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Introduction

We welcome you to NAACL-HLT Industry Track 2022.

The industry track was first introduced to a major NLP conference at NAACL-HLT 2018 in New Orleans
and has since become a standard track at the NAACL conferences. The Industry track provides a forum
for researchers, engineers, and application developers to exchange ideas, share results and discuss use
cases of successful deployment of language technologies in real-world settings. It also inspired industry
tracks at other conferences such as COLING and EMNLP.

Each conference year is unique, and 2022 was no exception. The roll-out of COVID vaccines made it
possible to return to in-person or at least hybrid conferences. Yet the unpredictability of this pandemic
meant that even at the time of writing this preface, we do not know how many people will be comfortable
attending in-person and who will prefer remote attendance.

Another big change in 2022 was the transition of the main track to ACL rolling review (ARR). Since the
criteria for Industry track papers differ from those used in ARR, we needed to organize a separate review
process. However, we used the OpenReview platform to streamline the author experience. This decision
came with a steep learning curve for us, and we are grateful to all authors and reviewers for being fle-
xible and working with us as we were learning the ropes. We are also very thankful to the OpenReview
support, who were always available to answer our questions.

Finally, we introduced senior area chairs. We selected ten experienced researchers with a broad range of
industry and academic experience who wrote meta-reviews for each paper and helped us make the final
decisions.

This year we received 128 paper submissions. Five submissions were rejected without review due to
incompleteness, non-compliance with format requirements, or submission policies (such as the double
submission policy). Our program committee reviewed the remaining 123 papers with a rich representa-
tion of the present spectrum of NLP researchers and professionals. Each submission was reviewed by at
least three members of the program committee. Reviews solicited committee opinions along two primary
aspects: Focus on real-world applications and lessons offered by the paper. Reviews also considered cla-
rity, methodological rigor, ethical use of datasets, and compliance with conference guidelines. The area
chairs then reviewed each paper and the reviews and provided their recommendation along with a short
metareview. Finally, we accepted 40 papers based on committee recommendations as well as alignment
of the papers with the goals of the industry track (acceptance rate of 32%).

This year, the Industry Track program will consist of two oral sessions (10 papers in total) and one poster
session (30 posters). Each oral session will have a diverse set of talks covering the areas of Text Mining,
Question Answering, Interactive or Dialog Systems, Summarization, Translation, Speech Technologies,
Green NLP, Bias, Fairness, and Ethics. The work presented in the poster session paints a rich picture
of the many real-world applications of language technologies and the challenges associated with these
applications.

NAACL-HLT 2022 Industry Track also features the now traditional “Careers in NLP” panel discussion.
This year we are expanding the range of careers discussed in the panel by introducing a career in pro-
duct. The panel will be moderated by Yunyao Li, and we expect the conversation to include trends in
NLP careers, emerging skills, main challenges and opportunities for cross-functional collaboration as
NLP professionals in today’s organizations, and more.
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It has been a privilege chairing the Industry Track this year. We thank the conference general chair,
Dan Roth, for inviting us to the organizing committee. Thanks also to Program Chairs Marine Carpuat,
Marie-Catherine de Marneffe and Ivan Vladimir Meza Ruiz, and all members of the organizing commit-
tee. Yunayo Li and Owen Rambow served as advisors for the Industry Track to provide continuity for
this new track. We were generously helped by every member of this committee over the past year, and
organizing this track was possible only with their advice and efforts. We once again recognize and thank
every member of the industry track program committee for volunteering their time. Finally, thanks to the
authors and attendees of the industry track for embracing this initiative and offering a reason to continue
the industry track at NAACL-HLT conferences.

Anastassia Loukina, Bonan Min, Rashmi Gangadharaiah
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Scalable and Robust Self-Learning for Skill Routing in Large-Scale
Conversational Al Systems

Mohammad Kachuee, Jinseok Nam, Sarthak Ahuja, Jin-Myung Won, Sungjin Lee

Amazon Alexa Al
Seattle, WA
{kachum, jinseo, sarahuja, youngone, sungjinl}@amazon.com
Abstract ASR

Skill routing is an important component in
large-scale conversational systems. In contrast
to traditional rule-based skill routing, state-of-
the-art systems use a model-based approach to
enable natural conversations. To provide su-
pervision signal required to train such models,
ideas such as human annotation, replication of
a rule-based system, relabeling based on user
paraphrases, and bandit-based learning were
suggested. However, these approaches: (a) do
not scale in terms of the number of skills and
skill on-boarding, (b) require a very costly ex-
pert annotation/rule-design, (c) introduce risks
in the user experience with each model update.
In this paper, we present a scalable self-learning
approach to explore routing alternatives with-
out causing abrupt policy changes that break
the user experience, learn from the user inter-
action, and incrementally improve the routing
via frequent model refreshes. To enable such
robust frequent model updates, we suggest a
simple and effective approach that ensures con-
trolled policy updates for individual domains,
followed by an off-policy evaluation for mak-
ing deployment decisions without any need for
lengthy A/B experimentation. We conduct var-
ious offline and online A/B experiments on
a commercial large-scale conversational sys-
tem to demonstrate the effectiveness of the
proposed method in real-world production set-
tings.

1 Introduction

Large-scale intelligent conversational systems such
as Apple Siri, Amazon Alexa, Google Assistant,
and Microsoft Cortana are an integral part of the
transition from traditional human-machine inter-
actions to seam-less and natural interactions. A
conversational system is a complex interplay of
multiple components ranging from the hardware
and signal processing blocks to machine learning
models. Figure 1 shows an overview of the major
processing steps to handle a user request: (i) the

1

Transcript: "turn on the light"

. Turn on the light

Agent v
User = NLU
8%~ Interpretation #1:
.|ﬁ|, intent: smart-home, turn-on
X slots: {device: "light"}
Skill Skill Routing

generate response: "ok" skill: 1p-smart-home

switch the light on Interp.: smart-home, turn-on

Figure 1: An overview of the major processing steps to
handle a user request in a conversational system.

automated speech recognition (ASR) block tran-
scribes the utterance along with generating a tran-
scription confidence signal and other voice features
such as user’s emotion (47) the natural language un-
derstanding (NLU) generates a set of ranked inter-
pretations in terms of user intent as well as named
entity resolution and slots corresponding to each in-
terpretation, (44) a skill routing system uses NLU
and ASR outputs as well as other contextual signals
to select a skill and NLU interpretation to serve the
request, (iv) the selected skill handles the request
and generates a response for the user (Sarikaya,
2017).

To provide the supervision necessary for training
skill routing models, different approaches such as
replicating a rule-based system, using human an-
notation, and relabeling based on user paraphrases
have been suggested in the literature (Park et al.,
2020b; Sarikaya, 2017; Sammut, 2001). Using hu-
man annotations is very expensive and suffers from
high turn-around times, making it impractical for
real-world large-scale systems in which new skills
are being introduced frequently. On the other hand,
relabeling methods such as the one introduced by
Park et al. (2020b) are limited to cases where we
observe enough rephrases with high precision.
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From the scalability and turn-around time per-
spective, the traditional approach of training mod-
els then conducting long A/B experiments before
each model deployment results in a limited model
update frequency, often insufficient for keeping up
with the introduction of new skills and other traffic
changes. An alternative would be to formulate the
problem as a contextual bandit and directly aim
to maximize the user satisfaction (Karampatziakis
et al., 2019). This approach can be more scalable
in terms of supervision as user satisfaction is al-
ready an established metric in conversational sys-
tems (Kachuee et al., 2021). Also, off-policy evalu-
ation can be used to reduce the need for conducting
A/B experiments. However, in a large-scale produc-
tion system relying solely on the user satisfaction
maximization may cause instabilities due to bandit
exploration or even estimation errors in the off-
policy learning (Sachdeva et al., 2020; Joachims
et al., 2018).

This paper presents a novel self-learning ap-
proach based on contextual bandit learning to con-
tinuously explore alternative decisions, get user
feedback, and learn to improve the skill routing
decisions. As frequent model refreshes are a part
of the self-learning loop, we suggest a hybrid pol-
icy architecture aimed to control policy deviations
ensuring consistent and robust improvements to the
user experience i.e., not causing an abrupt policy
change that results in a broken user experience on
certain use cases. The suggested method is simple
and yet effective as it supports different levels of
robustness-sensitivity for each NLU intent. Further-
more, the proposed approach relies on off-policy
evaluation followed by extensive tests rather than
the traditional A/B analysis. This approach enables
low turn-around time model refreshes in the real
service settings, while maintaining the best user ex-
perience for business-critical use-cases. To validate
the effectiveness of the proposed method, we con-
duct extensive offline and online A/B experiments
on real customer traffic in a real-world large-scale
commercial dialogue system.

2 Related Works

The first generation of skill routing in conversa-
tional systems used a rule-based system to serve
a user’s request. These rules can be defined at
multiple levels and on different signals such as
pre-recorded voice, utterance transcript, or NLU in-
terpretation (Sarikaya, 2017; Sammut, 2001). How-

ever, rule-based implementations suffer from the
inability to generalize and understand natural lan-
guage variations. Another important drawback of
rule-based routing systems is scalability issues aris-
ing when dealing with a large number of competing
skills and rules (Jadhav and Thorat, 2020; Agostaro
et al., 2005).

Model-based conversational systems use ma-
chine learning models to understand the user’s ut-
terance and select the best skill to serve the request.
A model-based system can generalize beyond the
capability of a rule-based system as a machine
learning model can potentially understand the se-
mantic meaning of a request (Park et al., 2020b).
Note that despite the promise of better general-
ization and scalability, in a real-world large-scale
system, the transition from a rule-based to a model-
based approach is challenging as complex models
are known for lack of robustness and interpretabil-
ity (Li et al., 2021).

Providing supervision for model training is an
important consideration in training skill routing
models. A rule-based system can be used to pro-
vide a supervision signal to a model, hoping the
model to generalize beyond the provided training
examples. This kind of replication objective is
relatively simple and desirable when considering
the robustness aspects; however, in practice, it
may not generalize much beyond the rule-based
approach (Li et al., 2021).

Another line of work is based on relabeling sam-
ples by detecting rephrase utterances (Park et al.,
2020b) as users tend to rephrase and repeat when
the agent fails to properly respond. However, such
a relabeling only covers correction patterns for a
subset of traffic presenting only a limited routing
improvement opportunity. For example, a user may
decide to abandon the dialogue rather than para-
phrasing the same request.

Considering user satisfaction being a major goal
of dialogue systems one can use satisfaction as a
supervision signal to guide the routing decisions.
User satisfaction measurement and prediction in di-
alogue systems has been studied extensively in the
literature (Kachuee et al., 2021; Park et al., 2020a;
Bodigutla et al., 2019; Jiang et al., 2015). One
possible approach is to formulate the skill routing
problem as a contextual bandit problem aiming
to maximize the user satisfaction (Karampatziakis
et al., 2019). It enables an active exploration of al-
ternative candidates guided by the user experience



in user-agent interactions. However, in a real-world
production system, it is critical to control the agent
behavior changes as excessive exploration or off-
policy estimations errors in bandit learning may
cause unexpected behavior.

3 Proposed Method

3.1 Problem Definition

We consider the general problem of skill routing
in conversational systems. Specifically, we define
different pairs of NLU interpretation (e.g., domain,
intent, slots, etc.) and skill (e.g., weather skill or
shopping skill) as routing candidates, i.e. the action
space of our policies. Given a set of routing can-
didates and their corresponding contextual signals,
encoded in vector space as X = {x1...xp|x; €
R?}, the skill routing agent is tasked to select a
routing candidate, a € {1...T'}, to serve the user.

Furthermore, we assume there exists a cur-
rent, not necessarily optimal, policy denoted by
ITy(a|X). The task is to learn from the experiences
collected from the current policy interactions in
an off-policy setting to train a new policy param-
eterized by 6, IIy(a|X), aiming to improve user
satisfaction. Here, after taking an action, the agent
observes a reward signal, r, that is a measure of
user satisfaction. The reward signal itself consists
of multiple components such as implicit/explicit
user feedbacks and machine learning models.

3.2 Self-Learning Process

Figure 2 shows an overview of the proposed self-
learning process. First, a batch of logged interac-
tions is collected from the current policy (denoted
by HPF; in the figure). Then, we use off-policy
learning to update the policy using a split of the
logged traffic (Section 3.4 and Section 3.5). The
new policy is evaluated before and after the actual
deployment enabling the use of guardrail metrics
for making a deployment decision as well as track-
ing the actual online performance of the new model
(Section 3.6).

3.3 Model Architecture

Figure 3 shows an overview of the model architec-
ture. Inputs to the model consist of NLU interpre-
tation and skill for each candidate as well as ASR
transcription and a diverse set of contextual signals
(e.g. ASR confidence, device type, device status,
etc.) shared among candidates.

Post-deployment
Evaluation

Hold-Out

«| Pre-deployment

Logged

Traffic Evaluation

Modeling
«——O

HPi HPi+1

RP Train Comp. RP

LP/RP RPDR
RPDR RPDR

Figure 2: An overview of the self-learning process:
model training, RPDR computation, pre-deployment
evaluation, and post-deployment evaluation.

ASR ‘{Utterance

Domain
Intent
NLU {Slots
Scores
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Figure 3: An overview of the proposed model archi-
tecture: a set of hypothesis are encoded as vectors
(x1...x7) and fed to a bi-directional LSTM which
is followed by a shared MLP and a softmax layer to nor-
malize the predicted candidate selection probabilities.

We encode categorical features using an embed-
ding matrix with a feature size proportional to the
square root of the number of unique values. Ut-
terance text is encoded using word vectors and a
bi-directional LSTM. The sequence of embedded
vectors is reduced via a summation operation, and
contextual signals are concatenated to get the fi-
nal representation i.e. X € RA. Finally, the set
of encoded hypotheses, X, is sorted based on the
NLU interpretation confidence and fed through a bi-
directional LSTM, two fully-connected layers, and
a softmax activation to output action probabilities
for the I15(X) policy.

3.4 Model Training

We define two training objectives: replication pol-
icy (RP) and learning policy (LP). RP objective
tries to train models that replicate the logged ac-
tions. Specifically, we define the RP loss function



to minimize:

T
Lrp =Ex oy —1la = illog(Ty(al X)).
i=1
(1)

In short, (1) is a cross-entropy loss encouraging the
new policy to assign the highest scores to actions
that replicate the logged actions. We also explored
other alternatives such as KL-divergence or soft-
distillation objectives but found that the simple
cross-entropy objective is very stable and shows an
excellent replication performance.

We define the LP loss function to be an off-
policy contextual bandit objective such as the in-
verse propensity scoring (IPS) objective:

2

LLP - EX,CL,’I’ND =r

r is the observed reward for taking action a logged
in the dataset. The objective of (2) trains a policy
aimed at maximizing the expected reward. Here,
for simplicity, we use the vanilla IPS estimator;
however, any other off-policy bandit objective (e.g.,
doubly-robust estimator) can be used instead.

3.5 Hybrid Policy

In a production system, any policy update directly
impacts the user experience. Training new policies
with a general reward maximization goal, without
any control on the changes in behavior, imposes
various practical risks. For example, a new model
may reduce the quality of skill routing for tail do-
mains while showing a better average performance.
As another example, the new policy may explore al-
ternatives aggressively which, considering the turn-
around time in the off-policy setting, may cause
a widespread negative experience until the next
model refresh. To mitigate this issue and limit the
changes in the policy behavior in a single model
update, we introduce the idea of using a hybrid
policy (HP). An HP consists of two internal mod-
els trained using the RP and LP objectives. Since
the RP replicates the current behavior and the LP
tries to maximize the reward, by stochastically se-
lecting RP or LP, we can create a balance between
replication of the current behavior and potential
improvement in the reward function by making
alternative decisions.

Specifically, to create an HP model, we start by
training two individual models using the RP and
LP objectives. Then, we use the validation set to

Xintent™ ~
X {

Figure 4: The hybrid policy consists of the LP and RP
models as well as the pre-computed RPDR values. At
the inference time, the RPDR value corresponding to
the NLU top intent used to stochastically decide which
model handles that sample.

compute the rate at which LP replicates the current
policy for each data segment, computed as:

(X)) —Io(X)
2

where j is the index of each data segment and x; is
the expected rate at which the new LP policy repli-
cates the current policy. In this work, we define
data segments to be based on the highest scoring
NLU intent. Furthermore, we set a desired mini-
mum replication rate () for all data segments (e.g.
k = 99%). To achieve the desired level of replica-
tion, we define the reference policy decision rate
(RPDR) as:

L, @

Kj = EXN]D)j [1

0 ifk; > kK
RPDR; = { s, R C))
= otherwise

Intuitively, assuming RP is a good replication
model, by using RPDR to stochastically decide
whether LP or RP should handle each sample, we
can achieve the desired level of minimum replica-
tion for each segment. The final HP model consists
of the LP, RP, and a dictionary of pre-computed
RPDR values for each intent. See Figure 4 for an
illustration of the HP.

To update the HP, depending on the LP/RP up-
date frequency, each time one of the models is
trained on the modeling data split, followed by
computing the RPDR values (see Figure 2). We up-
date LP models more frequently than RP (e.g., LP
is updated daily while RP is updated weekly). The
reason behind this decision is to limit the changes
in the routing behavior for longer periods. The
less frequently updated RP model act as a moving
average filter, gradually absorbing the LP behavior.

3.6 Pre/Post- Deployment Evaluation

After creating a new HP, the off-policy evaluation
(OPE) is used to evaluate the new policy before



Metric Description

Replication
(defect/non-defect)

L1-distance

rate of IIy making actions

similar to Il

average of L1-distance

between I1j and Iy

STD of L1-distance std of L1-distance

between 11 and 11y

Expected reward IPS weighted reward for Iy

(counterfactual estimation)

Expected IPS weight  average IPS weight

(ideally equal to 1.0)

Stochastic exploration

(defect/non-defect)

the rate of not selecting

the highest scoring candidate

Table 1: The summary of main metrics used in the pre-
deployment evaluation.

the deployment. Table 1 shows a summary of
main metrics reported for each data segment (here,
domain-intent of the top NLU interpretation) by
the OPE analysis. In the pre-deployment evalua-
tion, a set of expert-defined guard-rails is applied
to the evaluation results to ensure robust model up-
dates, especially for business-critical cases. If a
new model fails the guard-rail conditions, the de-
ployment will be aborted, and a human expert is
tasked to investigate the issue. Otherwise, the self-
learning loop will continue to optimize the policy
behavior incrementally based on the user feedback,
as new models are trained and deployed automati-
cally. This automated process effectively unblocks
the self-learning system from the high turn-around
times required for unnecessary human intervention
or A/B experimentation.

OPE provides valuable insights about the perfor-
mance of a model prior to the deployment; how-
ever, OPE estimates may suffer from an estimation
bias due to weight clipping usually used to bound
the IPS weights and high variance due to the log
dataset coverage issues (Swaminathan et al., 2016;
Joachims et al., 2018; Sachdeva et al., 2020). There-
fore, it is essential to track the post-deployment
performance of deployed polices and measure the
empirical replication and user experience metrics.

4 Experiments

4.1 Setup

To evaluate the proposed self-learning skill routing
method, we conducted extensive online and offline

experiments in real-world production settings. In
this section, we use the term baseline to refer to an
implementation of a policy similar to the relabeling
approach suggested by Park et al. (2020b).

We conducted online A/B experiments involving
about 6M unique customers where the baseline pol-
icy served the control, and the self-learning models
served treatment customers. We trained four con-
secutive self-learning HPs (denoted by HP1 to HP4)
with the cadence of one HP per week. Each model
was trained on a traffic window of two weeks of
treatment data, except the first treatment model
(HP1) which was trained on logged data from the
baseline collected prior to the experiment. Due
to A/B slot availability limitations in production,
we decided not to update the RP in this A/B ex-
periment and used OPE analysis to evaluate the
performance of trained RP models. Therefore, we
used a fixed RP model that replicates the baseline
policy and focused on updating LPs throughout the
experiment. We set the desired level of minimum
replication for individual intents (&) to 90%.

Additionally, we had an initial A/B experiment
consisting of seven LP and two RP model updates
over 49 days, demonstrating stable, steady improve-
ments over a long period of time. However, due to
certain deployment issues, the schedule of model
updates was impacted and we decided to present
those results in the appendix.

4.2 Results

Figure 5 shows the percentage of the difference be-
tween the treatment and control for the A/B tested
models. From the figure, the proposed self-learning
model improves the average reward showing a gen-
eral trend of improvement over iterations. Note that
in a highly-optimized production system a 1% im-
provement is considered a significant improvement
in the user experience. Here, we use bootstrapping
method with eight re-samples to find 95% confi-
dence intervals and show them with filled regions
in the figure. Note that each reported value is the
average of about 40M utterances collected over a
week. Comparing the performance of the HP3 and
HP4 models, we can see a regression with the forth
model refresh that was predicted by OPE. How-
ever, since the reward regression did not exceed
our pre-deployment guard-rail tolerance values, the
deployment was proceeded.

Table 2 shows OPE results comparing the four
trained HPs. In addition to the reward, in this table,
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Figure 5: The comparison of the online reward mea-
sured for the baseline policy and four iterations of the
self-learning model. We report the percentage of change
normalized wrt. the baseline control policy.

Metric HP1 HP2 HP3 HP4
Reward (%) 93.37+£0.02  93.41+0.02  93.88+0.02  93.75+0.04
Replication (%)  98.06+0.02  98.01+0.02  97.754+0.02  97.7140.03
3.6e-2+4e-4 3.7e-2+3e-4 4.7e-2+5e-4 4.5e-2+5e-4
0.26+0.01 0.28+0.01

L-1 Distance

Stch. Explr. (%) 0.1440.00 0.1340.01

Table 2: OPE results comparing the performance of the
four HP models on the expected reward, replication rate,
L-1 distance, and the rate of stochastic exploration.

we report the rate of replication (i.e., the models
making similar actions to the baseline) as well as
the average L-1 distance of action propensities be-
tween each model and the baseline. Also, we report
the rate at which the policy takes actions that are
different from its highest-scoring action due to sam-
pling of the softmax policy outputs. The general
trend in Table 2 indicates that with each model
refresh the new policy, on average, shows more
reward and deviates more from the baseline policy.
Also, the rate of stochastic exploration appears to
be reduced with the consecutive updates perhaps
as the model gets more confident.

Figure 6 compares the empirically measured re-
ward values using online A/B experiments with
OPE estimates. From the calibration plot, the OPE
estimates tend to have different absolute values but
show a high correlation (r-value=0.89) compared
to the empirical measurements. Accordingly, OPE
is capable of providing insight into how the per-
formance of a new model would compare to the
current model if we were to deploy the new model.

In Figure 7, we compare the replication rates
with respect to the baseline policy for the trained

OPE vs. A/B Reward
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Figure 6: A calibration plot showing the correlation be-
tween the OPE reward estimates and online A/B reward
measurements.
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Figure 7: The comparison of the replication rates with
respect to the baseline policy for the trained RP, LP, and
HP models.

RP, LP, and HP models. From this result, RP shows
very high replication rates. When comparing the
HP and LP replication rates, we can see HP shows
a higher replication rate as the RPDR logic is ad-
justing the replication rate for individual intents to
be no less than the desired threshold.

In addition to the presented quantitative results,
we present a qualitative comparison of the baseline
and self-learning models in the appendix.

5 Conclusion

We presented a novel self-learning approach for the
skill routing problem in large-scale conversational
Al systems. It leverages the user satisfaction signal
to constantly improve routing decisions while main-
taining frequent robust policy updates via a hybrid
architecture and extensive offline analysis. The sug-



gested hybrid architecture provides a fine-grained
balance of replication and policy improvement for
each NLU intent providing controlled model up-
dates, especially for business-critical use-cases. We
demonstrated the effectiveness of the proposed ap-
proach using extensive offline and online experi-
ments in a commercial conversational system.

References

Francesco Agostaro, Agnese Augello, Giovanni Pilato,
Giorgio Vassallo, and Salvatore Gaglio. 2005. A con-
versational agent based on a conceptual interpretation
of a data driven semantic space. In Congress of the
Italian Association for Artificial Intelligence, pages
381-392. Springer.

Praveen Kumar Bodigutla, Lazaros Polymenakos, and
Spyros Matsoukas. 2019. Multi-domain conversation
quality evaluation via user satisfaction estimation.
arXiv preprint arXiv:1911.08567.

Komal P Jadhav and Sandeep A Thorat. 2020. Towards
designing conversational agent systems. In Comput-
ing in Engineering and Technology, pages 533-542.
Springer.

Jiepu Jiang, Ahmed Hassan Awadallah, Rosie Jones,
Umut Ozertem, Imed Zitouni, Ranjitha Gu-
runath Kulkarni, and Omar Zia Khan. 2015. Au-
tomatic online evaluation of intelligent assistants. In
Proceedings of the 24th International Conference on

World Wide Web, pages 506-516.

Thorsten Joachims, Adith Swaminathan, and Maarten
de Rijke. 2018. Deep learning with logged bandit
feedback. In International Conference on Learning
Representations.

Mohammad Kachuee, Hao Yuan, Young-Bum Kim,
and Sungjin Lee. 2021. Self-supervised contrastive
learning for efficient user satisfaction prediction in
conversational agents. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human

Language Technologies, pages 4053—4064.

Nikos Karampatziakis, Sebastian Kochman, Jade
Huang, Paul Mineiro, Kathy Osborne, and Weizhu
Chen. 2019. Lessons from contextual bandit learn-
ing in a customer support bot. arXiv preprint
arXiv:1905.02219.

Han Li, Sunghyun Park, Aswarth Dara, Jinseok Nam,
Sungjin Lee, Young-Bum Kim, Spyros Matsoukas,
and Ruhi Sarikaya. 2021. Neural model robustness
for skill routing in large-scale conversational ai sys-
tems: A design choice exploration. arXiv preprint
arXiv:2103.03373.

Dookun Park, Hao Yuan, Dongmin Kim, Yinglei Zhang,
Matsoukas Spyros, Young-Bum Kim, Ruhi Sarikaya,
Edward Guo, Yuan Ling, Kevin Quinn, et al. 2020a.

Large-scale hybrid approach for predicting user sat-
isfaction with conversational agents. arXiv preprint
arXiv:2006.07113.

Sunghyun Park, Han Li, Ameen Patel, Sidharth Mudgal,
Sungjin Lee, Young-Bum Kim, Spyros Matsoukas,
and Ruhi Sarikaya. 2020b. A scalable framework for
learning from implicit user feedback to improve nat-
ural language understanding in large-scale conversa-
tional ai systems. arXiv preprint arXiv:2010.12251.

Noveen Sachdeva, Yi Su, and Thorsten Joachims. 2020.
Off-policy bandits with deficient support. In Pro-
ceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 965-975.

Claude Sammut. 2001. Managing context in a con-
versational agent. Linkoping Electronic Articles in
Computer & Information Science, 3(7).

Ruhi Sarikaya. 2017. The technology behind personal
digital assistants: An overview of the system archi-
tecture and key components. IEEE Signal Processing
Magazine, 34(1):67-81.

Adith Swaminathan, Akshay Krishnamurthy, Alekh
Agarwal, Miroslav Dudik, John Langford, Damien
Jose, and Imed Zitouni. 2016. Off-policy evalu-
ation for slate recommendation. arXiv preprint
arXiv:1605.04812.



A Appendix

A.1 Qualitative Results

Table 3 shows a qualitative comparison of the base-
line (relabeling approach) and self-learning (bandit-
based HP) decisions. We provide the actual user
utterance transcription and the selected skill using
each method. The green color shows the skills
providing the best user experience.

A.2 Additional A/B Experiment Results

Figure 8 shows the trend of change in the reduction
of user dissatisfaction rate over a 49-day long A/B
experiment. During the A/B experiment, we up-
dated the LP model seven times and the RP model
two times. As this long-running A/B was one of
our initial proof-of-concept experiments on the pro-
duction system, we faced several deployment and
technical issues that impacted the schedule of LP
and RP updates. Nonetheless, from the results,
we can see consistent and statistically significant

improvements in user satisfaction.

Example Utterance

Selected Skill
Baseline Model Self-Learning Model

win-1 what is the best seasoning for mahi-mahi  shopping knowledge (Q&A)

win-2 show me wildlife photography

win-3 give me n. b. c. news

win-4 get some cheeto puffs

win-5 set up [DEVICE NAME]

loss-1 what is the best song in the world
loss-2 play announcement

shopping photos (gallery)
knowledge (Q&A)  daily briefing (news)
knowledge (Q&A)  shopping

pairing (Bluetooth) setup (home automation)
knowledge (Q&A)  find music

announcement get message

Table 3: A few examples of skill routing for the baseline and self-learning models. The green color is used to

indicate skills providing the best user experience.

mP-Value —Percent Diff (C-T)/C

0.25

Percent Diff

01

7 8 91011121314 18 21

P-Value
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Figure 8: The percentage of difference for the measured reward between the control (relabeling baseline) and
treatment (self-learning) slots over a 49-day initial proof-of-concept A/B experiment.
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Abstract

This paper focuses on automatically generating
the text of an ad, and the goal is that the gener-
ated text can capture user interest for achieving
higher click-through rate (CTR). We propose
CREATER,! a CTR-driven advertising text gen-
eration approach, to generate ad texts based on
high-quality user reviews. To incorporate CTR
objective, our model learns from online A/B test
data with contrastive learning, which encour-
ages the model to generate ad texts that obtain
higher CTR. To alleviate the low-resource issue,
we design a customized self-supervised objec-
tive reducing the gap between pre-training and
fine-tuning. Experiments on industrial datasets
show that CREATER significantly outperforms
current approaches. It has been deployed online
in a leading advertising platform and brings
uplift on core online metrics.

1 Introduction

For businesses that want to promote their items and
services, running online advertisements on adver-
tising platforms is an effective way to achieve their
marketing goals. With the aim of attracting users to
know more about the displayed items, advertisers de-
sign ad creative (such as text, image and video). Fig-
ure 1 is an illustration that shows the creative of an
ad in news feed, which contains a text and an image.
An appropriate creative design capturing user in-
terest accurately can improve the ad’s click-through
rate (CTR). CTR is a key metric that quantifies the
effect of an ad, because click is the precondition for
any further actions such as sharing and purchase
taken by users. Thus designing ad creatives that can
achieve higher CTR is crucial for ad delivery.
Traditionally, advertisers need to manually de-
sign the creative of each ad, and then resort to online
A/B test results to continually refine initial creative
for catching user interests. Such trail-and-error

*Corresponding author.
!CTR-drivEn Advertising TExt GeneRation
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Ad Text (Translation)
Shop around for the best deal.
The fruit platter in this shop
is fresh and affordable. A lot
of customers bought it!

Ad Text
HWIE=RTHE, HhRH
KRB NLE, #
BWT!

Ad Image
i

Figure 1: An illustration that shows the creative of an
online advertisement in news feed on mobile.

process is labor-intensive and usually inefficient.
In terms of the text in a creative, due to the variation
characteristic of language expressions, it may need
to be polished multiple times for obtaining an ideal
one. To improve the efficiency of ad delivery for
advertisers, especially for small advertisers that
may not afford to hire professional writers, this
paper focuses on automatically generating the text
for an ad, and the goal is that the generated text can
capture user interest for achieving higher CTR.

There are several challenges to achieve this
goal. (I) First, it is important to choose a suitable
source for generating ad texts. A straightforward
source is the corresponding item’s title in landing
page. However, a title is usually a mixture of item
attributes while may not reflect user preference. In
contrast, an ad text should contain insightful and
informative contents that can arouse purchasing
desire of users. (IT) Second, most of current natural
language generation (NLG) models are optimized
using cross-entropy criterion, which is discrepant
to the CTR metric we concern. To encourage the
model to generate texts achieving higher CTR, there
is a great need to incorporate CTR objective into
training. (IIT) Last but not least, a well-trained NLG
model usually need a large amount of paired data.
However it is costly to collect sufficient human-
written ad texts, especially for small advertisers,
thus we are faced to low-resource problem.

Proceedings of NAACL-HLT 2022: Industry Track Papers, pages 9 - 17
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In this paper we propose CREATER, a CTR-driven
advertising text generation approach, to address the
above challenges. (I) First, we choose high-quality
user reviews as input source for generation.
Compared to titles, user reviews intuitively contain
contents that reflect real experience after purchasing.
We also introduce an aspect term as input control
code to improve the informativeness of generated
text. (II) Second, to explicitly incorporate CTR
objective during optimizing NLG models, we make
use of collected user feedback through online A/B
test. Advertisers always perform online A/B test
to compare two different texts of a same ad, where
online CTR metric reflects the distinction between a
relatively “good” text and a “bad” one. We employ
contrastive learning for model optimization, which
encourages our model to generate texts that can
achieve high CTR. (III) Finally, to alleviate the low-
resource problem, we make use of large-scale un-
paired reviews to perform pre-training that provides
warm-starting. We design a novel self-supervised
objective customized to our scenario, which reduces
the gap between pre-training and fine-tuning.

CREATER has been deployed online in a leading
advertising platform and it achieves significant
improvement on core online metrics. The main con-
tributions of this work are summarized as follows:

e We propose CREATER for generating ad texts
that capture user interest based on high-quality user
reviews. We make use of online A/B test data to
perform contrastive learning, which encourages the
model to generate texts that achieve higher CTR.

e We propose a novel self-supervised objective
to provide warm-starting with unpaired reviews,
which is customized to our scenario and reduces
the gap between pre-training and fine-tuning.

e Experiments on industrial datasets show that
CREATER outperforms previous approaches on both
automatic and human evaluation, and online results
verify that it brings significant uplift on core metrics.

2 Problem Formulation

Given a source x and a control code ¢ for an ad,
where the source is a high-quality user review of
the ad item, the control code is an aspect term of
such review to guide generation, we aim to learn
a generation model pg (y | x, ¢) that can produce an
appropriate ad text y (where © denotes trainable
parameters of the model). Our goal is that the
generated ad text can capture user interest and
attract users to know more about the ad item.
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3 Proposed Approach: CREATER

Figure 2 illustrates the workflow of our CREATER,
and it consists of two stages. The first stage
is Controlled Pre-Training, which learns from
unpaired user reviews to provide warm-starting
for low-resource scenario. The second stage is
Contrastive Fine-Tuning, which further learns from
online A/B test data that reflects user feedback,
aiming to encourage the model to generate ad text
that can achieve higher CTR.

3.1 Stage 1: Controlled Pre-Training

We construct a large set of user reviews as the
pre-training corpus D,. Based on D,, we extract
a set of aspect terms D, using an off-the-shelf
unsupervised model ABAE (He et al., 2017), and
each aspect term is typically represented as a word.
Recall that we aim to learn a generation model
po(y|x, ¢), while the pre-training stage only makes
use of unpaired user reviews D,. To ensure that
the model benefits from pre-training, we propose
a novel self-supervised objective customized to
our scenario, which reduces the gap between
pre-training and fine-tuning. The core is that, for
each review x € D,, we construct an aspect-based
pseudo-target y from the review = and mask this
segment in z. The self-supervised objective is to
perform aspect-controlled generation, which aims
to recover the segment ¢ given the masked review
with the guidance of corresponding aspect term.

Aspect-Controlled Masking For a review
r € D,, we tokenize it as a list of segments
[Zseg 1, Tseg 2, ---] based on punctuations and
dependency parser, where each segment xgeg i is
a sub-sequence of x. Given an aspect term c € D,
existed in the review x, we compute the matching
score between c and each x., ; with a matching
function f(c, Tseq ). We then select the segment
with highest matching score as the pseudo-target
g for the given pair of (source x, control code ¢):

ey

g=arg max f(c, Tseg i)
Tseg_i Sl

For each triple (source z, control code ¢, pseudo-
target ), our aspect-controlled masking strategy
masks the review z by replacing its pseudo-target g
with a special word “ [MASK]”. Thus we transform
each triple (z, ¢, ) to amasked one (Z, ¢, ), where
the masked review Z is specific to the aspect term c.

“The function f(-,-) can either be a lexical-based one (such

as similarity of sparse TF-IDF vectors) or an embedding-based
one (such as similarity of averaged word embeddings).
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Figure 2: Overview of our proposed approach CREATER for CTR-driven advertising text generation.

Aspect-Controlled Generation Given a masked
review T with an aspect term c, our self-supervised
objective is to recover the masked segment (i.e.,
pseudo-target ¢) of original review = with the
controlling of c:

2

Such aspect-controlled generation enforces the
model to understand the context of input masked
review better. Compared to general pretraining
models (Zhang et al., 2020; Lewis et al., 2020;
Raffel et al., 2020), the proposed objective is
customized to our scenario. The input information
Z does not contain the content to be generated,
improving the ability of generating abstractive
contents other than simply copying from input only.

Formally, we first prepend the control code ¢
to the masked source z, and add a special word
“[SEP]” between them. We then feed the con-
catenated sequence [c, [sEP], Z] into CREATER to
generate the pseudo-target § = [§/1,72,...,7| (Where
T denotes the length), where the model architecture
is a Transformer encoder-decoder (Vaswani et al.,
2017) and it is optimized via teacher-forcing:

ﬁl,ﬁg,...,ﬁN = Enc([c,[sEP], 7))

min —log po (77, ¢).

Pl o1, 2, &)~ Dec (o1, Fy i)
) (3)
T
. _1 ~ o _ ~,
ngn; og pe (Tt |Jo:t-1, T, ¢)

where N is the length of the sequence [c, [SEP], 7],
and h; is the ¢-th word’s representation.
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3.2 Stage 2: Contrastive Fine-Tuning

To incorporate CTR objective during generation,
we make use of existing online A/B test data that
reflects user preference. Specifically, we construct
a dataset D, where each sample is a tuple (source
x, control code ¢, positive target y ™, negative target
y~). Both y* and y~ are human-written ad texts
(given z and c), while T achieves higher CTR than
y~ during online A/B test.

Next, we start from describing a vanilla fine-
tuning objective that only considers y. We then
introduce two contrastive fine-tuning objectives
which take good advantage of online A/B test data.

Vanilla Fine-Tuning A straightforward objective
is to maximize the generation probability of positive
target y*:

Ly =—logpe(y"|z,c). “
Obviously, this learning objective omits the utility
of negative targets.

To enhance the model’s discriminative ability
of ad texts with different CTR, we propose to
expose the decoder to both positive and negative ad
texts via modeling their distinctness. Specifically,
we leverage the paradigm of contrastive learning,
where the positive/negative target (i.e., ad text
with higher/lower CTR) is used to construct
positive/negative paired instance, and introduce two
contrastive learning based objectives to fine-tune
the pre-trained model.



i. Margin-based Contrastive Fine-Tuning We
first propose to directly maximize the margin of
generation probabilities between the positive target
yT and the negative target y—. This yields the
following loss function:

Leont =max{0,~(log pe(y" |z, c)—logpe(y~ |z, c)) j(LSA)Y}
where the margin 7 is a hyperparameter. Through
this loss, the optimization procedure is encouraged
to maximize the probability gap of ad texts having
distinct CTR.

ii. InfoNCE-based Contrastive Fine-Tuning
From the perspective of representation learning, we
propose a contrastive loss based on InfoNCE (Oord
et al., 2018), which maximizes the similarity
between source and positive target, and minimizes
that between source and negative target:

exp(sim((c,z), y*)/7)

Lecont =—log
where 7 is temperature. sim(-, -) is similarity
function of encoder and decoder representations.
We adopt mean-pooling to the top layer of the
encoder/decoder as their representations. Let b, 2T
and z~ denote encoder representation, decoder rep-
resentations for positive and negative targets. We
then add two fully-connected layers to the encoder
and the decoder side respectively, transforming
them to the same vector space. Thus an inner prod-

uct operation is used to obtain the similarity scores:
sim((c,z), yh) = (W h)" (Wdz+) o
sim((c,x),y ") = (W h) " (Waz")

where W, and W learnable parameters.

Objective The final loss of contrastive fine-tuning
stage is the sum of £ ¢; and contrastive loss:

‘Cft(y+) +»Cft(y_) + aLeont (8)

where « is a trade-off hyperparameter, and L.on¢
can either be margin-based or InfoNCE-based.

Comparison The advantage of margin-based
loss is that it does not add extra parameters, directly
incorporating CTR objective to generation proba-
bilities. InfoNCE-based loss considers encoder rep-
resentations to learn better decoder representations.
Although it adds a few parameters (i.e., two fully-
connected layers), they are pruned at inference. The
construction of positive-negative pairs in CREATER
is designed for CTR objective via user feedback,
unlike recent work tackling other issues (Cao and
Wang, 2021; Pan et al., 2021; Lee et al., 2021)

exp(sim((c,z), y*)/7)+exp(sim((c,z), y~)/7)
(6)
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Dataset Pre-training (D) Fine-tuning (D)
# Samples 1,471,106 43,985
Avg. length of reviews 25.05 2531
Avg. length of ad texts N/A 13.06

Table 1: Statistics of the datasets used in our experiments.
“Avg. length” means the average number of characters
in a sequence (review or ad text).

4 Experiments

4.1 Experimental Setup

Datasets To our knowledge, there is no available
public dataset that contains ad texts coupled with
CTR information, thus we collected data on a lead-
ing advertising platform. We construct a dataset D
where each sample is a tuple of (user review, aspect
term, positive ad text;, negative ad texts ), in Chinese,
through online A/B test. Overall the user reviews are
ensured to be high-quality based on rules and filter-
ing models. Each ad text is written by human editors
given the review and aspect term, covering 4,047
advertisers. More details about data preprocessing
and filtering can be found in Appendix A.1.

We also produce a large-scale review corpus
D, for constructing pre-training dataset via
aspect-controlled masking (§ 3.1). Table 1 lists
the statistics. We split D with 7:1:2 to obtain the
training/development/test set.

Comparative Approaches We choose two types
of comparative approaches in our experiments. The
first type contains non-CTR-driven approaches:
(1) SEGEXT (Segment extraction) employs
unsupervised aspect-controlled masking (§ 3.1)
to return a segment of source as the ad text. If the
returned segment is too short to display, we add
its left or right segment based on matching score.
(2) PGNET (Pointer-generator) is an RNN-based
approach via copying mechanism (See et al., 2017);
(3) C-PGNET improves PGNET by adding
control code during decoding, which imposes on
the generation gate; (4) TRM (Transformer) is the
state-of-the-art architecture for text generation; (5)
C-TRM improves TRM by adding control code
at both encoder and decoder sides, with the help
of fusion layers; (6) C-TRM-RL fine-tunes the
C-TRM with reinforcement learning (RL), where
an extra CTR regression model (trained on D) is
the reward estimator that produces click probability
of a generated text (Hughes et al., 2019). Negative
targets are used to train the reward estimator, and are
not explicitly used for optimizing generation model.



The second type contains CTR-driven ap-
proaches. They exploit negative target y~ during
training to explicitly incorporate CTR information:
(1) QUALITYMODEL employs click behavior
as a quality measure for paired samples (Wang
et al., 2019). It first builds a CTR latent space to
represent source and target, and then computes
the cosine similarity between them as the quality
score of the sample. Quality scores are used to
weight the cross-entropy objective and reduce
the probability of generating low-quality texts;
(2) CONTRAMODEL is a variant of CREATER,
which removes the controlled pre-training stage; (3)
BART+CONTRAMODEL performs pre-training
from scratch using the self-supervised objective
of BART other than our proposed one, and then
performs fine-tuning with CONTRAMODEL.

