
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 94–106
August 11-16, 2024 ©2024 Association for Computational Linguistics

: An Easy-to-use Instruction Processing Framework
for Large Language Models

Yixin Ou♠, Ningyu Zhang♠∗, Honghao Gui♠, Ziwen Xu♠,
Shuofei Qiao♠, Yida Xue♠, Runnan Fang♠, Kangwei Liu♠,

Lei Li♠, Zhen Bi♠, Guozhou Zheng♠, Huajun Chen♠∗
♠ Zhejiang University

{ouyixin,zhangningyu,huajunsir}@zju.edu.cn
https://zjunlp.github.io/project/EasyInstruct

Abstract

In recent years, instruction tuning has gained
increasing attention and emerged as a crucial
technique to enhance the capabilities of Large
Language Models (LLMs). To construct high-
quality instruction datasets, many instruction
processing approaches have been proposed,
aiming to achieve a delicate balance between
data quantity and data quality. Nevertheless,
due to inconsistencies that persist among var-
ious instruction processing methods, there is
no standard open-source instruction process-
ing implementation framework available for
the community, which hinders practitioners
from further developing and advancing. To
facilitate instruction processing research and
development, we present 1, an
easy-to-use instruction processing framework
for LLMs, which modularizes instruction gen-
eration, selection, and prompting, while also
considering their combination and interaction.
EasyInstruct is publicly released and actively
maintained at https://github.com/zjunlp/
EasyInstruct, along with an online demo
app2 and a demo video3 for quick-start, call-
ing for broader research centered on instruction
data and synthetic data.

1 Introduction

Large Language Models (LLMs) have brought
about a revolutionary transformation in the field
of Natural Language Processing (NLP), leading
to substantial improvement in performance across
various tasks (Brown et al., 2020; OpenAI, 2023;
Anil et al., 2023; Touvron et al., 2023b; Zhao et al.,
2023; Chen et al., 2022; Qiao et al., 2023; Chen,

∗ Corresponding Author.
1This is a subprobject of KnowLM (https://github.

com/zjunlp/KnowLM), which facilitates knowledgeable LLM
Framework with EasyInstruct, EasyEdit (Wang et al., 2023a;
Yao et al., 2023; Zhang et al., 2024), EasyDetect etc.

2https://huggingface.co/spaces/zjunlp/
EasyInstruct

3https://youtu.be/rfQOWYfziFo

2023). To optimize the performance of LLMs in
specific tasks or domains, it is crucial to adapt
their outputs to specific contexts or instructions.
Recent studies (Wei et al., 2022; Ouyang et al.,
2022; Chung et al., 2022) have proposed instruc-
tion tuning methods for fine-tuning LLMs, which is
a prominent research area aimed at optimizing the
LLMs’ behavior by providing explicit instructions
during training, enabling better control and align-
ment with user preferences and desired outputs.
Instruction dataset construction, which is also re-
ferred to as data engineering or management, poses
a significant challenge in the process of instruction
tuning (Zhao et al., 2023; Zhang et al., 2023; Wang
et al., 2023c,d).

Substantial efforts have been dedicated to the
task of construction instruction data through hu-
man annotations (Wang et al., 2022; Köpf et al.,
2023), requiring a significant allocation of re-
sources. Against this backdrop, LLMs are utilized
to synthesize large-scale instruction data automat-
ically (Wang et al., 2023b; Xu et al., 2023; Li
et al., 2023b). These methods could scale up the
size of instruction-following data, but they still in-
evitably suffer limited diversity and complexity,
resulting in an unbalanced distribution and poor
quality of instruction data. Recent studies (Zhou
et al., 2023; Chen et al., 2023a; Xu et al., 2023)
have unveiled a seminal revelation, indicating that
even a small quantity of high-quality instruction
data has the potential to yield robust performance.
In general, instruction processing is an important
process requiring careful attention to detail and rig-
orous quality assurance procedures to construct a
high-quality instruction dataset for LLMs.

Unfortunately, the availability of open-source
tools for instruction processing remains lim-
ited, especially in comparison to many open-
source projects on models and training infras-
tructures (Touvron et al., 2023a,b; Taori et al.,
2023; Scao et al., 2022; Chiang et al., 2023; Zeng

94

https://zjunlp.github.io/project/EasyInstruct
https://github.com/zjunlp/EasyInstruct
https://github.com/zjunlp/EasyInstruct
https://github.com/zjunlp/KnowLM
https://github.com/zjunlp/KnowLM
https://huggingface.co/spaces/zjunlp/EasyInstruct
https://huggingface.co/spaces/zjunlp/EasyInstruct
https://youtu.be/rfQOWYfziFo

Seed Data (Optional) Generated Instruction

Selected InstructionRaw Instruction Instruction Response

self_instruct_generator evol_instruct_generator

backtranslation_generator kg2instruct_generator

length_selector deduplicator perplexity_selector

rouge_selector gpt_score_selector

icl_prompt cot_prompt

ie_prompt mm_prompt

...

... ...

Generators

Selectors Prompts

APIs & Engines

...

...

