@inproceedings{ren-etal-2023-ji,
title = "基于不完全标注的自监督多标签文本分类(Self-Training With Incomplete Labeling For Multi-Label Text Classification)",
author = "Ren, Junfei and
Zhu, Tong and
Chen, Wenliang",
editor = "Sun, Maosong and
Qin, Bing and
Qiu, Xipeng and
Jiang, Jing and
Han, Xianpei",
booktitle = "Proceedings of the 22nd Chinese National Conference on Computational Linguistics",
month = aug,
year = "2023",
address = "Harbin, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2023.ccl-1.2",
pages = "17--30",
abstract = "{``}多标签文本分类((Multi-Label Text Classification, MLTC)旨在从预定义的候选标签集合中选择一个或多个文本对应的类别,是自然语言处理C)旨在从预定义的候选标签集合中选择一个或多个文本对应的类别,是自然语言处理(Natural Language Processing,NLP)的一项基本任务。前人工作大多基于规范且全面的标注数据集,而这些规范数据集需要严格的质量控制,一般很难获取。在真实的标注过程中,难免会丢失掉一些相关标签,进而导致不完全标注问题。为此本文提出了一种基于局部标注的自监督框架(Partial Self-Training,PST),该框架利用教师模型自动地给大规模无标注数据打伪标签,同时给不完全标注数据补充缺失标签,最后再利用这些数据反向更新教师模型。在合成数据集和真实数据集上的实验表明,本文提出的PST框架兼容现有的各类多标签文本分类模型,并且可以缓解不完全标注数据对模型的影响。{''}",
language = "Chinese",
}
Markdown (Informal)
[基于不完全标注的自监督多标签文本分类(Self-Training With Incomplete Labeling For Multi-Label Text Classification)](https://aclanthology.org/2023.ccl-1.2) (Ren et al., CCL 2023)
ACL