4.2 Implementation Details

Both the encoder and the decoder of CREATER
contain four layers, and the dimension of hidden
representations produced by each layer is set to 512.
For fair comparison, all comparative approaches
that based on Transformer employ the above
architecture. For text preprocessing, we tokenize
sources and targets to word sequences, and thus
our CREATER generates ad texts at word-level. We
restrict the max length of input as 128 words. The
overall parameter size is 129M. At the pre-training
stage, we employ Adafactor optimizer (Shazeer
and Stern, 2018), with a mini-batch size of 4096 for
training 10 epochs. Models are trained on 8 Tesla
V100 32GB GPUs. We implement our approach
with PyTorch® and Transformers®.

In terms of the model for extracting aspect term
set, during early experiments we found that the
performance of CREATER is not sensitive to it and
thus we employ the representative model ABAE.
For matching function f(-,-) (Equation 1) used in
aspect-controlled masking for building pre-training
data, we try a lexical-based (similarity of sparse
TF-IDF vectors) and an embedding-based one (simi-
larity of averaged word embeddings), and found that
the performance of fine-tuned model is not sensitive
to them. Thus we choose the former for simplicity.

At the fine-tuning stage, we set the mini-batch
size to 1024 for 20 epochs. When the margin-based
contrastive loss is used, the margin parameter -y is set
to 1.0. Or if we the use InfoNCE-based contrastive

Shttps://github.com/pytorch/pytorch

*https://github.com/huggingface/
transformers
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Approach BLEU-4 RG-1 RG-2 RG-L
Non-CTR-driven Approaches

SEGEXT 13.54 31.11 7.71 23.66
PGNET 24.85 44.79 16.76  35.21
C-PGNET 37.69 55.09 3170  46.62
TRM 33.36 50.58 2623 4244
C-TRM 48.66 61.73 4243  54.82
C-TRM-RL 50.11 62.59 4226 5543
CTR-driven Approaches

QUALITYMODEL 49.89 62.67 43.85  55.84
CONTRAMODEL 51.47 63.47 4394  56.93
BART+CONTRAMODEL 53.35 65.04 4620  58.51
CREATER 54.56 6593 4744  59.77

Table 2: Main results. “RG” stands for ROUGE. Both
BLEU and ROUGE scores are multiplied by 100.

loss, the temperature parameter 7 is set to 1.0. We
set the trade-off hyperparameter « to 1e-3 (which
is searched from {1le-2, le-3, 1e-5}). We choose the
checkpoint that has lowest perplexity on validation
set as the final model. At inference time, we use
beam search algorithm to generate texts, where the
beam size is set to 5. The BLEU metric is evaluated
using NLTK?, and the ROUGE metric is evaluated
using pyrouge®. All reported results of different
approaches are run based on the same random seed.

4.3 Performance Comparison

Table 2 shows the comparison results, and we report
BLEU-4 and ROUGE-1/2/L (positive targets are
regarded as gold-standard).” It is natural that the
approaches considering aspect terms outperform
those that do not perform controlling.

CTR-driven approaches usually outperforms non-
CTR-driven ones, demonstrating that exposing the
model to both positive and negative targets improves
generation quality. QUALITYMODEL and CON-
TRAMODEL represent two paradigms to incorporate
CTR information. CONTRAMODEL is superior
to QUALITYMODEL, which indicates that directly
modeling the distinctness as an auxiliary objective
is more effective than weighting the original loss.

BART+CONTRAMODEL performs better than
CONTRAMODEL by adding a pre-training stage.
CREATER proposes a customized controlled pre-
training objective and achieves the best result. This
verifies that designing a suitable self-supervised
objective is crucial to improve generation.

Shttps://github.com/nltk/nltk

®https://github.com/bheinzerling/
pyrouge

"Our CREATER performs significantly better than the
second best comparative approach at the level of p <0.05.



Variants of Pre-training BLEU-4  RG-1 RG-2 RG-L
CREATER (p(9 | Z,¢)) 54.56 65.93 4744  59.77
w/o masking (p(7 | z,c)) 51.24 63.65 4374 5694
w/o control code (p(g | Z)) 53.11 64.64 4591  58.28
w/o whole pre-training 49.92 6220 41091 55.09

Table 3: Comparison of pre-training objectives.
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Figure 3: Results with limited fine-tuning data. Dashed
lines are two strongest baselines trained on whole data.

4.4 Discussion

Effect of Aspect-Controlled Masking During
pre-training, aspect-controlled masking ensures the
ability of generating abstractive contents other than
simply copying from source. Besides, the model
takes aspect terms as control codes to generated
masked contents (pseudo-targets). Both the two
mechanisms reduce the gap between pre-training
and fine-tuning. We verify their effectiveness by re-
moving one of two mechanisms, and the fine-tuning
stage keeps unchanged. Results are shown in Ta-
ble 3. The two variants are inferior to the full model,
demonstrating that both of them can improve pre-
training to provide better warm-starting. Aspect-
controlled masking brings improvements over 3
BLEU score and 2 ROUGE score. Thus, our novel
controlled pre-training objective indeed enhances
the performance of advertising text generation via ef-
fective self-supervised learning on unpaired corpus.

Benefit in Low-Resource Scenario We further
verify the effect of controlled pre-training when
there are only limited paired data for fine-tuning.
We change the size of data (from 25% to 100% of the
whole training set), and compare to two strongest
baselines (QUALITYMODEL and CONTRAMODEL,
without pre-training) that are trained on the whole
training set. As shown in Figure 3, with only half
of fine-tuning data, CREATER performs on par
with QUALITYMODEL, verifying the benefit of our
controlled pre-training in low-resource scenario.
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Variants of Contrastive Loss

BLEU-4  RG-I1 RG-2 RG-L
Pre-Train  Contrastive Loss

v InfoNCE-based 54.56 6593 4744 59.77
v Margin-based 54.26 6593  47.23 59.57
v No 53.70 6538  46.57  58.94
X InfoNCE-based 49.92 62.20 4191 55.09
X Margin-based 51.47 63.47 4394 5693
X No 50.37 6227  42.19 55.36

Table 4: Comparison of contrastive learning objectives.

Approach Gram. Info. Suit. Avg. Rank ({)
SEGEXT 4.97 2.19 1.92 453
C-TRM 4.95 2.69 2.44 3.65
QUALITYMODEL 4.96 2.81 2.49 3.19
CREATER 4.96 3.21 3.05 2.09
Human-written (high-quality) 4.99 3.60 322 1.48

Table 5: Human evaluation results. “Gram.”, “Info.”,
“Suit.” and “Avg. Rank” stand for grammaticality, infor-
mativeness, suitability and average rank, respectively.

Analysis of Contrastive Fine-Tuning Our CRE-
ATER exposes the model to both positive and nega-
tive targets for incorporating CTR information. Ta-
ble 4 shows the comparison of two contrastive ob-
jectives. For with and without pre-training, the best-
performing model is based on contrastive learning.
An interesting point is that when we perform
pre-training, InfoNCE-based model achieves best
performance, while margin-based model outper-
forms other variants if we do not pre-train the model.
We suggest that InfoNCE-based loss is designed
from the perspective of representation learning, and
pre-training can provide better text representations
compared to no pre-training. Thus in this situation
the utility of InfoNCE-based model is highlighted.

4.5 Human Evaluation

An ad text will be measured from the three views:
grammaticality, informativeness (whether its
content reflects the key points of aspect term and
the source) and suitability (whether it is suitable to
be displayed). Each view is ranging from 1 to 5 (5
is the best). We randomly choose fifty samples and
invite three human judgments.

Table 5 shows that CREATER performs well on
most views and achieves the best ranking results
among four comparative approaches, possessing
the ability of generating fluent, informative and
suitable ad texts. We found that the reason why
the informativeness and suitability of CREATER
are not as high as human-written ones is that the
faithfulness of generated texts is not always ideal.
We leave the improvement in future work.



Source: /K RARHTEE, HIBARIFIZE L HEH, MABME,

Approach TRE S (The fruit is fresh, and it tastes delicious
and sweet. The price is favorable. Will buy it next time.)
Control code: 1 (taste)

SEGEXT KERARFTEE, O EIRIF1ZE JEH T (The fruit is fresh,
and it tastes delicious and sweet.)

C-TRM ft R B FAEFTEE, 1 BHE(E A (The fruit in this shop is

really fresh, and the taste is worth the price.)

BB KK ER, fh BT, H AR (Really like the fruit
in this shop, which is of good quality and tastes well.)

(Y RAR R, KRS, 1% H B RV (The fruitis a big
portion and fresh. It tastes w%mmt.)

QUALITYMODEL

CREATER

Table 6: Case analysis. Texts in parentheses are the
corresponding contents translated to English.

Approach CTR (1) CPC ()
BASE - -
QUALITYMODEL +4.5% -4.1%
CREATER +6.9% -6.1%

Table 7: Online results (relative improvement).

4.6 Case Analysis

We further show the generated ad texts from
different approaches for case analysis. Table 6 is a
case analysis that the input contains a source review
with an aspect term. By comparing these generated
results, We can see that the ad text generated by
CREATER is more suitable to attract users. The
generated phrase “sweet, quenching your
thirst” is more attractive than other results
like “tastes well”. On the whole, the overall
quality of the ad texts generated by CREATER is
better than other competitive approaches.

4.7 Online Experiments

We have deployed CREATER to a leading advertis-
ing platform. Our online experiment is conducted
for one-week, and all ads are displayed in mobile
news feed. For the ad that containing more than
one generated texts (because there may be multiple
control codes), we randomly choose one of them to
display. The experiment traffic covers over 12,000
advertisers, and results are computed based on over
ten million impressions to ensure the confidence
of online metrics.

We compare performance among the ad texts gen-
erated by CREATER, QUALITYMODEL, and those
provided by advertisers (as BASE). Core metrics are

i . _ __fkclick
CTR and cost per click (CPC): CTR = Fmpression
total cost of advertisers

reveals attractiveness; CPC = Felick
reflects ad delivery efficiency. Table 7 shows that
CREATER achieves significantly improvements on
both CTR and CPC, verifying its effectiveness of
improving delivery efficiency.
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5 Related Work

Most studies focus on generating ad texts given
landing page contents (Thomaidou et al., 2013).
Hughes etal. (2019) employ a CTR model as reward
estimator with self-critical RL, and Kamigaito
et al. (2021) consider fluency, relevance and quality
rewards to capture the characteristics of effective
ad texts. Kanungo et al. (2021) incorporate masked
language modeling with self-critical learning to
improve the generation for multiple products. Wang
et al. (2021) design model-based RL system that
mimics real user feedback.

To model user click behavior, Wang et al. (2020)
take click as a measure of text fitness and design
click-based reward. Wang et al. (2019) build a CTR
space to obtain sample quality that weights cross-
entropy loss. Unlike these work, we directly model
the distinctness of positive and negative targets, and
propose a customized pre-training objective.

6 Conclusion

We propose CREATER for generating ad texts,
which employs contrastive learning to encourage
the model to generate texts achieving higher
CTR. We design a novel self-supervised objective
customized to our scenario, reducing the gap
to further fine-tuning. Experiments verify that
CREATER brings significant uplift on core metrics.

In future work we will take a next step to improve
faithfulness, and extend the model to handle
multiple aspects (Chan et al., 2021) and multiple
reviews (which may be conflicting) with graph
neural networks (Wei et al., 2021).
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Ethical Considerations

When we apply large-scale corpora from the Web,
alleviating bias issues is necessary. We make efforts
from two perspectives: (1) For input reviews, we
have filtering steps to remove harmful contents,
and ensure that they do not have user privacy
information like age and gender (“Data Collection
and Filtering” of § A.1); (2) For output ad texts,
we are cautious before online deployment with a
risk control procedure (“Post-Processing before
Deployment” of § A.1). (3) Our model does not use
user privacy information like age and gender.
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A Appendix

A.1 More Details of Dataset Construction

Data Collection and Filtering As mentioned in
§ 4.1, we construct the dataset D where each sample
is a tuple of (user review, aspect term, positive ad
text, negative ad text). The construction procedure
of D mainly contains the following steps:

1) Collecting a set of high-quality user reviews D,,.
Firstly, a large size of reviews of e-commerce
and retail items are collected. We then filter out
low-quality ones via a set of rules (e.g., length
constraint, repeat term constraint and harm-
ful/abusive word vocabulary) and a spam detec-
tion model (trained based on both text contents
and fraud behavior features). After this step, we
obtain a review corpus D, containing 1,471,106
reviews, which is also utilized to pre-training.

2) Building an aspect term set D,, utilized to guide
generation and ensure the relevance between
review contents and ad texts. According to
business demands, we first construct a seed
set provided by advertisers. We then expand
this small set via an unsupervised extraction
model ABAE (He et al., 2017), trained on the
review corpus D,. Each aspect term is typically

represented as a word. After a simple filtering



rule based on IDF to remove noise, we obtain
an aspect term set D, containing 991 terms.

3) Professional editors write two distinct ad
texts for each given (user review, aspect term)
pair. Because writing high-quality ad texts
is time-consuming and labor-intensive, this
procedure collects around 50,000 samples.
We check the correlation between input and
output via randomly sampling a fraction of all
tuples written by the same editor, and remove
low-quality ones. Besides, we ensure that in
a paired sample the ad text does not match
word-for-word to the original review.

4) Conducting online A/B test to collect user prefer-
ence (i.e., CTR) on these ad texts. Traditionally,
advertisers resort to this step to polish their ad
texts for catching user interests. In this work
we make use of these data to train contrastive
learning based generation model.

5) Filtering out invalid tuples to obtain the final
dataset D. We remove outlier samples during
online A/B test, e.g., the ads that do not have
sufficient impressions or obtain anomalously
high CTR. We also use Z-test to ensure that the
CTR difference between two ad texts of same ad
is significant. As a result, this dataset contains
43,985 samples and covers 4,047 advertisers.

No personal identifiable information is included
in our dataset: (1) During collection, only review
texts are saved, and other meta-information (such
as original authors) is not collected. (2) To exclude
identifying information which may be contained in
texts, we employ regular expression for replacement
by placeholders.

Post-Processing before Deployment Before
online deployment, we have a risk control procedure
to cautiously perform post-processing on the ad
texts generated by models, aiming to ensure the
suitability of ad texts before displaying. For
instance, text contents that contain false, useless or
harmful information cannot be displayed to users.
Specifically, this procedure removes the texts con-
taining non-compliant words (e.g., harmful words),
and performs manual-checking on generated texts.
Overall, the passing rate of generated texts is around
90% to 95%, which means that the generation
models can be deployed online in industry.
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Abstract

We describe Verse by Verse, our experiment in
augmenting the creative process of writing po-
etry with an AI. We have created a group of
Al poets, styled after various American clas-
sic poets, that are able to offer as suggestions
generated lines of verse while a user is com-
posing a poem. In this paper, we describe the
underlying system to offer these suggestions.
This includes a generative model, which is
tasked with generating a large corpus of lines
of verse offline and which are then stored in an
index, and a dual-encoder model that is tasked
with recommending the next possible set of
verses from our index given the previous line
of verse.

1 Introduction

There has been a lot of growing interest in po-
etry generation (Gongalo Oliveira, 2017). Some
of these approaches have even shown quality ap-
proaching that of humans (Lau et al., 2018). How-
ever, much of this has been in the view of letting
an Al write a full poem by itself, thus writing
in a closed system. Only recently have some ap-
proaches started to explore human interaction when
composing a poem (Ghazvininejad et al., 2016,
2017; Gongalo Oliveira et al., 2017; Zhipeng et al.,
2019).

Verse by Verse! is our experiment in augmenting
the creative process of poetry composition with an
Al Unlike past approaches that focused on gen-
erating a full poem, we are interested on how we
can use Al to offer suggestions to a user as they
compose a poem. This is a much more challenging
task, as one needs be able to offer suggestions with
minimal latency while meeting constraints of the
poem structure and handle the challenges of user
input. Additionally, to make this a more educa-

"https://sites.research.google/
versebyverse/
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tional experience, we wanted to generate the verses
in the style of various classic American poets.

In this paper, we describe the underlying system
that powers Verse by Verse. Our main contributions
are:

¢ A novel approach using multiple models that
allows us to split local verse knowledge (how
to generate a line of verse) and global poem
knowledge (what line of verse would best fol-
low a previous line of verse).

e A novel way of determining rhyme phonemes
for verses that is robust with user input.

e The first approach that we know that incor-
porates techniques to help reduce possible
learned biases within a poetry system.

2 Verse by Verse Overview

As mentioned, Verse by Verse is an interactive ap-
plication that allows users to compose a poem while
getting suggestions from the system. To use this
application, users first pick a few classic American
poets to act as their muses. They will then pick the
structure of the poem (quatrains, couplets, or free
verse), and optionally syllable count and rhyme
schema (when applicable). Afterwards, they can
begin to compose a poem.

While the user composes a poem, the poets will
make suggestions of next possible lines of verse
given the previous verse (as shown in Figure 1).
Users may either use these suggestions (including
being able to edit the suggestions to make them
more personal) or continue writing verses of their
own. This goes on until a user is satisfied with their
poem, in which they can then optionally add a title?

>We had initially designed the system to start with a poem
title, but feedback from our initial user subject studies showed
that our poet enthusiasts preferred adding a title after a poem
had been written. Having the title first made users feel forced
to fit the poem to the title, while having the title last allowed
them more freedom of creativity during composition.

Proceedings of NAACL-HLT 2022: Industry Track Papers, pages 18 - 26
July 10-15, 2022 ©2022 Association for Computational Linguistics



Poetry flowing through my thoughts,

suggestion

Continue writing or choose a

I A
Verse 4

What your muses suggest

Whispering through its centuries,

Refresh o

e All my wishes to thy heart; °

Figure 1: UI of Verse by Verse, with a user composing a poem and the Al making suggestions.

and save the final poem as text or as an image.

Figure 2 shows an overview of how we suggest
verses to the user. Our system first receives from
the user as input: the previous verse, poem struc-
ture metadata (such as syllable count and selected
poets), and, if needed, a verse to rhyme with. When
a rhyming verse is provided, the system will find
the rhyming syllables for this verse. The rhyming
syllables along with the poem structure metadata
will then be used as filters on the generated verse
suggestions. With the previous verse input, the sys-
tem will then encode the verse using a feed forward
network. This encoding will be used in a search
against pre-generated and pre-encoded verses, tak-
ing the dot product of each pair of encodings. It
will then output a list of the n-best® possible verses
per poet to suggest as the next verse based on the
dot product scoring.

The next few sections will cover the various parts
of the system: verse generation, verse retrieval, and
determining rhyme syllables.

3 Offline Verse Generation

We generate our verses offline and store them for
later retrieval, which differs from past approaches
of poetry generation. This allows for faster serving
(Henderson et al., 2017), especially when used in a
dual encoder network as described in Section 4.
Our verse generation is done in a pipeline
composed of multiple steps. Figure 3 shows an
overview of this. It takes original poetic sources

3The value of n is controlled by the UI, which considers
two factors: whether the user is on desktop or mobile (we can
show more suggestions when viewing on desktop) and how
many poets the user has selected to act as their muses.
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Figure 2: Overview of underlying system that handles
user input and suggests next possible lines of verse.

and creates new verses (Section 3.1); then filters out
poorly-generated verses (Section 3.2); and finally
adds metadata for each verse such as the rhyme
syllables and syllable count (Section 3.3).

3.1 Generating Novel Verses

In our approach, we present users the option to
choose from 22 American poets to act as their
muses. These poets are restricted to those in which
there is substantial enough material available to
use that is no longer under copyright, with most
material found on Project Gutenberg*.

*http://www.gutenberg.org/
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Figure 3: Overview of how we generate our lines of verses offline. We begin with the full corpora of English
poetry and train a transformer model. We then copy this model and fine tune it for each of our poets on their
individual corpora, using Whitman and Dickinson as examples here. These models are then used to generate novel
verses, which are filtered for quality and amended with metadata. All these generated verses are then added to our
generated verses index, which is used for serving lines of verse to our uses.

3.1.1 Architecture and Training

We use a decoder-only Transformer model
(Vaswani et al., 2017) for generating these verses.
This model is trained to predict the next single sub-
word token given the previous tokens in a line of
verse. It is composed of 8 multi-head attention
layers with 8 heads each. The layers had a hidden
dimensionality of 128 and feed-forward dimension-
ality of 512.

We first pretrain the model on a large corpus
(1,116,297 lines of verse) of English-speaking po-
ems from Project Gutenberg, including the above
mentioned 22 American poets. This is done for
400 epochs. Following this, we make 22 copies of
the model and fine-tune each one on a given poet,
training for 50 epochs per poet. This fine-tuning
then allows us to capture the style of each poet. For
both phases of training, we use a batch size of 128,
dropout rate of 0.1, and the same learning rate as
described in the Transformer paper (Vaswani et al.,
2017).

3.1.2 Generation

After the generative models have been trained, we
next start generating all feasible lines of verse per
poet. This involves taking a set of starting tokens
and then extending with all the suggestions of the
model given a certain threshold is met. The set of
starting tokens is composed of the original starting
tokens of the lines of verse by a given poet com-
bined along with tokens that were common across
the 22 poets. The extra starting tokens are partic-
ularly beneficial for poets whose corpus is small
and might not have as many tokens to start a verse
with. But to help to avoid introducing uncommon
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tokens that may be part of a poet’s style, we restrict
to tokens that have been used by at least 12 poets.

For each partial verse (any verse that does not yet
contain an end-of-line token), we expand it by con-
sidering all tokens whose normalized score (prob-
ability of being the next token normalized against
the maximum probability) are above a threshold of
0.925. An expansion that results in an end-of-line
token will then be included in that poets’ generated
corpus. Any incomplete verses will be considered
for another iteration of expansion. This continues
on for 10 iterations. To help contain the exponential
growth as we generate the lines, for each iteration,
we only carry over the 100M best partial verses
seen that iteration. This is determined by summing
the scores seen so far for a given partial verse.

3.1.3 Quality vs Quantity

As mentioned in the previous section, we had used
a threshold of 0.925 for the verse generation. We
had experimented with different values, and found
this to give us the best balance of quantity vs qual-
ity. Intuitively, having a higher threshold would
result in much better quality of verses, though al-
lowing for only a smaller set of generated verses.
And for a closed system, where topics can be more
restricted, this would have sufficed. But as we need
to handle any possible topic presented by the user,
we needed to loosen quality in order to allow for a
wider variety of verses.

3.2 Quality Control Filtering

After we have generated our collection of verses,
we then run them through various filters to remove
those of poor quality (especially as discussed in pre-



vious section we have lowered the quality thresh-
old to allow for a wider variety of verses). This
includes: making sure parenthesis and quotation
marks are balanced, filtering out verses of syllable
counts not supported in the application, removing
verses which contain words that we do not want to
serve to the user (e.g., offensive words), and filter-
ing out any verse that matches one of the original
verses written by the given poet.

An additional filter we implemented is filter-
ing by part-of-speech. Using the large corpus of
English-speaking poems, we go through each line
of verse and get a POS “fingerprint,” which is a con-
catenation of POS tags representing a line of verse.
Then, for every generated verse, we check to see
if that line of verse’s POS matches that of one of
the fingerprints from the original verses. If so, we
keep the line of verse, otherwise it is removed from
our collection. The reasoning behind this is that
since we are doing a deep search of many possible
verses with our generative model, it will sometimes
generate lines of verse of very poor grammar.’ By
utilizing the POS used by our real poets, we can
then help to improve the quality of the generated
verses.’

After the filtering, we are left with a total of
26.9M generated verses for our 22 poets. But as
our poets all have different styles, along with a
different amount of available past works available,
some poets will have a resultant larger set of gener-
ated verses than others, ranging from 60K for our
smallest to 8.3M for our largest.

3.3 Metadata

All generated verses that are of good quality are
finally labeled with metadata. This metadata in-
cludes the poet source this was generated from,
syllable count and rhyming phoneme (to be dis-
cussed later in Section 5), and any other fields we
may need to filter upon for serving to our users.

>While poets may compose lines of verse that purposely
break the rules of grammar, we are more focused on filter-
ing out lines of verse that are unreadable due to their poor
grammar.

8 Alternatively, we had experimented with language model
classifiers prior to implementing the POS fingerprint filtering.
These classifiers did not work very well, oftentimes removing
too many good verses or allowing too many poor quality verses
to pass through, especially for our poets with small bodies of
work available.
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4 Next Verse Prediction

We use a dual encoder network architecture for
suggesting the next line of verse of a poem. We
will discuss training of the network, the indexing
of possible verses, and the retrieval of verses.

4.1 Dual Encoder Model

We use a dual-encoder architecture that is similar
to what was used in Gmail’s Smart Reply (Hender-
son et al., 2017). In the original work, the authors
would encode the user input with one encoder and
all possible replies with the other encoder. In our
model, one encoder is used to encode a parent (pre-
vious) verse and the other encoder is used to encode
a child (next) verse. Then, same as in the original
work, the model optimizes for a given verse’s dot-
product score with the true following verse to be
higher than with random negatives from the batch.

Our network does differ though from the orig-
inal work with respect to the composition of the
encoders. For the two encoders in our network (as
shown in Figure 2), they both take in an input and
feed that into a SentencePiece model (Kudo and
Richardson, 2018), consisting of a vocab size of
128K. This then feeds into a set of Transformer
layers (Vaswani et al., 2017). The Transformer
consists of 4 layers, each with 4 attention heads,
a hidden size of 1024, and a feed-forward size of
4096. Finally, these then feed into a set of 2 fully-
connected layers, with ReL.U activation on the first
layer and Softsign activation on the second. These
deep layers consist of a hidden size of 500 each.
In terms of weights, the Transformer layers for the
two stacks share weights while the fully-connected
layers do not.

4.2 Training

We use two collections of data for training data.
One is a mixture of poems (such as those used
for poetry generation) and other similar mediums,
which we call poetic. This set’s purpose is to train
the model to predict the next line of verse given
the previous. The other is composed of comments
from internet discussion forums, which we call
comments. For this, we train to predict a comment
given the previous comment. Doing so allows us to
expose the model to a larger vocabulary and more
noisy data than what would normally be seen in
the poetic corpus, which is important when dealing
with user input.

To train the dual encoder, we first pretrain the



model on our comment data for 20M steps with
a learning rate of 0.01. After this, we will fine-
tune the model on the poetic corpus for an addi-
tional 10M steps with a learning rate of 0.001. We
use dropout for both the Transformer attention and
ReLU layers of 0.1. We use a training batch size
of 100. Additionally during training, we use the
parent (previous verse or comment) as extra nega-
tive examples, which helped train the model not to
repeat itself.

4.3 Verse Indexing and Retrieval

After we have trained the dual-encoder model, we
can then use it to start to encode all our generated
verses from the previous section. Each generated
verse will be encoded using the encoder for the
child verse. These are then stored in an index. Dur-
ing retrieval, instead of using an exhaustive search
across all possible verses, we use a hierarchical
quantization approach for allowing for fast search
(Guo et al., 2016; Wu et al., 2017).

When composing a poem, the system will re-
ceive the previous verse and various metadata for
filtering, as shown in Figure 2. We first encode
the previous verse using the parent encoder. We
then take the dot product of this verse and all pos-
sible verses, filtering out verses based on what the
user needs. Afterwards, the system will return the
n-best possible next verses.

In the end, this architecture allows us to do a lot
of the expensive process offline and allows for fast
retrieval and filtering when users are composing
a poem. Additionally, this adds the capability of
filtering verses by their respective metadata, so
that we can match the requirements of what a user
desires for the structure of their poem.

5 Rhymes and User Input

As we allow users to enter their own verses or edit
candidate verses, we then have to take this into ac-
count for next-verse suggestion when dealing with
rhyme. In many past approaches that are generating
a poem in full, they can use various heuristics to
help meet requirements for rhyme, such as restrict-
ing what words are available. Or in some cases,
such as with Deep-speare, learn a model for rhyme
(Lau et al., 2018). Since we were creating an in-
teractive approach, we then had to take a different
route for dealing with rhymes.
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5.1 Text Normalization

For rhyme syllables (and syllable count), we ini-
tially used the CMU pronunciation dictionary’,
which has been used in past approaches such as
Ghazvininejad et al. (2016) and Hopkins and Kiela
(2017). This was unfortunately problematic — its
use is limited when dealing with words with multi-
ple pronunciations (e.g., past and present tense of
“read”), and failed when handling irregular spelling
and out-of-dictionary words both from what poets
used in their writings (e.g., “W’en daih’s chillun in
de house,” by Paul Laurance Dunbar) and when
handling user input. We also considered train-
ing a model for rthyme, similar to what was done
for Deep-speare (Lau et al., 2018). While this
would help alleviate some of the dictionary issues,
it would still be fragile when handling user input.

To overcome these issues, we used the Kestrel
text normalization system (Ebden and Sproat,
2015) for determining the rhyming syllables and
syllable counts of a verse. It is able to determine
correct pronunciations of words like “read” with
respect to tense, and is able to suggest phonemes
for out-of-dictionary words. Furthermore, it can
handle more extreme situations, such as “In my
pocket there is $.50”. In this case, the system is
able to understand that it needs to find a word that
rhymes with “cents”.

5.2 Perfect and Imperfect Rhymes

This work uses both perfect and imperfect rhyming.
For the imperfect rhyming, we loosely follow the
steps as described by Ghazvininejad et al. (2016),
with slight modifications to accommodate the dif-
ference between their use of the CMU dictionary
and our use of Kestrel.

Expanding beyond their work, we also allow for
imperfect rhymes on single-syllable words. For
this, we find similar consonant phonemes for the
last phoneme of the word where the logs-odd scor-
ing is 0 or greater from the work by Hirjee and
Brown (2010).

When a user is composing a poem and we need
to suggest a rhyming line of verse, the system will
attempt to show a mixture of both perfect and im-
perfect rhyming verses. Only if it is unable to
find any verses that rhyme, a possibility given the
wide range of possible inputs, it will then show
non-rhyming verses.

"http://www.speech.cs.cmu.edu/cgi-bin/cmudict



‘ Human ‘ Verse by Verse

Judged human | 82.7% 47.0%
Readability 3.8 29
Relevance 3.9 3.2
Evocative 34 2.7
Aesthetic 3.7 3.0

Table 1: Human evaluations comparing poems written
by classic poets with those generated with Verse by
Verse. “Judged human” represents the percentage of
quatrains that the evaluators had judged as having been
written by a human. The four proceeding metrics were
judged on a scale of 1-5.

6 Evaluation

We ran comparative evaluations of Verse by Verse
against poems written by classic poets. While
Verse by Verse is meant to be used in an interactive
setting to aid a user in writing a poem, we felt it
was still worth evaluating how well it works on its
own in writing a poem given a first line of verse.

To do so, we gathered a collection of 100 qua-
trains written by the 22 classic poets. Then, for
each quatrain, we would take the first line of verse,
and use that as the first line of verse for Verse by
Verse. It would then take the top suggestion (using
the same poet as that who wrote the poem), to pick
the subsequent 3 lines. When possible, it would try
to follow an ABAB rhyme pattern.

We built upon the work of Hopkins and Kiela
(2017) for evaluating. We would show evaluators
one poem at a time. They then needed to classify if
the poem is human- or Al-written (they are shown
the full quatrain and asked to evaluate on the last
3 lines), and rate on a scale of 1-5 for readability
(to what extent is the quatrain easy to read? does
it make sense?, relevance (given the first line, how
relevant are the subsequent lines of verse?), evoca-
tion (how much does the quatrain evoke emotion
when reading it?), and aesthetic (how much does
the quatrain sound nice to read, such as in rhythm?).
Each poem was evaluated by 3 evaluators.

Table 1 shows the results of these evaluations.
As shown, while Verse by Verse does not do as well
as the poems written by classic poets, it still was
able to do well enough. More importantly, almost
half the poems written by Verse by Verse were
thought of to have been written by humans, which
shows the feasibility of our approach. A couple of
the highly rated poems can be seen in Figure 4.
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Her eyes, twin pools of mystic light,
Forever in her radiance white—,
She sought the bosom of the Night.
Away it came, that mystic sight!

Whether I travel by land or by sea,
Just while I travel with its fairy tide,
Leaving a gleam that I may never see,
Although I travel close upon your side.

Figure 4: Example quatrains rated highly by evaluators.
The first line is by a poet and the subsequent 3 lines are
generated by Verse by Verse.

7 Related Work

Poetry generation is a growing field of research,
with many diverse approaches for generating full-
length poems of various forms (Gongalo Oliveira,
2017). Some related areas to touch upon are user
interaction and verse generation.

7.1 Interactive Generation

There have been some recent work that have looked
at interactive approaches to composing poetry or
song lyrics.

Jiuge (Zhipeng et al., 2019) is a similar inter-
active approach to writing Chinese poetry. Users
would input keywords, text or images, and from
there the system would extract keywords to use
within a generative model for writing the poems.
Users could then edit or make use of suggestions.

Hafez (Ghazvininejad et al., 2016, 2017) offered
a variety of inputs for users to dictate how a poem
was generated (e.g., topic; desired words; control
for sentiment, alliteration, etc.), and then automat-
ically generated a full poem given these inputs.
Users could then further tweak the controls until
a poem was generated to their liking. Underneath,
given these set of input values, it would initiate
with a candidate set of rhyming words, and then
use a Finite State Acceptor to guide a Recurrent
Neural Network for generating new verses.

Co-PoeTryMe (Gongalo Oliveira et al., 2017),
which was built on PoeTryMe (Gongalo Oliveira,
2012), would generate full poems given some in-
puts (e.g., keywords, number of syllables). Users
were then allowed to edit lines and use suggested
lines as seeds for further generation of suggestions.

DopeLearning (Malmi et al., 2016) was focused
on generating rap lyrics. It allowed for interactive
rap composition — for each verse, a user could ei-



ther pick from a list of candidates or enter their own
input. For determining its suggestions, DopeLearn-
ing treated their approach as an information re-
trieval task, ranking the best response given the pre-
vious verse. DopeLearning was restricted though
in only reused existing rap verses, as it did not
generate any novel verses.

7.2 Verse Generation

There have been many different approaches to how
a line of verse is generated. Earlier works included
template-based approaches (Colton et al., 2012;
Gongalo Oliveira, 2012) while most recent works
have been neural-based approaches (Ghazvininejad
et al., 2016, 2017; Hopkins and Kiela, 2017; Lau
et al., 2018; Van de Cruys, 2020; Yi et al., 2018;
Zhang and Lapata, 2014).

As with recent approaches, ours is also consid-
ered a neural-based approach. Our approach is
closest to the work of Liao et al. (2019), which
involved a Transformer-based approach using GPT.
Both their approach and ours used pre-training and
fine-tuning of the models, though the type of data
used differs. Our model used poetry data for both
phases, while their approach first pre-trained on a
news corpus, then fine-tuned on Chinese poetry. An
additional difference is how the models are used —
they used their model for generating a whole poem
while we use our model for offline verse genera-
tion of single lines of verse and instead rely on a
dual-encoder model for determining the next line
of verse in a poem.

8 Conclusions

We have described the underlying system of Verse
by Verse. It is composed of two primary models,
one for verse generation and one for verse recom-
mendation. Results show that this approach works
well for an interactive setting, generative novel
verses that do well in human evals and meet the
more challenging demands of human interaction.

Ethical Concerns

As this system is intended to be deployed to a gen-
eral audience of all ages, there are concerns of how
the tool can accidentally suggest offensive verses.
We have taken some steps to help alleviate this:
augmenting the training data and filtering out prob-
lematic verses.
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Augmenting Training Data

We have augmented some of the poetic data to
help reduce bias using the techniques described in
Sheng and Uthus (2020). In their work, they had
used a style transfer model to augment some of
the data to make the sentiment more positive, with
particular focus for the case when the parent verse
contained a demographic mention. In do so, this
then helps move the model to suggest verses of
more positive sentiment when the previous verse
of a poem contains a demographic mention.

As with their work, we augment all child verses
that have parent verses containing demographic
mentions and about 50% of those without a parent
verse containing a demographic mention. While we
followed much of their described approach, we use
a different style transfer model though for our aug-
mentations, using TextSETTR (Riley et al., 2021)
as a replacement. TextSETTR was shown to yield
better results in transforming sentiment while pre-
serving fluency (important aspects for our work).
As described in the TextSETTR paper, we use the
model that had been fine-tuned on English Com-
mon Crawl data. To change sentiment, we gave the
model 10 examplars each of negative and positive
lines, and then used this to change the sentiment
of negative lines of verse using the techniques de-
scribed in Sheng and Uthus (2020).8

We note that even though we have changed some
of the sentiment to make the system as a whole
more positive, it does not prevent users from writ-
ing negative poetry. If a user writes a negative
verse, the system can still suggest negative verses.
Additionally, the system does allow users to edit
suggestions, so a user can also edit a verse to make
it more negative if that is their desire.

Verse Filtering

We also filter out verses that can potentially be
offensive. This includes filtering out verses that
contain obscene words (especially as what was ac-
ceptable in the past might not be acceptable today),
along with verses that may contain groups of words

8For positive examplars, we used: “The food was great!”,
“I really loved it.”, “Absolutely my favorite book.”, “I am filled
with love.”, “The seas are calm.”, “She delights me”, “He
understands me,”, “My soul is full of light,”, “The scene is full
of heroes”, “This cup of tea tastes delightful”. For negative
examples, we used: “The food was awful!”, “I really hated
it.”, “I regret reading this book.”, “I am filled with hatred.”,
“The seas are violent”, “She annoys me”, “He ignores me,”,
“My soul is full of darkness,”, “The scene is full of villans”,
“This cup of tea taste horrible”.



that, when put together, can be offensive.

One of the advantages of our system, where we
generate and store our verses offline in an index,
is that it makes it easier to explore how the filters
would impact what verses we have available. We
can see if certain grouping of words are present in
the index, and if such, filter out such verses. More
importantly, this allows us to further check if filter-
ing out a group of words may filter out too many
verses that would not be offensive, and thus allow
us to better refine the word filtering as needed.
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Abstract

Evaluation of keyword spotting (KWS) sys-
tems that detect keywords in speech is a chal-
lenging task under realistic privacy constraints.
The KWS is designed to only collect data
when the keyword is present, limiting the avail-
ability of hard samples that may contain false
negatives, and preventing direct estimation of
model recall from production data. Alter-
natively, complementary data collected from
other sources may not be fully representative
of the real application. In this work, we pro-
pose an evaluation technique which we call
AB/BA analysis. Our framework evaluates a
candidate KWS model B against a baseline
model A, using cross-dataset offline decoding
for relative recall estimation, without requiring
negative examples. Moreover, we propose a
formulation with assumptions that allow esti-
mation of relative false positive rate between
models with low variance even when the num-
ber of false positives is small. Finally, we
propose to leverage machine-generated soft la-
bels, in a technique we call Semi-Supervised
AB/BA analysis, that improves the analysis
time, privacy, and cost. Experiments with both
simulation and real data show that AB/BA
analysis is successful at measuring recall im-
provement in conjunction with the trade-off in
relative false positive rate.

1 Introduction

Keyword spotting (KWS) is the task of identifying
if one of a set of keywords, also called wakewords,
is present in a speech segment. It is the gatekeeper
component that enables hands-free interaction with
many smart assistants using voice-enabled smart
devices, such as Amazon Echo, Google Home, and
Apple HomePod. Extensive work has been done to
develop and improve KWS performance, including
improvements in architecture (Chen et al., 2014;
Sun et al., 2017; Shan et al., 2018; Wu et al., 2018;
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Gao et al., 2020), training efficiency (Tucker et al.,
2016; Raju et al., 2018), as well as audio front-end
(AFE) algorithms (Chhetri et al., 2018).

With many lines of research aiming to improve
the quality of the KWS, there is also growing inter-
est in techniques to measure if such new technolo-
gies are able to improve the customer experience,
but less research attention has been given to this
evaluation topic. One challenge is that KWS sys-
tems are designed to maximize user privacy by only
collecting data when the keyword is identified. As
a result, evaluations done using this biased dataset
do not allow direct measurement of gains in recall
metrics to determine if a new model is better than a
baseline. Alternatively, evaluations can also make
use of datasets not collected by the KWS, such as
media recordings, background noise, and environ-
mental sounds. However, these datasets may not
be fully representative of the user experience from
the evaluation point of view.

Prior research, such as from (Gao et al., 2020;
Sainath and Parada, 2015), has made use of datasets
with positive and negative labels in order to evalu-
ate, respectively, gain invariant KWS models and
CNN for small-footprint KWS. However, the neg-
ative data essentially consists of either negative
labels obtained from data accepted by the previous
models, or datasets composed of just background
noise and noise from environment. In a different
application context, (Miller et al., 2018) estimates
the recall and the derivative of the precision with
respect to the recall by modeling the unseen data
distribution according to underlying assumptions.
This distribution, however, is not clearly defined
in the context of KWS when a variety of sounds,
noisy conditions, and reverberation can occur.

In this paper, we present a new evaluation frame-
work called AB/BA analysis. To the best of our
knowledge, our work is the first to explore the prob-
lem of estimating recall improvement when only
accepted data is available, such as in a KWS system
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with rigorous privacy settings, in conjunction with
the trade-off with false positive rate, without un-
derlying assumptions on the data distribution. We
show that the AB/BA analysis is a cross-model of-
fline evaluation framework. In this framework, data
is collected from two KWS models, say a baseline,
A, and a candidate, B. By running offline model
A through data collected by model B, and model B
through data collected by model A, we are able to
calculate relative metrics without the need for data
not seen by individual models. We also present as-
sumptions that can be applied to the relative metrics
calculation that result in a lower variance estimator,
even if the number of false positive is small. We
additionally describe a Semi-Supervised formula-
tion of AB/BA analysis which provides improve-
ments in the analysis time, cost, and data privacy
by utilizing soft machine-generated labels instead
of human annotations from the models being eval-
uated. We present experiments using simulation
data, real data, and also experiments comparing
the performance of AB/BA and Semi-Supervised
AB/BA.

2 Methods

In this section, we describe the proposed method
for estimation of recall improvement. Basic metrics
concepts can be found in Appendix A.1.

2.1 AB/BA Analysis

The AB/BA analysis framework is composed of
four main steps, as depicted in Figure 1: Online
data collection, Offline decoding, Labeling, and
Metrics computation.

In order to collect data, given two KWS models,
say A and B, the models are deployed simultane-
ously to two populations of users, also called A
and B, as shown in Figure 1 (A). The percentage
of users in each model is usually based on the pre-
sumed risk of deploying each model, as well as
the statistical significance desired for the metrics
computed, as shown later. It is important, though,
that models are deployed simultaneously, with ran-
dom assignment, similar to a conventional A/B-
Test. Notice that the data collected by the models
will only contain samples where the keyword is
detected in order to preserve user privacy.

The collected data is then used for offline decod-
ing, in which models are run offline on the data
collected online. As shown in Figure 1 (B), the
data collected by model A is used by model B for
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keyword spotting, and model B is run on the data
collected by the model A. A detailed review on
keyword spotting can be found in (Lépez-Espejo
et al., 2021). Running a keyword spotter on an ut-
terance ¢ will produce a score s; representing how
likely it is to have detected the keyword.