Advanced
Components

Extension

Zero-Code
Instruction
Processing

Low-Code
Customization

Novice Users

Intermediate Users

Experienced Users

KG

Corpus

Chat

mtld_selector

Figure 1: Overview of . The APIs & Engines module standardizes the instruction execution process,
enabling the execution of instruction prompts on the LLM API services or locally deployed LLMs. The Generators
module streamlines the instruction generation process, enabling automated generation of instruction data based
on chat data, corpus, or Knowledge Graphs. The Selectors module standardizes the instruction selection
process, which enables the extraction of high-quality instruction datasets from raw, unprocessed instruction data.
The Prompts module standardizes the instruction prompting process.

et al., 2023). Existing projects are often highly-
customized to their own needs, lacking a system-
atized and modular processing ability to address
diverse processing pipelines for LLMs. For in-
stance, the Alpaca (Taori et al., 2023) dataset tar-
gets the augmentation of diversity for LLaMA tun-
ing, whereas AlpaGasus (Chen et al., 2023a) fo-
cuses on filtering out low-quality instances from
Alpaca. Thorough development of instruction pro-
cessing systems for the ever-evolving and emerging
requirements of LLM remains unexplored, partic-
ularly in light of the quick expansion of inventive
LLM applications spanning various fields.

To address this issue, we develop EasyInstruct
as depicted in Figure 1, an easy-to-use instruction
processing framework for LLMs. Given some ex-
isting chat data, corpus, or Knowledge Graphs,
EasyInstruct can handle instruction generation, se-
lection, and prompting processes, while also con-
sidering their combination and interaction. These
consistencies facilitate further development and
comparisons of various methods, thus promoting
the advancement of better instruction processing
work. We further conduct experiments with EasyIn-
struct to validate its effectiveness in instruction pro-
cessing. Currently, EasyInstuct is open-sourced on
GitHub and has already received over 300 stars.
We are committed to the long-term maintenance

of EasyInstruct, providing continuous support for
new features to ensure its effectiveness as a frame-
work for instruction processing and synthetic data
generation (Bauer et al., 2024).

2 Background

LLMs typically undergo two stages of training: pre-
training and fine-tuning (Zhao et al., 2023). De-
spite the fact that large-scale pretraining is the key
of the model’s proficiency in generating natural lan-
guage responses, these pre-trained models can still
struggle with comprehending human instructions
accurately. To bridge the gap between the training
objectives and human objectives, instruction tun-
ing is introduced as a potent strategy to amplify
the controllability and capabilities and of LLMs
in interpreting and responding to instructions (Wei
et al., 2022; Ouyang et al., 2022; Chung et al., 2022;
Wang et al., 2023b; Zhang et al., 2023; Lou et al.,
2023). Concretely, instruction tuning involves the
method of refining pre-trained LLMs through su-
pervised learning, utilizing examples structured as
(INSTRUCTION, INPUT, OUTPUT). In this for-
mat, INSTRUCTION represents the human-given
directive that outlines the task, INPUT optionally
offers additional context, and OUTPUT signifies the
expected outcome in alignment with the INSTRUC-
TION and any given INPUT.

95

Despite the effectiveness of instruction tuning,
constructing high-quality large-scale instructions
which effectively encompass the target behaviors
remains a non-trivial challenge in this realm. Exist-
ing instruction datasets are often limited in terms
of diversity, quantity, and creativity, which under-
scores the significance of instruction processing.
One typical method for constructing instruction
datasets is data integration. In this method, instruc-
tional datasets are constructed by merging exist-
ing annotated datasets with descriptions of tasks
in natural language (Longpre et al., 2023; Sanh
et al., 2022; Anand et al., 2023). Another preva-
lent method for constructing instruction datasets is
automated generation. To alleviate the need for ex-
tensive human annotation or manual data gathering,
automated methods have been proposed to gener-
ate large volumes of instructional data through the
use of LLMs. Instructions can be sourced from
chat data (Chiang et al., 2023) or expanded on a
small set of seed instructions using LLMs (Wang
et al., 2023b; Xu et al., 2023; Li et al., 2023b). Sub-
sequently, the collected instructions are fed into
LLMs to generate corresponding inputs and out-
puts. In EasyInstruct, our primary focus lies on
automated approaches for instruction generation
due to their high efficiency and scalability.

Another promising research direction of instruc-
tion processing is the selection of high-quality in-
struction. Recently, numerous studies (Zhou et al.,
2023; Chen et al., 2023a; Xu et al., 2023; Liu et al.,
2023) have investigated the issue of the scale of the
instruction dataset for fine-tuning and have indi-
cated that merely increasing the number of instruc-
tions may not necessarily result in enhancements.
Instead, a modest volume of high-quality instruc-
tion data can influence the fine-tuning of LLMs,
yielding solid performance. Thus, optimizing the
instruction dataset and enhancing its quality play a
critical role in fine-tuning LLMs effectively.

From a practical implementation point of view,
instruction processing is actually complex and re-
quires meticulous consideration. In this paper, we
present , an easy-to-use framework
to effectively and efficiently implement instruction
processing approaches including instruction gen-
eration, selection, and prompting. Through this
framework, EasyInstruct can help users to quickly
comprehend and apply the existing instruction pro-
cessing methods implemented in the package.

3 Design and Implementation

As illustrated in Figure 1, EasyInstruct provides a
complete instruction processing procedure built on
PyTorch and Huggingface. In this section, we first
introduce the design principles, and then detail the
implementation of the major modules.

3.1 Design Principles

The framework is designed to cater to users
with varying levels of expertise, providing a user-
friendly experience ranging from code-free exe-
cution to low-code customization and advanced
components extension options:

Zero-Code Instruction Processing. Novice
users, who do not require coding knowledge, can
leverage pre-defined configuration files and shell
scripts to accomplish code-free instruction process-
ing. By running these scripts, they can complete
instruction processing tasks without the need for
coding skills. Example configuration files and shell
scripts are shown in Appendix A.2.1.

Low-Code Customization. Intermediate users
have the option to customize various process inputs
and outputs using a low-code approach. This al-
lows them to have more control over the different
stages within the framework. A running example
is shown in Figure 2.

