Abstract
“电信网络诈骗案件的激增给社会带来了巨大的安全威胁,因此准确、高效地分类和检测电信网络诈骗成为了当务之急。本研究旨在针对电信网络诈骗案件分类问题,探索了一系列优化策略,并在“电信网络诈骗案件分类评测”技术评测比赛中最终成绩排名第一。本研究基于文本分类模型,并采用了BERT的继续预训练、FreeLB的对抗训练和模型融合等trick。通过BERT的继续预训练,使模型具备更好的语义理解能力和特征提取能力。而通过FreeLB的对抗训练,增强了模型的鲁棒性,使其能够更好地应对噪声和干扰。此外,本文采用模型融合的方法将多个模型的预测结果进行融合,进一步提高了分类的准确性。实验结果表明,本文的优化策略在比赛中取得了显著的成绩,证明了其在电信网络诈骗案件分类中的有效性和优越性。本研究的成果对于提高电信网络诈骗案件的分类性能具有重要意义,为相关领域的研究和实践提供了有益的参考。”- Anthology ID:
- 2023.ccl-3.17
- Volume:
- Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
- Month:
- August
- Year:
- 2023
- Address:
- Harbin, China
- Editors:
- Maosong Sun, Bing Qin, Xipeng Qiu, Jing Jiang, Xianpei Han
- Venue:
- CCL
- SIG:
- Publisher:
- Chinese Information Processing Society of China
- Note:
- Pages:
- 173–178
- Language:
- Chinese
- URL:
- https://aclanthology.org/2023.ccl-3.17
- DOI:
- Cite (ACL):
- Junhui Yu and Zhi Li. 2023. CCL23-Eval 任务6系统报告:面向电信网络诈骗案件分类的优化策略(CCL23-Eval Task 6 System Report: Research on Optimization Strategies for Telecom Internet fraud Case Classification). In Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations), pages 173–178, Harbin, China. Chinese Information Processing Society of China.
- Cite (Informal):
- CCL23-Eval 任务6系统报告:面向电信网络诈骗案件分类的优化策略(CCL23-Eval Task 6 System Report: Research on Optimization Strategies for Telecom Internet fraud Case Classification) (Yu & Li, CCL 2023)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-4/2023.ccl-3.17.pdf