The data that is collected and decoded offline by
the KWS systems will also require labeling in order
to be used for metrics estimation. This step, shown
in Figure 1 (C), is usually done by either human
annotation, or machine-generated. The process to
use machine-generated labels is described in more
detail in Section 2.2.

Human annotation is an expensive and time con-
suming process, in addition to being susceptible to
error. Therefore, it is desirable to carefully select
which utterances to annotate. Stratified sampling
can be used to provide more annotations on models
disagreement to reduce the need for human annota-
tions (details in Appendix A.2). The labeled data
is then used to compute metrics that represent the
relative improvement of model B with respect of a
baseline model A, as shown in Figure 1 (D).

AB/BA analysis utilizes two relative metrics:
False Positive Rate Ratio and Recall Ratio. The
Recall Ratio (rRecall) is a relative metric used for
comparing two models to determine which model
yields better recall. Given two KWS models A and
B with datasets containing utterances collected by
the same models online, and labeled as L € {0, 1},
using the Bayes’ theorem, the rRecall can be de-
fined as:

_ P(B=1|L=1)
rRecall = PA=1|L=1) "
_ P(B=1A=1,L=1)
- P(A=1B=1,L=1)
where P(B = 1|A = 1,L = 1) indicates the

probability model B found the keyword when run
offline (B = 1) on true positives from model A
used online (A =1,L =1).

Therefore, a key aspect of AB/BA analysis is that
the rRecall can be computed using terms P(B =
1l[A=1,L=1)and P(B=1/A=1,L = 0)
that are directly observable.

Concretely, we can compute rRecall using the
following quantities:

NTPBA_on_A
NPos 4

. NPosp
NTPAB_on_B

rRecall =

» (2
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Figure 1: The four main components of the AB/BA analysis

where NTPjp on_p is the number of TPs of
model A and B on data collected by model B and
N Posp is the number of positive labels on the data
collected by B.

Similarly, the FPR Ratio (tFPR) between two
models A and B can be calculated as:

NFPBAfon?A
NNega

NNegp

T'FPR == )
NFPAB on_ B

3

where NEFPsp on_p is the number of FPs of
model A and B on data collected by model B and
N Negg is the number of negative labels on the
data collected by B.

Notice that the number of FPs can be small, lead-
ing to large variance in the rFPR estimation. There-
fore, assuming that keywords and confusing sounds
(those that induce FPs) generated by population A
and population B are randomly drawn from the
same distribution, we propose to assume that the
ratio of TPs and FPs in the streams accepted by
both models is the same, represented as:

NFPBA_on_A ~ NFPAB_on_B
NTPBAfoan NTPABfonﬁB

Then, by introducing the following variables:

“4

NTPap = NTPpaA_on_A+ NTPaAB on_B

NFPap = NFPBA_on A+ NFPAB on_B

_ NTPBA_on_A + NFPBA_on_A (5)
NTPsp+ NFPup

_ NTPap on. B+ NFPAB on_B
NTPsp+ NFPup

We can find rFPR and rRecall using:

a

B

a(NFPg + BNFPyp)
B(NFPs+ aNFPap)
a(Nmissag + BNTPap)

B(Nmissg + aNTPag)’

rFPR =

(6)
rRecall =
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where N'miss 4 is the number of TPs accepted by
model B but not accepted by A. With this estima-
tor, uncertainties on N F'P4 g have less impact on
the rFPR uncertainty. This is shown in the simula-
tion on Section 3.1.1.

2.2 Semi-Supervised AB/BA Analysis

Semi-Supervised AB/BA (ssAB/BA) analysis is
a technique to estimate rFPR and rRecall met-
rics, while avoiding the need to label utterances
by human annotation, which are instead estimated
in a semi-supervised way. Because of that, the
technique has lower cost and is faster to run than
AB/BA analysis. The process also improves audio
privacy, since no audio is listened to by annotators.
However, since it relies on a machine-labeling pro-
cess, the technique is more susceptible to errors
due to bias.

There are several lines of research on Semi-
Supervised Learning models, such as Teacher mod-
els (Li et al., 2017; Tarvainen and Valpola, 2017),
which provide posterior probabilities as soft labels
in order to train Student models.

Assuming that we have a Label Machine M,
we apply this machine on utterance ¢ to produce
a score m,;. However, if m; produces a soft la-
bel m;, a mapping function ¢ ((m;) = p; can be
used to convert the machine-generated score m;
from machine M to a probability of true accept
pi. Appendix A.4 illustrates this process using a
polynomial mapping.

When only soft labels are available, representing
a probability of true label, we can apply the Bayes’
theorem on Equation (1) to calculate rFPR using:

P(L=0|B=1,A=1)xP(B=1|A=1)
B P(L=0]A=1)

"FPR = 50 a1, 521y P(A1B=1) "
P(L=0[B=1)

)




which results in:

Nap(Li=0/A;=1,B;=1
rFPR = Zz=op]5Az |_z 5 ).,
S p(L = 0]4; = 1)
SNB p(L; = 0|B; = 1)
SNB p(Li =0|Bi=1,4; =1)

®)

Equations (3) and (8) are, therefore, equivalent
if p(L; = 0) is a hard ground-truth label (either 0
or 1).

Similarly, in Semi-Supervised AB/BA the
rRecall can be written as:

SN p(L; = 1|A; =1,B; = D,
SN p(Li = 1]4; = 1)

VB p(Li = 1|B; = 1)

SNE p(Li = 1B = 1, A = 1)

rRecall =

(€))

where p(L; = 1) = 1 — p(L; = 0) is the probabil-
ity of TP for a given utterance .

2.3 Threshold selection

Another important aspect to consider during a
KWS model evaluation is the model sensitivity.
In order to determine if a given utterance will be
considered an accept or reject by the model, as-
suming high model scores s; are given to higher
chance of detection, the utterance ¢ will be con-
sidered an accept by the model X, i.e., X; = 1,
if s; > tx, where tx is a threshold attributed to
model X sensitivity.

Notice that tx directly impacts the rFPR and
rRecall. Essentially, as we increase ¢ x, it will make
the model more restrictive, so both FPR and Re-
call are reduced. Appendix A.3 gives an example
where the threshold ¢ of the candidate model B
is found according to the trade-off between rFPR
and rRecall.

3 Experiments

In this section we present experiments to show the
performance of AB/BA and ssAB/BA on simula-
tion and real data.

3.1 Simulations

This section presents the simulations performed.
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3.1.1 AB/BA analysis simulation

We created a simulation to show how the calcu-
lations from the AB/BA formulas (Equations (2)
and (3)) are equivalent to the direct computation
of rFPR and rRecall, but without the need for data
not accepted by the models. We also show confi-
dence intervals on those metrics as a function of
the number of labels. Assume we have a source
that emits positive utterances with a probability of
0.3. The model A has a Recall of 0.8 and FPR of
0.1. We consider two pairs of values for model B:
Recall and FPR of (0.82, 0.075) leading to rRecall
and rFPR of (1.025, 0.75), and Recall and FPR of
(0.84, 0.05) leading to rRecall and rFPR of (1.05,
0.5). In addition, data accepted by model A has a
probability of being accepted by B of 0.95 and 0.5
for TPs and FPs respectively. We run the simula-
tion considering half of the data is collected by A,
half by B. The simulation assumes that the model
that does not collect the data is run only on the ac-
cepts of the model that does. We report estimated
rFPR, rRecall in 3 scenarios, using AB/BA direct
estimation, AB/BA with the introduced assumption
Equation (6), and using a classic A/B test (only
estimating rFPR in this case).

Table 1 shows the rRecall and rFPR, along with
95% confidence interval from 1000 bootstrapping
replicates. We can notice in the table that we can
detect improvement as small as a 5% Recall im-
provement and 50% FPR reduction by labeling less
than 5000 utterances. We can also see that using
the assumption of same TPs and FPs between the
models, represented as Approx. AB/BA in the ta-
ble, to estimate 25% rFPR improvement, the confi-
dence intervals shrink from —25%(—52%, +16%)
to —26%(—48%, +2%), while keeping median es-
timation equally accurate, showing that this is a
helpful assumption. The table also shows that the
rFPR predicted by regular A/B-Test on the model
accepted data also gives close estimation according
to the simulated parameters. However, this ap-
proach leads to higher confidence interval than the
proposed approach and cannot estimate the rRecall.

3.1.2 Semi-Supervised AB/BA analysis
simulation

One important point when working with ssAB/BA
is with respect to the quality of the label genera-
tion process. Therefore, we start with a simulation
showing this effect.

In our experiment, we do a Monte Carlo simula-
tion by generating data that can be used to compute



Expected rRecall | rRecall / rFPR rRecall / rFPR
Streams | Labeled |/ EpR fmprov. | Direct AB/BA Approx. AB/BA rFPR AB-Test
1.025 [0.963, 1.103] / | 1.025[0.964, 1.102]/
10K 500 1.025/0.75 075 [0.48. 1.16] 0.74 [0.52. 1.02] 0.74 10.43, 1.19]
1.051 [1.028, 1.075]/ | 1.051[1.028, 1.075]/
100K 5K 1.05/0.5 0.5 [0.45, 0.55] 0.49 [0.45, 0.54] 0.49 [0.41, 0.58]

Table 1: Simulation of AB/BA analysis

the rRecall and rFPR metrics. Data is generated
such that models A and B collect, respectively,
40% and 20% as TPs. The probability that FPs and
TPs from model A are also accepted by model B
are, respectively, 0.3 and 0.9, and the probability
that FPs and TPs from model B are also accepted
by model A are, respectively, 0.6, and 0.8. Then,
we simulate three soft label machines M1, Mo,
and M3 using a Beta distribution.

Among the three machines, M is simulated
to generate soft-labels with 3(2,1000|L 0)
and B(300,5|L 1) to have the same accu-
racy for both models A and B that will be eval-
uated in ssSAB/BA. Then, M is simulated with
B(5,100|B 1,L 0) and B(300,5|B
1,L = 1) to make more mistakes in the form
of higher TP probability on the FPs collected by
model B, and M3 with B(2,1000|B =1, L = 0)
and 5(100,10/B = 1, L = 1) to make more mis-
takes in the form of lower TP probability on the
TPs collected by the model B. Notice that we keep
the accuracy of the machines on model A data con-
stant, since B is a candidate model with new data
never seen before.

Notice that based on the parameters chosen the
expected AB/BA rRecall for the simulation is 1.12,
since P(B =1A=1,L =1)/P(A=1|B =
1,L = 1) = 0.9/0.8 = 1.12. Similarly, the ex-
pected rFPR is 0.5. Results of the simulation, along
with 95% confidence interval from 1000 bootstrap-
ping replicates, are shown in Table 2.

rRecall rFPR
AB/BA 1.12[1.10,1.14] | 0.50[0.48,0.52]
ssAB/BA My | 1.12[1.10,1.13] | 0.51[0.49,0.53]
ssAB/BA M, | 1.08[1.05,1.10] | 0.51[0.49,0.53]
sSsAB/BA M3 | 1.12[1.10,1.15] | 0.56[0.54,0.57]

Table 2: Simulation comparing AB/BA and ssAB/BA
analysis according to label quality

From Table 2, as expected, M results are al-
most exactly the same as in AB/BA, since M
mean TP probabilities are 0.2% for L = 0 and
98.4% for L = 1, which are close to ground-truth.
When using M5, however, we can see that the
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rRecall measured drops from 1.12 to 1.08, as this
model makes more mistakes on the FPs collected
from model B, increasing the machine TP probabil-
ity on this data from 0.2% to 4.8%. In this case, we
can see that the rFPR is unchanged at the reported
precision. Similarly, in the case of M3 we see a
change in the reported rFPR, which increases from
0.51 to 0.56 as this model makes more mistakes on
the TPs collected from model B, dropping the TP
probability on this data from 98.4% to 90.9%. In
this case, the rRecall is mostly unchanged. This
results show that, although the label-generation pro-
cess by machine can be imperfect, it gives good
approximations on the Recall Ratio and FPR Ratio
in order to make deployment decisions.

3.2 AB/BA Analysis on Real Application

Next, we show how AB/BA performs when applied
to real customer data in order to guide the decision
on how much customer experience is being im-
proved with the deployment of new KWS models.
Comparison between AB/BA and ssAB/BA analy-
sis on real data is show in Appendix A.5.

3.2.1 Comparison between deployments with
different threshold ¢,

We show results from two real deployments, called
D, and Ds. In D1, the AB/BA analysis ratio met-
rics are used to compare a baseline model to a
candidate model with high threshold (more restric-
tive), while in D5 the same baseline is compared
to the same candidate model with low threshold
(more permissive). The two deployments use about
5000 annotated utterances per model. Results are
show in Table 3.

As we can see in Table 3, D resulted in loss of
Recall by 5% relative, but improving the rFPR in
43% relative. By deploying the candidate model

D rRecall rFPR
D; | 0.95[0.94-0.96] | 0.57 [0.46-0.68]
Dy | 1.07[1.05-1.09] | 1.33[1.17 - 1.44]

Table 3: AB/BA Analysis results when deploying
models with different thresholds



Dataset | rRecall rFPR
Test set 1.03 0.5
AB/BA | 1.16[1.15-1.19] | 0.21[0.14-0.26]

Table 4: AB/BA Analysis Recall Ratio comparison
to test set metrics

with low ¢ g threshold (D3), the AB/BA analysis
then shows 7%(5%, 9%) relative improvement in
Recall, with a trade-off of 33%(17%, 44%) relative
increase in FPR. AB/BA analysis correctly found
that the D model is a more conservative model,
and Dy a more sensitive model than the baseline
model.

3.2.2 Comparison between AB/BA analysis
and the evaluation a test dataset

New candidate models are evaluated on offline test
datasets to decide if they can be deployed to cus-
tomers. However, offline test datasets are com-
posed of utterances collected by the current or older
deployed models, and recall improvement of those
candidate models may be under-estimated. Here
we show measurements from offline evaluation and
AB/BA analysis in a real deployment. The AB/BA
analysis was performed with approximately 7000
annotated utterances per model.

As we can see in Table 4, the rRecall estimation
from the offline test set resulted in 3% relative im-
provement at the same FPR. That was significantly
less than the 16% relative improvement measured
during AB/BA, in which data from model B is
used in the analysis. Similar observation can be
made in terms of rFPR, where evaluation on the
test set resulted in a 50% relative improvement at
the same Recall, but by also accounting for data
collected by the B model in AB/BA, we see that
the improvements was 79% relative. This shows
the importance of techniques such as AB/BA anal-
ysis to better assess the customer experience on the
model being deployed.

4 Conclusion

In this paper, we presented a new framework called
AB/BA analysis for recall improvement estima-
tion of KWS under high privacy settings. We have
shown that by running a candidate model offline on
data collected by a baseline, and the baseline model
offline on data collected by the candidate model,
we were able to compute the relative Recall and
relative FPR ratios using only utterances accepted
by both models and use it to indicate if a candidate
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model is better than the baseline. We have also
shown that reasonable assumptions can be used
to construct an estimator with low variance, even
when the number of FPs is small. Finally, we saw
that a Semi-Supervised formulation of AB/BA can
be used with machine-generated labels represent-
ing the probability of a true accept. This techniques
brings further improvements to AB/BA analysis,
especially regarding privacy on the audio collected,
which does not need to be listened to and annotated.

In the past few years, much improvement has
been made on the KWS systems. Evaluation met-
rics, however, are typically based on previously
collected data from similar KWS models or data
from other sources, resulting in evaluations that do
not necessarily translate to customer experience,
as it fails to show improvements in data never col-
lected due to privacy constraints. Given that not
much attention has been paid to this research topic,
we believe that AB/BA analysis is a valuable con-
tribution, and we hope it helps bringing interest in
this line of research.
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A Appendix

A.1 Basic Evaluation Concepts

During our discussion we assume that we have a
classification model, M(x) — y, which gets an ar-
bitrary input = and output y € {0, 1}, where 1 and
0 represent, respectively, a positive and negative
label.

A.1.1 Precision and Recall

The Precision and Recall metrics help to distin-
guish between Type-I and Type-II errors. They are
defined as the following:

TP
TP+ FP

TP TP
—_— = — (11)
TP+ FN P

Precision measures the proportion of correct
positive predictions with respect to everything the
model believes is a positive, where lower precision
represents more Type-I errors. On the other hand,
Recall measures the proportion of correct positive
predictions with respect to all the data that is actu-
ally positive, where lower recall represents more
Type-II errors.

As illustration, in a case where 90% of the data
has label 1 and the model always gives output 1,
this model will have 100% recall, and 90% preci-
sion.

Precision =

(10)

Recall =

A.1.2 False Positive Rate and False Discovery
Rate

There are also multiple ways to evaluate a model
with respect to the number of False Positives (FPs)
it makes. Two of them, which are explored in
this paper, are False Positive Rate (FPR) and False
Discovery Rate (FDR). They are defined as:

rpP
FPR = —

N (12)

rpP
TP+ FP

Therefore, we can see that the FPR is similar to
Recall in the sense that the reference is only one
class of the data, which in this case are the negative
samples. It measures the proportion of negative
samples that are miss classified by a model. The
FDR, however, is the complement to the Precision,
measuring the number of false positives among all
samples that the model classifies as positive.

FDR =1 — Precision = (13)
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Considering again the example where 90% of
the data has label 1 and the model always gives
output 1, its FPR is 100%, while its FDR is 10%.

A.1.3 A/B Test

Another related concept to our proposed method is
the A/B test. The A/B test is a frequently used tech-
nique in multiple areas, such as medicine (Stolberg,
2006), marketing, political campaigning, product
pricing, among others. The technique consists of
doing a hypothesis test by giving two randomized
and unbiased set of populations, called A and B,
two different versions of the subject being com-
pared. For example, in the context of marketing,
one could choose to give two different versions of
user interface to users in order to measure differ-
ences in engagement, which is measured through
statistical tests.

In the context of model evaluation, the A/B test
can be explored by given two different models to
users. After data collection, metrics can be com-
puted for each population, such as metrics pre-
sented in Section A.1, and statistical tests, such
as t-test, can be used to compare the metrics in the
different populations.

The A/B test has, however limitations, when
used to evaluate keyword spotting with audio pri-
vacy settings. Given that only data where the key-
word is detected is collected by the models, the
amount of negative data is highly biased towards
the false positives from the models that collected
the data. Therefore, metrics that rely on negative
data, such as Recall and FPR, cannot be computed
and compared using A/B test. This limitation is
explored in this paper with our proposed AB/BA
technique in order to tackle this challenge of Recall
improvement estimation.

A.2 Stratified Sampling

To decide if a model is better than the other one, we
could simply annotate the utterances where the two
models disagree. However, if it is also desirable to
calculate absolute metrics, such as False Positive
Rate (FPR), then annotation of model agreements
is also needed. In order to reduce the amount of an-
notations for this task, we propose to use stratified
sampling, with two strata, agreement and disagree-
ment, such that different number of annotations are
done per strata.

Our stratified sampling strategy uses the Ney-
man allocation principle. The optimal number of



annotations N; for a strata j can be found using:

Nwj/pi(1 = pj)
>ty wiy/pi(l = pi)
where NN is our annotation budget, w; is the pro-
portion in each strata, and p; is the expected model
F PR, assumed to be estimated, for example, from
previously annotated data.

The efficiency improvement of the stratified sam-
pling strategy compared to a random sampling strat-
egy, in terms of variance in the FPR, is:

*

=

; (14)

., V(fprT)
Eff—lf_ﬂiﬁ;y )
v e/l —pi)” (15)
~np(1—p) ’

For the purpose of illustration, assume we have
a 10% disagreement between models, with FPR of
20% in this strata, whereas the agreement strata has
a FPR of 5%, and the overall FPR of 8%, Equation
(14) gives us, for the disagreement strata:

Ny 0.1,/0.2(1 — 0.2)

N 0.1,/0.2(1 = 0.2) + 0.9,/0.05(1 — 0.05)

~ 17%,

(16)

indicating that the disagreement strata should op-
timally be 17% of the annotation budget, without
affecting the FPR variance. The efficiency gain of
this method is:

Eff=

- (0.1,/0.2(1 — 0.2) + 0.94/0.05(1 — 0.05))?
0.08(1 — 0.08)

~ 24%,

a7

indicating that the annotation budget can be re-
duced by approximately 24%, without affecting the
overall FPR variance.

A.3 Threshold Selection Example

Given two models A and B, where A is a baseline
and B a candidate, we assume that A has a known
t 4, previously obtained according to the desired
FPR and Recall trade-off. Therefore, in order to
determine if the candidate model B is better, we
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can calculate the FPR Ratio and Recall Ratio for
multiple thresholds 5. Next, the decision will
be guided towards the goal of model B. Say, for
example, that the goal of model B is not to im-
prove FPR, but only Recall, then we selecttp =t
such that when applying this threshold it results in
FPR_Ratio = 1. One example, illustrating this
process, is given in Table 5.

ts | FPR Ratio | Recall Ratio
01|15 1.20
02| 1.0 1.05
03|08 1.01
04 | 0.7 0.98

Table 5: Threshold selection: The table shows an ex-
ample of how FPR Ratio and Recall Ratio change, as
a function of . It shows that, by selecting tp = 0.2,
model B has the same FPR Ratio as model B, but im-
proves Recall in 5%.

FPR Ratio vs Recall Ratio

120

115

110

Recall Ratio

100

10 11

FPR Ratio

12

Figure 2: Model sensitivity selection: The green area
in the figure shows the region where the recall is im-
proved, and the red area where the FPR improves. We
can see that 0.2 and 0.3 are potential thresholds for ¢p
to improve the performance of model A.

Table 5 shows the FPR Ratio and Recall Ratio
as a function of tp, similar to the data behind a
traditional DET curve, but using the proposed ratio
metrics. We can see that, by selecting tg = 0.2,
model B has the same FPR Ratio as model B, but
improves Recall in 5% relative. It is also interesting
to see that using ¢t g = 0.3 causes improvement in
both FPR Ratio and Recall Ratio. Using tg = 0.1
has 20% relative improvement in Recall, but with
a high trade-off in FPR and, similarly tp = 0.4
has 30% relative improvement in FPR, but with
degradation in Recall.

We see, therefore, that the model threshold can
be selected according to the goal in the trade-off
between FPR Ratio and Recall Ratio. It is clear
though that the model B is superior than model A,
since it has a threshold region that improves both
FPR and Recall, as shown in Figure 2.



A.4 Soft-Label Score Calibration

Given a set of utterances composed of N machine-
generated soft labels 7 € RY and human labels
y € RN, we propose to learn ¢(m;) using a polyno-
mial of degree 3. Notice that, as the target variable
is binary, and we expect to have more TAs as m
increases, the polynomial should be a monotonic
increasing function between [0, 1]. Although not
guaranteed, our experiments show this to be an
empirically good choice. One example is shown
in Figure 3. However, since the polynomial is not
guaranteed to have probabilities bounded between
[0,1], we have also explored to use a B-Spline
Logistic Regression with monotonic constraints
(Eilers and Marx, 1996; Barlow and Brunk, 1972).
However we have not seen significant difference
and have decided to use the polynomial approach
for simplicity.

Once we have soft-labels for the utterances from
model A and B to be compared, we can use Equa-
tions (8) and (9) in order to estimate the FPR Ratio
and Recall Ratio trade-off.

Mapping function

Fue Positive probability

2 30
Machine score

Figure 3: Probability mapping function: Using a
polynomial of degree 3, arbitrary for this illustration,
we can see that scores from a model between 0 and 50
are mapped to a probability of True Positive.

A.5 Semi-Supervised AB/BA Comparison to
AB/BA on Real Data

Next we show real data examples where we used
both AB/BA and ssAB/BA, in order to see if the
ratios reported are similar. In this case, machine-
generated scores were generated by a cloud-side
verification system, and its scores converted to
a TP probability according to a polynomial map-
ping function learned from other existing labeled
datasets, following the process described in Section
2.2. Results are shown in Table 6.

Results in Table 6 show that ssAB/BA is able
to well-approximate the AB/BA results, having
results with overlapping margin of error in most
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Example ssAB/BA rRecall | AB/BA rFPR
at rFPR at rRecall

1 1.03 [1.03-1.03] 1.04[1.04-1.05]

2 1.01 [1.01-1.01] 1.0[0.97-1.05]

3 0.99 [0.98-1.01] 1.01[0.99-1.04]

Table 6: Semi-Supervised AB/BA and AB/BA analy-
sis comparison on real data: The table shows three
examples comparing AB/BA and Semi-Supervised
AB/BA on real customer data

cases. It is important to notice, however, that there
is a risk of using ssAB/BA related to the quality of
labels generated. In the Example 3, we can see that
ssAB/BA results suggest a Recall loss of 1% rela-
tive, while AB/BA suggests a Recall improvement
of 1% relative, although the confidence intervals
overlap. That represents the case where, when the
recall improvement is small, the uncertainty of the
machine-label generation may limit its applicabil-
ity. It is important, therefore, to monitor the quality
of the label machines in order to know how trust-
worthy they are, and to also use other auxiliary
metrics that help reducing the risk of trusting the
sSAB/BA results by itself.
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Abstract

Spoken Language Understanding (SLU) mod-
els in industry applications are usually trained
offline on historic data, but have to perform
well on incoming user requests after deploy-
ment. Since the application data is not avail-
able at training time, this is formally similar
to the domain generalization problem, where
domains correspond to different temporal seg-
ments of the data, and the goal is to build a
model that performs well on unseen domains,
e.g., upcoming data. In this paper, we explore
different strategies for achieving good tempo-
ral generalization, including instance weight-
ing, temporal fine-tuning, learning temporal
features and building a temporally-invariant
model. Our results on data of large-scale SLU
systems show that temporal information can
be leveraged to improve temporal generaliza-
tion for SLU models.

1 Introduction

Spoken Language Understanding (SLU) models
play an important role in voice-controlled devices,
such as Alexa or Google Home. Two common SLU
tasks are intent classification (IC) and slot filling
(SF). Given a user request, IC aims to extract the
user’s intent, while SF is a sequence labeling task
which assigns a slot label to each of the tokens. For
example, the user request “play volbeat” should be
classified as PlayMusic by the IC task, while SF
should assign the labels O and Artist to “play” and
“volbeat”, respectively. State-of-the-art approaches
typically model the two tasks jointly via DNNs (Do
and Gaspers, 2019; Chen et al., 2019).

In deployed industry SLU systems, new data con-
tinuously flows into the system, and the underlying
data distributions keep drifting over time. In this
paper, we focus on the setting of temporal covari-
ate drift, where the distribution of utterances may
change, but the correct label for an utterance or to-
ken remains fixed (i.e., no concept drift) (Scholkopf
et al., 2012). Such data drifts happen, for example,
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because customer usage patterns change over time,
as new movies are being released or new artists
and songs become popular. Another cause of data
drifts are seasonal changes or changes related to
(re-)occurring events. For instance, the utterance
“will it snow tomorrow” is more likely to appear
during the winter than the summer season, and the
utterance “put on the Christmas lighting” is likely
uttered around Christmas.

To accommodate for temporal distributional
changes, industry SLU models are typically re-
trained and redeployed over time; in the follow-
ing sections, we also refer to this process as model
release, and we assume that model releases are ex-
ecuted at fixed time intervals, e.g., once per month.
We further assume that for each release, new la-
beled data become available, which were collected
since the previous release, yielding data belonging
to different time periods.

The common approach to utilize new data is to
simply combine them with all previously available
data, and subsequently split them into training, val-
idation, and test datasets. We can then build and
evaluate a model on these datasets, which we also
refer to as offline data in this paper. In industry ap-
plications, SLU models are subsequently deployed
to customers and have to perform well on incoming
customer requests, which we also refer to as online
data. Importantly, aiming to provide the best possi-
ble experience for our customers, our main goal is
building models which perform well on the online
rather than the offline data. Since the online data
are not available for model building and evaluation,
we need to utilize the offline data to build a model
which generalizes well to unseen online data from
the upcoming time period.

In this paper, we study this temporal general-
ization task assuming that data from several con-
secutive time periods, i.e., months in our case, are
available, and we aim to build a SLU model which
yields high performance on data from an upcoming
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time period. We aim to improve performance over
the common approach of simply combining all of-
fline data, which ignores the temporal nature of
the data and implicitly assumes that data from all
time periods are equally useful for model training.
Instead, relating back to the previous examples, we
assume that modeling the temporal nature of the
data may be beneficial and that data from certain
time periods may be particularly valuable. For in-
stance, data from recent time periods may better
reflect upcoming trends, and w.r.t. seasonality pat-
terns, data from the same period in previous years
may be particularly valuable.

To tackle the task, we explore four directions:
i) instance weighting based on our assumptions
about the task, ii) temporal finetuning, iii) learning
temporal features and iv) building a temporally-
invariant model. We present extensive experiments
on real-world SLU data of German and Portuguese
voice-controlled devices. Our results indicate that
temporal information can be leveraged to improve
temporal generalization of SLU models. We also
show that simple temporal fine-tuning is not very
effective and in fact leads to performance drop in
certain cases.

2 Related Work

To the best of our knowledge, the temporal gen-
eralization scenario studied in this paper has not
yet been explored for SLU in the literature, which
may be due to the fact that common Academic SLU
datasets are rather small and do not have a temporal
notation. In general, work addressing the tempo-
ral nature of SLU datasets has been limited. Kim
et al. (2017) address temporal data drift by adapt-
ing from stale to current data with an adversarial
domain adaptation approach, treating the stale and
current dataset as source and target domain, respec-
tively. Contrasting with our work, they assume the
availability of data from the target and they focus
on two time periods only. Other work has explored
short-term temporal information, e.g., the utterance
context provided by a couple of prior utterances to
resolve ambiguities (Lin et al., 2021).

In NLP, previous research has explored the sig-
nificance of temporal drift for several tasks, such
as headline generation (Sggaard et al., 2021), sen-
timent analysis (Lukes and Sggaard, 2018) and
named entity recognition (NER) (Rijhwani and
Preotiuc-Pietro, 2020), providing evidence that
model performance drops when training data age
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increases compared to the test data. However, de-
spite this evidence, the vast majority of NLP re-
search does not take the temporal nature of data
into account for evaluation (Lazaridou et al., 2021).

Lazaridou et al. (2021) show that (downstream
task) performance of pre-trained language models
suffers when performance is measured on future
data. Since (re-)training of larger language models
is costly, the authors propose to update model pa-
rameters by executing few steps of gradient decent
on new data. Other approaches to mitigate tem-
poral drift include predictive feature selection for
sentiment analysis (Lukes and Sggaard, 2018), and
selecting data based on frequent n-grams for NER
(Chen et al., 2021). The most similar to our work
is the study conducted by Rijhwani and Preotiuc-
Pietro (2020) who tackle temporal drift for a small-
scale NER task, i.e., including only 3 named enti-
ties. They consider data from several consecutive
years and aim to build a model which performs well
on data of the following year, focusing — in line
with the previously described work — on the effects
of data receny. The best performance is achieved
by using instance weighting of recent data and tem-
poral finetuning for a Bi-LSTM-CRF with Flair
and GloVe embeddings, respectively. By contrast,
we study temporal generalization in the context of
a large-scale SLU production system covering a
large numbers of labels. We focus on smaller time
periods, i.e., spanning one month instead of a year,
and we consider cyclic/seasonal changes in addi-
tion to data recency. For this purpose, we include
methods which have not yet been explored in tem-
poral generalization tasks, such as building models
that leverage temporally-invariant representations.

3 Method

Given labeled SLU data from several consecutive
time periods, our goal is to build a model which
generalizes well to unseen data from an upcoming
time period. In the following, we first provide a
formal definition for our tasks and subsequently
present the modeling approaches.

3.1 Learning scenario

We assume that labeled data are available, which
span N consecutive time periods, i.e., D =
[Dl, c. 7l)]\[] with D; € D = {(.%'i’j,yaj)}‘ljD:ill,
where x; j, , ..., x;j, is an utterance with n tokens
which was observed during time period D;. For the
SF task, a slot label is available for each token in



x; j, and y; ; is a sentence-level intent label for the
IC task. In this work, each D; € D comprises data
of one month.

The goal is to build a model using
[D1,...,Dn—1] which generalizes well to
the unseen data Dy. [D1, ..., Dn_1] corresponds
to the offline data in a release scenario, while Dy
corresponds to the online data.

Note that this learning scenario corresponds to
the task of domain generalization (DG) (Wang
et al., 2021) when considering the time periods
as individual domains. In DG, one aims to build a
model given several different but related domains
(datasets) which works well on data of a new (un-
seen) domain during testing. However, in work
addressing DG, typically the domains under consid-
eration are more distant than the datasets of differ-
ent time periods in our scenario, which are in fact
drawn from the same overall source (domain), and
contrasting with our scenario, the domain datasets
in DG usually do not have a natural order.

Note further that DG differs from domain adap-
tation (DA) in that DA assumes the availability of
some (unlabeled) data of the target domain, which
can be utilized for adaptation.

3.2 Basic SLU model

Our basic SLU model is a common state-of-the-art
SLU architecture for joint intent classification and
slot filling. It is comprised of a BERT encoder,
an intent decoder and a slot decoder. The BERT
encoder’s outputs at sentence and token level are
used as inputs for the intent and slot decoders, re-
spectively. The intent decoder is a standard feed-
forward network including two standard dense lay-
ers and a softmax layer on top. The slot decoder
uses a CRF layer on top of two dense layers to
leverage the sequential information of slot labels.
As loss we use a weighted sum of the loss of IC L;
and the loss of SF L, i.e.

L= )\sz + ASL& (D
where \; and A\ are weights. We use cross-entropy
and CRF loss for IC and SF, respectively.

3.3 Instance weighting

Instance weighting assigns a weight to each train-
ing data instance. In a DA task, a weight may be
selected such that it reflects the instance’s similar-
ity to the target (Jiang and Zhai, 2007). However,
since we do not assume the availability of data
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from the target time period, we cannot compute
such similarity scores. Instead, we simply weight
instances based on our assumptions about the task.

We assume that recent data, i.e., data from the pe-
riod prior to the target period, may be particularly
valuable, because this period may better reflect
recent and upcoming trends, Moreover, instance
weighting of data from a recent year has already
been shown to improve performance on data of a fu-
ture year for a small-scale NER task (Rijhwani and
Preotiuc-Pietro, 2020). On the other hand, with
respect to seasonal changes, data from the same
period in previous years could also be of particu-
lar value. Thus, taken together, we explore three
instance weighting strategies based on recency, sea-
sonality, and combination of both:

1. Reweight each data instance in the period

prior to the target period by a weight w > 1

(i.e., reweight Dy _1),

Reweight each data instance from the same

calendar month as the target data by w > 1,

. Reweight all instances from either the same
calendar month as the target data or from the
period prior to the target data by w > 1.

Given an utterance and a corresponding weight, we
weight the losses of both IC and SF.

The described instance weighting techniques do
not require any temporal information during the
application phase and no architectural changes.

3.4 Temporal finetuning

We explore temporal finetuning, as it has been
previously shown to improve performance on
other temporal tasks. In particular, Rijhwani and
Preotiuc-Pietro (2020) 1) trained Bi-LSTM-CRF
models for a small-scale NER task on data from
several years, and ii) fine-tuned these models on
data of the most recent year, yielding improved per-
formance over the initial models when evaluated
on data of a future year. Similarly, we first train a
model on all offline data, i.e.,on D1 U...UDpy_1,
and subsequently we finetune it on data of the most
recent offline time period, i.e., on Dy _1 A

'We do not explore sequential temporal finetuning, i.e.,
first train on D1, then on D3, etc. This approach degraded per-
formance on the small-scale NER task explored by Rijhwani
and Preotiuc-Pietro (2020), and we expect it to not perform
well for our task either, as it corresponds to a life-long learn-
ing scenario in which catastrophic forgetting of previously
acquired knowledge is a known issue.
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Figure 1: SLU architecture for joint IC and SF with an auxiliary task for predicting the month of an input utterance.
While the model is trained by alternating across tasks, during inference only the SF and IC decoders are used.

This technique does not require any temporal
information during the application phase and no
architectural changes.

3.5 Learning temporal features

We hypothesize that learning temporal features
could be beneficial for our SLU task and therefore
aim to build a temporally-aware model. For this
purpose, we explore two established techniques
for injecting auxiliary information, i.e., i) via ad-
ditional input features, and ii) via an auxiliary
task. The training of an auxiliary prediction task
to improve embeddings is sometimes called self-
supervised learning, and has also been shown to im-
prove generalization in vision tasks (Albuquerque
et al., 2020).

3.5.1 Using additional input features

We define a special token for each month, e.g.,
“[JAN]”, ... “[DEC]”. For each utterance, informa-
tion about the month in which it was observed is
added before model training and inference using
the corresponding special token. E.g., “[DEC] play
Christmas songs” indicates that the utterance “play
Christmas songs” was observed in December.

While this technique does not require any archi-
tectural changes, temporal information is needed
during the application phase, which, however,
should be easily accessible in most cases.

3.5.2 Using an auxiliary task

We extend the basic SLU model described in sec-
tion 3.2 by an auxiliary task which predicts the
month given an utterance. Specifically, we apply a
multi-task model which is comprised of a joint IC
and SF task and an additional classification task;
the overall architecture is illustrated in Fig. 1. The
auxiliary task decoder is a standard feed-forward
network comprising two standard dense layers and
a softmax layer on top. We optimize the model by
alternating across the two subtasks (joint SF and
IC vs month prediction), and we use a combined
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loss

L =MNL;+ AsLs+ MLy 2)

where L;, L; and L; are the losses of the IC, SF
and month prediction tasks, respectively, and A;,
As and \; are weights. We use cross-entropy loss
for the IC and month prediction tasks and CRF loss
for the SF task.

For inference, we apply only the joint SF and IC
task, and temporal information is not required dur-
ing the application phase. The intuition is that via
the joint training, temporal information is acquired
by the model which can then influence the SF and
IC predictions during inference.

3.6 Building a temporally-invariant model

Relating back to section 3.1, our learning scenario
corresponds to the task of DG when considering
the time periods as individual domains. We se-
lected a popular direction explored in DG (Wang
et al., 2021) and DA (Ramponi and Plank, 2020),
i.e., invariant representation learning. The intuition
is that by removing information which is specific
to individual domains, the model should generalize
better to an unseen target domain. Thus, contrast-
ing with the approaches described in the previous
section which aim to learn temporal features, in this
approach we aim to build a temporally-invariant
model by removing features which are specific to
certain time periods.

Note that both approaches may be reasonable,
as there may be different kinds of temporal fea-
tures and artifacts related to our data, out of which
we may want to leverage some, but abstract away
from others. For instance, it may be beneficial if
the models learn a notation of seasonality and/or
recency, but we may want to abstract away from
artifacts related to out-dated trends, annotation in-
consistencies across time, etc.

One established approach to domain-invariant
representation learning is adding an auxiliary do-
main classifier to a main task predictor, and then



optimizing for an accurate task predictor while ap-
plying an adversarial training strategy to confuse
the auxiliary domain classifier by making the fea-
tures from source and target domain indistinguish-
able, thus yielding domain-invariant features. A
gradient-reversal layer can be applied for this pur-
pose (Ganin and Lempitsky, 2015; Ganin et al.,
2016). We adapt the approach from Ganin and
Lempitsky (2015) to build a temporally-invariant
model, i.e., we apply it with our SLU model as
the main task predictor and using an auxiliary
month classifier instead of the domain classifier
(and BERT as the feature extractor).

As in case of learning temporal features using an
auxiliary task, for inference we apply only the main
task, and thus temporal information or architectural
changes are not required during the application
phase.

4 Experiments

4.1 Data

We use data from large-scale industry SLU sys-
tems comprising user requests to voice-controlled
devices; all requests were de-identified, annotated
with intent and slot labels, and marked with a time
stamp. We collected data for two languages, i.e.
German and Portuguese, and three domains, i.e.
Music, Video and Shopping. The data range from
May 2019 to December 2020, and we split them
into one dataset per month based on timestamps,
resulting in 20 datasets Dy, ..., Dy for each do-
main and language. Thus, one dataset is available
per month, domain and language. For each do-
main and language, Dy is used for testing, and
for Dy, ..., D19 we create training and validation
datasets. For German, for each domain we have
more than 100,000 data instances available, while
for Portuguese for each domain the data amounts
are on the order of tens of thousands.

Qualitative data analyses indicate that both grad-
ual and seasonal drifts are indeed present in the
data, but there are domain-specific differences. Due
to confidentiality reasons, a detailed data analysis
is beyond the scope of this paper.

4.2 Experimental setup

For each domain and language, we use the
Dy, ..., D9 training datasets for model training,
and D»g for testing. Since we do not have access
to target period data, we study two options for cre-
ating an offline validation dataset:
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. val, comprises the offline validation data
from Dy, ..., Dyg. This corresponds to the
common approach.

val, comprises only recent offline validation
data, i.e., the validation data of Dqg.

We train and evaluate our modeling approaches on
the described setup. As baseline, we train a model,
1.e., the basic SLU model described in section 3.2,
following the common approach of simply training
on the combined offline data (without leveraging
any temporal information). In the following, we
refer to this approach as concat.

We measure performance using a semantic error
rate, which measures intent classification and slot
filling jointly and is defined as follow:

#(slot+intent errors)

SemER = 3)

#slots in reference + 1

4.3 Settings

We used pre-trained multilingual BERT (Devlin
et al., 2019) (size 768, 110M parameters)z, and
max-pooling for sentence representations. Each
of our decoders has 2 dense layers of size 768
with gelu activation. The dropout values used in
IC, SF and month decoders are 0.5, 0.2 and 0.5,
respectively. We used equal weights for A; and
A; (1.0:1.0) and Adam optimizer with a learning
rate of 0.1 and a Noam learning rate scheduler.
We trained our models for 20 and 25 epochs for
German and Portuguese, respectively, with a batch
size of 32. These hyper-parameters were used for
all models (where they apply). The best models
were selected on offline validation data (valg; or
valye.). We tried w € [2, 5] and we varied Ay from
0.2 to 0.6. Each model was trained on a single
GPU.

5 Results and discussion

The results on the “online” test data for using either
all offline validation data val,; or recent validation
data val,.. to select the best model are shown in
Table 1. For confidentiality reasons, we report the
relative change in SemER compared to the concat
baseline using val,;. In the following, we discuss
the results w.r.t. different research questions.

>The model is taken from https:/github.com/google-
research/bert/blob/master/multilingual.md (Apache 2.0) and
was used for experiments only, not for production cases.



German Portuguese

Method Music Video Shopping Music Video Shopping

val, | val, val, val, valg, | val, val, | val, val, | val, valg, | valy,
Concat 0 -148 | O 3.0 |0 -459 1 0 -1.67 | O -11.0 | O -0.54
Weight prev. period | -1.48 | -0.67 | -2.96 | -4.47 | -8.68 | -7.06 | -1.89 | -0.33 | -4.85 | -4.86 | -1.99 | -5.87
Weight same month | -1.75 | -0.47 | 0.84 -148 | 149 | -5.09 | 0.39 | -0.78 | -4.56 | -8.73 | -0.09 | -3.07
Weight both 1.34 | -0.2 -1.96 | -2.96 | -447 | -9.31 | -1.83 | -0.39 | -7.15 | -5.14 | -2.8 -5.78
Temporal finetuning | -0.2 -0.2 -1.76 | -3.04 | 484 | -273 | 0.06 | 2.33 | -3.05 | 0.11 | 343 | O
Month feature -0.94 | -1.28 | 1.045 | 1.52 | -1.61 | -0.99 | -1.1 1.0 -3.38 | -1.69 | -2.35 | 3.61
Auxiliary task -1.75 | <175 | -1.72 | -2.32 | -298 | -7.94 | -3.06 | -2.22 | -596 | -2.37 | -8.57 | -6.23
Temp.-invariant -3.63 | -0.74 | -092 | 1.76 | -4.84 | -5.58 | -2.44 | -0.67 | -6.65 | -1.19 | -3.88 | -9.2

Table 1: Results on the “online” test data for using either all offline validation data (val,) or recent offline validation
data (val,-). We report the relative change in SemER compared to the concat baseline using val,.