Advanced Components Extension. Experi-
enced users can easily extend our components
based on their specific scenarios and requirements.
To customize their classes, users can inherit the
base classes of modules and override the necessary
methods as per their requirements. This flexibility
enables them to implement their functional compo-
nents, tailored to their unique needs.

3.2 APIs & Engines

The APIs modules integrate with mainstream
LLMs, including API services provided by compa-
nies such as OpenAI4, Anthropic5, and Cohere6.
This integration facilitates the seamless invoca-
tion of various relevant steps within the frame-
work. We list a range of API service providers
and their corresponding LLM products that are cur-
rently available in EasyInstruct in Appendix A.5.
The Engines module standardizes the instruction
execution process, which enables the execution of

4https://platform.openai.com/docs
5https://docs.anthropic.com/claude/docs
6https://docs.cohere.com/docs

96

https://platform.openai.com/docs
https://docs.anthropic.com/claude/docs
https://docs.cohere.com/docs

instruction prompts on several open-source LLMs
such as LLaMA (Touvron et al., 2023a,b) and Chat-
GLM (Du et al., 2022; Zeng et al., 2023).

3.3 Generators
The Generators module streamlines the process of
instruction generation, enabling automated genera-
tion of instruction data based on seed data, where
seed data can be sourced from either chat data, cor-
pus, or Knowledge Graphs. As listed in Table 1,
the instruction generation methods implemented
in Generators are categorized into three groups,
based on their respective seed data sources.

Chat Data. Early work (Wang et al., 2023b) ran-
domly samples a few instructions from a human-
annotated seed tasks pool as demonstrations and
then, prompts an LLM to generate more instruc-
tions and corresponding input-output pairs. Due to
its adaptability, Self-Instruct remains the prevailing
preference among automated instruction genera-
tion methods. Similarly, starting with an initial
set of instructions, Evol-Instruct (Xu et al., 2023)
incrementally upgrades them into more complex
instructions by prompting an LLM with specific
prompts. In contrast to the Self-Instruct generation
approach, Evol-Instruct allows for the adjustment
of the difficulty and intricacy of the instructions it
produces.

Corpus. Given an unannotated corpus, Instruc-
tion Backtranslation (Li et al., 2023b) creates an
instruction following training instance by predict-
ing an instruction that would be correctly answered
by a paragraph in the document or corpus. Con-
sidering the mixed quality of human-written web
text and the presence of noise in generated content,
only the highest quality instances are reserved.

Knowledge Graphs. Incorporating existing
knowledge graphs, KG2Instruct (Gui et al., 2023)
generates Information Extraction (IE) instruction
datasets. To enhance the generalizability of in-
structions, a random sampling approach is utilized
based on human-crafted instruction templates.

EasyInstruct has implemented the existing meth-
ods above to facilitate future research and sys-
tematic comparison of automated generation of
instruction data. Furthermore, the flexibility of
the Generators module allows practitioners to se-
lect the appropriate generator and make further
modification that best suits their specific needs. A
running example of using a Generator class in
EasyInstruct is shown in Figure 2.

from easyinstruct import SelfInstructGenerator
from easyinstruct import GPTScoreSelector
from easyinstruct.utils.api import set_openai_key

Step1: Set your own API-KEY
set_openai_key("YOUR-KEY")

Step2: Declare a generator class
generator = SelfInstructGenerator(

data_format = "alpaca",
seed_tasks_path = "seed_tasks.jsonl",
generated_instances_path = "generation.jsonl",
num_instructions_to_generate=100,
engine = "gpt-3.5-turbo",

)

Step3: Generate self-instruct data
generator.generate()

Step4: Declare a selector class
selector = GPTScoreSelector(

source_file_path = "generation.jsonl",
engine = "gpt-3.5-turbo",
threshold = 4,

)

Step5: Process raw data
selector.process()

Figure 2: A running example of instruction generation
and selection in .

3.4 Selectors

The Selectors module is designed to streamline
the process of filtering instructions, enabling the cu-
ration of instruction datasets from raw instruction
data. This raw data might originate from publicly
accessible instruction datasets or be synthesised in
advence by the Generators module. Table 1 pro-
vides a comprehensive overview of various metrics
for instruction quality evaluation. We divide the
evaluation metrics into four categories based on the
principle of their implementation: statistics-based,
n-gram-based, structure-based and LM-based. All
Selector classes derive from a common base class,
BaseSelector. It includes fundamental attributes
and abstract methods such as loading, processing,
and dumping of data. In EasyInstruct, multiple
Selectors can be grouped for convenient usage,
which allows users to achieve more concise and
readable code. A running example of using a
Selector class is shown in Figure 2.

3.5 Prompts

The Prompts module standardizes the instruction
prompting step, in which user requests are con-
structed as instruction prompts and sent to specific
LLMs to obtain responses. Utilizing the Prompts
module with a series of well-designed and re-
fined prompts enhances the ability of Generators
and Selectors to effectively fulfill their re-
spective functions. Similar to Selectors, all

97

Modules Methods Seed Description

Generators

Self-Instruct Chat
The method that randomly samples a few instructions as demonstrations and
generates more instructions and input-output pairs using LLM (Wang et al., 2023b).

Evol-Instruct Chat
The method that incrementally upgrades an initial set of instructions into more
complex instructions by prompting an LLM with specific prompts (Xu et al., 2023).

Backtranslation Corpus
The method that creates a training instance by predicting an instruction that would
be correctly answered by a paragraph in the corpus (Li et al., 2023b).

KG2Instruct KG
The method that generates Information Extraction (IE) instruction datasets incor-
porating existing Knowledge Graphs (Gui et al., 2023).

Modules Metrics Type Description

Selectors

Deduplication Statistics-based Repetitive input and output of instances.
Length Statistics-based The bounded length of every pair of instruction and output.

