se-
lective and recursive merger of tokens from target
NLLB vocabulary into the original Llama vocabu-
lary to enrich the linguistic coverage for new and
low-resource languages. Specifically, given a small
seed unlabeled dataset of a given new language,
the algorithm first tokenizes a document with the
current Llama tokenizer. The resulting tokens are
then exhaustively merged into longer tokens that
are supported by the target NLLB vocabulary. Dur-
ing this merger process, any intermediate sub-word
is also added to the Llama tokenizer as long as they
exist in the rich NLLB vocabulary.

The new set of collected tokens are then pruned
to remove rarely appearing and low-quality tokens
before being added to the final SeaLLM tokenizer.
This frequency-based pruning process ensures the
new language is sufficiently and efficiently encoded
without introducing tokens from other existing
languages (e.g., English), which may disrupt the
learned knowledge during the Llama-2 pre-training
stage.

B Sea-bench Evaluation Details

Figure 4 breaks down the GPT-4 rated Sea-bench
score-based evaluations of SeaLLM-13b and other
baselines by both language and task category.
As shown, our SeaLLM-13b model far exceeds
ChatGPT-3.5 in most non-Latin languages, such as
Burmese (Mya), Lao and Khmer, though it trails
behind this formidable competitor in Latin-based
languages, mostly in math reasoning skills.
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Algorithm 1 Vocabulary Extension algorithm: Vi is Llama vocabulary, Vt is target NLLB vocabulary, D
is unlabeled data and m is minimum frequency.

1: function EXHAUSTIVEMERGE(Vi, Vt, tV )
2: Tnew ← empty set ∅
3: repeat
4: for each consecutive token pair (prev, next) in tV do
5: tmerged ← ⟨prev⟩⟨next⟩ ▷ Form a new token
6: if tmerged exists in Vt then
7: Replace (prev, next) with tmerged in tV ▷ Update tV with new token
8: Tnew ← Tnew ∪ tmerged

9: break
10: until no new token added to Tnew

11: return Tnew

12: function VOCABEXTEND(Vi, Vt, D,m)
13: V ← Vi

14: F ← empty set ∅
15: T ← empty set ∅
16: for document d in D do
17: tV ← tokenize(V, d) ▷ tokenize the document
18: Tnew ← EXHAUSTIVEMERGE(Vi, Vt, tV ) ▷ obtain new words from Vt based on d
19: V ← V ∪ Tnew ▷ update V with new words Tnew

20: T ← T ∪ Tnew

21: F ← Update frequencies of Tnew to F ▷ update appearance frequencies of Tnew

22: T ← Prune ti ∈ T with corresponding ft ∈ F where ft < m ▷ Remove rare words
23: Vfinal ← Vi ∪ T
24: return Vfinal
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Figure 4: Sea-bench scores as evaluated by GPT-4 for different models across 9 languages and 5 categories.
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