RQ 1: Can temporal information be leveraged
to improve temporal generalization for SLU?
Across all domains and languages, improvements
in SemER on future data can be achieved by tak-
ing the temporal nature of data into account. The
best methods differ across domains and languages,
which is expected, given that there are domain and
language specific differences w.r.t. seasonal and
gradual shifts. However, two of the methods yield
consistent gains across all domains and languages,
i.e., instance weighting of the previous time period
and using an auxiliary task yield improved perfor-
mance compared to the baseline for all considered
conditions. Using an auxiliary task achieves the
best performance most often.

RQ 2: What is the impact of seasonality and re-
occurring events vs recency effects? Previous
work in NLP on temporal adaptation and gener-
alization has focused on larger time periods and
the effects of data recency, showing strong perfor-
mance for instance weighting of recent data and
temporal finetuning on a small-scale NER task (Ri-
jhwani and Preotiuc-Pietro, 2020). By contrast, our
domain datasets cover smaller time periods, with
different seasonal effects and re-occruring patterns.

On our task, temporal finetuning gives mixed re-
sults, with decreasing performance in several cases.
We assume that the models may overfit to the re-
cent data, and some previously acquired knowledge
related to older time periods might have been for-
gotten. However, unlike in the NER task which
included only the three named entities PER, LOC,
and ORG and in which there might be mostly grad-
ual temporal trends, in our task seasonal drifts exist,
potentially making certain older knowledge more
relevant. By finetuning on recent data, the models
may lose too much relevant seasonal knowledge,
harming performance for domains with changes
related to seasons or re-occurring events. Instance
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weighting of recent data gives consistent improve-
ments, which is in line with previous findings,
while instance weighting of the same time period
gives mixed results, i.e., it helps in some cases,
but decreases performance in others. To some ex-
tent this may be due to domain-specific differences.
However, an issue might also be that there can be
conflicting seasonal and gradual drifts. In particu-
lar, weighting is performed at the dataset level and
a dataset from a year ago might include relevant
seasonal data instances, but also less useful data
instances such as data related to older (already out-
dated) trends. The negative effects can be mitigated
to some extent by selecting the best model on re-
cent validation data, which yields consistent gains
in performance across all domains and languages.
Future work may explore how to disentangle these
effects, and in temporal DA scenarios one may se-
lect utterances based on the similarity to the target.
Howeyver, in our scenario which does not assume
the availability of target period data, modeling sea-
sonal and re-occurring patterns indirectly via an
auxiliary month prediction task appears to be a bet-
ter choice in most cases, yielding consistent — and
in most cases higher — gains.

How to create a validation dataset without
having access to target data? For half of the
domain-language pairings, performance is im-
proved by using a recent offline validation dataset.
The choice of the best validation dataset may be
both method-specific and domain-specific, as drifts
differ across domains.

Interestingly, performance of the concat base-
line model, which ignores the temporal nature of
the data, is consistently improved across domains
and languages when using recent validation data.
This shows that model performance can also be
improved by taking the temporal nature of the data
into account for creating a validation dataset in-



stead of model building.

Should we aim for a temporally aware or in-
variant model? In this paper, we have explored
both building temporally-aware and temporally-
invariant models, since there may be different kinds
of temporal features and artifacts related to our data,
out of which we may want to leverage some, but
abstract away from others. Our results show con-
sistent gains for temporally-aware models using
an auxiliary month classifier as well as gains in
all but one case for temporally-invariant models,
with temporally-aware models giving better per-
formance in most, but not all cases. Thus, both
directions appear to be generally promising.
Future work may explore different approaches to
learning temporally aware or invariant models, for
instance, by exploring others DG approaches in the
latter case. One potentially interesting direction is
to learn disentangled representations that separate
temporally-invariant and seasonal components.

6 Conclusion

We studied a temporal generalization task in which
we used offline data of time periods spanning one
month each to build a model that performs well
on future online data. We explored four directions
to leverage temporal information which are rather
easy to apply in production, i.e., i) instance weight-
ing based on our assumptions about the task, ii)
temporal finetuning, iii) learning temporal features
and iv) building a temporally-invariant model. Our
results on real-world SLU data covering two lan-
guages and three domains each show that temporal
information can be leveraged to improve tempo-
ral generalization for SLU. While several of the
explored methods provide consistent gains across
all domain-language pairings, the best methods
differ, as different domain datasets have different
gradual and seasonal drifts. Moreover, our results
indicate that methods, such as temporal finetun-
ing, which have been previously shown to provide
strong performance on small-scale academic tasks
with longer time periods and mostly gradual tem-
poral drifts, do not necessarily yield the best per-
formance in our large-scale SLU task including
seasonality patterns.
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Abstract

Summarizing sales calls is a routine task per-
formed manually by salespeople. We present a
production system which combines generative
models fine-tuned for customer-agent setting,
with a human-in-the-loop user experience for
an interactive summary curation process. We
address challenging aspects of dialogue sum-
marization task in a real-world setting includ-
ing long input dialogues, content validation,
lack of labeled data and quality evaluation. We
show how GPT-3 can be leveraged as an offline
data labeler to handle training data scarcity and
accommodate privacy constraints in an indus-
trial setting. Experiments show significant im-
provements by our models in tackling the sum-
marization and content validation tasks on pub-
lic datasets.

1 Introduction

An integral part of salespeople daily routine is sum-
marizing sale calls. The summarization process
aims to distill salient information from sales di-
alogues into succinct highlights, which are then
leveraged by salespeople for productivity and
coaching purposes. Manually curating a call sum-
mary is considered as one of the biggest time
wasters for B2B sellers (Zhang et al., 2020). It dis-
tracts salespeople from nurturing the relationship
with their next customer. Recently, this practice
has become more demanding due to the emerging
landscape of remote selling where virtual meetings
become the new norm (Gavin et al., 2020).
Dialogue summarization induces a variety of
unique challenges compared to summarization of
documents such as news or scientific papers (Zhu
and Penn, 2006). Information density is a key chal-
lenge in dialogue text; information is scattered over
multiple utterances and participants, leading to fre-
quent coreferences and topic alternations. Spoken
dialogues, usually transcribed by speech recogni-
tion engines, impose additional challenges such as
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Transcript >

Customer

0035 This is again regarding the case within the legal

0045 Sorry, yes, so just got off the line with one of the clients. OK,
S0 wait, 50 we are at the minute the office. | think in both
cases were issued within the past week, so we are not able

Agent educated the customer that we can't
proactively chase these particular case

Add - 0059
Agent educated the customer that we have a
dedicated nun

0055 | can't here you well, can you explain again

0059 We can't proactively chase any cases where the office being
issued within the past two weeks and also where the
certificate title hasn't been recieved

0101 Both of those clients and have had serious issues just getting
hold of illegal

@ o

Figure 1: A customer-agent call transcript with corre-
sponding summary highlights. Challenges imposed by
automatic speech recognition engine can be observed.

redundancies and misrecognized words. The length
of these dialogues, e.g. 50K tokens in a 45 minutes
call, imposes another challenge to state-of-the-art
summarization models as it exceeds their input lim-
its (Zhang et al., 2021). Figure 1 illustrates parts
of the challenges imposed by automatically tran-
scribed sales dialogues.

Developing a production system which is both
fully automatic and agnostic to the input text
genre is an extremely difficult task given the
current state-of-the-art technology. To this end,
we present a pragmatic solution that enables
users to interactively edit machine-generated
summary for customer-agent sales calls as appears
in Figure 2. Our solution summarizes the call
into a collection of abstractive highlights to
accurately capture the various details of the call.
The machine-human interaction is enabled through
a designated human-in-the-loop user experience
(Ostheimer et al., 2021). It enables users to modify
the generated summaries, yet, the intervention is
designed to be minimal so that the overall time
consumption of users is significantly reduced.

Overall, our contributions are listed as follows:

Proceedings of NAACL-HLT 2022: Industry Track Papers, pages 45 - 53
July 10-15, 2022 ©2022 Association for Computational Linguistics



Call from Keiko Tanaka

customer needs help with the redemption statements

Figure 2: Illustrating human-in-the-loop experience
which enables users to interactively handle summariza-
tion challenges by adding relevant summary highlights
to the editing canvas and modify them, if necessary.

1. Dialogue summarization system. We intro-
duce an innovative production summarization
system for summarizing call transcripts with
a human-in-the-loop setting. Our system uses
an advanced summarization model to generate
abstractive summaries for dialogues. Addi-
tionally, it employs a novel model for quanti-
fying the coherence of the summaries to com-
pensate for the summarization model limita-
tions.

GPT-3 as an offline label generator. We
present a technique for leveraging GPT-3
model to generate pseudo labels without the
need to deploy and maintain it in production.
This enables us to (i) efficiently generate la-
bels in low-resource setting, (ii) distill GPT-3
knowledge into lighter models, and (iii) ac-
commodate data privacy constraints.

. Custom evaluation metric. We examine the
importance of leveraging a comprehensive
evaluation metric which takes into account
various quality aspects of the generated sum-
mary. The metric is utilized to focus our ef-
forts on potential candidate models during the
development phase. The suggested metric
goes beyond lexical overlap and help us val-
idate that our production model is optimized
for generating summaries which are fluent,
relevant and factually reliable.

2 Related Work

Document  Summarization Summarization
methods can be categorized into two classes:
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extractive and abstractive. Early works focused on
extractive methods (Hovy and Lin, 1997; Marcu,
1997), followed by rule-based approaches for
abstractive summarization (Barzilay and Elhadad,
1997; Barzilay et al., 1999). Advancements in
capabilities of deep neural models led to works
such as Rush et al. (2015) where a seq-2-seq
attention-based model is used for abstractive
summarization. See et al. (2017) overcomes some
of the former work’s limitations by introducing a
pointer generator network that has the ability to
copy words from the source document. A major
advancement in the field of deep neural models
was the introduction of Transformer architecture
(Vaswani et al., 2017), which is the basis for
current state-of-the-art summarization approaches.
Recently, several powerful Transformer-based
models have been developed and showed remark-
able results on various benchmark summarization
tasks (Lewis et al., 2020; Zhang et al., 2019a;
Raffel et al., 2020) .

Dialogue Summarization The task of dialogue
summarization has been witnessing many com-
monalities as document summarization as well as
new techniques for handling unique structures of
various dialogue types. Early works in the do-
main suggested tackling the problem using extrac-
tive methods (Murray et al., 2005; Riedhammer
et al.,, 2008). Shang et al. (2018) used a pure
unsupervised graph-based method for keyword
extraction and sentence compression. Goo and
Chen (2018) proposed to explicitly model relation-
ships between dialogue acts using attention-based
sentence-gated mechanism. Chen and Yang (2020)
extracted Transformer-based representations for
different views of dialogues, conditioned on view
representations, to generate summaries using a sec-
ond Transformer. Zhu et al. (2020) presented a hi-
erarchical Transformer architecture to encompass
the structure of dialogues.

3 Method

While most existing methods summarize a call tran-
script as a single paragraph, our system provides
a collection of sentences that summarize the en-
tire dialogue in a chronological order. Given a call
transcript, the system utilizes word embeddings to
break the transcript into semantically coherent seg-
ments (Alemi and Ginsparg, 2015). Each segment
is summarized independently capturing key infor-
mation such as: customer’s issue, agent’s solution



or the underlying topic of the discussion. Finally,
the grammatical coherence of highlights is ana-
lyzed using a dedicated model before suggesting
them to the user. Figure 3 provides a high-level
overview of the system’s flow.

Next, we introduce the key components of our
dialogue summarization system in details.

3.1 DialogBART: Dialogue Summarization
Model

Unlike general documents, conversation transcripts
have unique structures associated with speakers
and turns. In sales calls, participants can either
be a customer or an agent and these roles impose
a unique language style that can be leveraged by
the model. Motivated by this observation, we
propose an encoder-decoder model called Dialog-
BART, which adapts the well-known BART (Lewis
et al., 2020) model with additional embedding pa-
rameters to model both turns and speakers positions
(Zhang et al., 2019c; Bao et al., 2020). For speaker
embeddings, we introduce designated vectors to
represent each speaker which can be easily gener-
alized to multi-participant dialogues. Additionally,
we leverage another set of vectors to model turn
position embeddings. During inference, the model
determines the speaker and turn indices by lever-
aging a special token that separates the dialogue’s
turns.

As shown in Figure 4, DialogBART’s input is
calculated as the sum of the corresponding token,
position, speaker and turn position embeddings.
These parameters are randomly initialized, how-
ever, the remaining parameters are initialized with
weights from a pretrained! BART-like encoder-
decoder models (Lewis et al., 2020; Shleifer and
Rush, 2020). All these weights are further fine-
tuned on dialogue summarization tasks.

3.2 Acceptability Validation

Despite the human-in-the-loop user experience,
customers still expect high quality summaries
which require minimal modifications by them. We
propose a novel model that determines the quality
of each summary highlight in terms of coherence,
fluency and its acceptability in general.
Grammatical acceptability, a property of natural
language text, implies whether a text is accepted
or not as part of the language by a native speaker.

"https://huggingface.co/sshleifer/
distilbart-xsum-12-3

47

The notion was widely investigated through vast
work done in automatic detection of grammati-
cal errors (Atwell, 1987; Chodorow and Leacock,
2000; Bigert and Knutsson, 2002; Wagner et al.,
2007) and on acceptability judgment of neural net-
works (Lau et al., 2017; Warstadt et al., 2019). And
yet, we are not aware of works that observe the
acceptability of neural generated summaries for
validation purposes. To determine a highlight’s ac-
ceptability, we compute the perplexity of each high-
light given by a Pretrained Language Model (PLM).
This PLM is fine-tuned on summaries from Dialog-
Sum dataset (Chen et al., 2021a) and in-domain
proprietary data in a traditional self-supervised
manner. Recall that the perplexity of a sequence
W = wows...w, is defined as:

n

rrw;0) = [
k=1

1

Po (wk |w0w1 ...wk_l)

ey

where 6 are the language model specific parame-
ters and pyg is the probability function correspond-
ing to distribution over vocabulary tokens induced
by the same model.

Based on the perplexity score, the system deter-
mines whether a given highlight should be filtered
out, presented to the user, or presented with an in-
dication that its revision may be required. Figure 2
illustrates how the system helps users focus their ef-
forts on modifying borderline acceptable highlights
based on the perplexity score.

4 GPT-3 as an Offline Labeler

Training a dialogue summarization model requires
a large amount of labeled examples. Manually an-
notating data for abstractive summarization is a
time-consuming and labor-intensive process, let
alone the data privacy constraints. In this work,
we provide a method to automatically pseudo label
examples to overcome these challenges. We lever-
age GPT-3 model (Brown et al., 2020) to generate
pseudo labels in a zero-shot setting for each call
segment. GPT-3 is a large auto-regressive language
model with 175 billion parameters that achieves
promising results on various NLP tasks, including
question answering. We treat the problem of la-
bel generation as a question answering task. For
each segment, we concatenate a question-based
prompt with the segment’s content while expecting
the GPT-3 model to provide the answer as appears
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Figure 4: Input representation of DialogBART’s en-
coder.

in Figure 5. These answers are used as pseudo
labels for the corresponding segments. This formu-
lation provides the flexibility of defining multiple
questions per segment to summarize the segment
from different perspectives. Finally, these pseudo
labels, combined with proprietary human labeled
data, are used to fine-tune the DialogBART model
on conversational text.

Z§$gi::5;;:t::s;ér;.éﬁ;_text + "Q: Why did the customer contacted the agent2\n"

Answer_prefix = "A: The customer contacted the agent in order to"

GPT3_label = 'The customer contacted the agent in order to get a mortgage offer.’

Figure 5: Utilizing GPT-3 model to generate task-
oriented summaries in an offline manner.

5 Custom Evaluation Metric

Common evaluation metrics for text summariza-
tion task, i.e. ROUGE and METEOR, have salient
limitations as both metrics track lexical overlap
between the summary and the original text. This
kind of assessment falls short when the summary
content perfectly aligns with a reference text but
does not necessarily contain any lexical overlap,
e.g. abstractive summaries.

In an industrial setting, one needs to consider
various quality perspectives to guarantee that the
summary’s quality does not introduce productivity

48

blockers for users or negatively affect business de-
cisions. We introduce a custom evaluation metric,
SumSim, that relies on lexical overlap as well as
other quality aspects to ensure that summaries are
fluent, coherent and factually reliable. SumSim
aims to cover the following quality perspectives:

* Coverage - how many units from the refer-
ence text are covered by the summary (.5;)

* Relevance - measures semantic consistency
between the summary and the reference text

(Sp)

* Informativeness - how well it captures pre-
defined keywords which are critical to the
business (.5;)

» Factuality - how factual the summary is with
respect to the original text (Sy)

Our metric uses ROUGE-L (Lin, 2004),
BertScore (Zhang et al., 2019b), exact match of
keywords and FactCC (Kryscinski et al., 2019) to
capture the above quality aspects, respectively. The
quality of a given summary is calculated as follows:

11—«

So=o-S;+ (548 @

SumSim = -S¢g+ (1 —8)-So 3)

where « and (3 are determined empirically based
on the business scenario sensitivity.

6 Experimental Results

In this section we evaluate the performance of our
proposed models on various datasets: DialogSum
(Chen et al., 2021b), SAMSum (Gliwa et al., 2019),
CoLA (Warstadt et al., 2019) and a proprietary data
from the sales domain. We also show the potential
of SumSim metric compared to traditional evalu-
ation metrics on the text summarization task. We
use Huggingface Transformers (Wolf et al., 2020)
as a training framework in all of our experiments.



6.1 DialogBART

In the following experiments we show the perfor-
mance of DialogBART model in summarizing dia-
logues by examining two factors: (i) speaker/turn
position embedding parameters, and (ii) data aug-
mentation by GPT3-labeled data. For comparison
purposes, we leverage two baseline models, BART-
large and distilBART, which achieved state-of-the-
art results on the summarization task (Lewis et al.,
2020; Shleifer and Rush, 2020). All models, includ-
ing the baseline models, were initially fine-tuned
on XSum dataset (Narayan et al., 2018).

First, we examine the contribution of Dialog-
BART’s position embeddings on DialogSum and
SAMSum datasets. All models were fine-tuned
using the relevant training sets and evaluated on
the test sets of the corresponding datasets. Table 1
shows that the suggested speakers/turns positions
embeddings provide better results when compared
to the baseline models.

Model R1 R2 RL
DialogSum
distilBART 3593 11.71 28.86
__+embeddings 46.97 21.34 3945
BART-large 46.48 20.89 38.12
+ embeddings 46.68 21.46 38.32
SAMSum
distilBART 4193 19.17 34.05
__t+embeddings 50.21 25.89 41.99
BART-large 52.45 28.08 43.84

+ embeddings 52.91 28.39

Table 1: Effectiveness of DialogBART’s speaker and
turn embedding parameters using ROUGE metrics.

Second, we examine the implications of fine-
tuning DialogBART model using different data
types: human-labeled (20K samples) and GPT3-
labeled (21K samples) data 2.

We evaluated the models on the test subset of: (i)
DialogSum (500 samples), (ii)) SAMSum (819 sam-
ples), and (iii) proprietary data (100 samples). The
evaluation on the public datasets was conducted
without fine-tuning the models on the correspond-
ing training sets. Table 2 shows that DialogBART

The anonymized data was collected and used based on a
data sharing agreement with customers from different business
domains. The human-labeled data is composed of anonymized
agent’s notes which were captured as part of the daily routine
of the agents and not in a crowdsourcing setting.
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model outperforms the baseline models on pub-
lic datasets even in out-of-domain setting. Addi-
tionally, results show that DialogBART fine-tuned
on a mixture of human and pseudo labels outper-
forms its counterparts which were fine-tuned on
either fully human labels or fully pseudo labels.
We note that fine-tuning DialogBART on pseudo
labels yielded higher ROUGE scores compared to
human labels. This could be explained by human
tendency to generate variable summaries which in-
duces disagreements between human annotators
(Clark et al., 2021). While a model fine-tuned on
pseudo labels is less variable in its generations, a
model fine-tuned using human data produces text
that is, in turn, more variable and leads to less lex-
ical overlap with test references as measured by
ROUGE metrics? .

6.2 Acceptability Validation

We examine mutiple candidate PLMs with lan-
guage model objective for this task. Initially we
fine-tune the candidate PLM on summaries from
DialogSum dataset and later on positive examples
from the train subset of our internal acceptabil-
ity benchmark consisting of in-domain summaries
(100 samples). As candidate PLMs, we experiment
with GPT-2 (Radford et al., 2019), DistilGPT-2
Sanh et al. (2019) and a RoBERTa encoder (Liu
etal., 2019) with a language model head, RoBERTa-
LM. Table 3 shows comparison results between the
examined models and leaderboard competitors on
the development set of CoLA as well as on the test
subset of an internal benchmark.

We observe that all of the models trained using
our method, in the bottom half of the table, which
were not trained on CoLLA data yield competitive
results compared to models explicitly fine-tuned
for the task, top half of Table 3. We also found that
the ROBERTa-LM model achieves highest results
on the internal set. Additionally, we fine-tuned De-
BERTa, the strongest CoLA competitor, in a clas-
sification setting on the internal benchmark. We
observe that results achieved by our models are sig-
nificantly better. We hypothesize, this phenomenon
is due to the fact that valid in-domain highlights, as
generated by DialogBART, share a unique structure
and can be viewed as forming a specific language
which properties are better captured by a language
model rather than a classifier.

*https://github.com/google-research/
google-research/tree/master/rouge



Model DialogSum SAMSum Proprietary
Rl R2 RL R1 R2 RL Rl R2 RL
distilBART 171 3.6 135 203 4.1 155 163 1.1 13.1
BART-large 177 39 137 249 55 189 169 15 133
DialogBART
+ human 217 45 19.1 189 3.0 168 202 53 192
+ pseudo 28.0 59 222 260 5.1 206 285 105 248
+ human & pseudo 33.5 9.0 245 304 7.5 224 331 13.0 263

Table 2: Results of fine-tuning DialogBART model on human labels, pseudo labels and mixture of them.

Model CoLAgey Internal
TinyBERT (Jiao et al., 2020) 54 -
Synthesizer (Tay et al., 2021) 53.3 -
DeBERTa (He et al., 2021) 69.5 54.5
DistilGPT-2 61.7 63.6
GPT-2 62.5 60.6
RoBERTa-LM 64.2 66.7

Table 3: Accuracy of acceptability validation models.

6.3 Custom Evaluation Metric

We leverage the DialougSum test set to show the po-
tential of the Sum.Sim metric. Table 2 shows that
DialogBART fine-tuned on pseudo labels, Mpcudo-
outperforms its counterpart that was fine-tuned on
human labels, Mpqmaqn- However, Figure 6 shows
contradicting insights when comparing the perfor-
mance of these two models by different quality
aspects, i.e., lexical overlap (ROUGE) and factual
reliability (factCC).

This observation emphasizes the need for non-
standard quality measures for evaluating the per-
formance of abstractive summarization models.
This need is critical for customer-facing enterprise
products where business decisions can be affected
by the generated summary. Figure 6 shows the
strengths and weaknesses of different quality met-
rics in evaluating three DialogBART variants. The
M, seudo model outperforms the Mpyman in all
quality dimensions except of factuality. This ob-
servation is consistent with recent studies which
report that large size language models are less truth-
ful than their smaller peers (Lin et al., 2021).

7 Conclusions

In this paper, we present an end-to-end system for
abstractive summarization of agent-customer calls.
We employ a two-stage strategy to summarize long
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Figure 6: The capacity and limitation of various qual-
ity metrics. The bars’ colors represent three different
models which were fine-tuned on human labels, pseudo
labels and a mixture of them, respectively.

call transcripts by (i) splitting the dialogue into se-
mantically coherent segments, and (ii) generating
summaries using our DialogBART summarization
model. We demonstrate how a pragmatic solution
that combines a content selection model with a
human-in-the-loop user experience can help com-
pensate on generative models’ limitations. We
show how GPT-3 model can be leveraged as an
offline data labeler to train lighter models and ac-
commodate data privacy constraints. Experiments
show that the introduced embedding parameters
combined with fine-tuning on in-domain data sig-
nificantly improve the quality of the generated sum-
maries with respect to publicly available BART-
based summarization models. We emphasize the
need for non-standard evaluation metrics and show
how common metrics fall short when evaluation of
abstractive summaries is considered.
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Abstract

Use of synthetic data is rapidly emerging as
a realistic alternative to manually annotating
real data for industry-scale model building.
Manual data annotation is slow, expensive and
not preferred for meeting customer privacy ex-
pectations. Further, commercial natural lan-
guage applications are required to support con-
tinuously evolving features as well as newly
added experiences. To address these require-
ments, we propose a targeted synthetic data
generation technique by inserting tokens into a
given semantic signature. The generated data
are used as additional training samples in the
tasks of intent classification and named entity
recognition. We evaluate on a real-world voice
assistant dataset, and using only 33% of the
available training set, we achieve the same ac-
curacy as training with all available data. Fur-
ther, we analyze the effects of data generation
across varied real-world applications and pro-
pose heuristics that improve the task perfor-
mance further.

1 Introduction

One of the common challenges to deploying nat-
ural language understanding (NLU) techniques at
scale in commercial applications is the necessity
for continuous annotation of user data. Models
can then be re-trained and updated to capture new
usage patterns. This process is expensive, labor
intensive, and time-consuming.

At an age when user privacy is becoming the
focus of increased concern in all Al applications,
manual review of user data normally required for
such annotation becomes highly undesirable. Con-
sequently, multiple initiatives are undertaken to-
wards minimizing the amount of human annota-
tions needed for training NLU models.

Data augmentation (DA) refers to strategies that
aim at increasing the diversity of training samples
without explicitly collecting new data. In this work,
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we present a generative model that is used to gener-
ate labeled synthetic data. Given a set of utterance
templates ! that we construct from a limited amount
of labeled data, our goal is to generate synthetic
utterances and augment the original (reduced) train-
ing data, with the objective of improving the model
robustness and performance.

We focus on the special case where the synthetic
data must retain a specific fine-grained interpreta-
tion of the original utterance, such as token-level
annotation. For example, we would like to control
the composition of entities (and their combinations)
in the training data when expanding to new features
while maintaining NLU model performance. In our
proposed approach, we control the desired anno-
tation by re-framing the generation process as in-
sertion rather than left-to-right generation. We pre-
serve the desired entities in the synthetic example
by including them in the model’s input during gen-
eration and introduce methods to explicitly prevent
entity corruption during the generation process.

Our contributions are as follows: (i) We propose
a novel synthetic data generation technique using
insertion transformers that allows for token-level
control over the generated synthetic utterance. (ii)
We demonstrate the usefulness of the proposed ap-
proach for NLU model building. Our model which
is trained using a limited fraction of user data com-
bined with synthetic data matches the performance
of a model trained with the entire real data. (iii)
We apply domain-specific heuristics to improve
the quality of synthetic data, which would further
improving task performance.

2 Background

Our NLU models are responsible for interpreting
the corresponding domain, intent and actionable
slots of customer utterances. These categories are
modularized, i.e., utterances belonging to a partic-

"For the purposes of this work, we define a template as the
sequence of intent label, slot labels and slot values.
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Input Template

PlayMusiclntent AlbumName(shake it off) ArtistName(taylor swift)

Generated Output

PIayMusicIntentE:an you plaﬂ AlbumName(shake it off) [by] ArtistName(taylor swift)[now]

Figure 1: An input template to GIT with its generated labeled utterance. The output maintains the original template
but inserts new phrases (shown within brackets) between the slots.

ular domain (e.g., Books) are supported by a spe-
cific set of intents (e.g., PlayBook) and actionable
slots (e.g., BookName), and served by the domain-
specific intent classification (IC) and named entity
recognition (NER) models. In this work we ex-
periment and evaluate IC and NER tasks across
multiple domains. We explore the use of synthetic
data as an additional source for training the models
of these domains.

While a number of data augmentation techniques
for natural language have been proposed, ranging
from token-level perturbations (Wei and Zou, 2019)
to paraphrase generation (Chen et al., 2020; Jolly
et al., 2020) and auto-regressive models (Ding
et al., 2020; Malandrakis et al., 2019; Anaby-Tavor
et al., 2020; Kumar et al., 2020), these techniques
can not be directly applied to token labeling tasks
such as NER. Specifically, synthetic data genera-
tion for NER involves two additional challenges:
(1) Label preservation: producing correct token-
level annotation in the generated utterances, e.g.,
in Figure 1 “shake it” may be incorrectly labeled
as AlbumName instead of “shake it off”’ (2) Entity
control: controlling slot-type and slot-values in
the synthetic data. e.g., we would like to generate
requests for other artists and albums. The first chal-
lenge is typically addressed by a label projection ap-
proach (Ehrmann et al., 2011) or semi-supervised
learning, however this is known to introduce errors
in the resulting annotation. To handle the second
challenge, methods such as (Jolly et al., 2020; Ma-
landrakis et al., 2019) input the desired slot types
and values to the model but cannot force the gener-
ator to include these slots in the synthetic example.

3 Methodology

3.1 Synthetic Data Augmentation with GIT

Our approach, dubbed generative insertion trans-
former (GIT) is based on non-autoregressive inser-
tion transformer model introduced in (Stern et al.,
2019). Previously, it has been shown that these
models can be used effectively for generating an-
notations; given an utterance generate the correct
NLU interpretation (intent and slots) using inser-
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tion operations (Zhu et al., 2020). In this work, we
extend the idea to solve the inverse NLU problem;
given a template produce a valid labeled utterance
that matches the annotation (Figure 1).

The insertion transformer is a generative model
in which the decoder generates a sequence by in-
serting tokens between previously generated tokens.
We adopt this idea to insert carrier tokens (token
without an entity label) between the labels in the
template in an iterative manner. (An example of
template is provided in Figure 1, and the insertion
process is illustrated in Figure 2). The insertion
process at each position in the utterance is inde-
pendent of every other position and stops when the
EOS token is generated at all positions, resulting
in a fully annotated synthetic utterance that can be
directly augmented with real data for model build-
ing purpose. We now describe the stages involved
in building and deploying GIT.

Pre-Training: We pre-train GIT using BERT
encoder (Devlin et al., 2019) and KERMIT (Chan
et al., 2019) objective on an unsupervised LM
task: given a sentence with masked tokens, GIT is
trained to insert the masked tokens. We test two
configurations (1) Pre-training using only English
Wikjpedia2 (wiki), and (2) Pre-training using an
internal corpus of 800M unlabeled utterances ran-
domly sampled from de-identified Alexa requests,
using English Wikipedia pre-trained models as ini-
tialization (wiki+in-domain).

Fine-Tuning: We fine-tune the pre-trained GIT
models for each domain (e.g., Books) using anno-
tated real data (reduced). Table 1 shows a few data
samples and derived templates. For each utterance,
we provide the template as model input and the
complete (annotated) utterance as output. During
training, at each insertion slot, we have multiple
candidate tokens from the ground truth unlike au-
toregressive generation which entails a single token
per generation step. For example, in Figure 2 the
tokens “can”, “you” and “play” can be inserted be-
tween ‘“PlayMusicIntent” and “Album(”’. Hence,
we cannot use the traditional cross-entropy loss

https://en.wikipedia.org



Table 1: Representative examples for labeled utterances and derived templates from 3 domains. Carrier tokens
(slot label "IOther") are removed from the labeled utterance and intent names added to create a template

ID Domain Intent Labeled Utterance Derived Template
1 Recipes SearchRecipe findlOther breakfastiMeal recipellnstructionType pleaselOther  breakfastiMeal recipellnstructionType
2 Books  NavigateBooks skiplOther tolOther chapterlSectionName onelSectionNumber  chapterlSectionName onelSectionNumber

3 Home  GetSettingsDetails

what’s|Other thelOther heatlSetting set/Other atlOther

heatlSetting

can

‘ you ‘ play

o] ] [ ][

Non Autoregressive Decoder

]

T
3

PlayMusicIntent Album( shake off ‘ ‘ )Album ‘ ‘ Artist( ‘ Taylor | | Swift H )Artist
Encoder ]
PlayMusiclntent ‘ Album( shake it ‘ off ‘ ‘ )Album ‘ ‘ Artist( ‘ Taylor | | Swift H )Artist

Figure 2: A generation example with GIT. An utterance template is provided as input to the decoder. The decoder
generates one or more (carrier) tokens between every two input tokens and stops the generation process when the
End of Sequence (EOS) token is generated (we set maximum number of non-EOS generated tokens to three). The
model learns to only generate EOS tokens within entity tokens (e.g., "shake it off") but this is not enforced. We
discard generated examples when it is not the case (<0.01%).

and instead compute KL divergence between the
predicted token distribution and the ground truth
distribution at each position, and use the mean di-
vergence over all insertion slots as the training loss
(Zhu et al., 2020). The ground truth distribution
sets non-candidate token probabilities to 0 and uni-
formly weighs all candidate token probabilities.

Generation: To generate synthetic data for
NLU, we first construct a template that contains
the desired intent, slot types, and slot values for
the synthetic example. This priming sequence is
provided as an input to the decoder, which inserts
carrier tokens in an iterative manner to form a co-
herent utterance. The generation process is shown
in Figure 2 and addresses both the label projec-
tion and entity control challenges. Templates used
in inference are constructed from the reduced real
data.

4 Experimental Setup

In order to study the effectiveness of synthetically
generated data, we evaluate NLU model perfor-
mance in reduced data regime. For each domain,
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we build multiple IC-NER models using all real
data, a reduced set of real data and combination
of real and synthetic data. All models within a
domain share the same training hyper-parameters,
including architecture and encoder. They differ
only in training data composition. Similar to (Ding
et al., 2020), we limit the focus of this work to syn-
thetic data generation and defer hyper-parameter
optimization to future work. We use Apache
MXNet (Chen et al., 2015) to build both GIT and
IC-NER models in this work.

Full: This baseline is trained using all real data
and default training hyper-parameters for each do-
main. This setup reflects the current performance
of NLU models in production and serves as an esti-
mate for lower bound in error metric for all other
models.

Reduced: We train another baseline using one-
third of real data. Our reduction of two-thirds of
the data is motivated by a privacy control feature
allowing customers to delete their data. Given the
trends, we estimated a worst case drop of 67% in
our annotated data before it can be refilled with



more human annotations. To simulate this worst
case scenario, we randomly downsample across all
utterances.

Duplicate: To reduce the impact of hyper-
parameters we also train a model with the Reduced
set duplicated to reach the full training size. We
refer to it as Duplicate. We note that duplication
has been used as a baseline for data augmentation
in (Estabrooks et al., 2004; Kumar et al., 2019; Wei
and Zou, 2019)

EDA: Easy Data Augmentation (EDA) consists
of four simple operations: synonym replacement,
random insertion, random swap, and random dele-
tion. EDA has shown to be a strong baseline, out-
performing complex model-based baselines par-
ticularly for small datasets (Wei and Zou, 2019).
Similar to GIT, EDA can provide control and flex-
ibility over the type of data generated, which is a
key requirement from our users.

GIT: (ours). We use the Reduced set to fine-
tune domain-specific GIT models and also as in-
put templates during inference, with fixed hyper-
parameters. During inference, we control the num-
ber of generated synthetic utterances which is aug-
mented with Reduced set. We test two configura-
tions: in GIT_50, the fraction of synthetic to real
data is set to 50% while with GIT_200, the frac-
tion of synthetic to real data is set to 200%. In the
former, synthetic data size is kept smaller than real
data while in latter, we add enough synthetic data
to compensate for removed data.

4.1 Confidence filtering of synthetic data
selection

Not all synthetic utterances may be useful for
model training, such as duplicates of real utter-
ances, semantically incorrect samples ("play al-
bum” instead of "buy album” for BuyAlbumlIntent),
etc. A handful of previous approaches have investi-
gated filtering synthetic utterances before augmen-
tation: using influence functions (Yang et al., 2020),
reinforcement learning (Bhattarai et al., 2020), etc.
In this work, we use the confidence score obtained
using Reduced models to filter synthetic utter-
ances. Assuming M represents Reduced model,
we predict labels ¢ for a synthetic utterance x using
M, ie

g,c = M(x) ()

Here, ¢ is a confidence score derived as the un-
weighted mean of IC and NER scores and scaled to
(0,1). We select x for augmentation if (i) §y = y and
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(ii) ¢ € (tiows thigh), Where y is the ground truth
label of x available from its template, and ¢;,,, and
thign are threshold hyper-parameters >0.5. Hence,
we select those synthetic samples which are cor-
rectly labeled by M and avoid incorrect utterances
(t10w) and duplicates (t4;4,). We consider y = ¢ if
the predicted intent label and all slot labels exactly
match with the ground truth.

4.2 Evaluation

We evaluate the models on each domain’s test set.
For each model, we use weighted semantic error
rate (SemER,, Su et al. (2018)) to jointly evaluate
IC-NER performance. SemER is defined as the
ratio of Leveshtein distance between reference and
hypothesis labels, and total count of reference la-
bels. We concatenate the intent and slot labels to
arrive at an utterance-level label. We weigh each
domain’s SemER by its test utterance count and
report the mean SemER (SemER,,) for each model.
We report relative performance gains with respect
to Full baseline: we only report relative perfor-
mance as we are not allowed to publish absolute
performance numbers.

5 Results

Table 2 shows relative SemER,, across differ-
ent methods (lower is better). We can see that
SemER,, for Reduced model increases 2.42%. In-
terestingly, Sports domain improves in SemER
(>5%) when reducing real data (Reduced vs Full;
Figure 3): We found that Sports is a relatively
smaller domain and tends to have noisier train-
ing data (Section 6.3). While Duplicate and EDA
do not improve over Reduced, GIT_50 (wiki+in-
domain) achieves the same error rate as training
with all available data. Not surprisingly, using in-
domain data during pre-training GIT_N (wiki+in-
domain) improves results significantly over pre-
training only on Wikipedia GIT_N (wiki).

6 Discussion

While the overall regression appears modest, there
exists significant variation among domains (Fig-
ure 3). We can see that GIT improves SemER
only among certain domains when compared to
Reduced (e.g., Music but not Sports). In general,
domains with relatively higher traffic exhibit mod-
erate regression (<5%). Recall that for simplicity
we use the same hyper-parameters across all do-
mains.



Relative SemER (%) with Full baseline

. - nl N
Y & 2 <J
\5& S é\(& S 9 X s &
5 6 ~ & ® & & &
N & & R N
& y &6‘

-10 ¢

15

M Reduced

GIT_50 (wiki+in-domain)

Figure 3: Relative change in per-domain SemER comparing Reduced and GIT_50_wiki+in-domain to Full.
Domains are sorted according to decreasing traffic volume

Table 2: Relative SemER,, (weighted mean, by traffic volume) for baselines and GIT models for different pre-
training corpora and synthetic data sizes. All results are reported relative to Full baseline

. GIT_200 GIT_50 GIT_200 GIT_50
Full  Reduced  Duplicate EDA (wiki) (wiki)  (wiki+in-domain)  (wiki+in-domain)
0%  +2.38% +2.57%  +3.07% +9.94% +1.27% +2.66% -0.05%

6.1 Value of Synthetic Data

While we observe that GIT_50 (wiki) and GIT_50
(wiki+in-domain) configurations provide over-
all improvements over Reduced, we investigate
whether data reduction effects are related to im-
provements with synthetic data addition. Specif-
ically, using the null hypothesis that the relative
SemER (%) between data reduction (Full — Re-
duced) and data addition (Reduced — GIT) are
not related, we estimate the Pearson correlation
between them using two-tailed t-distribution. In
Table 3, we present the correlation coefficients (r)
along with significance information. We notice
in all configurations that a domain’s SemER im-
provement with added synthetic data is inversely
proportional to the regression with data reduction.
In other words, domains which are most affected
by data reduction benefit from adding synthetic
data and vice versa, irrespective of the source and
quantity of synthetic data.

Table 3: Pearson correlation coefficient (p < 0.01%%)
for domain-level relative SemER between (Full — Re-
duced) and (Reduced — GIT)

Method

r

GIT_200 (wiki) -0.711%*
GIT_50 (wiki) -0.751°%*
GIT_200 (wiki+in-domain)  -0.234

GIT_50 (wiki+in-domain) -0.700%**

6.2 Confidence Filtering

Among domains where GIT_S50 (wiki+in-
domain) performance is worse than Reduced,
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we notice that there exist real utterances which
lack the appropriate context necessary for GIT
inference and are more error-prone, such as
those without an entity slot (E.g., “stoplOther”,
“turn|Other offlOther”). As described in Section
4.1, we implement confidence filtering for the top 5
domains with highest SemER degradations for GIT
(Figure 3) and present results in Table 5. Based
on empirical observations, we choose (Z;0u thigh)
= (0.5, 0.85). We find that confidence-filtering
results in consistent SemER improvements across
domains compared to GIT, with upto 12.85%
relative improvement for Bookings. When com-
bined with confidence filtering, GIT marginally
improves over the Reduced baseline for these 5
domains.

6.3 Synthetic Data Diversity

In this section, we analyze the generated synthetic
data using quantitative metrics and qualitative ex-
amples. We use the distinct-n metric (introduced
by Li et al. (2016)), which measures the fraction of
unique n-grams to the n-gram count (higher met-
ric indicates more diverse utterances). We com-
pare distinct-2 and distinct-3 metrics between real
and synthetic utterances for domains with high-
est (Bookings, Books, Sports) and lowest (Home,
Video, Health) relative SemER in Table 6. We no-
tice a clear decrease in token diversity in synthetic
data among former domains and increase in token
diversity among latter domains. This hints at the
usefulness of distinct-n as a measure for predicting
value of synthetic data for IC-NER model building.



Table 4: Some representative utterance templates and generated synthetic utterances. Tokens in

represent

carrier tokens which are replaced by tokens in blue during synthetic data generation by GIT

Domain ID Real utterance

Synthetic utterance

1 youtubelAppName denislVideoName
halflVideoName hourlVideoName song/MediaType

2 youtubelAppName babylVideoName carlVideoName

dailylVideoName searchlOther

youtubelAppName  forlOther  denisIVideoName
dailylVideoName halflVideoName hourlVideoName songlMediaType

searchlOther onlOther youtubelAppName forlOther babylVideoName
carlVideoName

Video
3 pineolalVideoName lucindalArtistName searchlOther ~ forlOther  pineolalVideoName bylOther lu-
williaml|ArtistName cindalArtistName williamlArtistName
4 showlVisualModeTrigger videolMediaType nurs- showlVisualModeTrigger melOther alOther videolMediaType oflOther
erylVideoName rhymes|VideoName nurserylVideoName rhymeslVideoName
1 telllOther melOther alOther sportslOther updateslOther
Sports 2 latestiSortType what’s|Other thelOther latestlSortType inlOther sportslOther up-

latest|SortType

datelOther

what’slOther thelOther latestlSortType inlOther sportslOther up-
datelOther

Table 5: Relative SemER (compared with Full) results
using confidence-filtered synthetic utterances for 5 do-
mains with highest regressions

Domain Reduced GIT  + Conf. filtering
Bookings 0% 11.1% -3.1%
Books 8.8% 10.5% 7.7%
Sports -10.8% 7.8% -1.3%
Weather 4.8% 6.3% 3.8%
Knowledge 6.3% 6.3% 6.3%
Total (Weighted) 6.3% 8.4% 5.6%

Table 6: Quantitative estimate of n-gram diversity of
real and synthetic utterances as measured with distinct-
2 and distinct-3 metrics for each domain. Relative di-
versity is provided for comparison purposes.