MTLD Statistics-based
A metric for assessing the lexical diversity in text, defined as the average length
of word sequences that sustain a minimum threshold TTR score (McCarthy and
Jarvis, 2010).

ROUGE N-gram-based Recall-oriented understudy for gisting evaluation (Lin, 2004).

CIRS Structure-based
The score using the abstract syntax tree to encode structural and logical attributes,
to evaluate the correlation between code and reasoning abilities (Bi et al., 2023).

Perplexity LM-based The exponentiated average negative log-likelihood of text.

GPT Score LM-based
The score that ChatGPT/GPT4 assigns to assess how effectively the AI Assistant’s
response aligns with the user’s instructions.

Table 1: Components of Generators and Selectors modules of . The instruction generation
methods implemented in Generators are categorized into three groups, based on their respective seed data sources:
chat data, corpus, and knowledge graphs. The evaluation metrics in Selecors are divided into four categories,
based on the principle of their implementation: statistics-based, n-gram-based, structure-based, and LM-based.

Prompts classes inherit from a common base class,
BasePrompt, which includes necessary attributes
and abstract methods. In the mentioned base
class, there are functionalities provided for build-
ing prompts, requesting generation results from
LLMs, and parsing the responses received from
LLMs. The base class also provides mechanisms
to handle error conditions and exceptions that may
occur during the whole process. Users can inherit
from the base class and customize or extend its
functionality based on their specific requirements.
We also equip EasyInstruct with various prompting
techniques and application adaptions (e.g. Chain-
of-Thought, Information Extraction, Multimodal,
etc.) by providing a consistent and standardized
interface, enabling efficient instruction prompting
for LLMs.

4 Evaluation

In terms of evaluation, we will introduce the exper-
iment setups and illustrate the empirical results of
multiple modules implemented in EasyInstruct to
demonstrate its capability.

4.1 Experiment Setups

Instruction Datasets. We adopt the popular Self-
Instruct (Wang et al., 2023b) and Evol-Instruct (Xu

et al., 2023) methods implemented in EasyIn-
struct to synthesize instruction datasets, contain-
ing instructions paired with instance inputs and
outputs separately. We mainly consider four in-
struction datasets as follows: (a) self_instruct_5k
is constructed by employing the Self-Instruct
method to distill instruction data from text-davinci-
003; (b) alpaca_data_5k is randomly sampled
from the Alpaca dataset (Taori et al., 2023); (c)
evol_instruct_5k is constructed by employing the
Evol-Instruct method; (d) easyinstruct_5k is col-
lected by integrating the three instruction datasets
above and applying multiple Selectors in EasyIn-
struct to extract high-quality instruction datasets.
We detail the hyper-parameters for selection in a
configuration file, as shown in Appendix A.2.1.

Implementation Setups. To conduct the experi-
ments on the effect of instruction datasets, we adopt
a LLaMA2 (7B) model (Touvron et al., 2023b), a
popular open-sourced LLM backbone widely used
for instruction-tuning. We fine-tune the LLMs with
LoRA (Hu et al., 2022) in the format following Al-
paca (Taori et al., 2023) with KnowLM7. All hyper-
parameters for training can be found in Appendix
A.3. The evaluation is conducted by comparing the

7https://github.com/zjunlp/KnowLM

98

https://github.com/zjunlp/KnowLM

[Instruction] Describe the common theme of the following three animals.
[Output] The common theme among the penguin, polar bear and walrus is their ability to survive in cold climates.

All three animals have adapted to thrive in cold Arctic regions, with a heavy layer of blubber or thick fur to keep them
warm and plenty of blubber to provide sustenance.
[Scores] {"mtld_score": 22.68, "avg_rouge_score": 0.16, "ppl_score": 22.57, "gpt_score": 4}

[Instruction] Pretend that you are the subject of the following poem. Use the first person voice to write a response to
the poem.
[Input] The gentle swell of the sea,\n Cradling the shore in its serenity.

[Output] I can hear the sound of the waves crashing against the shore. The sea’s serenity is like a soothing cradle that
brings me peace and tranquility.
[Scores] {"mtld_score": 27.10, "avg_rouge_score": 0.16, "ppl_score": 26.02, "gpt_score": 4}

[Instruction] Create a function to calculate the total cost of a book order, given the unit price, quantity, shipping cost,
and tax rate.
[Input] Unit Price: 10.99\n Quantity: 3\n Shipping Cost: 5\n Tax Rate: 0.03

[Output] def calculateCost(unitPrice, quantity, shippingCost, taxRate):
totalPrice = (unitPrice * quantity) + shippingCost
totalTax = totalPrice * taxRate
totalCost = totalPrice + totalTax
return totalCost

[Scores] {"mtld_score": 67.76, "avg_rouge_score": 0.17, "ppl_score": 18.95, "gpt_score": 5}

Table 2: Examples of the selected instructions in easyinstruct_5k, and their corresponding evaluation scores given
by the Selectors module.

generated results from different fine-tuned mod-
els based on the AlpacaFarm (Dubois et al., 2023)
evaluation set. Following AlpacaFarm, for each
comparison, we employ ChatGPT as the evalu-
ator to automatically compare two outputs from
different models and label which one they prefer,
reporting the win rate as the evaluation metric. For
both instruction tuning and evaluation, we adopt
the same prompt templates used by Alpaca-LoRA8,
as shown in Appendix A.4.

4.2 Experiment Results

Main Results. We compare the generated out-
puts from models fine-tuned separately on the four
instruction datasets with the outputs from the base
version of the LLaMA2 (7B) model on the Alpaca-
Farm evaluation set. As depicted in Figure 3, there
are improvements in the win rate metric for all the
settings. Moreover, the model performs optimally
under the easyinstruct_5k setting, indicating the
importance of a rich instruction selection strategy.

Instruction Diversity. To study the diversity of
the instruction datasets considered in our experi-
ments, we identify the verb-noun structure in the
generated instructions and plot the top 20 most
prevalent root verbs and their top 4 direct nouns

8https://github.com/tloen/alpaca-lora

Figure 3: Results of models fine-tuned on four dis-
tinct instruction datasets against those from the base
LLaMA2 (7B) model, using the AlpacaFarm evaluation
set for assessment.

in Figure 4, following the approach of Wang et al.
(2023b). Overall, we see a wide range of intents
and textual formats within these instructions.

Case Study. To conduct a qualitative evalua-
tion of EasyInstruct, we sample several instruction
examples selected by the Selectors module in
easyinstruct_5k for the case study. We also attach
the corresponding evaluation scores for each of
these instruction examples, as shown in Table 2.
We observe that the selected instructions often pos-
sess fluent language and meticulous logic.

99

https://github.com/tloen/alpaca-lora

Figure 4: (Inner circle refers to the top 20 most prevalent
root verbs and outer circle indicates their top 4 direct
nouns in the generated instruction datasets considered
in the experiments.

5 Conclusion and Future Work

We present , an easy-to-use instruc-
tion processing framework for LLMs. EasyInstruct
can combine chat data, corpus, KGs and LLMs as
an automated instruction generation tool, reducing
the cost of manual data annotation. Additionally,
EasyInstruct integrates a diverse set of instruction
selection tools to optimize the diversity and distri-
bution of instruction data, thereby improving the
quality of fine-tuning data. EasyInstruct is designed
to be easy to extend, and we will continue to update
new features (e.g., knowledgeable synthetic data
generation) to keep pace with the latest research.
We expect EasyInstruct to be a helpful framework
for researchers and practitioners to facilitate their
work of instruction tuning on LLMs.

Limitations

In this paper, we are committed to unifying all
phases of instruction data processing including in-
struction generation, selection, and prompting. De-
spite our efforts, this paper may still have some
remaining limitations.

The Scope of Instruction Selection Methods.
We implement various instruction selection meth-
ods within the Selectors module. Based on the
evaluation metrics utilized and the model base em-
ployed, the implemented instruction data selection
methods can be divided into three categories: meth-

ods based on a system of indicators, methods uti-
lizing powerful LLMs like ChatGPT, and methods
employing small models (Wang et al., 2024). How-
ever, another line of work (Li et al., 2023a,c,b; Wu
et al., 2023; Chen et al., 2023b; Kung et al., 2023)
employs trainable LLMs like LLaMA for compu-
tation formulas in instruction selection processes,
which are not integrated into the Selectors mod-
ule. Although our design choice is to decouple
instruction processing and model training into two
separate phases, we regard it as a limitation that
may be addressed by future work.

Statistics for evaluating efficiency. In our eval-
uation, we fine-tune a LLaMA2 (7B) model uti-
lizing multiple modules implemented in EasyIn-
struct. Compared to models fine-tuned on other in-
struction datasets constructed without EasyInstruct,
our model achieves optimal results, demonstrat-
ing EasyInstruct’s capability. Although we also
qualitatively demonstrate the ease of writing code
for instruction processing with multiple code sam-
ples and configuration files using EasyInstruct, a
limitation is the lack of appropriate statistics for
quantitatively evaluating efficiency.

Acknowledgments

We would like to express gratitude to the anony-
mous reviewers for their kind comments. This
work was supported by the National Natural
Science Foundation of China (No. 62206246,
No. NSFCU23B2055, No. NSFCU19B2027),
the Fundamental Research Funds for the Central
Universities (226-2023-00138), Zhejiang Provin-
cial Natural Science Foundation of China (No.
LGG22F030011), Yongjiang Talent Introduction
Programme (2021A-156-G), CCF-Baidu Open
Fund, Information Technology Center and State
Key Lab of CAD&CG, Zhejiang University.

References
Yuvanesh Anand, Zach Nussbaum, Brandon Duder-

stadt, Benjamin Schmidt, and Andriy Mulyar. 2023.
Gpt4all: Training an assistant-style chatbot with large
scale data distillation from gpt-3.5-turbo. https:
//github.com/nomic-ai/gpt4all.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin

100

https://github.com/nomic-ai/gpt4all
https://github.com/nomic-ai/gpt4all

Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,
Yuanzhong Xu, Yujing Zhang, Gustavo Hernández
Ábrego, Junwhan Ahn, Jacob Austin, Paul Barham,
Jan A. Botha, James Bradbury, Siddhartha Brahma,
Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa
Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz,
Nan Du, Ethan Dyer, Vladimir Feinberg, Fangxi-
aoyu Feng, Vlad Fienber, Markus Freitag, Xavier
Garcia, Sebastian Gehrmann, Lucas Gonzalez, and
et al. 2023. Palm 2 technical report. CoRR,
abs/2305.10403.

André Bauer, Simon Trapp, Michael Stenger, Robert
Leppich, Samuel Kounev, Mark Leznik, Kyle Chard,
and Ian T. Foster. 2024. Comprehensive explo-
ration of synthetic data generation: A survey. CoRR,
abs/2401.02524.

Zhen Bi, Ningyu Zhang, Yinuo Jiang, Shumin Deng,
Guozhou Zheng, and Huajun Chen. 2023. When do
program-of-thoughts work for reasoning? CoRR,
abs/2308.15452.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Huajun Chen. 2023. Large knowledge model: Perspec-
tives and challenges. CoRR, abs/2312.02706.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, and Hongxia Jin.
2023a. Alpagasus: Training A better alpaca with
fewer data. CoRR, abs/2307.08701.