Domain Distinct-2 Distinct-3
Real Syn Rel(%) Real Syn Rel(%)
Bookings 0.119 0.108 -9.1 0.194 0.174 -104
Books 0.097 0.055 -439 0.197 0.116 -40.81
Sports 0.024 0.006 -77.26 0.047 0.010 -78.27
Health 0.076 0.086 13.23 0.139 0.154 10.95
Video 0.072 0.095 31.42 0.158 0.188 18.88
Home 0.018 0.021 18.47 0.045 0.050 10.33

We further discuss two domains which show the
highest magnitude of diversity change.

Sports: Similar to typical real-world tasks,
Sports domain contains class-imbalanced training
data (ranging from O(10?) to ©O(10*) samples per
intent), ambiguous short utterances (~65% of ut-
terances in a minority intent contain a single-token
and repeat in a majority intent) and 95.3% of ut-
terances do not contain any tokens with slot labels.
In addition to reduced token diversity, these fac-
tors contribute to shorter synthetic utterances on
average (Mean utterance length: real = 3.73 vs
syn = 2.32). Representative examples are provided
in Table 4: utterances 2 and 3 result in the same
synthetic utterance even though their tokens are
different.

Video: From Table 4, we observe that GIT en-
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hances the semantics of real utterances by appro-
priate carrier token insertions, specifically for ut-
terances that search for video titles. In example 1,
GIT inserts the tokens “search” and “for” which
convey the meaning of the utterance more clearly
and disambiguate tokens representing the applica-
tion and video title. Similarly, in example 3 GIT
inserts the correct preposition “by” between “pe-
neola” and “lucinda william” using their slot label
information. We hypothesize that such synthetic
utterances are a better representation of token-level
labels when compared to corresponding real utter-
ances, and better assist NLU model building.

7 Limitations

Since our primary focus in this work was develop-
ing insertion transformers for DA, we did not ex-
plore extensive hyper-parameter optimization while
building IC-NER models using combination of real
and synthetic data. For example, we observed that
adding the same fraction of synthetic data results in
significant performance variations across domains,
suggesting that per-domain parameter optimization
may be yield improved performance.

8 Conclusion

We demonstrated DA using GIT as a feasible data
generation technique to mitigate reduced annota-
tion volumes for IC and NER tasks. We showed
that NLU models trained on 33% real data and syn-
thetic data perform similar to models trained on full
real data. Further, on domains with highest SemER
regressions we improved the quality of synthetic
data by filtering them with model confidence scores.
Among domains which benefit from synthetic data,
we showed that appropriate carrier token insertion
enhances utterances’ semantics and their value as



training samples. In the future, we would like to ex-
plore data generation with entities replaced through
knowledge base sampling. Such finer control over
entities better supports new feature expansion and
enhances customer privacy.

9 Ethical Considerations

Risk: In this work, we have not controlled the
entities in utterance templates during generation.
This presents a risk of private information
propagating into the synthetic data. We note that
the entities themselves are not introduced during
generation, but carried over from real data. As
mentioned in Section 8, entity control methods
such as considered in the present work with GIT
can prevent such identifiable information from
being exposed to model training.

Data Protection: There are multiple guardrails to
safeguard customer data in our organization. In ad-
dition, we remove all metadata and personal iden-
tifiable information (PII) from utterances before
using them for NU model building and synthetic
data generation with GIT in this work.
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Abstract

Recently, large-scale transformer-based mod-
els have been proven to be effective over var-
ious tasks across many domains. Neverthe-
less, applying them in industrial production
requires tedious and heavy works to reduce
inference costs. To fill such a gap, we intro-
duce a scalable inference solution: Easy and
Efficient Transformer (EET), including a se-
ries of transformer inference optimization at
the algorithm and implementation levels. First,
we design highly optimized kernels for long
inputs and large hidden sizes. Second, we pro-
pose a flexible CUDA memory manager to re-
duce the memory footprint when deploying a
large model. Compared with the state-of-the-
art transformer inference library (Faster Trans-
former v4.0), EET can achieve an average of
1.40-4.20x speedup on the transformer decoder
layer with an A100 GPU.

1 Introduction

In recent years, transformer-based models have
achieved impressive performance across vari-
ant domains, such as natural language process-
ing (Vaswani et al., 2017; Devlin et al., 2019; Raf-
fel et al., 2020; Brown et al., 2020), computer vi-
sion (Jiang et al., 2021; Dosovitskiy et al., 2020)
and speech processing (Baevski et al., 2020, 2021).
The scaling law proposed by Kaplan et al. (2020)
indicates that the validation PPL of a neural lan-
guage model scales as a power-law with model
sizes, dataset sizes, and the amount of training com-
putation. Such law is corroborated empirically by
many following works (Brown et al., 2020; Zhai
etal., 2021).

However, the mega-sized models are notoriously
expensive for deployment in the industry. For
example, GPT-2 medium model (700M parame-
ters (Radford et al., 2019)) spends up to 10s to gen-
erate 512 tokens given a prompt with the length of

* Equal contribution
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512 on an RTX 2080ti GPU, which is not allowed
in the industrial application. Multiple approaches
have been proposed to solve such problems, includ-
ing knowledge distillation (Hinton et al., 2015; Jiao
et al., 2020), model pruning (Voita et al., 2019), and
quantization (Shen et al., 2019). Apart from these
works, much attention has also been paid to opti-
mizing CUDA implementation of a transformer
layer for better hardware utilization. Previous
works (e.g.: TensorRT (NVIDIA, 2021b), Light-
Seq (Wang et al., 2021) and Faster Transformer
(FT) (NVIDIA, 2021a)) have implemented many
optimization techniques, including kernels fusion,
gemm optimization, quantization, etc. However,
these works still have several limitations. TensorRT
only contains the multi-head attention(MHA) oper-
ation, lacking a complete transformer model. Light-
Seq cannot support the model hidden size and input
sequence length over 1024. FT contains some per-
formance flaws which need to be improved.

In this paper, we propose a novel transformer
inference acceleration library, Easy and Efficient
Transformer (EET) . First, we implement custom
CUDA kernels to avoid explicit matrix addition of
attention and padding masks with attention weights.
As a result, the attention mask matrix is no longer
required, while FT spends overhead to initialize an
attention mask on the CPU and push it to CUDA. In
addition, compared with FT, padding masks are no
longer needed in computation, leading to additional
performance improvement. Second, we propose a
new method, thread block folding, to extend all ker-
nels to support a larger model size up to 12288 and
a longer sequence up to 4096. For FT, it directly
assigns the thread number in a CUDA block, which
may hurt the parallel efficiency. Finally, we design
a dynamic CUDA memory management mecha-
nism to reduce the CUDA memory occupation for
the same model size, while FT needs to manually
allocate memory usage.

We have conducted comprehensive experiments
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to compare EET with Fairseq,' LightSeq and FT. In
our experiments, EET achieves about 4.48-20.27x
and 4.30-27.43x speedup over Fairseq on 2080ti
and A 100 respectively. When we set the model size
to 768 and 1024 on 2080Ti, EET makes 0.82-2.46x
speedup over LightSeq. Compared to FT(v3.1),
EET achieves about 1.21-6.30x and 1.62-8.16x
speedup on 2080ti and A100 respectively. Com-
pared to FT(v4.0), EET achieves about 1.40-4.20x
speedup on A100. The remarkable experimental
results corroborate the effectiveness of our EET.

2 Custom Kernels

FT (NVIDIA, 2021a) has implemented highly opti-
mized CUDA kernels for transformer inference. To
make further optimization, we design our custom
kernels with the considerations below:

e Because padding tokens do not affect the final
results, preventing padding tokens from participat-
ing in MHA instead of simply applying padding
masks can significantly reduce the computational
overhead.

e Although an attention mask is essential for
MHA in text generation, constructing a mask that
varies with the input length is time-consuming.

o The hidden sizes and input lengths of the large-
scale pre-trained models can easily exceed 1024.
It is necessary to extend these kernels to support
large hidden sizes and input lengths elegantly and
efficiently.

To remove previously mentioned masks in com-
putation, we redesign the kernels and call the mech-
anism mask fusion. To extend all the kernels to
support the model size or sequence length greater
than 1024, we improve the CUDA thread structure
and call the method as thread block folding. Next,
we describe these two methods in detail.

2.1

The attention mask indicates the attention boundary
for each token to prevent the attention from look-
ing forward. The padding mask indicates where
the padding tokens are. Thus they both charac-
terize the position information of the tokens in a
sequence. Meanwhile, each CUDA thread also
has a unique positional index. So we can map
each token in the MHA to a thread or block in the
CUDA kernels. The function of the attention mask
is achieved by comparing whether the CUDA po-
sition of the query token being processed is larger

Mask Fusion

"https://github.com/pytorch/fairseq
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than the CUDA position of the key token. The func-
tion of the padding mask is achieved by starting
the valid calculations from the padding offset when
sequentially processing each token. Therefore, we
transform the mask computation to logical opera-
tion with CUDA thread index comparison. Thus
there is no need to store any explicit functional
parameters of the masks and the computation over-
head of masking operation is saved. The algorithm
pseudo-code is shown in Algorithm 1.

Algorithm 1 MHA with mask fusion

Input: gk, paddingLen, seqLen, batch, head Num
Qutput: the attention weights back to gk
CUDA Initialize grid < (batch * head Num)
CUDA Initialize block + (seqLen)
batchld < blockIdz.x/head Num
padLen < paddingLen[batchld]
qkOf fset < blockIdx.x x seqLen x seqLen
gkOf fset < qkOf fset + paddLen * seqLen
s < padLen > start at first non-pad
e < seqLen > end at last token
reduceMax < —inf
reduceSum < 0
for i = stoedo
position < qkOf fset + threadldz.x
data <+ qk[position]
u + padLen
l+1
if | < threadldz.z < u then
reduceM az < block ReduceMazx(data)
reduceSum <« block ReduceSum/(data)
data < softmax(reduceMax,reduceSum)
end if
gklposition] < data
end for

> upper boundary
> lower boundary

2.2 Thread Block Folding

Large-scale models often have model sizes and
input lengths larger than 1024. For example, the
standard GPT-3 has a model size of 12288 and an
input length of 2048. However, the CUDA block
only supports a maximum thread number of 1024,
most inference frameworks, such as FT(v3.1) and
LightSeq, have implemented kernels that restrict
the model size and input length up to 1024, leading
to limited availability.

To deal with large model sizes and sequence
lengths, we propose to use several blocks to sim-
ulate a large block, shown as Figure 1. Imagine a
virtual block large enough to hold all the tasks, then
we can fold it once to create two blocks, with each
block having half the size of the original block. We
can repeat the process until the sub-blocks size sat-
isfies the CUDA constraint. Then, the large model
sizes or input lengths can be handled correctly, and
a new CUDA thread dimension is created to man-
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Figure 1: The schematic diagram of thread block folding.

age the folding procedure. We call this method
thread block folding, which allows us to extend
any kernel to any model size and any sequence
length with minimum changes and non-degraded
performance. For instance, assuming the model
size is 1280, we fold it once and create two half-
size blocks, then the data can be assigned into two
separate blocks with 640 threads in each.

We introduce a folding coefficient to characterize
the number of folding. Given the model size h, the
folding coefficient ¢ and the number of threads n
in one block is defined as:

h

t= 2(10%1_1; n=g

As for simplicity, thread block folding only adds
a new dimension for the block, which slightly im-
pacts the basic CUDA thread grid structure. As
for efficiency, the minimum thread number is 512
when the model size or input length is larger than
1024 and makes full use of thread parallelism. The
sequence expansion process is similar to the model
expansion process. Finally, we support the model
size no larger than 16384 and sequence length no
longer than 4096.

3 Dynamic Memory Manager

The inference is much more sensitive to latency
compared to training. As a result, model paral-
lelism (Shoeybi et al., 2020) and pipeline paral-
lelism (Huang et al., 2019) are undesirable for in-
ference. Their communication overhead introduced
by tensor slicing or layer split is significant even
with the support of NVLink and GPUDirect. To
reduce the latency and hardware requirements for
online service, minimizing the memory footprint
is of exceptional value when loading very large
models. Thus we propose a dynamic memory man-
agement strategy for this issue.

Except for the model weights, the memory foot-
print includes the caches and the buffers. It is hard
to reduce the memory footprint of weights because
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they are inherent to the model. Similarly, The
K/V caches for MHA are also hard to compress
because they are pre-allocated to avoid runtime
memory requests, the size of which depends on the
model size, maximum batch size, and maximum
sequence length. Whereas the activation cache and
the buffers used to store the operator’s results are
compressible. Hence our dynamic memory man-
agement strategy mainly focuses on the activation
caches and the operation result buffers.

3.1 Cache Reuse

The caches include K/V caches and activation
caches. In incremental decoding, the keys and
the values for every step are stored for the next
step’s attention computation. The maximum size
of K/V caches is predictable because we can deter-
mine the maximum batch size and decoding steps
at the start of the running instance. We allocate the
maximum required memory in advance to reduce
the forward latency, avoiding malloc overhead and
memory corruption.

Different from K/V caches, the activation re-
sults are useless after we have calculated and
passed them to the next layer. The memory for
these activations can be reused across different lay-
ers and different operators. We could reuse the
activation caches in the following cases.

e The embedding operator shares the cache with
the feed-forward operator and the final output. Yet
the attention operator holds another cache because
of the residual connection.

e The cache for input sequences can be reused
by the decoded tokens. The maximum size is deter-
mined by the maximum input length.

e The cache can be reused across different layers.

We use the following notations: b, the maximum
batch size; s, the maximum sequence length; p, the
maximum prompt length; h, the hidden units; [, the
layer number. The total activation cache size is:

2xbxhx*xp



The total K/V cache size is :
2%bxh*xsx*l

3.2 Buffer Reuse

The continuous CUDA kernels are not always
fused, especially when it comes to Cublas GEMM
calls. So we need some buffers to store the returns
for those non-fused kernels. Managing the buffers
manually like FT is complicated and inefficient.
We develop a dynamic buffer manager to avoid
the tedium of manual design and achieve a highly
efficient memory allocation.

Memory Request

Buffer Create Buffer Reuse Buffer Create

To Buffer List To Buffer List

Set to Busy

Figure 2: The schematic diagram of buffer decision
strategy.

We maintain a list of buffers and use different
strategies within and across modules to improve
memory utilization. When within modules, we
reuse the buffer only when the request size is iden-
tical to an idle buffer in the list, preventing memory
fragmentation. When across modules, we reuse the
buffer when the request size is smaller than any idle
buffer in the list, avoiding duplicated malloc. The
decision process is demonstrated in Figure 2. In our
design, the developer only needs to request a buffer
of a specified size and mark it as idle when it is
useless, without concerning how to reuse memory
exactly. The total buffer size is:

bxpx* (6%h+nx*p)

where b is the batch size, p is the input length, h is
the hidden size, and n is the head number.
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4 Experiments

During inference, many factors can affect the ac-
tual performance, including model size, prompt
length, sequence length, padding ratio in a batch,
and hardware feature. Completely traversing all
combinations requires a huge amount of works.
Because the dataset has no effect on the experiment
results, we adopt the fake inputs for convenience.
To compare fairly and reduce our works, we de-
fine some typical experiment settings. If there is
no special instruction, the experiment is conducted
based on Configuration A in Table 1. Fairseq is
an intuitional baseline because it is implemented
using pure PyTorch code.

Table 1: Configuration A and B

CoNFIG A CONFIG B

BATCH SIZE 4 8

MODEL SIZE 1024 2048
MAX PROMPT 1024 1024
MAX SEQUENCE 1024 1024
DATATYPE FP16 FP16

4.1 Speedup for GPT-2 Layer with Different

Sequence Lengths

We first apply EET over GPT-2 on NVIDIA
2080ti and A100. Figure 3 and 4 reveal that
EET achieves about 4.48-20.27x and 4.30-27.43x
speedup than Fairseq and about 1.21-6.30x and
1.62-8.16x speedup than FT(v3.1), on 2080ti and
A100 respectively. For Fairseq and FT(v3.1), the
incremental decoding processes the input tokens
one by one, while EET improves the tokens paral-
lelism by processing input tokens all at once. As a
result, the speedup grows with the increase of the
input length.

W Fairseq . FT(v3.1)
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101 1.49 173

128 256

0
384

Figure 3: Inference speedup of EET with different
prompt lengths on 2080ti compared to Fairseq and
FT(v3.1).
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Figure 4: Inference speedup of EET with different

prompt lengths on A100 compared to Fairseq and
FT(v3.1).

The recent version of FT(v4.0) also introduces
the parallel decoding of the input sequences for
text generation as we did, so the performance of
EET and FT(v4.0) is getting closer with the input
length increasing. However, EET still has some per-
formance advantages, which are attributed to our
operation kernel optimization. Figure 5 shows that
EET achieves about 1.40-2.54x speedup compared
to FT(v4.0) with the configuration B in Table 1.
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Figure 5: Inference speedup of EET with different
prompt lengths on A100 and 3090 over FT(v4.0).

When processing a batch of inputs, the length of
them may be uneven. The FT(v4.0) uses the mini-
mum length of the prompts for full decoding, while
the EET uses the maximum length. For example,
if there is a batch containing sequences of different
length like [5, 2, 4, 10], the final prompt length
used for parallelism is 2 in the FT. In contrast, it
is 10 in the EET. Figure 6 shows that we make
2.74-4.42x speedup with the prompt fixed to 512
and other configurations keeping the same as the
configuration B in Table 1.

Unlike Fairseq and FT(v4.0), LightSeq only sup-
ports model sizes that are smaller than 1024, we
also make a comparison here as a supplement. Fig-
ure 7 shows that we make 0.82-2.46x speedup when
we set the model size to 768 and 1024.
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Figure 6: Inference speedup of EET with different
padding ratio on A100 and 3090 compared to FT(v4.0)
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Figure 7: Speedup compared to LightSeq.

4.2 Speedup for Transformer Decoder Layer
with Different Model Sizes

To prove the scalability of our EET, we evaluate
the performance on different model sizes with con-
figuration C in Table 2. Figure 8 and Figure 9
reveal that EET achieves about 2.25-7.50x speedup
than Fairseq and about 1.71-4.61x speedup than
FT(v4.0). The acceleration ratio decreases as the
model size increases due to the increased ratio of
matrix multiplication in the inference. Neverthe-
less, with the help of thread block folding, EET
can still deliver significant speedup with very large
model sizes, compared to Fairseq and FT(v4.0).

Table 2: Configuration C

CoONFIG C
BATCH SIZE 4/8
PROMPT 512
MAX SEQUENCE 1024
DATATYPE FP16

4.3 Speedup for Bert Layer on 2080ti

We conduct experiments to validate the perfor-
mance of the Bert encoder layer in EET on 2080ti.
It is worth noting that the padding tokens take up
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Figure 8: Speedup with different model sizes on 2080ti
and A100 compared to Fairseq.
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Figure 9: Speedup with different hidden sizes compared
to FT(v4.0).

half of the total tokens. The result is shown in
Figure 10. Deprecation of the padding masks with
the mask fusion trick brings in 0.99-1.27x speedup.
As for Bert, its hidden size is fixed to 1024 and
it has no sequence mask, which kicks off the op-
timization of thread-block folding and sequence
mask fusion, then the speedup is not as significant
as GPT2.

124 125 1.27
L 11 1.20
106 108
11 II
0.0 I I I

(4,64) (4,128) (4,256) (4,512) (4,1024) (10,64) (10,128) (10,256) (10,512) (10,1024)
(batch,input length)

Figure 10: Performance speedup for Bert layer on
2080ti compared to FT(v4.0).

4.4 Memory distribution

Given the batch size 16, the maximum sequence
length 1024, the vocab size 13672, we plot the
memory distribution of the hidden size of 1024 and
4096 with layer numbers 24 and 40 respectively,
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as shown in Figure 11. Regardless of the hidden
size, we can find that model weights and K/V
caches occupy most memory. The activation caches
and the buffers only take up a small part, which
shows the effectiveness of our dynamic memory
management strategy.

params number(B)

Hweights Bkv M activation buffer

Figure 11: Memory distribution for 1024/4096 hidden
sizes.

Given the batch size 4, the maximum sequence
length 1024, we plot the memory occupancy of dif-
ferent model parameter sizes, see Figure 12. Com-
pared with the 10 billion of PyTorch’s maximum
model parameter sizes, it is up to 18 billion for our
EET, which proves that we can place much larger
models onto one GPU, thus avoiding unnecessary
waste of GPU resources and inter-GPU communi-
cation overhead on multiple cards.
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Figure 12: Memory occupancy for different model sizes.

5 Conclusion

This paper comprehensively describes a series of
optimization techniques for transformer inference
acceleration exploiting both algorithmic and GPU
hardware features. These techniques are packed
into the EET, a library dedicated to inference ac-
celeration for large transformer-based models and
long input lengths. EET has a 1.40-4.42x speedup
for the GPT-2 layer and a 0.99-1.27x speedup for
the Bert layer compared to the state-of-the-art trans-
former inference library FT. To make EET easier to



apply to a specific task, we provide operation level
and model level API, meanwhile integrating web
service with dynamic batching. We will continue
to improve and keep it up-to-date.
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Abstract

Writing an ad text that attracts people and per-
suades them to click or act is essential for the
success of search engine advertising. There-
fore, ad creators must consider various aspects
of advertising appeals (A®) such as the price,
product features, and quality. However, prod-
ucts and services exhibit unique effective A3
for different industries. In this work, we focus
on exploring the effective A for different in-
dustries with the aim of assisting the ad creation
process. To this end, we created a dataset of
advertising appeals and used an existing model
that detects various aspects for ad texts. Our
experiments demonstrated that different indus-
tries have their own effective A3 and that the
identification of the A® contributes to the esti-
mation of advertising performance.

1 Introduction

Search engine advertising (SEA) displays an ad
text that consists of a title and a description that
are relevant to search queries in search engines, as
illustrated in Figure 1. SEA plays an important
role in sales promotion and marketing as it allows
advertisers to approach users who are interested in
specific search queries effectively (Fain and Peder-
sen, 2006). Ad creators write an ad text that attracts
the attention of users and persuades them to click
or act by introducing various aspects of advertising
appeals (denoted as A in this paper for short), such
as special deals, as shown in Figure 1. However,
products and services exhibit unique effective A3
for different industries. For example, limited offers
may be attractive to users in the e-commerce (EC)
industry, whereas the quality of products may be
more important in the automobile industry.

Thus, we argue that the suggestion of effective
A3 for various industries can offer assistance to ad
creators. Therefore, we need to discover the effec-
tive aspects. However, although aspect-based text
analysis has attracted significant attention in the
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User’ s Seach Query Keyword (bid phrase)

jol «P‘ tokyo japan hotel discount

special deals

tokyo hotel discount

AD Texts

™ TokyoHotels.com - Best Price Guarantee

Desc-
ription

Find your Hotel in Tokyo. Members get an extra 20% off.
TEL: XXX-XXX-XXX

discount price, limited-target offer

Figure 1: Example ad text and its corresponding A3.

review analysis for products and services (Akhtar
et al., 2017; Chen et al., 2019), it has received less
focus in the advertisement field.

In this work, to deal with this problem, we de-
fined the A? and constructed a dataset of ad texts
that are annotated with A3 in various industries as
a first attempt towards assisting ad creators with
A3, Subsequently we developed an aspect detection
model to identify different A% and performed cor-
relation analysis between A® and the click-through
rate (CTR), which is used for supporting ad cre-
ation, as an advertising performance metric to ex-
plore the effective aspects in different industries.
Furthermore, we investigated the effectiveness of
A3 in CTR prediction as a potential application for
ad creation support.

Through correlation analysis in our experiments,
we found that different industries exhibit unique ef-
fective A3. Furthermore, we found that the identifi-
cation of the A® contributes to the CTR prediction.

2 Related Work

Ad Creation Support Attempts have been made
to perform automatic generation of ad texts and
keywords (Ravi et al., 2010; Hughes et al., 2019;
Kamigaito et al., 2021) as well as the estimation of
advertising performance metrics such as the CTR
(Richardson et al., 2007; Zhang et al., 2014; Mishra
et al., 2021) to support the ad creation process. In
this work, we tackle the discovery of the effective
A3 for various industries and apply the A3 to CTR
prediction with the goal of improving the efficiency

Proceedings of NAACL-HLT 2022: Industry Track Papers, pages 69 - 78
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Labels #spans  Labels #spans
(1) Special deals 343 | (12) Limited offers 52
(2) Discount price 120 | (13) Limited time 61
(3) Reward points 85 | (14) Limited target 114
(4) Free 430 | (15) First-time limited 25
(5) Special gift 126 | (16) Track record 75
(6) Features 1,360 | (17) Largest/no. 1 141
(7)  Quality 65 | (18) Productlineup 258
(8) Problem solving 17 | (19) Trend 99
(9) Speed 142 | (20) Others 182
(10) User-friendliness 337 | (21) Story 98
(11) Transportation 89

Table 1: A3 and statistics of annotated dataset, where
“#spans” represents the number of span texts annotated
with each label.

of the ad creation process.

Aspect-based Text Analysis Although aspect-
based text analysis has attracted significant atten-
tion, the majority of studies have been limited to
specific domains such as hotels, restaurants, and
home appliances (Pontiki et al., 2016; Akhtar et al.,
2017; Chen et al., 2019). Moreover, as the product
review analysis focuses on the aspects of each prod-
uct, the defined aspects are extremely fine grained
(e.g., the modes, energy efficiency, and noise for re-
frigerators (Li et al., 2020)). These aspects are not
suitable for ad creation because ad creators must
deal with ad texts for various products in multiple
industries. Therefore, ad creators are required to
consider numerous A3, In this study, we carefully
designed labels that cover the A? for the general
purpose of exploring these in a wide range of indus-
tries. Furthermore, we explored methods for aspect
detection, as in the previous work (Bagheri et al.,
2013), as well as the identification of the effective
aspects in terms of advertising performance metrics
such as the CTR.

3 Construction of A Dataset

3.1 Data Collection

We constructed a dataset of advertising appeals
to understand the A3 in ad texts. Many A% ex-
ist in real-world advertisements, including prod-
uct features, price, and campaigns. We collected
782,158 ads from March 1, 2020 to February 28,
2021 through Google Ads,! which is an online
advertising platform, to cover the expressions of
advertising appeals in a wide range of industries.
In this work, we used ads in Japanese. Each ad

'https://ads.google.com/
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consists of a title, a description, and a landing page
(LP), which is a web page for a specific advertising
campaign. We used the meta-description® of each
LP as the LP content. We sampled 5,000 ad texts
for each advertiser to alleviate the bias owing to
a different quantity of ad texts for the advertisers.
Moreover, we excluded ad texts that comprised less
than 15 characters or more than 200 characters. The
aforementioned two steps yielded 34,952 ad texts.
Furthermore, we excluded duplicates and highly
similar texts using the normalized Levenshtein dis-
tance metric (Levenshtein, 1966; Greenhill, 2011),
because the majority of the ad texts were created
from templates for the sake of cost efficiency (Fu-
jita et al., 2010). As a result, we collected 2,738
ad texts consisting of 666 titles, 1,532 descriptions,
and 440 LP contents from 13 types of industries.
We provide the detailed statistics of the collected
ad texts in Appendix A.

3.2 Label Types and Annotation Scheme

Owing to the existence of various A3, we believe
that the systematic organization of the A3 can aid
the ad creation process. We manually defined as-
pect labels in the following two phases. First, we
conducted a preliminary analysis of the collected
ad texts and found that approximately eight aspects
appeared: special deals, quality, problem solving,
speed, user-friendliness, limited offers, product
lineup, and trend. Second, we presented these as-
pects and the collected ad texts to experienced ad
creators and asked for their opinions on the A3
with the aim of refining the aspect labels. Conse-
quently, the ad creators suggested that we further
subdivide special deals and limited offers. For ex-
ample, special deals was subdivided into discount
price, reward points, free, and special gift. The
reason for this is that there are differences in the
strength of the aspects between free and special
gift, even though they appear to be similar. Fur-
thermore, largest/no.l was added as another aspect
label because it attracts a lot of users.

Table 1 lists the A® that we manually defined.
Detailed descriptions and examples are provided
in Appendix B. Finally, we carefully designed a
hierarchical scheme for A® to help ad creators and
annotators to understand the differences between

%A meta-description is an HTML attribute that provides a
brief summary of a web page, such as an LP.

3EC, Media, Finance, VOD&eBook, Cosmetics, Human re-
sources, Education, Travel, Automobile, Entertainment, Real
estate, and Beauty&health



the labels. The aspect hierarchy consists of five
types of coarse-grained labels including special
deals, which are underlined in Table 1, and 16
types of fine-grained labels such as discount price.

Because an ad text often contains multiple ex-
pressions of advertising appeals, as depicted in
Figure 1, we defined an advertising expression as a
span text to be annotated. For example, annotators
provide the aspect label (e.g., special deals) for
the span text “best price guarantee.” Each span
was annotated during the annotation work. More-
over, we allowed the annotators to provide multiple
labels for each span because an expression of ad-
vertising appeals may contain multiple aspects. For
example, the advertising expression “members get
an extra 20% off” contains two aspects discount
price and limited-target offer, because it means that
only users belonging to a membership program can
receive an extra 20% discount.

3.3 Annotation Process

We recruited six participants who worked at an ad-
vertising agency. We separated 2,738 collected ad
texts into two sets consisting of 1,100 and 1,638
texts, and assigned three participants to each set.
We presented a one-hour lecture to the participants
to explain the detailed definitions of the labels and
to provide annotation examples. Furthermore, we
asked them to annotate 30 ad texts that were sep-
arated from the collected dataset as a practice ses-
sion. After the session, we answered questions
from the participants. During the annotation, we
answered any additional questions from them and
shared information when a difficult case appeared,
which was relatively rare.

3.4 Annotated Dataset Statistics

Table 1 displays the statistics of the annotated
dataset. We adopted annotated spans only if at
least two of the three annotators for each span text
agreed with their boundaries and labels. The anno-
tation work for the 2,738 ad texts required a total
of 42 hours; thus, the average time per ad text was
55.2 seconds. A single ad text contains 1.54 spans
on average. Furthermore, we calculated the Co-
hen’s Kappa coefficients (x) between the tokens
annotated by different pairs of annotators to deter-
mine the inter-annotator agreement. Moreover, fol-
lowing the previous work (Brandsen et al., 2020),
we also report the F scores that were calculated
between the spans annotated by different pairs of
annotators, where we considered one annotation

71

Label Prediction {Free, First-time limited offer}

MLP
Span Detection
0000000000 ..0000O0BIIIIII..IIIIITE
Get the First Month Free
[ BERT & CRF

[CLS]Watch Docs,Movies & More - Get the First Month Free

Figure 2: Overview of the span-based model.

as the ground truth and another as the prediction.
We obtained relatively high agreement among the
annotators: k = 0.612, I} = 0.451.

4 Aspect Detection Model

We investigate two existing models for aspect de-
tection, i.e., the span-based (Zheng et al., 2019)
and document-based (doc-based) models (Devlin

et al., 2019). These models receive an ad text
T = (xz)lzi'1

Yy = (yl)fi 1» where z; and y; represent a token
of an ad text and a binary label for each aspect
label, respectively. As each span may contain mul-
tiple aspects, both models perform label prediction
in the form of multi-label classification (Kurata
et al.,, 2016). K is the number of aspect labels
defined in Table 1. We consider an expression of
the advertising appeals in an ad text, such as “best
price guarantee” in Figure 1, to be a span. We
use S(i, 7) to represent the span from i to j, where
1 < i < j < |z|. The span-based model con-
sists of two steps: (i) extracting a span S(i, 7) from
x and (ii) predicting the aspect labels y for each
span. In contrast, the doc-based model predicts
the aspect labels y for an entire ad text . We em-
ployed a pre-trained BERT (Devlin et al., 2019) for
both models owing to the limited amount of the
annotated dataset.

as an input and predict aspect labels

4.1 Span-Based Model

Figure 2 presents an overview of the span-based
model. The task of extracting a span from an ad
text can be considered as named entity recognition,
and we introduce the boundary-aware neural model
proposed by Zheng et al. (2019). We consider char-
acters as a unit (token) in the span-based model.
We use the BIOE scheme to create boundary labels
L= (l;) ‘Zi‘l for the input tokens . We feed x into
the BERT to obtain a vector h; for x; for span de-
tection. Subseqently, we obtain the distribution of
the boundary labels v; € R by applying a mul-
tilayer perceptron (MLP) v; = MLP(h;), where L
is the number of boundary types (BIOE). We also
use a linear-chain conditional random field (CRF)
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Figure 3: Overview of the CTR prediction model.

(Lafferty et al., 2001) to model the dependencies of
the boundary labels (e.g., label E must appear after
B or I). As a result, we can obtain the boundary
labels I that are predicted by viterbi decoding for
the input x.

For label prediction, we create a vector repre-
sentation h‘(l;j;’) for a span S(i,j) using the av-
erage of the output vectors of the BERT (.e.,
hi,hit1---hj;). Thereafter, we obtain the prob-
ability that each span S(7,j) belongs to the as-
pect labels y by applying an MLP and a sig-
moid function m = Sigmoid(MLP(h(;"}))), where
m = (my);—, and my, = p(y, = 1|5(i, 5)). For
example, in Figure 2, the expression “Get the First
Month Free” is detected as a span, and the model
predicts two aspect labels free and first-time limited
offer for the detected span.

4.2 Doc-Based Model

Although the span-based model offers the advan-
tage of detecting a specific expression using span
detection, we are concerned that errors in span de-
tection could affect label prediction. Therefore, we
also introduce the doc-based model as an alterna-
tive to the span-based model.

The doc-based model is a BERT-based classifi-
cation model. Following the original BERT-based
classifier (Devlin et al., 2019), the doc-based model
consists of a BERT and an MLP, which take an
entire ad text  as an input and outputs labels y.
Specifically, we first input the ad text « into the
BERT and obtain the vector representation /LS
for a [CLS] token. Subsequently, we feed the
vector hl°S] into the MLP to obtain the proba-
bility that the ad text « belongs to the aspect la-
bels y as a multi-label classification task m
Sigmoid(MLP(R[CMS)), where m = (my)_; and
mi = p(yr = 1z).

5 CTR Prediction with A?

Within the context of ad creation support, the esti-
mation of advertising performance for an ad text
(e.g., the CTR) plays a key role in both the im-
provement and cost efficiency of the ad creation
because it helps us understand the user’s interest.
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Therefore, we also investigate whether the A3 con-
tributes to the prediction of the advertising perfor-
mance. For this task, we input an ad text & con-
sisting of a title and description, an industry type
of the ad ¢ (e.g., EC), and keywords k (e.g., fokyo
and hotel). We also introduce the predicted aspect
labels ¢ (e.g., features) for  as additional features,
which were detected by either the span-based or
doc-based model. In this case, we use the CTR
z € [0, 1] as the advertising performance (CTR =
clicks = impressions).

Figure 3 presents an overview of the regression
model. Similarly to recent work (Mishra et al.,
2021), we design this regression model based on
the BERT. In the model, we feed the three types
of tokens x, ¢, k into the BERT to obtain the
vector hl°MS) for a [CLS] token. Subsequently,
we input hl°S! and the aspect labels ¢ for the ad
text z into the following MLP. Thereafter, we ob-
tain the concatenated vector A% = [hed; paspect],
where “;” is a concatenation operator. The final
MLP then predicts a CTR score z from h°“ as
z = Sigmoid(MLP(h°ut)).

6 Experiments

We conducted experiments on three tasks: (1) as-
pect detection for the A3, (2) correlation analysis
between the A® and CTR, and (3) CTR prediction.

6.1 Experimental Settings

Dataset We used the annotated dataset in Table 1
for the aspect detection. We separated the dataset
into 1,857 samples for training, 465 for develop-
ment, and 410 for testing after excluding 6 ad texts
that we determined were inappropriately annotated.
We collected 168,412 pairs of ad texts, keywords,
and industry types from March 1, 2020 to February
28, 2021 through Google Ads for the CTR pre-
diction. We carefully separated the dataset into
136,352, 16,084, and 15,976 samples for training,
development, and testing, respectively. The de-
tailed statistics of the dataset for the CTR predic-
tion are presented in Appendix C. We used the
training dataset for the CTR prediction for the cor-
relation analysis between the CTR and A3. We
used the campaign ID of each ad for data division
to prevent leakage between the datasets.

Implementation We used the character-level
BERT* for the span-based model, and the word-

*nttps://huggingface.co/cl-tohoku/
bert-base-japanese-char



Span-based Doc-
Labels Pred Orac based

(1) Special deals 0.11 0.19 0.70
2) Discount price 0.00  0.00 0.57
3) Reward points 0.62 0.74 0.75
“4) Free 0.68  0.88 0.94
(5) Special gift 0.28  0.40 0.65
(6) Features 0.50 0.70 0.72
@) Quality 0.00  0.00 0.44
®) Problem solving  0.00  0.00 0.00
C)) Speed 0.51  0.66 0.92
(10)  User-friendliness 0.46  0.59 0.56
(11)  Transportation 0.91 1.00 0.53
(12) Limited offers 038 0.53 0.62
(13)  Limited time 0.00  0.00 0.47
(14)  Limited target 0.26  0.57 0.44
(15)  First-time limited 0.00  0.00 0.00
(16) Performance 0.27  0.50 0.48
(17)  Largest/no. 1 0.67 0.80 0.82
(18)  Product lineup 0.42 0.67 0.67
(19)  Trend 0.41 0.56 0.47
(20) Others 0.00  0.00 0.39
21)  Story 032  0.83 0.53
Macro average 032 046 0.56

Table 2: Results of the aspect detection (F} scores)

level BERT? for the doc-based model and CTR pre-
diction. We fine-tuned the models on the dataset
and applied an early stopping strategy with 10
epochs. The training was stopped if there was
no improvement in the validation loss for three
consecutive epochs in all experiments. Further im-
plementation details are described in Appendix D.

Evaluation Metrics We calculated the I scores
of the aspect labels for the aspect detection. For
the span-based model, a detected label was con-
sidered as a true positive if both its span and label
were correctly detected. We used the area under
the receiver operating characteristic curve (AUC)
(Fawcett, 2006), which is a widely used metric
in the field of CTR prediction (Zhou et al., 2018;
Xiao et al., 2020). Moreover, we used the root-
mean-squared error (RMSE) and mean absolute
error (MAE) to measure the differences between
the ground-truth and predicted scores.

6.2 Aspect Detection

In this experiment, we evaluated two models, the
span-based and doc-based models. As errors in
the span prediction may affect the label prediction
in the span-based model, we also introduced the
Oracle model, which predicts their labels, pro-

Shttps://huggingface.co/cl-tohoku/
bert-base—-japanese
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[SEP] [SEP] £l El
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[SEP] [SEP]
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(a) Ad text labeled as features (b) Ad text labeled as free

Figure 4: Visualization of attention weights in the doc-
based model. Each example consists of the original
Japanese ad text with the literal translation for each
subword and the corresponding English ad text.

vided with oracle spans, in addition to the Pred
model, which predicts both the spans and labels.

The evaluation results for the aspect detection
are presented in Table 2. The doc-based model
outperformed the span-based model, including the
Oracle model, for most A3. As the Pred model
is required to predict both the spans and labels cor-
rectly, its task is relatively more difficult than that
of other models. In fact, we found that the F} score
for the span detection is 0.69 for the Pred model.
Therefore, we conclude that it is the reason why the
macro-average F score of Pred was lower than
those of the doc-based and Oracle models.

In the comparison between the Oracle and doc-
based models, the doc-based model outperforms
the Oracle model. We hypothesize that its train-
ing objective for the span-based model is more dif-
ficult as it is more fine grained than the doc-based
model.

We observed that the scores for free, speed, and
largest/no. 1 are high in the doc-based model. This
implies that the advertising expressions for these
aspects are relatively monotonous and easy to de-
tect compared to the other aspects. For example,
the advertising expression “free shipping,” which
belongs to free, often occurs frequently in ad texts
for a wide range of industries. The aspect detection
was difficult for several aspects in which the num-
bers of annotated cases were limited, such as (8)
and (15), as indicated from Tables 1 and 2. Hence,
they exhibited an Fj score of 0.00.

We also conducted an analysis of the attention in
the doc-based model to understand to which signals
the model attended in the aspect detection. Figure



Labels eBook EC Fin HR Travel
(D 0.229 0.011 -0.171 — 0.017
2) -0.135 -0.166 -0.128 — -0.176
3) 0.183 0.000 0.443 — 0.377
4) -0.126 -0.163 -0.052 0.116 -

5) 0.086 0.122 0.339 -0.024 -0.332
(6) -0.128 -0.121 -0.094 -0.040 0.050
@) -0.001 -0.081 -0.034 — —

®) - - - = -

) -0.017 0.065 -0.109 0.024 —
(10) -0.236 0.053 -0.252 -0.004 0.205
(11) — — — — —
(12) -0.036 -0.149 -0.044 0.003 0.221
(13) -0.090 0.186 0.014 -0.006 -0.184
(14) -0.020 -0.162 -0.011 0.023 —
(15) -0.165 — — — —
(16) 0.108 -0.161 -0.099 0.237 -0.148
a7 0.283 -0.073 0.143 0.102 —
(18) -0.206 0.044 -0.005 -0.159 -0.195
(19) -0.074 -0.007 0.157 — —
(20) 0.022 -0.083 0.134 -0.042 0.268
21 -0.093 — — — —
#cases 30,536 20,671 20,183 10,823 8,093

Table 3: Point-biserial correlation coefficient r, where
“# cases” denotes the number of ad texts for each indus-
try type and “—" indicates that the corresponding labels
were not found.

4 depicts the visualized attention patterns with re-
spect to the [CLS] token of the final layer of the
BERT. We found that many of the attention heads
attend to the words “design” and “for free” for the
ad text (a) and (b), respectively. This suggests that
the doc-based model classified the ad text (a) and
(b) as features and free, respectively, because these
words were related to the aspects.

6.3 Correlation between Aspects and CTR

To realize the ad creation process considering the
A3, we analyzed which A3 were effective in each
industry through correlation analysis between the
CTR® and the aspect labels that were predicted
by the doc-based model. Because the aspect la-
bels are binary for each aspect (e.g., whether or
not each aspect is included in an ad text) and the
CTR is continuous, we used the point-biserial cor-
relation coefficient r for the analysis. Table 3
lists the point-biserial correlation coefficients r be-
tween the aspect labels and the CTR. We inves-
tigated the correlation among the industry types
VOD&eBook (eBook), EC, Finance (Fin), Human
resources (HR), and Travel. As indicated in bold
text in Table 3, we observed a weak correlation

®We used the actual CTR for each ad rather than the pre-
dicted CTR.
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AUC() RMSE () MAE (})

BERT 0.683 0.220 0.142
+Lopan 0.709 0.218 0.137
+ 1400 0.713 0.217 0.136

Table 4: Results of CTR prediction

(0.25 < |r| < 0.5) between the CTR and the labels,
such as (3) reward points for Finance. This implies
that ad texts that include effective A3 tend to attract
more attention from users. However, there was no
correlation with regard to the other aspects. This
may be because (1) features, for example, is con-
sidered to be a general-purpose aspect and can be
used in any situation.

Based on the above insights, we also investigated
the expressions for the effective A in our annotated
dataset. For example, regarding the VOD &eBook
industry, we found that the expression “one of the
largest websites in Japan” (EINE KT 1 )
was annotated as (17) largest/no. 1. Furthermore,
the expressions for Finance “get [N] points for
new membership” CHil A2 &F|H T [N]RA
> N)and “earn [N] points per [N] yen” ([N]H
IZDE[N]ARA > M E %) were labeled with
(3) reward points.” We believe that the presenta-
tion of these effective expressions to ad creators
may provide actionable insights and aid in the ad
creation process.

6.4 CTR Prediction

We investigated whether the identification of the A3
contributes to the estimation accuracy of the CTR.
Table 4 presents the results of the CTR prediction.
For comparison with a baseline (BERT), that does
not use A3, we introduced two models that consider
A3 predicted by the span-based model (+l5p47,) or
the doc-based model (+14,.). It can be observed
that the aspect-aware models that leverage the A3
outperformed the baseline model in terms of all
evaluation metrics. This suggests that the identifi-
cation of the A3 that are included in ad texts can
contribute to the improvement of CTR prediction.
In the comparison between the two models, +1,.
improved the performance of the CTR prediction
more than the +l,,,. This is likely because the
doc-based model predicted the aspect labels more
accurately than the span-based model, as indicated
in Table 2. We believe that improving the aspect
detection with more refined methods will lead to

"Numbers (e.g., price, points) are masked with [N].



better correlation and prediction for the CTR.

7 Conclusions

In this work, we have explored the effective A3 by
means of aspect detection and correlation analysis
towards ad creation support with the A3. Our ex-
perimental results demonstrated that each industry
exhibits unique effective A3 and that identification
of the A3 can contributes to CTR prediction.

We demonstrate two possible directions for fu-
ture studies. First, we will investigate whether in-
troducing the effective A3 in the ad creation process
can help ad creators write effective ad texts in real-
world applications. Second, we will develop an
aspect-aware model to automatically generate ad
texts to support the ad creation process. For the
latter, we will train the model with a dataset that
includes pairs of ad texts and their corresponding
aspect labels predicted using aspect detection.

References

Nadeem Akhtar, Nashez Zubair, Abhishek Kumar, and
Tameem Ahmad. 2017. Aspect based sentiment ori-
ented summarization of hotel reviews. Procedia
Computer Science, 115:563-571. 7th International
Conference on Advances in Computing & Communi-
cations.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru
Ohta, and Masanori Koyama. 2019. Optuna: A next-
generation hyperparameter optimization framework.
In Proceedings of the 25rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining.

Ayoub Bagheri, Mohamad Saraee, and Franciska
de Jong. 2013. An unsupervised aspect detection
model for sentiment analysis of reviews. In Naru-
ral Language Processing and Information Systems,
pages 140-151.

Alex Brandsen, Suzan Verberne, Milco Wansleeben,
and Karsten Lambers. 2020. Creating a dataset for
named entity recognition in the archaeology domain.
In Proceedings of the 12th Language Resources and
Evaluation Conference, pages 4573-4577.

Qibin Chen, Junyang Lin, Yichang Zhang, Hongxia
Yang, Jingren Zhou, and Jie Tang. 2019. Towards
knowledge-based personalized product description
generation in e-commerce. In Proceedings of the
25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 3040—
3050.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

75

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language

Technologies, pages 4171-4186.

Daniel C. Fain and Jan O. Pedersen. 2006. Spon-
sored search: A brief history. Bulletin of the Ameri-

can Society for Information Science and Technology,
32(2):12-13.

Tom Fawcett. 2006. An introduction to ROC analysis.
Pattern Recognition Letters, 27(8):861-874.

Atsushi Fujita, Katsuhiro Ikushima, Satoshi Sato, Ryo
Kamite, Ko Ishiyama, and Osamu Tamachi. 2010.
Automatic generation of listing ads by reusing promo-
tional texts. In Proceedings of the 12th International
Conference on Electronic Commerce: Roadmap for
the Future of Electronic Business, pages 179—188.

Simon J. Greenhill. 2011. Levenshtein distances fail to
identify language relationships accurately. Computa-
tional Linguistics, 37(4):689-698.

J. Weston Hughes, Keng-hao Chang, and Ruofei Zhang.
2019. Generating better search engine text adver-
tisements with deep reinforcement learning. In Pro-
ceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 2269-2277.

Hidetaka Kamigaito, Peinan Zhang, Hiroya Takamura,
and Manabu Okumura. 2021. An empirical study
of generating texts for search engine advertising. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies:
Industry Papers, pages 255-262.

Gakuto Kurata, Bing Xiang, and Bowen Zhou. 2016.
Improved neural network-based multi-label classifi-
cation with better initialization leveraging label co-
occurrence. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 521-526.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, pages
282-289.

Vladimir Iosifovich Levenshtein. 1966. Binary codes
capable of correcting deletions, insertions and rever-
sals. Soviet Physics Doklady, 10(8):707-710.

Haoran Li, Peng Yuan, Song Xu, Youzheng Wu, Xi-
aodong He, and Bowen Zhou. 2020. Aspect-aware
multimodal summarization for chinese e-commerce
products. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8188-8195.



Shaunak Mishra, Changwei Hu, Manisha Verma, Kevin and Kun Gai. 2018. Deep interest network for click-

Yen, Yifan Hu, and Maxim Sviridenko. 2021. Tsi: through rate prediction. In Proceedings of the 24th
An ad text strength indicator using text-to-ctr and ACM SIGKDD International Conference on Knowl-
semantic-ad-similarity. In Proceedings of the 30th edge Discovery & Data Mining, pages 1059-1068.

ACM International Conference on Information &
Knowledge Management, pages 4036—-4045.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Ton Androutsopoulos, Suresh Manandhar, Moham-
mad AL-Smadi, Mahmoud Al-Ayyoub, Yanyan
Zhao, Bing Qin, Orphée De Clercq, Véronique
Hoste, Marianna Apidianaki, Xavier Tannier, Na-
talia Loukachevitch, Evgeniy Kotelnikov, Nuria Bel,
Salud Maria Jiménez-Zafra, and Giilsen Eryigit.
2016. SemEval-2016 task 5: Aspect based sentiment
analysis. In Proceedings of the 10th International
Workshop on Semantic Evaluation, pages 19-30.

Sujith Ravi, Andrei Broder, Evgeniy Gabrilovich, Vanja
Josifovski, Sandeep Pandey, and Bo Pang. 2010. Au-
tomatic generation of bid phrases for online advertis-
ing. In Proceedings of the Third ACM International
Conference on Web Search and Data Mining, pages
341-350.

Matthew Richardson, Ewa Dominowska, and Robert
Ragno. 2007. Predicting clicks: Estimating the click-
through rate for new ads. In Proceedings of the 16th
International Conference on World Wide Web, pages
521-530.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45.

Zhibo Xiao, Luwei Yang, Wen Jiang, Yi Wei, Yi Hu, and
Hao Wang. 2020. Deep multi-interest network for
click-through rate prediction. In Proceedings of the
29th ACM International Conference on Information
& Knowledge Management, pages 2265-2268.

Yuyu Zhang, Hanjun Dai, Chang Xu, Jun Feng, Taifeng
Wang, Jiang Bian, Bin Wang, and Tie-Yan Liu. 2014.
Sequential click prediction for sponsored search with
recurrent neural networks. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelli-
gence, pages 1369-1375.

Changmeng Zheng, Yi Cai, Jingyun Xu, Ho-fung Le-
ung, and Guandong Xu. 2019. A boundary-aware
neural model for nested named entity recognition. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing, pages 357-366.

Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan,
Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li,

76



A Collected Ad Texts for Annotation

Table 7 lists the detailed statistics of the collected
ad text. We collected 2,738 ad texts compris-
ing 666 titles !¢, 1,532 descriptions x%*¢, and
440 LP contents x'P from 13 industries: EC, Me-
dia, Finance, VOD &eBook, Cosmetics, Human re-
sources, Education, Travel, Automobile, Entertain-
ment, Real estate, and Beauty&Health.

B Descriptions and Examples of A3

Table 5 lists the detailed descriptions and examples
of A? that we have defined. For example, the ex-
pression “enjoy free shipping” is labeled with (4)
free, as it represents free offers for products or ser-
vices. In the table, “#spans” represents the number
of span texts annotated with each label.

C Dataset for CTR Prediction

Table 8 lists the detailed statistics of the datasets
used for CTR prediction. We carefully separated
the dataset into 136,352, 16,084, and 15,976 sam-
ples for training, development, and testing, respec-
tively. For correlation analysis between the CTR
and aspect labels of advertising appeals, we used
the training dataset for CTR prediction.

D Additional Implementation Details

Table 6 lists the implementation details, e.g., hy-
perparameters, for the aspect detection and CTR
prediction models. We developed our models using
pre-trained BERT models, which are publicly avail-
able from the Transformers library (Wolf et al.,
2020).8 The framework is available under the
Apache 2.0 license. We trained the models with a
Tesla V100 GPU on the Google Cloud Platform,
which is the cloud computing infrastructure. More-
over, we performed a hyperparameter search, using
Optuna (Akiba et al., 2019) with default parameters
for the aspect detection models on the validation
set. In the experiment, the hyperparameter search
is limited to 30 trials. Therefore, we performed our
experiments in a single run.

We used CRF and binary cross-entropy (BCE)
loss for span detection and label prediction in the

$https://huggingface.co/cl-tohoku
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span-based model, respectively. We used the mean
squared error (MSE) as an objective function to
train the CTR prediction model. Furthermore, we
applied an early stopping strategy to all the mod-
els. Specifically, we stopped training if there was
no improvement in the validation loss after three
consecutive epochs.



Aspect labels Description & Example #spans
(1) Special deals Expressions representing special deals (e.g., Compare hotels and save money) 343
2) Discount price Specific discount rate or amount (e.g., Buy 1 get 1 50% off) 120
3) Reward points Customers can earn points (e.g., Use our app to earn points) 85
“) Free Free offer for products or services (e.g., Enjoy free shipping) 430
(5) Special gift Special gifts or presents for customers (e.g., Join today and get a free brush set) 126
(6) Features Features of services or products (e.g., Ergonomically designed to protect children) 1,360
@ Quality Top-quality or high-grade services (e.g., Find premium kitchen appliances) 65
8) Problem solving Solutions to customer problems (e.g., Get bright, clear skin) 17
) Speed Speed of delivery and services (e.g., Fast & free shipping) 142
(10)  User friendliness Usability of services and products (e.g., Quick, simple, and easy to use ) 337
(11)  Transportation Convenience of transportation (e.g., Centrally located in the heart of Tokyo) 89
(12) Limited offers Limited availability of services and products (e.g., Limited to 1,000 items per day) 52
(13)  Limited-time offer Offers available for a limited time only (e.g., Three days only at 20% off) 61
(14)  Limited-target offer Offers available for target customers only (e.g., Discount for members only) 114
(15)  First-time limited offer ~ Limited offers for first-time customers (e.g., Take 15% off your first order) 25
(16) Track record Track records of services or companies (e.g., 45M+ users worldwide) 75
(17)  Largest/no. 1 Largest/No. 1 products or services (e.g., Boston’s no. 1 hair salon) 141
(18)  Product lineup Wide range of products or stores (e.g., Large selection of hotels) 258
(19)  Trend Popularity or favorable reputation (e.g., Top trending shoes and boots) 99
(20) Others Other advertising appeals (e.g., An experience like no other) 182
(21)  Story Synopsis of a movie or drama (e.g., After Peter Parker is bitten by a- - - ) 98
Table 5: A% and statistics of annotated dataset.
Aspect Detection Model CTR Prediction Model
Span-based Doc-based
Pre-trained model bert-base-japanese-char bert-base-japanese bert-base-japanese
Number of heads 12 12 12
Number of hidden layers 12 12 12
Hidden layer size 768 768 768
Dropout probability 0.1 0.1 0.1
Vocab size 4,000 32,000 32,000
Batch size 10 10 30
Max sequence length 512 512 512
Number of epochs 10 10 10
Learning rate 8.6 x 107° 5.5 x 107° 2.0x107°
Optimizer Adam Adam Adamax
Loss CREF loss, BCE loss BCE loss MSE loss
Table 6: Hyperparameters and implementation details.
Industry Title Desc. LP Sub-total Industry Train Dev Test
EC 131 314 87 532 VOD&eBook 30,536 3,823 3,812
Others 137 272 123 532 EC 20,671 2,584 2,583
Media 119 250 27 396 Finance 20,183 2,521 2,521
Finance 105 203 56 364 Others 15,526 1,936 1,936
VOD&eBook 38 112 78 228 Human resources 10,823 1,348 1,348
Cosmetics 43 110 20 173 Media 10,434 1,295 1,274
Human resources 72 75 8 155 Education 9,592 1,344 1,228
Education 58 50 10 118 Travel 8,093 1,002 1,042
Travel 23 62 18 103 Cosmetics 5,584 231 232
Automobile 18 32 5 55 Entertainment 2,455 0 0
Entertainment 14 36 3 53 Automobile 1,697 0 0
Real estate 5 122 19 Beauty&Health 445 0 0
Beauty&Health 3 4 3 10 Real estate 313 0 0
Total 766 1,532 440 2,738 Total 136,352 16,084 15,976

Table 7: Statistics of collected ad texts.
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Table 8: Statistics of dataset for CTR prediction.
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Abstract

Product Listing Ads (PLAs) are primary online
advertisements merchants pay to attract more
customers. However, merchants prefer to stack
various attributes to the title and neglect the
fluency and information priority. These seller-
created titles are not suitable for PLAs as they
fail to highlight the core information in the visi-
ble part in PLAs titles. In this work, we present
a title rewrite solution. Specifically, we train
a self-supervised language model to generate
high-quality titles in terms of fluency and in-
formation priority. Extensive offline test and
real-world online test have demonstrated that
our solution is effective in reducing the cost
and gaining more profit as it lowers our CPC!,
CPB? while improving CTR? in the online test
by a large margin. It is also easy to train and
deploy, which can be a best practice of title
optimization for PLAs.

1 Introduction

Product Listing Ads (PLAs) are crucial online mar-
keting tools for merchants to attract more cus-
tomers and encourage them to click their ads. They
have different names in various ads channels, for
example, Dynamic Product Ads in Facebook and
Instagram, Shopping Ads on Google, as shown
in Fig 1. PLAs usually have a limit on display
text length, for instance, in Google Shopping Ads,
users can see only the first 70 or fewer characters
of the title*). Therefore, PLAs titles are expected
to reveal the product type and core attributes ear-
lier so that users can clearly identify the product,
as illustrated in Table 1. However, to trigger ads
more often and affect the user’s purchase intention
more positively, sellers list as many attributes as
possible in the title without considering the fluency

'Cost Per Click
2Cost Per Buyer
3Click Through Rate

*https://support.google.com/merchants/
answer/6324415?hl=en
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Figure 1: Product Listing Ads from different channels

and readability, most importantly, the information
priority. as illustrated in Table 2. These titles fail to
highlight the core information and make it difficult
to comprehend as a whole.

Existing work has made the attempt to gener-
ate titles from keywords(de Souza et al., 2018)
and product images(Zhang et al., 2019), or gen-
erate description text(Shao et al., 2021) for prod-
ucts, however, little work has investigated the title
optimization for PLAs. At first, we explored the
rule-based method by assigning weight to attribute
words and reordering the words/chunks by weight.
However, the rule-based method heavily relies on
the accuracy of attribute detection, phrase bound-
ary detection, and the appropriateness of attribute
weights. It is hard to optimize rules without ex-
hausting human effort. Therefore, we attempt to
use language models in our title rewrite task.

The biggest obstacle of model-based method is
the lack of high-quality titles regarding fluency and
information order as labels for supervised learning.
In this work, we solve the problem by performing
self-supervised learning. Instead of writing high-
quality titles as labels, we design a multi-level shuf-
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Figure 2: The framework of our product title rewrite solution. The upper part shows model training details: title
cleaning, multi-level shuffling, data preparation, and multi-step training. The multi-level shuffle module creates
(pseudo title, title) pairs for self-supervised training. The lower part illustrates the model usage: the input title is
cleaned and then input to the trained ProphetNet to generate a high-quality one.

Priority Attribute Type Attribute Value title suitable for apple 12pro mobile
Ist Product Type  phone case phone case iphonel2 protective
2nd Core with magsafe, for case genuine leather drop-resistant

iphonel3, leather new style all-inclusive silicone
3rd Common new style, golden ultra-thin 11pro max high-end for
brown, 6.1 inches men and women limited
Quality Title Example optimized mobile phone case silicone ultra-
good iphone13 leather phone case with thin genuine leather protective
magsafe new style golden brown case drop-resistant suitable for ap-
6.1 inches ple 12pro iphonel2 11pro max all-
bad fluency with magsafe new style golden inclusive new style high-end for
brown 6.1 inches phone case for men and women limited.
iphonel3 leather Table 2: Example of product title optimization
bad priority new style golden brown 6.1 ' '

inches phone case for iphonel3
leather with magsafe

Table 1: Examples of attribute priority for a phone case
and possible titles. Small case is used in the paper.

fle module that uses titles to generate low-quality
pseudo titles. Then the language model is trained
on (pseudo title, title) pairs, during which it can
learn to reorder the words to recover the original
titles. Moreover, we propose a multi-step training
procedure consisting of pre-train and fine-tune to
enable the model to generate good titles.

The overall framework of our solution is illus-
trated in Fig 2. Moreover, for the sake of infor-
mation accuracy, we only focus on information
reordering and avoid any word insertion, deletion,
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and modification to the original title.

2 Method

We first introduce our multi-level shuffle module,
which creates the (pseudo title, title) pairs for self-
supervised training. Then we elaborate on the
multi-step training procedure. It is worth noting
that our solution can be built upon any language
models, such as BART (Lewis et al., 2019) and
GPT2 (Radford et al., 2019). We use the Prophet-
Net (Qi et al., 2020) framework in practice as it
is superior to BART and GPT?2 and has achieved
new state-of-the-art in multiple text generation
tasks(Dayiheng Liu and Duan, 2020).



2.1 Multi-level Shuffle Module

We overcome the absence of a learning target by
thinking about the problem from an interesting
perspective. The only available titles are seller-
created: accurate, informative while uneven in qual-
ity, where good titles can train the model to gen-
erate better while the bad ones can also be good
learning targets in terms of wording and phrasing
of attributes, grammar, and the semantic context of
the words. If we shuffle the word order of titles as
input, even the bad titles become good supervision
as they have better fluency than the corrupted ones.
In light of these considerations, we build a multi-
level shuffle module to mimic the problematic titles
and generate low-quality pseudo titles as model in-
put. Specifically, we have three strategies to cover
almost all the word order issues in the titles.
Chunk-level We use the chunking tools® to split
the title into chunks, then we randomly swap two
or more chunks to obtain low-quality titles. From
Table 1, the good title can be split into “iphonel3
leather phone case | with magsafe | new style |
golden brown | 6.1 inches". After shuffling, the
title may become the bad ones in Table 1.
Span-level We create the text spans by combin-
ing the random number of adjacent chunks arbitrar-
ily into a larger text span without overlapping, then
we randomly exchange the position of two or more
spans. This strategy generates the easiest case for
the model to learn because most of the words are
still in proper order after shuffling.

Token-level After tokenization, the title is split
into a list of tokens. We switch the position of
two or more tokens to mimic the word order is-
sue with the highest severity since it needs a more
complicated adjustment to recover.

In practice, we make sure to keep 15% titles
unchanged. We apply chunk-level strategy to 55%
titles, span-level strategy to 25% titles, and process
only the rest 5% titles with token-level strategy
because such messy corruption hardly happens in
titles while a large portion of such hard cases will
delay the model convergence.

2.2 Model Training

We introduce the training objective, and the multi-
step training in detail.

2.2.1 Training Objective

As mentioned before, we use ProphetNet(Qi et al.,
2020) as our language model, which is trained with

Shttps://alinlp.alibaba-inc.com/
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a novel self-supervised objective called future n-
gram prediction. Given the training data (X,Y),
where X = {z;}, i € [1,M] is the M-length
input and Y = {y;}, ¢ € [1,T] is the T-length
output. Typically, the language model is trained
to maximize the probability of the next token ¥,
conditioned on X and all the precedent tokens in
Y. ProphetNet is different as it also predicts the
future n-grams:

T
L(6;X)=—ap - <ZIOgP(yt’y<t7X§0)>

t=1
n—1 T—j
- Z a;j (Z log p(ye4jly<t, X; 9))
j=1 t=1

ey
The first part of equation is the original language
model loss while the second part is the loss from
predicting the future n-grams. The parameters «
and other model parameters are all consistent with
open-source ProphetNet®.

2.2.2 Multi-step Training

We propose a multi-step training procedure which
allows the language model gradually acquire the
generation ability of high-quality titles.

General Pre-train Pre-training is a successful
technique to boost the generation quality of lan-
guage models (Dong et al., 2019). ProphetNet has
different open-source pre-trained versions for dif-
ferent languages. For example, ProphetNet-EN
is pre-trained with 160GB English raw texts, in-
cluding Wikipedia, news, and web texts, etc. For
convenience, we use a pre-trained ProphetNet (Qi
et al., 2020).

Domain-specific Pre-train The pre-trained
ProphetNet has a strong ability to generate fluent
text in various contexts, but we hope it can focus
more on the e-commerce domain. Therefore,
we collect 20GB of e-commerce data consisting
of the titles and the attribute keywords for
domain-specific pre-training, for instance, the title
and the attribute values in Table 1. We concat the
keywords as model input X, and use product title
as model output Y, continuously train the model
by minimizing Eq. 1 until reaching convergence.

Title Rewrite Pre-train Our task is to rewrite
the seller-created titles into better quality. To

®https://github.com/microsoft/
ProphetNet



help reduce the gap between the pre-trained lan-
guage model and our task, we continue pre-training
ProphetNet with product titles. We create (pseudo
title, title) pairs with tens of millions of titles we
have as (X, Y'), and pre-train ProphetNet by min-
imizing Eq. 1. As stated before, all the titles, in-
cluding the bad ones, can be used as the learning
target, since even the bad titles have basic knowl-
edge about titles and still maintain a better fluency
compared to the corrupted ones.

Refined Title Fine-tune In particular, the model
should learn from high-quality titles about informa-
tion priority. Intuitively, titles from brand owners or
high-rating sellers are more reliable than the others.
Online CPC, CPB performance can also be a good
indicator of title quality. We combine these rules
and select about 10% of all titles, which is millions,
as high-quality for refined fine-tuning. We sampled
500 of them and found the portion of good titles
reaches 98.0%. Similarly, we create the title pairs
then train our model by minimizing Eq. 1.

We start the multi-step training from the domain-
specific pre-train step and use 2 32GB Tesla V100
GPUs running for 7 days until convergence.

3 Experiment

We conduct offline and online test to evaluate the
generated title in terms of accuracy, information
order, fluency, and real-world profits.

3.1 Offline Accuracy

We evaluate token-level accuracy and investigate
how much the multi-level shuffle module helps in
model training.

Token-level Accuracy Given the golden label
(original title) Y = {#;},i € [1,m] and the gen-
erated title Y = {y;},7 € [1,n], we calculate a
token-level accuracy as Eq. 2.

min(m,n) &
Ace — 2 i—0 : 1(yi ¥i)
min(m,n)

2

where 1 is an indicator function which equals 1
when y; == ¥;, 0 otherwise. In general, if the pre-
diction mistake happens in the earlier steps, it will
propagate the error and affect the future word pre-
diction. Therefore, a title with a wrong beginning
and necessarily wrong future tokens will obtain
a very low token-level accuracy. Comparably, in
PLAs, the beginning of the title is more important.
Therefore, the metric somehow shows the quality
of generated text as a PLAs title.
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Model Acc_u Acc_c  Acc.m
Model+ 100.0% 38.88% 34.92%
unchanged

Model+

random shuffle 92.41%  62.35% 54.61%
Model+ 93.26% 73.32% 64.50%

multi-level

Table 3: Generation accuracy using different shuffle
modules. Acc is accuracy; u, ¢, m means test data un-
changed, chunk-level shuffled, and multi-level shuffled.

Baselines To examine the effectiveness of the
multi-level shuffle module, we train three versions
of the model using the original title as output while
using different shuffled data as input: unchanged
(not shuffled), random shuffle (shuffle the tokens
by chance), and multi-level shuffie.

Test Data With 5,000 selected high-quality
product titles (separated from the training data
beforehand), we create three versions of input
data for testing: unchanged, chunk-level shuf-
fled, and multi-level shuffled, and obtain the (un-
changed/corrupted title, title) as the test data. We
test the models and calculate the token generation
accuracy on three test dataset, by which we can
have a more reliable result. However, it is more
convincing if a model can recover the original titles
from the corrupted ones with higher accuracy.

Result From Table 3 we can observe that Prophet-
Net trained with multi-level shuffled data outper-
forms the other models on the shuffled test datasets
by a large margin. The multi-level shuffle strategy
achieves higher accuracy than random shuffle on
all test datasets, so it does help the model gener-
ate better. Moreover, the model achieves 100%
accuracy when trained and tested on the unchanged
data, yet becomes the worst when tested on the cor-
rupted titles because the model only learns making
no change to the input.

3.2 Information Priority and Fluency

We examine the information order and fluency via
human GSB evaluation, which means to judge the
generated title as Good, Same or Bad compared to
the original one. We have three PLAs marketing
experts from e-commerce online marketing team.
Given 1, 000 pairs of the original and generated ti-
tle, every rater votes every pair with one of the GSB
labels. We also provide the product image, brand,
and category information to help raters resolve the
core information from the title. As shown in Ta-



ble 4, the generated product titles have obtained
+25% and 21.9% GSB improvement compared to
original titles and rule-based titles, respectively.

Baseline Good Same Bad GSB
Original 475% 30% 225% +25%
Rule-based 37.5% 469% 15.6% +21.9%

Table 4: Human evaluation. GSB=Good Rate-Bad Rate

3.3 Online Test

We run the test on Google Shopping Ads in three
countries (MY, PH, SG) for two months. Before
the test, we split the items into the control group
and test group, then upload them to GoogleAds.
In this way, the traffic of the two groups is almost
even and with fairly close cost and impressions.
We make sure traffic is large enough to keep stable
and influential (over 100MM daily impressions).
In the first month, we run campaigns and observe
the gap of core metrics between the two groups.
Then we update the titles into generated titles in
the test group and continue running campaigns nor-
mally for another month. At last, we assess the gap
change brought by the generated titles after online
for a month.

Country 1CPB 2" CPB CPB
MY 1.75%  -1523% -16.98%
PH 0.19% -12.14% -11.95%
SG -0.80% -12.44% -11.65%

Country 1CPC 2™ CPC CPC
MY +1.81% -101%  -2.82%
PH +5.15%  +3.53%  -1.62%
SG 0.19%  +0.17%  +0.36%

Country 1CTR 2™ CTR CTR
MY -0.58%  +9.93% +10.51%
PH +0.10% +7.01%  +6.91%
SG +2.52% +7.85%  +5.33%

Table 5: Online test result on Google Shopping Ads. 1%
means the original metric gap between control and test
groups; 2" is the gap after running generated titles. The
gap change is considered as the final metric.

Our core metrics are CPC, CPB, and CTR . From
Table 5 we learned that the generated titles are
profitable in view of lowering the cost and bringing
more conversions’. For example, the generated
titles have brought 5.33%~10.51% CTR increment,
and 11.65%~16.98% CPB drop while saving the

"Google Shopping Ads charge by clicks, dropping CPC
means saving the cost.

&3

cost of PLAs about -2%. We can see a slight CPC
fluctuation in SG with a +0.36% increment, which

is not hurtful given the significant positive change
of CPB and CTR.

4 Discussion

Besides titles, merchants usually also have a great
deal of information such as product categories, at-
tributes, etc. We experiment further on how such
information helps in model training.

4.1 Category-specific Models

To explore if a category-specific model trained
only for the target category can generate bet-
ter than the model trained on all categories,
we train and test the model only on the “Elec-
tronics" category, one of our largest categories.
In specific, Model+EL Finetune is ProphetNet
fine-tuned only on the Electronics titles without
any pre-training step, which is a basic category-
specific model. Model+Pretrain+EL Finetune is
a more advanced category-specific model, which
is first pre-trained on our raw text and key-
words and title pairs and titles from all cate-
gories then fine-tuned only on the Electronics ti-
tles. Model+Pretrain+Finetune is our standard
multi-step training on all titles. ~ As shown in

Model
Model+

EL Fine-tune
Model+
Pretrain+

EL Finetune
Model+
Pretrain+
Finetune

Acc_u Acc_c  Acc_m

77.35% 42.14% 38.34%

9144% 76.33% 68.07%

93.69% 77.35% 68.92%

Table 6: Generation accuracy of category-specific model
and proposed model.

Table 6, the category-specific model is weak at
the generation when only fine-tuned without pre-
training. However, the model trained on all cat-
egories achieves better accuracy in the target cat-
egory than the model pre-trained and fine-tuned
only for the target category. This may be because
training on all categories can facilitate the repre-
sentation learning of words shared by different cat-
egories.

4.2 Attribute-guided Shuffle

The most frequent circumstance in bad titles is
the attribute priority. Therefore, we design an



S1-title olympia dz-220btx series electronic calculator

Sl-gen olympia electronic calculator dz-220btx series

S2-title  27mm aeroforce hammer with double colour handle

S2-gen  aeroforce hammer with double colour handle 27mm

S3-title  household multifunctional plastic multi-clip folding drying rack underwear socks clip drying
rack baby hanger

S3-gen multi-clip folding drying rack household multifunctional plastic underwear socks clip drying
rack baby hanger

S4-title (6 months warranty) replacement toshiba satellite t115-s1100 laptop ac power adapter charger

S4-gen laptop ac power adapter charger replacement toshiba satellite t115-s1100 (6 months warranty)

S5-title  reflective colorful angel wings laser car stickers six-pointed star beauty body free stickers
modified cool decorative

S5-gen angel wings laser car stickers six-pointed star beauty body free reflective colorful cool
decorative stickers modified

S6-title  100% authentic otterbox case symmetry series case for iphone 8 & iphone 7 (not plus)

S6-gen  otterbox case for iphone 8 & iphone 7 (not plus) symmetry series case 100% authentic

S7-title  suitable for lenovo ideapad 320s notebook charging cable 310s-14isk 15ise power adapter

S7-gen power adapter suitable for lenovo ideapad 320s notebook charging cable 310s-14isk 15ise

S8-title moon japanese and korean ins fresh flowers for huawei mate40pro phone case internet
celebrity mate30/p40

S8-gen  phone case for huawei mate40pro mate30/p40 ins fresh flowers moon japanese and korean

internet celebrity

Table 7: Samples of the original titles and the generated titles by the proposed solution.

attribute-guided shuffle strategy that creates low-
quality pseudo titles by changing the positions of
attributes. We expect this kind of corruption can
train models to concentrate more on attribute words
and then learn to arrange them better. Surprisingly,
as shown in Table 8, the attribute-guided shuffie
is comparative but not superior to the multi-level
shuffle module, which may be because multi-level
shuffle can cover various types of title issues, not
only the attribute positions.

Model Acc_u Acc_c Acc_m
Model+

. 91.14% 71.92% 63.17%
attribute
Model* o3 76% 73.32%  64.50%

multi-level

Table 8: Generation accuracy of different shuffle strate-
gies.

4.3 Why the Optimized Titles Work in PLAs

We sample the generation titles to get a clear view
of the generation quality, as displayed in Table 7.
First, the core information is prioritized by putting
it at the beginning of the title, especially the infor-
mation that helps users quickly identify the product.
For example, S1 moves the model “dz-220btx" to
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the behind and makes sure the product type “ elec-
tronic calculator” is visible to users. Similarly, S2,
S4, S7, S8 put the product type first. The model is
not moving product type to the first blindly. From
S3, S6 we can see that model keeps the core at-
tributes in front of the product type to maintain
better fluency. Second, the long titles become more
fluent and readable. For example, S7 generates a
more natural title as a sentence. S5 and S8 prop-
erly reveal the product types earlier so that users
understand immediately what is selling and make
the complicated attribute list more comprehensible.
Therefore, the model considers both information
priority and fluency to make the product title easier
to read and the visible part in PLAs more clear. It
is worth mentioning that the trained model fits the
titles data perfectly and only predicts the words in
the original titles. Hence, the information in the
generated titles is usually accurate and complete.

S Conclusion

We present a practical solution of product title op-
timization for PLAs which consists of multi-level
shuffling for pseudo title production and multi-step
training to generate high-quality titles. It can help
merchants conveniently build their own profitable
title optimization systems.
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Abstract

Manually labeled training data is expensive,
noisy, and often scarce, such as when devel-
oping new features or localizing existing fea-
tures for a new region. In cases where labeled
data is limited but unlabeled data is abundant,
semi-supervised learning methods such as con-
sistency training can be used to improve model
performance, by training models to output con-
sistent predictions between original and aug-
mented versions of unlabeled data.

In this work, we explore different data augmen-
tation methods for consistency training (CT)
on Natural Language Understanding (NLU) do-
main classification (DC) in the limited labeled-
data regime. We explore three types of augmen-
tation techniques (human paraphrasing, back-
translation, and dropout) for unlabeled data and
train DC models to jointly minimize both the
supervised loss and the consistency loss on un-
labeled data. Our results demonstrate that DC
models trained with CT methods and dropout-
based augmentation on only 0.1% (2,998 in-
stances) of labeled data with the remainder as
unlabeled can achieve a top-1 relative accu-
racy reduction of 12.25% compared to fully
supervised model trained with 100% of labeled
data, outperforming fully supervised models
trained on 10x that amount of labeled data.
The dropout-based augmentation achieves sim-
ilar performance compare to back-translation-
based augmentation with much less computa-
tional resources. This paves the way for appli-
cations of using large scale unlabeled data for
semi-supervised learning in production NLU
systems.

1 Introduction

Deep learning, especially transformer-based lan-
guage models (Vaswani et al., 2017), have achieved
state-of-the-art performance in many tasks and are
widely used in NLU systems. A challenge in deep
learning is that it often requires large amounts of
labeled training data in order to reach a desirable
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performance level. This is especially a problem for
NLU systems in commercial production as the cost
of labeling data scales with the expanding number
of supported features and languages.

Recent research in semi-supervised learning
(SSL) demonstrated that it is possible to combine a
small amount of labeled data and a large amount of
unlabeled data to match or even outperform purely
supervised learning (Xie et al., 2020; Gao et al.,
2021). One of the most promising approaches in
SSL is called consistency training (Bachman et al.,
2014; Rasmus et al., 2015; Tarvainen and Valpola,
2017; Verma et al., 2019). In short, consistency
training is a technique that regularizes model pre-
dictions to be invariant to augmentations of unla-
beled data. Examples of augmentations include ap-
plying noise to input features (Sajjadi et al., 2016;
Miyato et al., 2018) or hidden states (Bachman
et al., 2014).

In this paper, we experimented with consistency
training in a major NLU task: Domain Classifi-
cation (DC). We tested three different types of
data augmentations: paraphrasing by user feed-
back, back-translation, and dropout. As a testbed
for our approach, we applied our experiments to
BERT (Devlin et al., 2019)-based models using
a real-world dataset collected from Portuguese
users of a voice-controlled assistant. We found
that all three types of augmentations can be ef-
fectively used alongside consistency training to
improve model performance compared to a base-
line model trained without consistency training.
For the scenario where labeled data was limited
to only 0.1% of all available labeled data, the
best top-1 accuracy, which was -9.14% compared
to fully supervised model trained with 100% la-
beled data, was achieved by consistency training
on data augmented using back-translation. If we
use dropout-only augmentation, the relative top-1
accuracy change was -12.25%. Lastly, we observed
a relationship between the amount of labeled data
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used for training and the size of CT benefits, with
larger benefits for smaller sets of labeled data. Our
results demonstrate the possibility of using con-
sistency training to drastically reduce the amount
of labeled data needed for an NLU system while
retaining a reasonable accuracy. This can be done
on large unlabeled datasets without using compu-
tationally expensive back-translation or financially
costly human-authored augmentation.

2 Background

2.1 Consistency training

Consistency training (Bachman et al., 2014; Ras-
mus et al., 2015; Tarvainen and Valpola, 2017;
Verma et al., 2019) is a Semi-Supervised Learn-
ing technique that utilizes unlabeled data to en-
force consistency of the model output given simi-
lar inputs. The general schematic of this method
is shown in Figure 1. In summary, consistency
training is multitask learning with two objectives:
minimizing the supervised loss for labeled data and
the consistency loss for unlabeled data. The super-
vised loss is a regular cross-entropy loss for the
labeled data. For the consistency loss, the unla-
beled data is first paraphrased with data augmen-
tation methods. Then the original data x and the
augmented data =’ will be passed through the same
encoder model M to generate two output distri-
butions respectively pys(y|x) and pas(y|z'). The
consistency loss is defined by the Kullback—Leibler
divergence between the two output distributions
D(pun(y|z)||lpa(yla’)). Finally the consistency
loss and supervised loss are combined and back-
propagated to update the model parameters. In this
way consistency training forces the model to be
insensitive to the noise introduced by data augmen-
tation.

[ Labeled data ]—)[

Model ]—)[Supervlsed loss

[ Unlabeled dala]—>[

MARUPA, Back-translation, Dropout

Model HConsislency loss|

Augmented
Unlabeled data

Model

Figure 1: Training objective for consistency training.
Note that the three model blocks in this figure represent
the same encoder model with the same set of parameter.
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2.1.1 Paraphrasing by user feedback

MARUPA (Falke et al., 2020) (Mining Annotations
from User Paraphrasing) is a tool to leverage real-
world user implicit feedback to collect paraphrased
utterances. Sometimes when a user is having a
failed interaction with the system, the user will
paraphrase the utterance and retry. MARUPA col-
lects these utterances fully autonomously without
the need for human annotators using paraphrase
detection, friction detection and label projection
models. This dataset is filtered to make sure it is rel-
evant to the main task (Domain classification). In
our experiment, we use the MARUPA dataset with-
out the labels as the augmented unlabeled dataset
for the consistency training.

2.1.2 Paraphrasing by back-translation

Back-translation a common approach for data aug-
mentation in NLP (Xie et al., 2020; Edunov et al.,
2018). Recent development of Neural Machine
Translation (NMT) (Vaswani et al., 2017), has pro-
duced models with impressive accuracy in trans-
lating text. Back-translation leverages this to gen-
erate augmented data by translating example text
sequences from an original language to an inter-
mediate language and then back to original lan-
guage. This method allows us to generate para-
phrases while retaining semantic meaning, and has
been shown to improve performance in question-
answering tasks (Yu et al., 2018; Dong et al., 2017).
In our experiment, we leverage a commercially
available cloud-based translate service to para-
phrase the unlabeled dataset using back-translation.

2.1.3 Dropout as data augmentation

Dropout (Srivastava et al., 2014) is a technique to
prevent overfitting in training deep neural networks
by randomly dropping units inside the network. In
recent research, dropout is also shown to be an ef-
fective method for data augmentation (Bouthillier
et al., 2015; Gao et al., 2021). The underlying idea
is to pass the same input sequence to the encoder
twice with different dropout masks. The two re-
sulting embeddings are then used to compute the
consistency loss. This method outperforms sev-
eral deterministic augmentation approaches such
as word deletion and replacement (Gao et al., 2021).
Another advantage of dropout-based augmentation
is that no extra paraphrase process is needed and we
can directly use the unlabeled data for consistency
learning.



3 Experiment

We designed our experiments to explore the perfor-
mance impact of incorporating consistency training
using each type of data augmentation. We also in-
vestigated how performance changes as the amount
of labeled data or unlabeled data used for training
is varied.

3.1 Consistency-training (CT) models

All the models were based on a distilled (Hin-
ton et al., 2015) Portuguese BERT (Devlin et al.,
2019) language model. This model had 4 trans-
former layers and feedforward hidden dimension
of 1200 compare to 12 and 3072 in the BERT-Base
model. All experiments were trained on Amazon
Web Services EC2 p3.16xlarge instances. We im-
plemented CT using a multi-task learning frame-
work that trained models to jointly minimize the
sum of supervised cross-entropy error on labeled
data and the consistency loss on unlabeled data.
All models were configured to train for up to 20
epochs. During training, CT models alternated be-
tween computing loss on the supervised task and
the consistency-loss task. The task sampling rates
were set such that both tasks would finish iterating
through their associated data at approximately the
same time. We compare the CT models against a
set of baseline models that only performed super-
vised training.

3.2 Augmentations

We experimented with a total of five CT mod-
els varying in type of data augmentation used for
consistency regularization: paraphrase by humans
(MARUPA), back-translation, and dropout.

For MARUPA CT models, augmentations were
comprised of paraphrase data. We leveraged the
MARUPA paraphrase dataset as unlabeled pairs
of augmented data. This dataset consisted of
2,258,828 utterance pairs (4,517,656 total).

For Back-translate CT models, augmentations
were comprised of back-translated utterances. We
used a cloud-based translation service to trans-
late from Portuguese to an intermediate language
and back to Portuguese, generating a total of
2,998,782 pairs. For some pairs the original and
back-translated utterances were the same, and in
that case we switched to a different intermediate
language until a different back-translated utterance
was obtained. The list of intermediate language
was English, French, Japanese, Korean, Chinese,
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Hindi and Hungarian.

For Dropout CT models, we used dropout to
generate an equivalent of data augmentation on the
embedding space. Our dropout augmentation in-
volved applying dropout to the same data instance
twice with different dropout masks using the same
dropout probability. Dropout layers were located in
each BERT transformer blocks and fully connected
layer with dropout probability set to 0.1. The unla-
beled data used in Dropout CT was the same as the
original data in the back-translation dataset.

We also tested two combinations of augmen-
tations. In Dropout+ MARUPA CT models, we
combined dropout and paraphrase augmentations.
Specifically, we applied independently sampled
dropout to both utterances in a paraphrase pair,
and then compute the consistency loss between
the dropout-augmented pair. For Dropout+Back-
translate CT models, we combined dropout with
back-translation pairs in a similar fashion.

3.3 Training data

We experimented with six different labeled-data
sizes: 0.1%, 1%, 2%, 5%, 25%, and 100% of
the available training data. We randomly sampled
three sets of data for each labeled-data size less
than 100%. Within each sample, we used a ran-
domly selected 90% as the training data and use
the remaining 10% as the validation set. Unless
otherwise stated, for each model we experimented
with we trained three separate instances, each using
a different data split.