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng,
Yunzhi Yao, Chuanqi Tan, Fei Huang, Luo Si, and
Huajun Chen. 2022. Knowprompt: Knowledge-
aware prompt-tuning with synergistic optimization
for relation extraction. In WWW ’22: The ACM Web
Conference 2022, Virtual Event, Lyon, France, April
25 - 29, 2022, pages 2778–2788. ACM.

Yongrui Chen, Haiyun Jiang, Xinting Huang, Shuming
Shi, and Guilin Qi. 2023b. Tegit: Generating high-
quality instruction-tuning data with text-grounded
task design. CoRR, abs/2309.05447.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan

Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao,
Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
CoRR, abs/2210.11416.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:
General language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 320–335.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023. Alpaca-
farm: A simulation framework for methods that learn
from human feedback. CoRR, abs/2305.14387.

Honghao Gui, Jintian Zhang, Hongbin Ye, and Ningyu
Zhang. 2023. Instructie: A chinese instruction-
based information extraction dataset. CoRR,
abs/2305.11527.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte,
Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver
Stanley, Richárd Nagyfi, Shahul ES, Sameer Suri,
David Glushkov, Arnav Dantuluri, Andrew Maguire,
Christoph Schuhmann, Huu Nguyen, and Alexander
Mattick. 2023. Openassistant conversations - de-
mocratizing large language model alignment. CoRR,
abs/2304.07327.

Po-Nien Kung, Fan Yin, Di Wu, Kai-Wei Chang, and
Nanyun Peng. 2023. Active instruction tuning:
Improving cross-task generalization by training on
prompt sensitive tasks. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pages 1813–1829. Association for
Computational Linguistics.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and
Jing Xiao. 2023a. From quantity to quality: Boosting
LLM performance with self-guided data selection for
instruction tuning. CoRR, abs/2308.12032.

101

https://doi.org/10.48550/ARXIV.2305.10403
https://doi.org/10.48550/ARXIV.2401.02524
https://doi.org/10.48550/ARXIV.2401.02524
https://doi.org/10.48550/ARXIV.2308.15452
https://doi.org/10.48550/ARXIV.2308.15452
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/ARXIV.2312.02706
https://doi.org/10.48550/ARXIV.2312.02706
https://doi.org/10.48550/ARXIV.2307.08701
https://doi.org/10.48550/ARXIV.2307.08701
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.48550/ARXIV.2309.05447
https://doi.org/10.48550/ARXIV.2309.05447
https://doi.org/10.48550/ARXIV.2309.05447
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.48550/ARXIV.2305.14387
https://doi.org/10.48550/ARXIV.2305.14387
https://doi.org/10.48550/ARXIV.2305.14387
https://doi.org/10.48550/ARXIV.2305.11527
https://doi.org/10.48550/ARXIV.2305.11527
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/ARXIV.2304.07327
https://doi.org/10.48550/ARXIV.2304.07327
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.112
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.112
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.112
https://doi.org/10.48550/ARXIV.2308.12032
https://doi.org/10.48550/ARXIV.2308.12032
https://doi.org/10.48550/ARXIV.2308.12032

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke
Zettlemoyer, Omer Levy, Jason Weston, and Mike
Lewis. 2023b. Self-alignment with instruction back-
translation. CoRR, abs/2308.06259.

Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang,
Min Yang, Lei Zhang, Shuzheng Si, Junhao Liu,
Tongliang Liu, Fei Huang, and Yongbin Li. 2023c.
One shot learning as instruction data prospector for
large language models. CoRR, abs/2312.10302.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and
Junxian He. 2023. What makes good data for align-
ment? A comprehensive study of automatic data se-
lection in instruction tuning. CoRR, abs/2312.15685.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. 2023.
The flan collection: Designing data and methods for
effective instruction tuning. In International Con-
ference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
22631–22648. PMLR.

Renze Lou, Kai Zhang, and Wenpeng Yin. 2023.
Is prompt all you need? no. A comprehensive
and broader view of instruction learning. CoRR,
abs/2303.10475.

Philip M McCarthy and Scott Jarvis. 2010. Mtld, vocd-
d, and hd-d: A validation study of sophisticated ap-
proaches to lexical diversity assessment. Behavior
research methods, 42(2):381–392.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen,
Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang,
and Huajun Chen. 2023. Reasoning with language
model prompting: A survey. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2023, Toronto, Canada, July 9-14, 2023, pages 5368–
5393. Association for Computational Linguistics.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,

Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Févry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M. Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilic, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, Jonathan Tow, Alexander M. Rush,
Stella Biderman, Albert Webson, Pawan Sasanka Am-
manamanchi, Thomas Wang, Benoît Sagot, Niklas
Muennighoff, Albert Villanova del Moral, Olatunji
Ruwase, Rachel Bawden, Stas Bekman, Angelina
McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile
Saulnier, Samson Tan, Pedro Ortiz Suarez, Vic-
tor Sanh, Hugo Laurençon, Yacine Jernite, Julien
Launay, Margaret Mitchell, Colin Raffel, Aaron
Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri
Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg
Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue,
Christopher Klamm, Colin Leong, Daniel van Strien,
David Ifeoluwa Adelani, and et al. 2022. BLOOM:
A 176b-parameter open-access multilingual language
model. CoRR, abs/2211.05100.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-

102

https://doi.org/10.48550/ARXIV.2308.06259
https://doi.org/10.48550/ARXIV.2308.06259
https://doi.org/10.48550/ARXIV.2312.10302
https://doi.org/10.48550/ARXIV.2312.10302
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.48550/ARXIV.2312.15685
https://doi.org/10.48550/ARXIV.2312.15685
https://doi.org/10.48550/ARXIV.2312.15685
https://proceedings.mlr.press/v202/longpre23a.html
https://proceedings.mlr.press/v202/longpre23a.html
https://doi.org/10.48550/ARXIV.2303.10475
https://doi.org/10.48550/ARXIV.2303.10475
https://doi.org/10.48550/ARXIV.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.18653/V1/2023.ACL-LONG.294
https://doi.org/10.18653/V1/2023.ACL-LONG.294
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971

nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288.