We also experimented with different unlabeled
data sizes. For this set of experiments we limited
our exploration to Dropout CT models that were
trained with 0.1% of the available labeled data. For
all Dropout CT models, we treated the remaining
labeled data as the set of available unlabeled data
(i.e., for a model trained using 0.1% of the labeled
data, we take the remaining 99.9% and removed
the label). We experimented with models that used
25%., 50%, 75%, and 100% of the available unla-
beled data. As before, we created three random
samples for each unlabeled-set size less than 100%
and trained a separate model on each split.

3.4 Evaluation

We evaluated our models using a held-out test set.
We considered two different types of testing scenar-
i0s. In the first, we tested against the full test set of
191,762 utterances, approximating the distribution
of a real-world application scenario. In the second,



we tested against a test set that had been filtered
to remove all utterances appearing in the training
set. This filtered set contained 46,211 utterances
and was intended to examine how well our models
were able to generalize to unseen utterances.

Our experiments were performed using a pro-
duction BERT-based domain classification model.
Models with differing architectures or for different
ML tasks may not yield the same results. Similarly,
our results may not generalize to industry applica-
tions of NLU in other domain areas, using different
spoken languages, or with access to substantially
larger amounts of labeled training data.

4 Results

Here we present the results of our consistency-
training experiments and illustrate how model per-
formance changed as we varied the underlying
training data.

4.1 Metrics definition

All metrics are reported as relative change, includ-
ing Top-1 accuracy, Top-1-Unseen accuracy, false
accept rate and false reject rate. The relative change
is defined by

(1 — pur) /o

where 4 is the experiment metric and pu,. is the
reference metric achieved by the fully supervised
model trained on 100% of labeled data.

4.2 Size of labeled data

Our results show that consistency training on aug-
mented data can lead to significant improvements
in performance in limited-data settings. As shown
in Table 1, when restricting models to use only 1%
of the available labeled data as training data, the
baseline supervised model achieves a top-1 accu-
racy of -67%. For the Dropout CT model trained
on the same 1% of labeled data, we saw a top-1
accuracy of -4%. The difference in performance
was even more apparent in models trained using
only 0.1% of the labeled data. For models trained
with 0.1% of the labeled data, the baseline model
achieved an top-1 accuracy of only -99%. The
Dropout CT model trained on the same amount of
labeled data achieved a top-1 accuracy of -12.25%.
This improvement in top-1 accuracy demonstrates
the utility of consistency training on unlabeled data
when labeled data is extremely limited. Table 1
also compares the top-1 accuracy of the baseline
and Dropout CT model when tested on utterances
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Figure 2: Comparison of top-1 accuracy relative change
for baseline and Dropout CT models trained on different
amounts of labeled data. Data points are shown for all
three experiments run for a given model differing only
in training sample (often overlapping).

not seen during training. Given the same model
the top-1-unseen accuracy was lower than the top-1
accuracy, as expected since this represents a more
difficult task. However, we still saw a performance
improvement in top-1-unseen accuracy when ap-
plying consistency training.

In Figure 2 we plot the top-1 accuracy of the
baseline and Dropout CT model as we varied the
amount of labeled training data. While both the
baseline and Dropout CT models benefited from
training with additional labeled data, the benefit
was much greater for the baseline model. Figure 2
also sheds light on the difficulty of the domain
classification task. We see that a baseline model
trained on 2% of the labeled data has comparable
perfomance to a baseline model trained on all the
labeled data.

4.3 Size of unlabeled data

Results on varying the size of the unlabeled train-
ing data our Dropout CT model trained with 0.1%
of the available labeled data are shown in Figure 3.
We see that even when using only 25% of the un-
labeled data (742k instances), consistency training
with dropout-based augmentations achieved a top-1
accuracy of -23%. Increasing the amount of unla-
beled data generally led to improved performance.

4.4 Types of augmentation

Table 2 shows our experiments comparing CT mod-
els that used different types of data augmentations,
where each model was trained on only 0.1% of
the labeled data. Overall, every data augmenta-



Top-1 Top-1-Unseen
% Labeled data Count Baseline Dropout CT Baseline Dropout CT
0.1% 2998 -98.96% -12.25% -98.16% -26.66%
1% 26989 -67.33% -4.16% -67.67% -9.09%
2% 53978 -2.40% 271% -14.73% -5.62%
5% 134945 -1.52% -2.50% 3.12% -4.64%
25% 674725 -0.60% -0.64% -1.39% -1.39%
100% 2698903 0% - 0% -

Table 1: Top-1 accuracy relative change for baseline models trained on different amounts of labeled data.

FAR FRR

Top-1  Video Shopping Music Video Shopping Music
Baseline -98.96% -100% -100% -100% 137% 766% 2877%
Dropout CT -12.25%  308% 344% 1%  59% 346%  543%
MARUPA CT -22.42% 1145% 2844% 14%  64% 191% 1760%
Back-translate CT -9.14%  370% 733% 106%  27% 20%  132%
Dropout+MARUPA CT -21.79%  839% 3372% 14%  73% 236% 1695%
Dropout+Back-translate CT ~ -9.66%  267% 567% 131%  32% 14% 91%

Table 2: Top-1 accuracy, false acceptance rate (FAR), and false rejection rate (FRR) relative change for the
supervised baseline model and the consistency-training models using different underlying data augmentations. All
models are trained with 0.1% labeled data. Metrics are reported as relative change compared to a fully supervised
model trained using 100% of labeled data. The ground truth test data included 44,221 Music utterances, 2,145

Shopping utterances, and 904 Video utterances.
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Figure 3: Comparison of top-1 accuracy relative change
for Dropout CT models trained on different amounts of
unlabeled data. All models were trained using 0.1% of
the labeled data.

tion method helped CT to perform better than the
baseline model. Out of all the augmentation meth-
ods we tested, Back-translate CT performed best.
The Back-translate CT model achieved an aver-
age top-1 accuracy of -9.14%, followed by the
Dropout+Back-translate CT model with a top-1
accuracy of -9.66%. MARUPA models in general

performed worse than Back-translate models, but
still had significant improvement over the baseline.

We found mixed results on the performance
benefit of combining types of augmentations
together for consistency training. While the
Dropout+MARUPA CT model had a slightly higher
top-1 accuracy than the MARUPA CT model (-
21.79% vs. -22.42%), the Dropout+Back-translate
CT model performed slightly worse than Back-
translate CT (-9.66% vs. -9.14%).

We note that the Dropout CT methods, although
slightly less performant than Back-translate CT
models, have a greater advantage from an oper-
ations perspective. Dropout augmentation does
not require any kind of domain expertise, pre-
computation, or external translation models, which
can greatly reduce data-preprocessing time and op-
erational costs.

In addition to top-1 accuracy, Table 2 shows
false acceptance and false reject rates for three dif-
ferently sized domains. The baseline model incor-
rectly rejected all utterances for which the ground
truth domain was one of Video, Shopping, or Mu-
sic. More interestingly, for a pair of models the
better performing model in terms of top-1 accu-
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racy was not always the better performing model
in terms of false acceptance or rejection rates for a
given domain. For example, although the Dropout
CT model had a higher top-1 accuracy than the
MARUPA CT model (-12.25% vs. -22.42%), if
lowering the false reject rate for the Shopping do-
main is the highest priority, then the MARUPA CT
model may be more appropriate.

5 Related work

5.1 Data Augmentation in NLP

Hedderich et al. (2021) provide a survey of NLP
techniques for training models in low-resource sce-
narios. One of the most common techniques to
address this is data augmentation, which produces
new input instances by applying transformations to
existing data.

In our study, we applied hidden-space augmen-
tations by using independently sampled dropout
masks for the same instance. Prior work has also
proposed dropout as a data augmentation technique.
Bouthillier et al. (2015) demonstrate that the effect
of dropout on a neural network can be replicated by
projecting dropout noise back into the input space
and training a model on the generated data. Zhao
et al. (2019) show that dropout can be viewed as
equivalent to data augmentation whenever the in-
put space dimension is equal to or higher than the
output space.

5.2 Consistency training

Consistency regularization, also known as consis-
tency training (Chen et al., 2021), is a popular tech-
nique in Semi-Supervised Learning. The underly-
ing idea is that model predictions for a given data
instance should not change much when that data
instance is perturbed. Xie et al. (2020) proposed
UDA, a framework for leveraging data augmenta-
tion in SSL settings by jointly minimizing a stan-
dard supervised loss with consistency-based loss
on data and its augmentations.

5.3 Contrastive learning

The goal of contrastive learning (Chopra et al.,
2005), which is very similar to consistency learn-
ing, is to learn a data representation such that simi-
lar data instances are located near to each other in
the representation space and dissimilar instances
are pushed apart. Wang and Isola (2020) showed
that optimizing a contrastive metric can lead to
better alignment and uniformity of features in the
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embedding space. Gao et al. (2021) show that stan-
dard dropout noise can outperform other types of
data augmentation for contrastive learning of sen-
tence embeddings.

6 Conclusion

With the aim of developing a strategy to efficiently
leverage large amounts of unlabeled data in de-
ployed NLU systems, we examined three different
augmentation techniques for consistency training
using real-world data. Back-translation performed
the best, dropout was slightly behind and para-
phrase by human users was the worst-performing
technique. From an operations perspective dropout
is more favorable because it doesn’t require any ex-
tra system resources and is quick to compute. Para-
phrasing by back-translation requires a machine-
translation model that can translate to an interme-
diate language and back. This adds extra cost
and processing time for unlabeled data which
scales linearly with the amount of unlabeled data.
For industry-scale NLU applications with massive
amounts of data, dropout-based consistency train-
ing can provide performance gains over purely su-
pervised methods with minimal additional resource
overhead.
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A Appendix
A.1 Ablation studies

The training of our CT models depends on a few
hyperparameters, including: training signal anneal-
ing (TSA) schedule, softmax temperature control,
and a confidence threshold for computing consis-
tency loss. We explored the impact of each hyper-
parameter on resulting model performance. For



these experiments, we used the Dropout CT model
trained on 0.1% of labeled data. We did not train
multiple models for each random data split.

Top-1 relative change

Dropout CT* -11.84%
confidence thresh= 0.6 -11.01%
confidence thresh = 0.3 -11.42%
confidence thresh = none -32.37%
TSA schedule = log -13.70%
TSA schedule = exp -85.69%
TSA schedule = none -14.22%
softmax temp = 0.7 -13.70%
softmax temp = 0.9 -12.87%
softmax temp = none -11.94%

Table 3: Ablation studies related to confidence-
based thresholding (confidence thresh), training-signal-
annealing (TSA) schedule, and softmax temperature. In
this table Dropout CT is the base model that each subse-
quent model modifies. We report the Dropout CT score
only for the model trained on the same 0.1% data sample
as used for the ablation-study experiments. All reported
numbers are Top-1 accuracy relative changes compared
to the performance of a baseline model trained with
100% labeled data. *For the base Dropout CT config-
uration, we used a linear TSA schedule, a consistency-
loss softmax temperature of 0.85, and consistency-loss
confidence threshold of 0.45.
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Abstract

Product aspect extraction from reviews is a
critical task for e-commerce services to un-
derstand customer preferences and pain points.
While aspect phrases extraction and sentiment
analysis have received a lot of attention, clus-
tering of aspect phrases and assigning human
readable names to clusters in e-commerce re-
views is an extremely important and challeng-
ing problem due to the scale of the reviews that
makes human review infeasible. In this pa-
per, we propose fully automated methods for
clustering aspect words and generating human
readable names for the clusters without any
manually labeled data. We train transformer
based sentence embeddings that are aware of
unique e-commerce language characteristics
(eg. incomplete sentences, spelling and gram-
mar errors, vernacular etc.). We also train
transformer based sequence to sequence mod-
els to generate human readable aspect names
from clusters. Both the models are trained us-
ing heuristic based distant supervision. Addi-
tionally, the models are used to improve each
other. Extensive empirical testing showed that
the clustering model improves the Silhouette
Score by 64% when compared to the state-of-
the-art baseline and the aspect naming model
achieves a high ROUGE-L score of 0.79.

1

The aspect mining based insights and its polar-
ity extraction from reviews is a critical task for
e-commerce services that enables seller to under-
stand fine-grained customer preferences and im-
prove product offerings. Extracting important key-
words and analyzing their sentiment is a very
well studied area. However, the sheer scale of
e-commerce services poses important novel chal-
lenges. Firstly, review phrases/keywords about

Introduction

“work done while author was at India Machine Learning,
Amazon
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the same aspect category need to be grouped to-
gether, since each product may have thousands of
reviews and there are millions of products. Such
aggregation will enable downstream individual as-
pect analysis by sellers. Secondly, each review
phrases/keyword group needs to be assigned an
interpretable aspect name to enable easy analysis.
Finally, both steps have to be done without human
annotations, as human review at e-commerce scale
is infeasible. Note that, in this paper, we would
refer to the terms, “phrase”, “review phrase” and
“snippet” interchangeably to denote subsets of a
review text, obtained by splitting a multi-context
review into smaller sentences of single context.
For example, if review text is “The headphone has
a good sound quality but not so good bass quality.
It is useful for playing music while working out.”
then the corresponding review phrases would be
“The headphone has a good sound quality”, “not
so good bass quality” and “It is useful for playing
music while working out”” We have used some
syntactic/lexical rules for context splitting.

For unsupervised aspect grouping, extant meth-
ods use clustering (Bancken et al., 2014) (eg. k-
means) and topic modeling (Brody and Elhadad,
2010) (eg. LDA) approaches. LDA based topic
models assume the words are independently gen-
erated given the topic and consequently can’t
leverage the full context of the review sentences.
k-means based techniques can overcome the draw-
back by using contextual embeddings typically
generated by transformer based models (Devlin
et al.,, 2018). However, these general purpose
transformer language models fail to capture the
nuances of e-commerce reviews’ language char-
acteristics, such as code mixed sentences includ-
ing vernacular, incomplete sentence formation,
spelling errors. Consequently, these models fail
to generalize to e-commerce domain.Another ma-

Proceedings of NAACL-HLT 2022: Industry Track Papers, pages 94 - 102
July 10-15, 2022 ©2022 Association for Computational Linguistics



jor drawback of the LDA/k-means based methods
is that these techniques are not able to generate
a human interpretable name for the aspects (top-
ics/clusters).

In this paper, we propose a practical framework
for grouping aspect phrases from reviews into
clusters and generate meaningful aspect names for
the clusters at scale without any human labeled
data. Specifically, the contributions of this paper
are as follows:

(1) The proposed framework is able to cluster
reviews into clusters by training a transformer
model that is aware of the nuances of e-commerce
review language characteristics.

(2) The proposed framework is able to generate
human readable aspect names for the clusters by
training a transformer based conditional natural
language generation model.

(3) The proposed framework uses a heuristic
distant supervision, thereby avoiding the need for
manually labeled data.

To arrive at aspects, we first cluster the phrases
by clustering the phrase embeddings generated
by the state-of-the-art general purpose semantic
matching SBERT model (Reimers and Gurevych,
2019). We fine-tune the transformer based condi-
tional natural language generation (NLG) model
T5 (Raffel et al., 2019) for aspect name genera-
tion that is distantly supervised using a heuristic
TF-IDF distance based algorithm using the above
clustering. Finally, to improve the aspect cluster-
ing, we train a transformer on the reviews cor-
pus using masked language model (MLM) and
subsequently fine-tune it Siamese style using the
pairwise triplet loss. The training data (relevant
and irrelevant pairs of phrases) for triplet loss is
generated using a novel distant supervision strat-
egy that leverages the earlier clustering output
and the name generation model outputs. Conse-
quently, the learned text embeddings are very ro-
bust to nuances of the e-commerce reviews do-
main. We empirically evaluate our framework at
scale on reviews from a popular e-commerce ser-
vice. The distantly supervised semantic embed-
ding based clustering model is able to improve Sil-
houette Score by 64% over a baseline technique
using a state-of-the-art general purpose semantic
embedding model. Our distantly supervised as-
pect name generation model is able to improve the
Rouge-L score by 16%.
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2 Related Works

Aspect phrase extraction from text corpus is a
widely researched topic (Quan and Ren, 2014; Qiu
et al., 2011; Zhang et al., 2020; Xu et al., 2019,
2018; Wei et al., 2020; He et al., 2017; Vargas
et al., 2020). In this paper we explore two tasks
after aspect phrase extraction, (1) aspect grouping
into clusters, and (2) aspect name generation, that
are specifically important to the e-commerce re-
views domain due to its large scale and lack of an-
notation requiring unsupervised techniques. As-
pect grouping is done typically by clustering/topic
modeling approaches once the aspect phrases have
been extracted. Topic modeling approaches in-
clude LDA, pLSA, NMF based aspect extrac-
tion (Titov and McDonald, 2008; Garcia-Pablos
et al., 2018; Mukherjee and Liu, 2012; Chen et al.,
2014; W. Xu and Gong; C. Ding and Peng). A
number of clustering approaches have also been
explored (Zhai et al., 2010; Chen et al., 2016;
Zhai et al., 2011; Bancken et al., 2014; Pessutto
et al., 2020). One limitation of extant topic model-
ing/clustering approaches is that these techniques
fail to leverage the semantic context of the entire
text while clustering. Recently, pre-trained mod-
els capable of capturing contextual representations
have been developed (Peters et al., 2018; Devlin
et al., 2018). However, vanilla pre-trained em-
beddings doesn’t lead to coherent groupings of as-
pects as the e-commerce review language is signif-
icantly different from general English/web text on
which these embeddings models are pre-trained.
In this paper, we propose a transformer language
embedding model that captures the semantics of e-
commerce reviews, thereby leading to robust clus-
tering. Note that our generated embeddings may
be used with any existing clustering techniques to
improve their quality.

3 Proposed Solution

The proposed framework for aspect grouping and
naming has two main components: (i) phrase clus-
tering, and (ii) aspect name generation. Our goal
is to develop a phrase embedding model that cap-
tures the nuances of e-commerce reviews, and a
conditional NLG model that generates meaning-
ful names for the aspects without any manually la-
beled data. To achieve this, we propose a novel
distant supervision scheme that uses the two com-
ponents to improve the other along with some
heuristic based automated supervision. Note that



Table 1: Sample output of the aspect insights framework on headphones

Aspect Name

Example Review Snippets

sound quality

[its just like mentioned in description very good quality of sound’,

‘i must say that i dont regret my decision as its sound quality is too good’,
‘i can definitely say its sound quality is very good’, ‘definitely very nice
choice its sound is very nice’]

value for money

[‘just go for it on this price bracket it is the complete value for money’,
‘nothing to dislike as such in this amount of money this is the best
thing u get’, ‘nothing more 1 can ask and to top it all at an amazing price

point’, ‘go for these guys for the price range these are the best’]

bass quality

[‘build quality is pretty good and yeah it does have a punchy bass’,
‘this must be a nice purchase if you are bass lover’, ‘just go for it
if you are a bass lover’, ‘just go for it if u are bass lover’, ‘it is the
king of bass so i strongly recommended’]

we get the review phrases extracted by the existing
pipeline at a popular e-commerce service. Figure 1
shows an overview of the proposed framework

Figure 1: workflow diagram for clustering and naming

Generate pre-trained
embeddings

INPUT: Extracted
Review phrases

1
1
| Aspect Name '
. Generation !
' i
! 1

Finetuning of
embeddings

and table 1 shows a snapshot of the final output
for a headphone.

3.1 Initial Phrase Clustering

Recently advances in language modeling have re-
sulted in text embedding models (Devlin et al.,
2018) such that the embeddings are able to cap-
ture the semantics of the text and consequently
similar text phrases are mapped to similar vec-
tors. Since our goal is to semantically group re-
view phrases into clusters, we chose the state-
of-the-art transformer based semantic text embed-
ding model SBERT-STS (Reimers and Gurevych,
2019) that was trained for the semantic textual
similarity (STS) task (Wang et al., 2018). Once
each review phrase embedding is generated, we
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use agglomerative clustering to cluster the review
phrases into aspect groups. We chose agglomer-
ative clustering technique instead of k-means as
agglomerative clustering is parameterized by only
the distance threshold that is easier to tune and
interpret in our usecase. While SBERT-STS is a
state-of-the-art general purpose semantic embed-
ding model, it fails to generalize to e-commerce
reviews. The underlying reason is the nuances of
e-commerce reviews, such as the phrases often be-
ing short incomplete sentences, presence of code
mixed phrases including regional words, presence
of spelling and grammar errors. To improve the
text embeddings to capture the characteristics of
reviews, we propose a novel distant supervision
strategy to finetune the SBERT-STS model. We
describe this strategy in section 3.3.

3.2 Initial Aspect Name Generation

The goal of this component is to generate a name
that represents the common theme of a cluster.
We use a sequence-to-sequence based NLG model
to generate meaningful aspect names. The main
challenge with sequence to sequence models is
that they require a significant amount of training
data for a stable model. We designed a heuris-
tic based distant supervision strategy that enables
us to generate labeled data at scale without hu-
man annotation. We chose T5 (Raffel et al., 2019)
as the base model as it has been pre-trained on a
huge amount of data on multiple NLP tasks, mak-
ing it a great candidate for transfer learning and
stable NLG capabilities. We use k randomly se-
lected review phrases concatenated as the input to
T5. We choose the most descriptive n-gram from



a cluster of review phrases that satisfy certain lin-
guistic rules as the distantly supervised label (as-
pect name) for that cluster as follows:We first col-
lect all n-grams (n=1,2,3,4) from the corpus of re-
views in a cluster. Next, we eliminate “ineligible
phrases” based on POS-tag based rules. We use
SPACY (Honnibal et al., 2020) for POS-tagging.
Based on the ngrams, we employ the below rules
to eliminate ineligible ngrams. Let ¢ be a ngram
whose eligibility we would evaluate. Let pos; be a
set of POS tags for each corresponding word in ¢.
t is an ineligible n-gram if either of the following
is satisfied:

1. len(pos;) > 1 and last element of pos;
€ ['DET’, "ADP’, "CCONJ’, ’ADV’, ’PRON’,
"AUX’, ’SCONJ’, "PART’]

2. len(pos;) > 1 and first element of pos,
€ [ADV’, AUX’, 'PART’, 'PRON’, ADP’,
"CCONJ’, ’DET’]

3. post € {[’ADP’,’NOUN’], [’ADP’, ’PROPN’],
[DET’, 'NOUN’],[’AUX’], (ADV’], ['INTJ’],
[’DET’], 'VERB’], CCONJ’]}

4. if first or last word of ¢ is "i".

t is an eligible n-gram overriding the above crite-
ria if either of the following is satisfied:

1.  len(post) > 1 and last element of
pos; € [CADJ’] and first element of pos; €
[’NOUN’,PROPN’]

2. First word of ¢ is “not”.

For an eligible set of n-grams, we propose the fol-
lowing two heuristic algorithms for training label
(cluster name) generation:

(1) TF-IDF-based Naming: We derive TF-IDF
scores for each n-gram and weight the TF-IDF
score by n (in n-gram), i.e. providing higher
weight to longer n-grams. This allows us to get
more descriptive names. The candidate n-gram
with the highest weighted TF-IDF score is the
cluster name.

(2) Distance-Based Naming: For each n-gram we
compute the mean cosine distance with each mem-
ber phrase of the cluster. The n-gram with the min-
imum distance is considered as the cluster name.
For generating the distantly supervised training la-
bels for our model, we choose high confidence
cluster names by setting high thresholds for the
aforementioned scores.
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3.3 Improving Clustering & Name
Generation

Next, we use the initial versions of the reviews
phrase clustering and aspect name generation
model to distantly supervise and improve each
other. One of the main limitations of the ini-
tial clustering model was the usage of general
purpose semantic embeddings from SBERT-STS
that fails to capture the distinct characteristics
of e-commerce reviews language. Consequently,
many phrases could not be assigned a cluster even
though they were relevant to certain aspect of a
product and in many cases different clusters were
formed for the same aspect. To overcome this
limitation, we finetune the transformer based text
embedding model with reviews text. We use the
unsupervised masked language model (MLM) on
the reviews text and couple it with distant super-
vision signal generated from the TS based aspect
name generation model. Below is the algorithm
for training our transformer based text representa-
tion model.

We first train the transformer using the stan-
dard MLM loss (as described in BERT (Devlin
et al., 2018)) on reviews text. This enables the
model to learn a robust language model specific to
the reviews domain. Furthermore, to enhance the
semantic matching capabilities, we finetune our
model Siamese style using the following triplet
loss:

loss = max(||eq — epl| — ||ea — en|| +m, 0) (1)

where ¢e,, e, and e, are embeddings of anchor
phrase, positive phrase and negative phrase, re-
spectively. m is margin. Negative samples should
be at least margin further apart from the anchor
than the positive. The anchor and positive phrases
refer to the same aspect, whereas anchor and neg-
ative phrase refer to different aspects. Minimiz-
ing this loss would ensure that embeddings of the
phrases mentioned in “anchor phrase” and “pos-
itive phrase” are close, while the phrases men-
tioned in “anchor phrase” and “negative phrase”
is far away. The methodology to generate triplet
data is described below:

(1) Positive Pairs: We hypothesize that clusters
with the same/similar names are talking about the
same aspect. Therefore, any randomly selected
phrase from one cluster could act as a positive
pair for another randomly selected phrase from an-
other. For this, we find the cluster names for each



cluster by leveraging the TS5 based aspect name
generation model. We also find the medoid of each
cluster. Medoid is defined as an element in a clus-
ter which has the least average distance from the
remaining elements in the cluster. We use the ini-
tial SBERT-STS embeddings to generate embed-
dings of the cluster names and medoids and pick
positive samples from clusters where (a) cosine
distance between cluster names <= 0.08, or (b) co-
sine distance between cluster medoids <= 0.05 or
(c) cosine distance between cluster names <= 0.1
and cosine distance between medoids <= 0.1 as
positive pairs. These thresholds were tuned em-
pirically. We sample a small number of anchor
phrases with code-mixed or fully regional phrases,
and we added their English translation as a posi-
tive pair to enable the model’s semantic matching
robustness in the presence of vernacular.

(2) Negative Pairs: If names of 2 clusters have a
distance higher than a particular threshold (0.4),
then the phrases from one cluster qualify to be
negative pair to phrases of another cluster.

Once the text embedding model is trained and fine-
tuned for e-commerce review text, we again use
the same agglomerative clustering technique (as
described in section 3.1) to generate robust and
high quality aspect grouping. After re-clustering
using the fine-tuned embeddings, we then use the
TS5 based aspect name generation model that was
developed in section 3.2 to generate the aspect
names for these new clusters. Even though the as-
pect name generation model wasn’t re-trained in
this step, but still the aspect name generation im-
proves due to the new clusters being more coher-
ent.

4 Experiments

4.1 Baselines

We use the following baseline algorithms to com-
pare with our proposed framework.

(1) SBERT-STS-Clustering: We use the state-
of-the-art sentence transformers (Reimers and
Gurevych, 2019) model trained the STS task ! for
phrase embedding and agglomerative clustering to
create aspect groups. We use this baseline to com-
pare with our aspect grouping model that uses dis-
tant supervision.

(2) DS-Clustering: This is our proposed final
clustering model as described in section 3.3.

"https://huggingface.co/sentence-transformers/stsb-bert-
base
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(3) Heuristic-Name-Generation: We use the
heuristic algorithm (used for distant supervision)
using TFIDF scores and distance threshold as de-
scribed in section 3.2 as a baseline for aspect name
generation.

(4) DS-BART-Name-Generation: We train the
state-of-the-art conditional language generation
model, BART (Lewis et al., 2019) with our dis-
tant supervision strategy as a baseline for aspect
name generation model.

(5) DS-T5-Name-Generation: This is our pro-
posed final aspect name generation model as de-
scribed in section 3.3 using TS5 (Raffel et al.,
2019).

4.2 Experimental Setup

We use the sentence-transformers 2, Hugging-

Face 3 and Pytorch * libraries to train our reviews
phrase embedding model. Training was done on a
single Nvidia V100 GPU. Batch size was set to be
16. Learning rate was set to be 2X 1079 with 10%
of total training iterations as warmup steps and a
linear decay schedule. We used the ADAM opti-
mizer with parameters (betal: 0.9, beta2: 0.999,
epsilon: 107®). We train the phrase embedding
model for 10 epochs. We use the python SKLearn
library for agglomerative clustering. For DS-
Clustering, we used a cosine distance margin of
0.5. For the baseline SBERT-STS-Clustering, we
use the SBERT-STS model for phrase embedding
and the agglomerative clustering threshold was set
to 0.2. We train the TS5 model using HuggingFace
and Pytorch libraries for our aspect name gen-
eration model, DS-T5-Name-Generation. Batch
size was set to be 2. Learning rate was set to be
5X107%. We used the ADAM optimizer with pa-
rameters (betal: 0.9, beta2: 0.999, epsilon: 1079).
We train DS-T5-Name-Generation for 3 epochs.
For our BART based baseline training, we set
batch size to be 2, learning rate to be 5X107%.
The baseline was trained for 3 epochs. All the
heuristic thresholds described in section 3 were
hand-tuned experimentally.

4.3 Results

Dataset: To evaluate the proposed framework
at scale, we collect customer reviews and return
comments of a random sample of 1500 products

https://www.sbert.net
3https://huggingface.co
*https://pytorch.org



of a popular e-commerce service. The total num-
ber of reviews and return comments were around
40 million. These 40 million reviews/comments
were broken down into review phrases. The re-
view phrases were on an average 5.5 words long.
Language of the corpus is a mix of English and
common vernacular languages in India e.g. Hindi.
Some phrases have mix-coded tokens from En-
glish and Hindi Language. A sentiment model was
applied to remove the neutral phrases, resulting in
33 million phrases. Neutral phrases were removed
in this exercise, as the intention was to understand
the likes and dislikes of a customer for the product.
Our goal is to cluster these phrases into coherent
aspect groups and subsequently generate human
readable names for these clusters.

Phrase Clustering: To evaluate aspect cluster
quality, we use the popular Silhouette Score. In-
tuitively, it measures the closeness of samples to
its own cluster as compared to other clusters. Sil-
houette Score computation doesn’t require ground
truth labels and consequently can be computed at
scale. We also did a human annotation driven eval-
vation. We define the following two metrics: (i)
intra-cluster accuracy: probability that a pair ran-
domly selected from a cluster refers to the same
aspect, and (ii) inter-cluster accuracy: probability
that a pair randomly selected from different clus-
ters refers to different aspects. We generate a ran-
dom sample of intra-cluster phrase pairs and inter-
cluster phrase pairs from the output of the DS-
clustering and the baseline methods. The annota-
tion team marked each pair as similar (pair belongs
to same aspect) or dissimilar (pair belongs to dif-
ferent aspects). We estimate intra-cluster accuracy
as the fraction of intra-cluster sampled pairs that
were similar. Similarly, we estimate inter-cluster
accuracy as the fraction of inter-cluster sampled
pairs that were dissimilar. We report the cluster-
ing metrics in Table 2. Table 3 shows qualitative
examples of clustering.

Table 2: Comparison of aspect clustering methods.
Method A: SBER-STS-Clustering, B: DS-Clustering
w/o MLM, C: DS-Clustering

A B C
Silhouette Score 0.33 | 0.52 | 0.54
intra-cluster accuracy | 0.88 | 0.88 | 0.91
inter-cluster accuracy | 0.90 | 0.98 | 0.98

We see from table 2 that DS-Clustering im-
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Table 3: Example review phrases that are correctly
clustered by DS-Clustering inspite of presence of
spelled errors(isound) and code mixing (paisa vasool
translates to value for money). Baseline fails to cluster
these.

Cluster Name
sound quality
value for money
value for money

Review Phrase

isound quality is amazing
fully paisa vasool.
truly value for each paisa spent

proves over all baselines across all metrics. DS-
Clustering improves by upto 64% over the base-
lines on Silhouette Score. On annotation driven
inter/intra cluster accuracy, DS-Clustering is able
to improve by upto 9%. DS-Clustering is able to
improve over the baselines as our distantly super-
vised text embedding model is able to capture the
unique language characteristics of e-commerce re-
views where the general purpose text embedding
models such as SBERT-STS fail to generalize. Ex-
amples of such cases are shown in table 3.
Aspect Name Generation: The name genera-
tion models in section 4.1 generate cluster names,
which are on an average 2.7 words long. We mea-
sure the quality of the generated names by annotat-
ing 53K clusters generated by DS-Clustering. The
annotation team reviewed sample phrases from
each cluster and created a name that best de-
scribed the aspect of the cluster as per their judge-
ment. We treat this as ground truth and eval-
uvate how close is the name generated via our
model and the baselines to the ground truth. We
measure closeness using ROUGE-F scores. The
summary of metrics can be seen in table 4.
We see that DS-T5-Name-Generation model out-

Table 4: Comparison of aspect name generation meth-
ods. Method A: Heuristic-Name-Generation, B: DS-
BART-Name-Generation, C: DS-T5-Name-Generation

A B C
ROUGE-1-F score | 0.70 | 0.71 | 0.79
ROUGE-2-F score | 0.46 | 0.47 | 0.63
ROUGE-L-F score | 0.68 | 0.71 | 0.79

performs both the Heuristic-Name-Generation as
well as the DS-BART-Name-Generation models
in all metrics showing that our model generates
names that are most similar to that of human
annotation team. Consequently, DS-T5-Name-
Generation is able to generate human readable
names using our novel distant supervision tech-



nique. DS-T5-Name-Generation is able to im-
prove by 37% over Heuristic-Name-Generation on
ROGUE-2 score even though distant-supervision
was created through similar heuristics. This shows
that the transfer learning capabilities of T5 com-
bined with our heuristics based distant supervision
results in a robust conditional NLG model with-
out any manual labeling. Additionally, we ana-
lyzed cases where DS-T5-Name-Generation gen-
erated different names when compared to anno-
tated names (i.e. ROUGE-L = 0) in table 5. Our
model is able to perform well even in these cases.
The ROUGE-L score is O as there is no word over-
lap, however, the generated names are semanti-
cally similar to the annotated names showing the
semantic language understanding capabilities of
our TS based sequence to sequence model. In ta-
ble 5, we report such examples. In the first exam-
ple, a spelling error (“dimesions”) in human an-
notation is leading to a Rouge score of 0, whereas
our naming model generates names with correct
spelling. In the second example, both the names
are semantically similar.

Table 5: Examples where model generated names do
not match annotated names. A: DS-T5-Naming. B:
Manual Annotation

Cluster Phrases A B

[’the dimensions too

are incorrect’,’dimen- wrong inaccurate

sions not appropriate dimensions | dimesions

for my usage’]
’creating pain in foot’, .

,[ P ., | hurts the Getting
hurts feet on walking’, .

. . K feet foot pain
itspainful for foot’]

5 Conclusion

In this paper we presented a practical aspect clus-
tering and naming framework for e-commerce re-
views. Our models leverage distant supervision
thereby avoiding the need of manually labeled
data. Extensive evaluations show improvement in
clustering by 64% and naming by 16%. Survey
results in appendix show that the approach gener-
ates more interpretable aspects when compared to
an existing e-commerce baseline. We hypothesize
that our novel distant supervision paradigm is gen-
eralizable across domains and in future we wish
to explore the application of our novel distant su-
pervision scheme to other domains. We also plan
to explore principled approaches to handle multi-

context phrases (phrase talking about multiple as-
pects) without needing manual annotations.
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6 Appendix

6.1 Comparison with a e-commerce baseline

We also compare the performance of our frame-
work with the existing system at a popular e-
commerce service that uses a non-negative ma-
trix factorization (NMF) based topic modeling ap-
proach > on the “document-term” matrix created
from the review corpus to extract aspects. A
sample output of the framework is shown in ta-
ble 7.The NMF based system is not able to distin-
guish semantically different aspects, resulting in
incoherent clusters. E.g. “money, refund, wastage,
value” are grouped together. Our proposed frame-
work, howerver, is able to distinguish and capture
the nuanced aspects. For example it is able to cap-
ture “value for money” as a separate aspect.

We use a human annotation driven approach to
compare our proposed framework with the exist-
ing baseline. For each product type we get the
aspect names generated by the topic modeling ap-
proach as well as our proposed framework. In each
solution, for each aspect, we asked 3 “yes/no”
questions to the annotation team.

(1) Does this aspect name describe the aspect of a
product?

Details can’t be disclosed due to proprietary information



Table 6: User Responses to Survey. Improvement in Favorable Response quantifies how many more favorable
responses were received for the DS-clustering + DS Naming framework as compared to the NMF framework.

Questions Asked Improvement in Favorable
Response

(a) Does this aspect name describe the aspect of a product? +34.78%

(b) Is the supplementary information helping in understanding
+42.72%

the aspect better?

(©) D9e§ this help in knowing more about the customer likes 442909

and dislikes?

(2) Is the supplementary information helping in
understanding the aspect better?

(3) Does this help in knowing more about the cus-
tomer likes and dislikes?

The results of the survey is summarized in table 6.
In the table, the “term” aspect refers to a cluster of
reviews. “Aspect Name” refers to the name given
to the cluster. “Supplementary Information” are
the additional information given along with clus-
ter and cluster name. In the case of DS-Clustering,
they are a sample of review phrases belonging to
the cluster. In the case of NMF Based Topic Mod-
eling, they are the additional words obtained with
each topic words. We can see the annotation team
found our proposed framework to be significantly
more helpful the topic modeling based baseline.
Sample output of DS-Clustering + DS-T5-Name-
generation is shown in table 1.

Table 7: Results NMF Based topic modeling on re-
views of headphones

related words

left, suddenly, 10, usage,
earpiece, working, 15,
warranty, function

aspect name

stopped

value, waste, completely,
spend, wastage, spent,
want, refund, definitely
fine, left, speaker,
button, perfectly,
microphone, touch, 15,
device

clarity, clear, balanced,
base, effect, loud,
output, average, quality
mids, 10, meters, quite,
frequency, audio,
available, 500

backup, hours, hrs,

10, long, drains,

upto, performance,
continuously

money

working

sound

range

battery
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Abstract

In production SLU systems, new training data
becomes available with time so that ML mod-
els need to be updated on a regular basis.
Specifically, releasing new features adds new
classes of data while the old data remains
constant. However, retraining the full model
each time from scratch is computationally ex-
pensive. To address this problem, we pro-
pose to consider production releases from the
curriculum learning perspective and to adapt
the local-to-global learning (LGL) schedule
(Cheng et al., 2019) for a neural model that
starts with fewer output classes and adds more
classes with each iteration.

We report experiments for the tasks of intent
classification and slot filling in the context of a
production voice-assistant. First, we apply the
original LGL schedule on our data and then
adapt LGL to the production setting where the
full data is not available at initial training it-
erations. We demonstrate that our method im-
proves model error rates by -7.3% and saves up
to 25% training time for individual iterations.

1 Introduction

In many real-world NLP systems with ML models,
new data becomes available with time and there is
a need to refresh the model (Diethe et al., 2018).
In some cases it is a passive flow, when new data
arrives due to the properties of the application (e.g.
daily search queries) or an active act of collecting
new data to be incorporated into the system (e.g.
a new feature). In this paper, we regard the use
case of an active extension of data to incorporate
a new customer-facing feature into a production
NLP model. We consider a Spoken Language Un-
derstanding (SLU) model that is used to interpret
user requests in a commercial task-oriented voice-
assistant. The model is a joint intent classification
(IC) and slot filling (SF) architecture that is used to

process utterances in a single domain.! We select
one data-rich domain for our experiments, Music,
and construct a scenario when an existing IC+SF
model is extended with a new user-facing feature
that comprises a set of intents and slots to be now
recognized by the model.

It is conventional to re-train the original ML
model on a combination of the old training data
and the additional data for the new feature, starting
from the same randomly initialized or pre-trained
architecture as the previous time. The practitioners
tend to use pre-trained models (language modeling
and transfer learning are widely used here) to im-
prove the generalization performance of the model.
It seems logical also to re-use the previous iteration
of the model trained on the old data in the previous
model release to warm-start the next iteration. This
could result in a reduced training time and a smaller
computational and environmental footprint of the
model updates in a scenario where new features
are added regularly. Yet, in practice it is usually
considered ‘safer’ to start training from scratch or
from the same general-purpose pre-trained model
every time, the main concern being that repeated
warm-starting would lead to overfitting and poorer
generalization (Ash and Adams, 2020).

Re-training the same model architecture on
nearly the same data with minimal changes, but
extending the output space with a new class is a
unique problem for industry applications. Many
previous works on continual learning have fo-
cused on learning from a continuous stream of
data (Biesialska et al., 2020) or on an incremen-
tal learning of new tasks (Kanwatchara et al., 2021)
and languages (Castellucci et al., 2021). Payan
et al. (2021) discuss a single-task continual learn-
ing setup and simulated a passive data extension

'Intent classification model determines the intent class the
query belongs to (e.g., PlayMusic) and slot filling is respon-
sible for identifying slot instances in the query (e.g., Song-
Name).
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scenario where new examples are coming in for
all output classes on a public dataset. Similarly,
Ash and Adams (2020) evaluate a batch-learning
setup, where each model iteration is warm-started
from the previous step and the whole training data
is always available, while some new data is added
across all output classes in each batch. In our sce-
nario, we consider active data extension for new
features and we do not restrict the access to the
old training data. We rely on an offline training
paradigm, where each model release is trained on
the latest batch of data until convergence.

If each release adds data for new features with
the old data being constant, we can view a sequence
of model releases as a subclass of curriculum learn-
ing, a machine learning paradigm that aims to ar-
range training data into a meaningful order to im-
prove model training. In our scenario, the data is
arranged by feature. Cheng et al. (2019) describe a
local-to-global learning (LGL) schedule for a statis-
tical model that starts with fewer output classes and
adds more classes with each iteration. We build
upon their results in our work, but remove their
assumption that the whole data is available in the
first iteration.

In this paper, we repeatedly apply a warm-start
for training a set of subsequent IC+SF model re-
leases, each one being extended with a new set of
features. We define a single feature as a set of new
intents and slots to be recognized by the model
that are added to the output space. We focus on a
real-life production setting and report results on a
dataset sampled from a commercial German voice
assistant.Z As our main contribution, we show that
warm-start is an effective strategy to reduce training
time for later model releases and improve overall
model performance in a scenario when the added
training data pertains to new features only.

2 Related work

2.1 Spoken language understanding

Recent research in the field of SLU has made sig-
nificant advancements through the application of
deep learning (Mesnil et al., 2013) and the joint
modeling of IC and SF (Zhang and Wang, 2016;
Chen et al., 2019; Louvan and Magnini, 2020).
Semi-supervised learning and paraphrasing are fre-
quently applied to bootstrap new features, over-
come the class imbalance problem and improve

The data was de-identified prior to the experiment so that
any user identifiable information was removed.

the overall SLU performance (Cho et al., 2019;
Sokolov and Filimonov, 2020). These methods
often rely on the assumption that the number of
classes is static, while in a real production SLU
system, new classes are added on a regular basis,
affecting the target data distribution. In contrast,
in this work, we propose to focus on the learn-
ing schedule of a model that benefits directly from
the increasing number of classes and thus can be
adapted to the real-world scenario, where new fea-
tures are added to the system iteratively.