Jiahao Wang, Bolin Zhang, Qianlong Du, Jiajun Zhang,
and Dianhui Chu. 2024. A survey on data selection
for LLM instruction tuning. CoRR, abs/2402.05123.

Peng Wang, Ningyu Zhang, Xin Xie, Yunzhi Yao,
Bozhong Tian, Mengru Wang, Zekun Xi, Siyuan
Cheng, Kangwei Liu, Guozhou Zheng, and Huajun
Chen. 2023a. Easyedit: An easy-to-use knowledge
editing framework for large language models. CoRR,
abs/2308.07269.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023b. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2023, Toronto, Canada, July 9-14, 2023,
pages 13484–13508. Association for Computational
Linguistics.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An-
jana Arunkumar, David Stap, Eshaan Pathak, Gi-
annis Karamanolakis, Haizhi Gary Lai, Ishan Puro-
hit, Ishani Mondal, Jacob Anderson, Kirby Kuz-
nia, Krima Doshi, Kuntal Kumar Pal, Maitreya Pa-
tel, Mehrad Moradshahi, Mihir Parmar, Mirali Puro-
hit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit
Verma, Ravsehaj Singh Puri, Rushang Karia, Savan
Doshi, Shailaja Keyur Sampat, Siddhartha Mishra,
Sujan Reddy A, Sumanta Patro, Tanay Dixit, and
Xudong Shen. 2022. Super-naturalinstructions: Gen-
eralization via declarative instructions on 1600+ NLP
tasks. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2022, Abu Dhabi, United Arab Emirates, De-
cember 7-11, 2022, pages 5085–5109. Association
for Computational Linguistics.

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi,
Xingshan Zeng, Wenyong Huang, Lifeng Shang,
Xin Jiang, and Qun Liu. 2023c. Aligning large
language models with human: A survey. CoRR,
abs/2307.12966.

Zige Wang, Wanjun Zhong, Yufei Wang, Qi Zhu, Fei
Mi, Baojun Wang, Lifeng Shang, Xin Jiang, and Qun
Liu. 2023d. Data management for large language
models: A survey. CoRR, abs/2312.01700.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners. In The Tenth

International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Shengguang Wu, Keming Lu, Benfeng Xu, Junyang Lin,
Qi Su, and Chang Zhou. 2023. Self-evolved diverse
data sampling for efficient instruction tuning. CoRR,
abs/2311.08182.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. CoRR,
abs/2304.12244.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan
Cheng, Zhoubo Li, Shumin Deng, Huajun Chen, and
Ningyu Zhang. 2023. Editing large language mod-
els: Problems, methods, and opportunities. CoRR,
abs/2305.13172.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma,
Yufei Xue, Jidong Zhai, Wenguang Chen, Zhiyuan
Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. 2023.
GLM-130B: an open bilingual pre-trained model. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng
Wang, Shumin Deng, Mengru Wang, Zekun Xi,
Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan
Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang,
Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang,
Xiaowei Zhu, Jun Zhou, and Huajun Chen. 2024. A
comprehensive study of knowledge editing for large
language models. CoRR, abs/2401.01286.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, and Guoyin Wang. 2023. In-
struction tuning for large language models: A survey.
CoRR, abs/2308.10792.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. CoRR,
abs/2303.18223.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. LIMA:
less is more for alignment. CoRR, abs/2305.11206.

103

https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2402.05123
https://doi.org/10.48550/ARXIV.2402.05123
https://doi.org/10.48550/ARXIV.2308.07269
https://doi.org/10.48550/ARXIV.2308.07269
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.340
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.340
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.340
https://doi.org/10.48550/ARXIV.2307.12966
https://doi.org/10.48550/ARXIV.2307.12966
https://doi.org/10.48550/ARXIV.2312.01700
https://doi.org/10.48550/ARXIV.2312.01700
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.48550/ARXIV.2311.08182
https://doi.org/10.48550/ARXIV.2311.08182
https://doi.org/10.48550/ARXIV.2304.12244
https://doi.org/10.48550/ARXIV.2304.12244
https://doi.org/10.48550/ARXIV.2305.13172
https://doi.org/10.48550/ARXIV.2305.13172
https://openreview.net/pdf?id=-Aw0rrrPUF
https://doi.org/10.48550/ARXIV.2401.01286
https://doi.org/10.48550/ARXIV.2401.01286
https://doi.org/10.48550/ARXIV.2401.01286
https://doi.org/10.48550/ARXIV.2308.10792
https://doi.org/10.48550/ARXIV.2308.10792
https://doi.org/10.48550/ARXIV.2303.18223
https://doi.org/10.48550/ARXIV.2305.11206
https://doi.org/10.48550/ARXIV.2305.11206

A Appendix

A.1 Installation

Currently, EasyInstruct offers three installation op-
tions, each accompanied by its corresponding in-
stallation script. Users can choose the option that
best suits their specific requirements.

A.1.1 Installation from GitHub Repository
The first option is to install the latest version of
EasyInstruct from the GitHub repository. The in-
stallation script is shown in Figure 5.

A.1.2 Installation for Local Development
The second option is to download the source code
for local development. The installation script is
shown in Figure 6.

A.1.3 Installation from PyPI
The third option is to install the package from The
Python Package Index (PyPI), which may not be
the latest version but still supports most of the fea-
tures. The installation script is shown in Figure 7.

A.2 Quick-start

We provide two ways for users to quickly get
started with EasyInstruct. Users can either use
the shell script or the Gradio app based on their
specific needs.

A.2.1 Shell Script
Step1: Prepare a configuration file. Users can
easily configure the parameters of EasyInstruct in
a YAML-style file or just quickly use the default
parameters in the configuration files we provide.
Figure 8 is an example of the configuration file for
Self-Instruct.

Step2: Run the shell script. Users should first
specify the configuration file and provide their own
OpenAI API key. Then, run the following shell
script in Figure 10 to launch the instruction genera-
tion or selection process.

A.2.2 Gradio App
We provide a Gradio app for users to quickly get
started with EasyInstruct. Users can choose to
launch the Gradio App locally on their own ma-
chines or alternatively, they can also try the hosted
Gradio App9 that we provide on HuggingFace
Spaces.

9https://huggingface.co/spaces/zjunlp/
EasyInstruct.

A.3 Detailed Hyper-Parameters

See Table 3.

Name LLaMA-2-7b
batch_size 256

micro_batch_size 8
epochs 3

learning rate 3e-4
cutoff_len 512

val_set_size 1,000
lora_r 16

lora_alpha 32
lora_dropout 0.05

Table 3: Detailed hyper-parameters we use in experi-
ments.

A.4 Prompt Template for Instruction Tuning

For both training and evaluation, we utilize the
same prompt templates used by Alpaca-LoRA,
shown in Table 4.

Prompt Template for Instruction Tuning

Prompt with Input:
Below is an instruction that describes a task, paired
with an input that provides further context. Write a
response that appropriately completes the request.

Instruction:
{instruction}

Input:
{input}

Response:

Prompt without Input:
Below is an instruction that describes a task. Write a
response that appropriately completes the request.

Instruction:
{instruction}

Response:

Table 4: Prompt Template for instruction tuning.

A.5 API Services Available in EasyInstruct

Table 5 lists a range of API service providers and
their corresponding LLM products that are cur-
rently available in EasyInstruct.

104

https://huggingface.co/spaces/zjunlp/EasyInstruct
https://huggingface.co/spaces/zjunlp/EasyInstruct

pip install git+https://github.com/zjunlp/EasyInstruct@main

Figure 5: Installation script from Github repository.

Model Description Default Version

OpenAI

GPT-3.5
A set of models that improve on GPT-3 and can understand as well as
generate natural language or code. gpt-3.5-turbo

GPT-4
A set of models that improve on GPT-3.5 and can understand as well as
generate natural language or code. gpt-4

Anthropic

Claude
A next-generation AI assistant based on Anthropic’s research into training
helpful, honest, and harmless AI systems. claude-2

Claude-Instant A lighter, less expensive, and much faster option than Claude. claude-instant-1

Cohere

Command
An instruction-following conversational model that performs language tasks
with high quality, more reliably, and with a longer context than cohere’s
base generative models.

command

Command-Light A smaller, faster version of Command. Almost as capable, but a lot faster. command-light

Table 5: API service providers and their corresponding LLM products that are currently available in .

git clone
https://github.com/zjunlp/EasyInstruct↪→

cd EasyInstruct
pip install -e .

Figure 6: Installation script for local development.

pip install easyinstruct

Figure 7: Installation script using PyPI.

generator:
SelfInstructGenerator:
target_dir: data/generations/
data_format: alpaca
seed_tasks_path:
data/seed_tasks.jsonl↪→
generated_instructions_path:
generated_instructions.jsonl↪→
generated_instances_path:
generated_instances.jsonl↪→
num_instructions_to_generate: 100
engine: gpt-3.5-turbo
num_prompt_instructions: 8

Figure 8: Example configuration file of Generators.

selector:
source_file_path:
target_dir: data/selections/
target_file_name: case.jsonl
LengthSelector:

min_instruction_length: 3
max_instruction_length: 150
min_response_length: 1
max_response_length: 350

Deduplicator:
RougeSelector:

threshold: 0.7
GPTScoreSelector:

engine: gpt-3.5-turbo
threshold: 4

MTLDSelector:
ttr_threshold: 0.72
min_mtld: 8
max_mtld: 22

PPLSelector:
threshold: 200
model_name: gpt2
device: cuda

RandomSelector:
num_instructions_to_sample: 100
seed: 42

Figure 9: Example configuration file of Selectors.

config_file=""
openai_api_key=""

python demo/run.py \
--config $config_file\
--openai_api_key $openai_api_key \

Figure 10: Shell script for quick-start of EasyInstruct.

105

Figure 11: Example features in the Prompts module, including Information Extraction, Chain-of-Thought Reason-
ing, and Multimodal Prompting.

A.6 Example features in the Prompts module
A.7 Acknowledgements
We thank the developers of the self-instruct10 li-
brary for their significant contributions to the NLP
community. We thank the LLaMA team for pro-
viding us access to the models, and open-source
projects, including Alpaca11, Alpaca-LoRA12 and
AlpacaEval13.

10https://github.com/yizhongw/self-instruct
11https://github.com/tatsu-lab/stanford_alpaca
12https://github.com/tloen/alpaca-lora
13https://github.com/tatsu-lab/alpaca_eval

106

https://github.com/yizhongw/self-instruct
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tloen/alpaca-lora
https://github.com/tatsu-lab/alpaca_eval