2.2 Local-to-global learning schedule

The main idea of local-to-global learning (LGL)
schedule used in this work is to gradually train a
neural network starting with a few output classes
and subsequently extending to more classes. It was
first introduced in the work of Cheng et al. (2019),
who applied it to a computer vision problem. LGL
does not require any additional annotated training
data, instead it utilises the entire training set in each
iteration, but only the data for the classes that are
being learned in this iteration is annotated. The
data for the rest of the classes is added masked
(unlabeled). In each LGL iteration, a set of new
classes is added and the model weights are trans-
ferred from the previous iteration (see Figure 1).

Cheng et al. (2019) compare the LGL schedule
to other curriculum learning and self-paced learn-
ing strategies. A typical curriculum learning ap-
proach relies on prior knowledge about the data
to define a training schedule, such as, for exam-
ple, the input length (Tay et al., 2019). Self-paced
learning alleviates the requirement for prior knowl-
edge by assigning a weight to each training sam-
ple based on model’s loss (Kumar et al., 2010).
Yet, it introduces additional model passes to com-
pute the per-sample loss during training and makes
self-paced learning approaches challenging to opti-
mize (Cheng et al., 2019). LGL defines a learning
schedule based on the target output classes, by fo-
cusing the early stages of training only on a subset
of classes. We propose to view feature expansion
in a production SLU system as a special case of
curriculum learning akin to LGL.

LGL can be also considered a form of a task
specific pre-training strategy or transfer learning.
Numerous transfer learning strategies were sug-
gested for NLP problems (Ruder et al., 2019) and
a complete overview is beyond the scope of our
work. In that view, the final stage of LGL train-
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Figure 1: Local-to-Global model training set-up with 3 label batches (3 features) and hence 3 training iterations.

ing with complete annotations would correspond
to the usual fine-tuning step. The preceding stages
with a subset of classes are pre-finetuning steps,
where pre-training is done repeatedly on the same
task and with a reduced number of classes. The
task-adaptive pre-training approach (Gururangan
et al., 2020) uses a similar task to the target task
to pre-train the model with a task-specific objec-
tive. Pruksachatkun et al. (2020) combine language
model pre-training with task-specific pre-training
and fine-tuning on the target task to test 110 pre-
training task combinations. They conclude that it is
still hard to predict, which task would be the most
optimal for pre-training. From this perspective,
LGL does not have this problem, as it pre-trains on
the same task and the same dataset.

A sample LGL training set-up with 3 label
batches and 3 training iterations is illustrated in
Figure 1. In the first iteration the model is initial-
ized from a pre-trained LM and the first batch of
labels are unmasked in the training data, while the
rest of data is left masked. In the next iteration, the
embeddings and the encoder are initialized from
the embeddings and the encoder of the previous
iteration model. The second batch of labels is un-
masked. In the final iteration, the embeddings and
the encoder are initialized from the embeddings and
the encoder of the second iteration model, while
all three label batches are unmasked. After the last
iteration the final model is exported and applied on

the test set.’

In this work, we focus on applying LGL in a pro-
duction SLU setup, where new models are released
and new classes are added regularly. The exper-
imental setup of Cheng et al. (2019) focuses on
improving the final model performance on the full
dataset and includes full (partially-masked) train-
ing data at each iteration. We first apply LGL to
our internal data from a production SLU system.
Second, to simulate a real-life situation, we mod-
ify this setup and conduct experiments where the
data for new classes is not available at the early
model training iterations. In Figure 1, this would
correspond to not using the masked data batches.

3 Experimental setup

3.1 Dataset

We use a dataset sampled from a commercial Ger-
man SLU system. The data was de-identified prior
to the experiment (so that any user identifiable in-
formation was removed), and subsequently anno-
tated across domains, intents and slots. For our ex-
periment, we have selected Music domain, which
contains mutually exclusive classes (intents), such
as PlayRadio or FindSoundtrack. The evaluation
set comes from the same distribution and was anno-
tated in the same way. The distribution of relative
frequencies of intents is typically a heavily skewed
one; in the case of LGL, that can result in a large

3See Appendix A for an extended definition of LGL.
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fraction of the annotated data being masked all at
once. However, the main motivation behind LGL
is that it is easier to learn fewer classes, while the
amount of training data per class may vary (Cheng
et al., 2019).

3.2 Model

We use an SLU architecture based on BERT for
all of our experiments. Architectures based on pre-
trained transformers have recently demonstrated
the strongest performance on SLU tasks (Chen
et al., 2019; Gaspers et al., 2020; Weld et al., 2021).
The model consists of a pre-trained BERT encoder
and an intent and slot decoders. The BERT en-
coder’s outputs at sentence and token level are used
as inputs for the intent and slot decoders, respec-
tively. The intent decoder is a feed-forward net-
work consisting of two dense layers and a softmax
layer on top. The slot decoder uses a CRF layer on
top of two dense layers to leverage the sequential
information of slot labels. During training the IC
and SL objectives are jointly optimized.

3.3 Maetrics

We report results with two common metrics used
in production SLU: intent classification error rate
(ICER) and semantic error rate (SEMER). Both
metrics are Recall-based, as they are computing
the error rate with respect to the ground-truth do-
main (annotated manually by language experts).
ICER is the ratio of incorrect intents to the total
number of utterances (and we will mainly rely on
this evaluation metric further for intent classifica-
tion):

(# incorrect intents)

ICER = . 1
(# total utterances) M

SEMER considers both intent classification and
slot classification together. SEMER allows us to
measure the effect of improved intent classification
on the overall joint model performance. It is com-
puted based on the number of insertions, deletions
and substitutions for slots and the intent in a recog-
nised utterance compared to a reference utterance:

(# slot errors + intent errors)

SEMER = (2)

(# reference slots + intents)

4 Results

First, we study the impact of an unmodified LGL
method on model training (4.1, 4.2), splitting our
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Figure 2: Masked data distribution per iteration (% of
the full dataset) for random and gradual orderings in
LGL for IC experiment. The last iteration (the 5th or
the 10th) contains always only unmasked data.

ordering, # of batches

Metric r,5) (g5 (@ 10)
SEMER -2.61 -198 -2.50
ICER -3.39 234 9.1

Table 1: Evaluation results for LGL applied to IC. The
relative difference is with respect to baseline model
that does not use any form of LGL or other curriculum
learning.

training data into several batches and masking parts
of the data as described in Section 2. The batches
are split per intent, with each batch containing sev-
eral classes. We train the model in several itera-
tions, gradually unmasking the data. Second, we
adapt LGL to SLU production scenario and con-
duct experiments where the data for new classes is
not available at the early model training iterations
(4.3). In all experiments, we compare the result
against a baseline, which is the same model trained
on all classes in a single iteration.

4.1 LGL for intent classification

In the first experiment, we apply LGL to intent clas-
sification, i.e. only masking intent labels. Specifi-
cally, we replace all intent labels in masked batches
by a placeholder (Otherlntent). We randomly
group classes in the dataset into 5 and 10 batches
for LGL training, so that each batch contains 5 to 6
intents (we include masked data statistics per batch
in Figure 2). To account for the unbalanced class
distribution in the dataset, we evaluate two strate-
gies for selecting the order of batches for LGL:

* Random order (r). We select the order ran-
domly, which results in 66% of the annotated
data being included in the first iteration.

* Gradual order (g). We select batches based
on the corresponding data size, starting with
the smallest one. In that scenario, the first 4
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Figure 3: Evaluation results for LGL applied to NER
and IC tasks (relative difference). The relative differ-
ence is with respect to the baseline model that does not
use any form of LGL or other curriculum learning.

iterations include 33% of the annotated data,
while the largest classes are added in the last
iteration.

The results of the experiments on a real-life Mu-
sic dataset are presented in Table 1. We can see
that the experimental models trained using LGL
outperform the baseline across all metrics, which
confirms the results first obtianed in Cheng et al.
(2019). For the ICER metric, our best model (LGL
(r, 10)) improves the error rate by -9.11% compared
to the baseline. We conclude that the increasing
number of batches has a positive impact on the
LGL performance here, as the model trained on 10
batches outperforms the same model trained on 5
batches by 5.72%. The improvement in SEMER
is smaller, which is expected as we apply LGL to
intent classification only (i.e., the dataset was split
into batches based on intents only, and all slots
were left unmasked).

The selection strategy (r vs. g) has a substan-
tial impact on the model performance. The model
trained on a random selection of the training classes
performs better on both SEMER and ICER metrics
than the same model trained on the sets of classes
selected gradually (cf. (r, 5) vs. (g, 5) in Table 1).
Therefore, we only use the random ordering in the
other experiments.

We also experiment with LGL approach without
resetting the learning rate. In the current model, we
used learning rate scheduler to control the learning
rate using the specified steps, where the first step
reset the learning rate to O for each model iteration.
However, since the encoder is initialised from the
encoder of the previous model starting from the
second iteration, we experimented with keeping the
learning rate multiplier constant (0.1) for that and
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Figure 4: Data distribution per run and iteration (% of
the full dataset; the last iteration always contains 100%
of the data). Each run represents a different feature
grouping and order.

all subsequent iterations. The results with respect
to the (LGL (r, 5)) approach show only marginal
improvement (avg. -0.27 rel. improvement over
ICER and SEMER), therefore we conclude that
resetting the learning rate does not have significant
impact on the LGL training.

4.2 LGL for NER and IC

In this experiment, we apply masking to both intent
and slot labels, splitting the training dataset into
3, 5 and 10 batches to further study the impact
of the batch size*. In addition to intent masking
(described in 4.1), slot masking is done as follows:
madonnalArtistName -> madonnal OtherSlot.

The results for the Music domain are visual-
ized in Figure 3. As one can see, the best result
is achieved when selecting a middle number of
batches (between 3 and 5), while a very large num-
ber of batches (10) potentially overfits the model.
This result differs from the LGL result on IC only
(where using 10 batches is superior to using 5 on
ICER metric) potentially due to a much larger num-
ber of slots that are left masked.

4.3 Gradually adding new features

Having applied LGL to the task of IC and NER, we
showed that it is able to improve IC performance
by -9.1% relative ICER and -2.5% relative SEMER.
However, the downside of LGL for production SLU
setup is the increased number of training iterations,
which is associated with additional computational
cost. In addition, in a real-life scenario, the data
for new classes only becomes available with time.
Therefore, in the following experiments, we modify
the original LGL setup and conduct experiments
where the data for new classes is added gradually
within several iterations. Note that we select this
setup to account for a production scenario when a

*We do not include data statistics here for space reasons.
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Figure 5: Average training time per LGL iteration com-
pared to the baseline (note that the baseline here is the
full model trained once on all available data in each it-
eration, which represents the upper bound).

model is trained in several iterations within a fixed
release cycle (e.g., a period of several weeks); for
simplicity, we assume that after each iteration the
model is fully retrained on all data to avoid any
model drift-related effects (which are out of scope
of this work). This would also correspond to a
100% data replay strategy in continuous learning
approaches (Payan et al., 2021).

We split the Music domain dataset into 4 batches
corresponding to model releases, each one con-
taining a new set of features (another reason for
that is best result observed using 3 to 5 batches,
cf. 4.2). With each iteration, a new batch of data
(comprising several new classes and representing
a new feature) is added to the model. We experi-
ment with different feature order when grouping
the data into batches (for instance, the first run
may contain features represented by PlaySong and
PlayAlbum intents grouped together for the first
iteration, PlayRadio for the second iteration, while
the second run could have PlayAlbum as the first
iteration, and PlaySong and PlayAlbum for the sec-
ond, etc.). We do not apply any masking in this
scenario and at every step only the data for the
currently supported features is used to train the
model. The data distribution per iteration and run
is presented in Figure 4.

The results after the final iteration are presented
in Table 2 relative to a baseline that was once
trained on full data. The experimental models
trained using modified LGL setup outperform the
baseline across SEMER and ICER in 2 out of 3
cases. In the last case, LGL outperforms the base-

Run # ICER SEMER
music-1 2.2 2.3
music-2 -3.2 -2.7
music-3 2.9 -7.3

Table 2: Evaluation results for modified LGL method
per run (each run represents a different feature group-
ing and order). The relative difference is with respect
to a baseline model that does not use any form of LGL
or other curriculum learning.

line on SEMER (-7.3%), while ICER slightly in-
creases (+2.9%). This could be explained by the
different number of classes added to the model —
in the last iteration, we add 9.2% of training data,
while for other orderings, a much smaller amount
is added in the last step.

Another benefit of the modified LGL method is
that it helps reduce training time when new fea-
tures are added on top. In Fig. 5, we compare
the training time for two runs and their average to
the baseline model (we use the model trained once
on all available data as upper bound; its training
time is the same for each iteration). We see that
the average training time for each of the iterations
is less than the training time of the full model, be-
cause we use less training data in the first iterations,
and initialise the model from the previous one in
subsequent iterations. For individual iterations, we
observe up to 25% training time reduction. Overall,
we conclude that gradually adding features with
warm-starting is beneficial for production SLU, as
it helps improve model accuracy and reduces the
overall training time spent per release cycle.

5 Conclusion

We applied LGL to the tasks of intent classification
and slot filling in the context of SLU and studied
the impact of LGL on intent classification error
rate and semantic error rate. We conducted the ex-
periments using different class selection strategies
and showed that LGL improves intent classifica-
tion performance for SLU by -9.1% relative ICER,
without requiring any new training data or modified
model architecture. In addition, we adapted origi-
nal LGL setup to SLU production scenario when
new features are gradually added within fixed re-
lease cycle, and showed that it is able to improve
model accuracy by up to -7.3% relative SEMER
while reducing average training time by up to 25%
for individual iterations.

As future work, we would like to further explore
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LGL application to feature expansion problem, ap-
ply it to other domains and investigate the impact
of batch size on the model performance. In addi-
tion, we would track the impact of LGL training on
model’s generalization performance and computa-
tional cost over time.
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A Local To Global Learning

The main idea of Local to Global Learning (LGL)
algorithm used in this work is to gradually train the
neural network starting with a few output classes
and subsequently extending to more classes. In the
following, we provide a more detiled oevrview of
the method following Cheng et al. (2019).

The model training is performed in several iter-
ations. The model for each iteration is initialized
from the previous one. During each iteration, the
entire training set is used, however, the classes that
are not learned during that specific iteration are
masked. Thus, the model is learned on a fraction
of classes from the complete output space of the
training set, while the whole dataset is still exposed.
As compared to traditional model learning, the loss
function is not minimized across all classes simul-
taneously, but is minimized iteratively, each time
learning a new set of classes in addition to the al-
ready known classes. At each step, a set of new
classes is added to the training setup by unmasking
them in the dataset and the model is trained until
convergence. Mathematically, it can be expressed
as (we refer to (Cheng et al., 2019) for details):

wlt = arg minL(w7 XSka ng; QU*k:fl)
w

s.t.a* = f(wa ng,l’YSE,l;wZ’_l)’
S =81 U {’L*},

where L is the loss function and w* are the
model weight produced by minimizing L. The
dataset contains pairs of samples and class anno-
tations G = {X,Y'}, where K = {1,2,..., K} is
a set of available output class labels. The classes
are grouped into IV batches of equal size and af-
ter each training iteration, one batch ¢x is added.
Sy, is the set of classes from K that is used in the
k-th step. Xg, ,Ys, is the data, which labels are
in .S, and S/?,l is the set of classes not in Si_1.
The selection strategy is represented by the func-
tion f, which defines how a new batch of classes is
selected from the untrained classes.

The set of classes at the current iterations Sy, is
unmasked in the dataset during the training, while
the yet unavailable classes Sg_l are masked with
a placeholder label, but the corresponding data in-
stances X s are kept in the training data. Hence,
the full data set GG is used for training at every
iteration. After the model is learned on the first
batch, its encoder is used to initialize the encoder
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for the next training step. Thereby, the final model
is learned iteratively through several training runs
with an increasing number of output classes. The
encoder part of the model is carried further with ev-
ery iteration and the output layers are re-initialized
each time to account for changing output space.
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Abstract

Pre-trained language models (PLMs) have dra-
matically improved performance for many nat-
ural language processing (NLP) tasks in do-
mains such as finance and healthcare. However,
the application of PLMs in the domain of com-
merce, especially marketing and advertising,
remains less studied. In this work, we adapt pre-
training methods to the domain of commerce,
by proposing CULG, a large-scale commercial
universal language generation model which is
pre-trained on a corpus drawn from 10 markets
across 7 languages. We propose 4 commercial
generation tasks and a two-stage training strat-
egy for pre-training, and demonstrate that the
proposed strategy yields performance improve-
ments on three generation tasks as compared
to single-stage pre-training. Extensive experi-
ments show that our model outperforms other
models by a large margin on commercial gen-
eration tasks.

1 Introduction

Pre-trained language models (PLMs) have achieved
impressive success in many NLP tasks across nat-
ural language understanding (NLU) and natural
language generation (NLG) (Devlin et al., 2019;
Yang et al., 2019; Liu et al., 2019; Lewis et al.,
2020; Brown et al., 2020; Raffel et al., 2020; He
et al., 2020). These successes are usually achieved
by pre-training models on large corpora in a task-
independent way, and fine-tuning them on a spe-
cific downstream task. Researchers have also de-
veloped PLMs for specific domains or multiple
languages by conducting either pre-training from
scratch (Huang et al., 2019; Liu et al., 2020; Xue
etal., 2021) or a second phase of pre-training on the
basis of existing checkpoints (Howard and Ruder,
2018; Lee et al., 2020; Gururangan et al., 2020).
However, PLMs in the domain of commerce, espe-
cially for marketing and advertising, remain less

*Equal contribution

studied. On the one hand, adapting PLMs to the
advertising domain is challenging because existing
pre-training methods usually use open-domain cor-
pora containing largely well-structured text such as
books (Zhu et al., 2015), news (Liu et al., 2019),
stories (Trinh and Le, 2018), or web text (Radford
et al., 2019a) to learn text representations. How-
ever, the input text for selecting advertisements is
primarily web search queries, which are usually
not complete, grammatical sentences. On the other
hand, there is no publicly-available PLM in the
commercial domain.

This paper introduces Commercial Universal
Language Generation model (CULG), which sup-
ports multi-lingual, multi-market, and multi-task
ad generation. CULG adopts a transformer-based
(Vaswani et al., 2017) encoder—decoder generative
framework similar to ProphetNet (Qi et al., 2020),
which uses an n-stream self-attention mechanism
and supports future n-gram prediction. To adapt to
diverse markets, we use the multi-lingual version
of ProphetNet — ProphetNet-X (Qi et al., 2021) as
our foundation model, and conduct a second phase
of pre-training using a self-constructed large-scale
commercial corpus.

CULG is trained auto-regressively on four
sequence-to-sequence (seq2seq) generation tasks,
including: (1) Generate Keywords with the Same
intent as the query (GKS); (2) Generate Keywords
that are Relevant to a query (GKR); (3) Generate an
Ad Title based on a query (GAT); and (4) Generate
an Ad Description based on a query (GAD). The
motivation of these tasks is to infer the user’s inten-
tion based on the query as well as perform product
matching and recommendation. All queries used in
this research are real-life search queries that have
been submitted to the Bing' search engine, and
the ground truth targets are created according to
either the records of user’s click behaviour or labels
from hired human annotators. We collected more

"https://www.bing.com
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than ten million queries from 10 markets in 7 lan-
guages, and split them into three classes according
to data quality. Given the user query, the gold class
is ads that were deemed as relevant to the query
by human judges, the silver class is made up of
ads clicked on by users, and the bronze class is all
ads that been selected by search engine to show
to users. Splitting the data into different markets,
tasks, and quality classes provides us with flexi-
bility to compare the model’s performance under
different training setups.

Given that the collected data varies in quality, we
split both the pre-training and fine-tuning into two
stages, using low-quality data in the first stage and
high-quality in the second stage. To demonstrate
the effectiveness of this approach, we compare it
with alternative combinations of pre-training and
fine-tuning. We evaluate CULG on three commer-
cial generation tasks. Experimental results show
that splitting pre-training and fine-tuning into two
stages not only outperforms the widely-used single-
stage pre-train and fine-tune schema, but is also
better than other combinations of pre-training and
fine-tuning. We further compare CULG with ex-
isting pre-trained multi-lingual models (Liu et al.,
2020; Qi et al., 2021) and show that it surpasses
other models on commercial generation tasks. Fi-
nally, we conduct transfer learning experiments
on different markets, languages, and tasks by fine-
tuning CULG on a market, language, and task that
has not been seen during pre-training. The results
demonstrate that CLUG also generalizes well to
unseen markets, languages, and tasks.

2 Approach

2.1 Model Architecture

CULG adopts the architecture of ProphetNet,
an encoder—decoder language generation model
with n-stream self-attention mechanism and fu-
ture n-gram prediction. Instead of optimizing one-
step-ahead prediction as with most sequence-to-
sequence models, future n-gram prediction aims to
prevent overfitting on strong local correlations by
simultaneously predicting the next n tokens.

The ProphetNet encoder uses stacked trans-
former layers with multi-head self-attention, and
the decoder uses stacked multi-head multi-stream
self-attention layers to enable n-gram prediction.
Given the input sequence x = (1, x2, ..., 1) and
output sequence y = (y1,%Y2,...,ynr), Prophet-
Net implements future n-gram prediction by re-

Code Language \ Code Country
De German Au Australia
En English Ca Canada
Es Spanish Ch Switzerland
Fr French De Germany
It Italian Es Spain
N1 Dutch Fr France
Sv Swedish Gb United Kingdom
It Italy
NI Netherlands
Se Sweden

Table 1: Languages and countries contained in our cor-
pus. Throughout this paper, we refer to languages and
country names with their ISO codes.

placing the auto-regressive predicting dependency
relationship p(y:|y<i, z) with p(yet4n—1|y<t, ).
In detail, it first obtains the encoded sequence
representation H.,. from stacked encoder lay-
ers, where H.,. = Encoder(zy,zo,...,z1).
Then the decoder predicts n future tokens simul-
taneously as p(yely<t, ), - P(Ytsn—1]y<so)
Decoder(y<¢, Hepe), Where n probabilities are
generated at each time step and the probability
P(Yt+i|ly<t, ) is generated by the i-th predicting
stream. The future n-gram prediction objective can
be formalized as:

n—1 M—j
L=— Z aj - (Z log pe(yt+j|y<t,$)>
7=0

t=1
M
=—ag- (Z log po(yely<t, 95))
t=1
language modeling loss
n—1 M—j
=) oy (Z log pe(yt+j|y<t,:r)> )]
j=1 t=1

future n-gram loss

The details of ProphetNet can be found in Qi et al.
(2020).

2.2 Data Collection

The corpus was collected from 10 markets across
7 languages (Table 1), where a “market” refers
to queries issued from a country in a specific
language (and is represented as Language—
Country in the remainder of the paper), and
the corresponding ads and product information.
For each market, three types of data were collected:

Impressed Given a user query, a collection of ads
is chosen from the full ads corpus by the Bing
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Market | GKS ‘

GKR

| GAT/GAD |

Total
| Bronze Silver Gold | Bronze Silver Gold | Bronze Silver Gold |

De-Ch 1,129K 140K 2K 15,288K 812K 91K 3,033K 332K 67K 20,898K
De-De 8,847K  2,096K 97K | 135,835K  14,000K 413K | 18,625K 4,122K  1,711K | 185,751K
En-Au 1,992K 383K 75K 25,768K 2,078K 356K 2,820K 580K 1,437K 35,494K
En-Ca 3,412K 586K 58K 24,324K 2,117K 410K 3,081K 640K 619K 35,251K
En-Gb 8,803K 1,741K 137K 89,385K 7,819K 480K | 12,416K 2,520K  2,084K | 125,389K
Es—Es 1,387K 255K 15K 73,747K 3,792K 103K | 11,858K 1,084K 71K 92,317K
Fr-Fr 5,114K  1,259K 105K | 102,538K 11,000K 392K | 13,239K 2,891K  1,493K | 138,035K
Tt-It 831K 148K 2K 49,352K 2,596K 72K 8,664K 879K 51K 62,600K
NI-NI 1,389K 301K 2K 55,619K 3,704K 93K 9,268K 1,177K 77K 71,633K
Sv-Se 409K 88K 2K 11,732K 982K 81K 2,888K 431K 88K 16,703K
Total 33,318K  7,002K 498K | 583,593K 48,414K 2,496K | 85,897K 14,661K 7,702K | 783,585K

Table 2: Statistics of source—target pairs in the CULG corpus partitioned by task, quality, and market.

_ |ph0"e |Q 5
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_ |_Samsunq Galaxy S21 FE | Available Jan. 11th I
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Styles: Phantom Black, Phantom Silver, Phantom Titanium, Phantom Navy
4.5/5 Yedodeded: (5,457 reviey
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phone info $x.xx $x.xx

Figure 1: An illustration of a user query, ad title, ad
description, and bidded keyword.

search engine and shown to the user. This decision
process is aimed at maximizing the combined util-
ity of users, advertisers, and publishers by taking
the query—ad relevance, bidding, and marketplace
policy into account. We collect the pairs of im-
pressed ads and user queries in 2020 based on the
system log, and treat them as bronze quality data.
Figure 1 provides an example user query, ad title,
ad description, and bidded keyword.
Clicked Among those ads impressed to users, some
attract the attention of users and are clicked on for
more details. We collect all these clicked ads from
the impressed set, and treat them as silver quality
data.
Labeled We developed detailed guidelines to mea-
sure the relevance between queries and keywords,
queries and ads (including the ad title, ad descrip-
tion, and displayed URL). We hired and trained a
team of judges to measure the quality of keywords
and ads, sampling data from the “impressed” data
above based on our annotation budget. Those in-
stances that are labeled as “Good” are treated as
gold quality data.

Table 2 presents the statistics of the CULG cor-
pus. From the data quality perspective, we can see
the bronze impressed data is much larger than the

silver clicked data, which is in turn larger than the
gold labeled data for each market and task. From
the perspective of different tasks, the task of GKR
contains more data than GKS and GAT/GAD (see
below for task details).

2.3 Tasks

We propose four generation tasks for CULG pre-
training. Detailed task descriptions are given below,
and examples are provided in Table 3.

Query to keywords with exactly the same in-
tent (GKS): Given a user query, generate a list of
keywords that have exactly the same intent as the
source query. Such a situation usually occurs when
advertisers have a clear targeted audience, judging
from the search queries.

Query to keywords that are relevant (GKR):
Given a user query, generate a list of keywords
that is relevant to the query but don’t necessarily
have exactly the same intent. This happens when
advertisers want to reach to a broader slice of users
that may be interested in their product.

Query to ad title (GAT): Given a user query, gener-
ate an ad title that is relevant to the query. For many
electronic business platforms, there are lots of prod-
ucts without ready-made ad titles and descriptions.
This task tends to automatically generate titles that
attract users.

Query to ad description (GAD): Similar to GAT,
generate an ad description that is relevant to a given
query. This task helps sellers reduce their copy-
writing workload. However, as the real product
parameters are neither collected nor embedded in
the model, we do not evaluate CULG on this task.
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Task  Source Target
sandstone sandstones
GKS  kempton park races kempton park racing
debenhams ladies clothing debenhams ladies fashions
print out boarding pass boarding pass holder
GKR  perth australia city transport  visiting perth australia
wood effect gas fire gas fire repairer prices
expedia uk Up to 80% off uk hotels - lowest hotel prices guaranteed
GAT  liverpool liverpool flights - fly to liverpool
just eat official site - just eat
expedia uk compare prices on 1000+ sites. the best way to save on your uk hotel!
GAD liverpool compare prices on liverpool flights with the edreams official website
just eat even more of your favourite restaurants are now on just eat, and just a tap away

Table 3: Examples of the four CULG tasks from the En-Gb market.

2.4 Two-stage Pre-training and Fine-tuning

The model parameters of CULG are initialized
from ProphetNet-X, which is pre-trained on the
100Gb wiki-100 corpus and 500Gb of Common-
Crawl? data. As a state-of-the-art pre-trained NLG
model, its NLU and NLG capabilities (including
open-domain multi-lingual generation) are roughly
comparable to other encoder—decoder models such
as BART (Lewis et al., 2020), GPT-3 (Brown et al.,
2020), and T5 (Raffel et al., 2020).

To adapt it to the domain of commerce, we con-
duct a second phase of pre-training on our com-
mercial corpus. Given that data varies in terms of
quality and is large in size, we propose splitting the
pre-training into two stages and training on data of
increasing quality. The same strategy is applied to
model fine-tuning. In detail, the proposed stages
are as follows:

Pre-train stage I All data including bronze, sil-
ver, and gold data from all tasks are used to train
the model. As most of the data (> 90%) used in
this stage is unlabeled, this stage of training can
be considered as unsupervised (in terms of data
labeling).

Pre-train stage II The gold data from all tasks is
used to train the model. This can be considered to
be supervised training, given that all of the gold
data has been hand-labeled.

Fine-tune stage I The generative model is fine-
tuned on task-specific bronze, silver, and gold data
from multiple markets. This stage helps the model
to capture the general features of different lan-
guages and markets.

Fine-tune stage II The model is fine-tuned on task-
and market-specific labeled data to generate high-
quality representations, and capture high-level lan-

https://commoncrawl.org/

Pre-train Fine-tune
Method Stagel StageIl Stagel Stage Il
1 v
2 v v
3 v v v
4 v v v v

Table 4: Illustration of settings of different methods.

guage and market features.

For pre-training, we argue that the unsupervised
stage helps the model to learn general text repre-
sentations, while the supervised stage improves the
quality of the learned latent representations using a
small amount of high-quality data. For fine-tuning,
general-purpose features can be learned from multi-
market and -lingual data during stage I, and specific
features can be learned during stage I1.

2.5 Training Methods

To validate the effectiveness of the proposed pre-
training and fine-tuning strategies, we create four
methods using different combinations of the pro-
posed stages in our experiments (Table 4). Method-
1 involves stage II fine-tuning only without CULG
pre-training, which means only a small amount of
market-specific labeled data is used to fine-tune
the model. This is the most commom mode of
fine-tuning after pre-training on publicly available
checkpoints. Method-2 adds stage I fine-tuning
before method-1, so that multi-lingual and multi-
market data is used to force the model to learn
general information across markets first. This is
the best that can be achieved on publicly avail-
able checkpoints. Note that both method-1 and
method-2 use task-specific data. Method-3 and
method-4 add pre-training stages before method-1
and method-2, respectively.
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T | | Method 1 Method 2 | Method 3 Method 4
ask ! Market
| | BLEU-3,4,AVG BLEU-3,4,AVG | BLEU-3,4,AVG BLEU-3, 4, AVG
De-Ch 6.18 0.00 12.15 | 21.91 9.32 32.74 | 21.28 9.10 31.41 | 2440 10.98 34.53
De-De 2738 2222 3558 | 3373 2898 4098 | 32.12 2790 39.59 | 3494 3021 42.08
En-Au 3426 2583 4294 | 40.01 32.19 47.81 | 38.97 30.89 46.81 | 41.27 33.62 48.92
En-Gb 32.28 24.17 40.83 | 37.83 30.46 4582 | 36.28 28.48 4436 | 38.67 31.03 46.55
GKS Es-Es 31.88 2453 39.78 | 50.65 45.60 5528 | 46.99 43.12 5190 | 52.36 4720 56.70
Fr-Fr 3226 25.07 40.69 | 4485 3830 51.73 | 42.12 35.63 49.13 | 45776 39.61 52.56
It-It 13.17 7.79 19.72 | 34.80 19.28 43.04 | 31.85 20.11 40.23 | 34.08 18.98 41.92
NI-NI1 6.55 0.00 1242 | 23.66 12.84 3393 | 24.15 1422 34.83 | 2497 1502 34.74
Sv-Se 6.17 0.00 11.44 | 2225 11.55 3223 | 2198 10.39 3233 | 2294 12.15 32.87
De-Ch 25.18 1856 3220 | 29.17 24.66 36.78 | 2898 2558 37.02 | 2943 25.19 37.23
De-De | 2090 16.05 27.53 | 25.07 20.11 32.05 | 23.46 18.00 3043 | 25.02 20.08 32.09
En-Au 2132 15.13 2874 | 2424 17.85 31.87 | 2408 1721 31.58 | 2496 1844 32.56
En-Gb 16.99 1245 2395 | 20.38 1598 27.55 | 19.51 1439 26.66 | 20.84 16.09 27.97
GKR Es-Es 23.17 19.28 28.89 | 27.02 22.11 3345 | 2607 21.18 3242 | 2751 2283 33.87
Fr-Fr 20.20 14.19 2690 | 23.41 17.00 3040 | 22.85 16.11 2992 | 2408 1753 31.13
Tt-It 2638 23.82 31.15 | 31.36 29.00 37.04 | 3039 29.19 36.14 | 31.84 29.54 37.62
NI-NI 9.13 2.43 20.85 | 12.36  4.30 24.66 | 12.21 4.33 2437 | 13.23 4.88 25.54
Sv-Se 20.59 1734 2885 | 25.14 2099 3348 | 2634 2196 34.00 | 25.76 19.53 33.55
De-Ch 6.20 4.02 9.18 8.05 5.86 11.04 7.30 5.10 10.30 8.34 6.14 11.31
De-De 9.05 6.50 12.02 | 11.92 9.48 15.06 | 10.92 8.41 14.10 | 12.62 10.16 15.75
En-Au 6.50 4.11 10.03 9.80 7.22 13.35 8.78 6.20 12.35 | 10.06  7.50 13.62
En-Gb 5.06 3.06 8.13 7.73 5.86 10.58 6.14 4.27 9.02 8.46 6.51 11.39
GAT Es-Es 9.69 6.84 13.64 | 13.12 10.24 1695 | 11.95 8.99 1591 | 13.85 10.95 17.67
Fr—Fr 2.96 1.30 5.62 3.45 1.63 6.41 3.31 1.50 6.23 3.62 1.76 6.58
It-It 2490 21.24 28.12 | 26.70 23.03 30.05 | 25.89 22.09 2937 | 26.91 2324 30.25
NL-NL 5.18 3.29 8.29 8.66 6.60 11.84 7.28 5.15 10.58 9.07 6.94 12.24
Sv-Se 4.28 2.40 7.64 7.27 5.36 10.47 6.39 4.48 9.62 7.76 5.72 10.98

Table 5: Main results on GKS,GKR and GAT tasks. BLEU-3, BLEU-4, and BLEU-AVG are reported where
“BLEU-AVG” means the average score of BLEU-1, 2, 3 and 4.

3 Experiments and results

Experimental setup For each market dataset,
we split it into training, validation, and test set
in proportions 80%:10%:10%. The training set
is used for CULG pre-training and task-specific
fine-tuning.

For pre-training, we fetch the pretrained
ProphetNet-X as the basis of CULG, which con-
tains 12 layers in the encoder and decoder respec-
tively, with 1024d hidden size and 4096d feed for-
ward size. The future token prediction length is
set to 2, and the max sequence length of the input
and output is set to 512. We train the model on
all data (stage I) for 1 epoch, and on labeled data
only (stage II) for 5 epochs. For training, we use
the Adam optimizer (Kingma and Ba, 2015) with
a learning rate of 10~% and 1075 and batch size of
1024. We use the sentencepiece tokenizer with the
XLM-R (Conneau et al., 2020) 250k vocabulary,
which support 100 languages.

CULG is pre-trained on 8 x32Gb NVIDIA Tesla
V100 GPUs, at a total cost of around 1500 GPU
hours.

For fine-tuning, we use a constant learning rate
of 10> and dropout rate of 0.1 for all tasks. We
save checkpoints every 10000 steps, and choose
the checkpoint with the best performance on the
validation set.

3.1

Table 5 presents the main results on GKS, GKR,
and GAT. Several observations can be made. First,
method-2 consistently outperforms method-1, and
method-4 consistently outperforms method-3. We
suggest there are two reasons for this: (a) multi-
lingual and multi-market data helps the model to
learn general task features; and (b) during fine-
tuning, method-2 and method-4 use > 20 times the
amount of data of method-1 and method-3 respec-
tively, for most markets and tasks. Second, method-
3 beats method-1 for all tasks and markets, while
method-4 beats method-2 for most tasks and mar-
kets (with the exception of the GKS task in market
It-It). This demonstrates the effectiveness of the
pre-training. Third, method-1 and method-3 can be
treated as few-shot setups, as the amount of labeled
data is much less than the unlabeled data. We find

Main results
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Task M-1 M-2 M-3 M-4 mBART Task M B-1 B-2 B-3 B-4 B-AVG
GKS 3558 4098 39.59 42.08 33.97 GKS M-1 5759 39.13 28.04 21.60 36.59
GKR 27.53 3205 3043 32.09 24.29 M-3 60.76 4394 3320 26.67 41.14
GAT 12.02 15.06 14.10 15.75 13.00 GKR M-1 4545 3139 21.20 1525 28.33
M-3 4773 34.17 2420 18.55 31.16
M-1 11.14 6.61 4.81 3.84 6.60
Table 6: Performance comparison between CULG and GAT M-3 1574 10.12 7.75 6.43  10.01

mBART on the De-De market, based on BLEU-AVG.
‘M-7” means method-i.

that method-3 outperforms method-1 by a large
margin, demonstrating that our pre-trained model
can greatly boost the performance in few-shot set-
tings. Finally, the overall performance on GAT is
worse than on GKS and GKR, which appears to be
because ad titles usually contain advertiser-specific
information, which is difficult to infer from a user

query.
3.2 Comparison to mBART

To compare CULG with models that have differ-
ent architectures and pre-training data, we choose
mBART (Liu et al., 2020), a state-of-the-art multi-
lingual encoder—decoder model. mBART is pre-
trained on a large-scale monolingual corpus con-
taining many languages, with a denosing objective
function. We download checkpoint mbart.cc25 and
fine-tune it on labeled task-specific data.

We compare CULG with mBART on the De—
De market (Table 6). We find that even method-
1 achieves better results than mBART on GKS
and GKR, and comparable results on GAT, which
demonstrates the superiority of our model versus
mBART. In addition, with ads data pre-training
or multi-lingual fine-tuning, each of method-2,
method-3 and method-4 exceed mBART by a
large margin, verifying the effectiveness of the pre-
training and fine-tuning strategies for commercial
tasks. For all tasks, method-4 achieves the best
performance.

3.3 Transferability

Next, we evaluate the transferability of CULG.
Specifically, we use data for a new market, new
language, and new task to fine-tune a CULG check-
point (method-3). For comparison, we choose the
publicly available ProphetNet-X checkpoint and
fine-tune it using the same data (method-1).

Market Transferability To test the transferabil-
ity of CULG model over markets, we exclude the
data from En—Ca during pre-training and use it for
fine-tuning. Table 7 shows the results on the three

Table 7: Evaluation of market transferability on the En—
Ca market. “M” and “B” represent method and BLEU,
respectively.

Method B-1 B-2 B-3 B-4 B-AVG
Method-1 1437 8.06 4.80 2.99 7.56
Method-3  20.52 12.17 7.98 5.54 11.55

Table 8: Evaluation of language transferability on the
GAT task for the DA-DK market. “B” represents

BLEU.
Method B-1 B-2 B-3 B-4 B-AVG
Method-1  47.70 4299 3146 11.50 3341
Method-3  50.49 45.17 3358 1324  35.62

Table 9: Evaluation of task transferability on the GBK
task for the De-De market. “B” represents BLEU.

different tasks. We observe a consistent and sub-
stantial improvement by CULG (method-3) versus
method-1, which suggests that our model performs
well over new markets (in a language that is cov-
ered in CULG pre-training).

Language Transferability Data in the En—Ca
market is potentially similar to that in En—Us, En—
Au, and En—-Uk market because of sharing the same
language (and having many cultural similarities).
It is natural to ask whether our model can also be
applied to markets with a language that is unseen
in pre-training.

In this experiment, we use data from the Da—Dk
(Denmark) market to evaluate language transfer-
ability. Note that no Danish data is used during
CULG pre-training. At the time of writing this
paper, we did not have market data for GKS and
GKR, so we will focus exclusively on GAT in this
experiment. From the results in Table 8, we see
that CULG performs much better than ProphetNet-
X, suggesting that our model generalizes to new
languages that were not included in pre-training.

Task Transferability The generation model can
potentially be applied to many scenarios and down-
stream tasks. We propose four different tasks for

117



CULG training but wider demand might be re-
quired as products evolve. To test whether CULG
can be generalized to a task it has not been trained
on, we propose another task, which is to Generate
the Bidding Keywords (GBK) for an advertiser
automatically given the ad description. Experimen-
tal results (Table 9) show that method-3 leads to
solid improvements on this task vs. method-1, even
though this task is not included in pre-training. This
demonstrates that CULG is able to leverage infor-
mation from other tasks for a new task, suggesting
greater scope for its applicability.

4 Related Work

Pre-training for Text Generation Pre-training has
been widely used in NLP tasks to learn language
representations (Devlin et al., 2019; Liu et al.,
2019; Lan et al., 2020; Clark et al., 2020; Yang
et al., 2019; Radford et al., 2019b). GPT (Rad-
ford et al., 2018) takes plain text as pre-training
data to predict the next token in a left-to-right fash-
ion. It performs well on story generation and cre-
ative writing. BART (Lewis et al., 2020) uses an
encoder—decoder structure to regenerate the origi-
nal text from a corrupted input using an arbitrary
noising function. The denoising training strategy
and encoder—decoder structure lead to impressive
results on generation tasks. MASS (Song et al.,
2019) pre-trains a seq2seq model by masking con-
tinuous spans and learn to recover them. T5 (Raffel
et al., 2020) investigates different pre-training ob-
jectives and model architectures, and pre-trains on
a large-scale corpus containing 750Gb of text data.
ProphetNet (Qi et al., 2020) introduces a novel self-
supervised objective named future n-gram predic-
tion, that explicitly encourages the model to plan
for future tokens and prevent overfitting on strong
local correlations. In this paper, we use the model
structure of ProphetNet, and the same n-gram ob-
jective function.

Multi-lingual Model in NLP Building multi-
lingual models is becoming more common across
NLP tasks. Support for multi-lingual text is either
implemented by aligning multi-lingual word em-
beddings in a universal space (Chen and Cardie,
2018; Lample et al., 2018) or by learning cross-
lingual models using a different corpus to exploit
shared representations across languages. Models
such as mBERT (and), mBART (Liu et al., 2020),
XLM-R (Conneau et al., 2020), mT5 (Xue et al.,
2021), and ProphetNet-X (Qi et al., 2021) are multi-

lingual variants of BERT, BART, RoBERTa, TS5,
and ProphetNet, respectively.

Domain Adaptive Pre-training In this paper, we
adapt the pre-trained ProphetNet-X to a commer-
cial domain by continuing to pre-train. Similar
work has been done by researchers in other do-
mains. BioBERT (Lee et al., 2020) is obtained
by performing additional BERT pre-training on a
biomedical corpora, leading to improvements on a
variety of biomedical text mining tasks. Alsentzer
et al. (2019) continues pre-training BioBERT on
clinical data, and achieves performance gains on
three clinical NLP tasks. ULMFit (Howard and
Ruder, 2018) introduced task-specific fine-tuning,
with the core idea being to continue pre-training
language models on task/domain specific data.
Chakrabarty et al. (2019) used the approach of
ULMFit and continued training it on a Reddit cor-
pus, achieving state-of-the-art performance on four
claim detection datasets in doing so. Most re-
cently, Gururangan et al. (2020) continued train-
ing RoBERTa across 4 domains and 8 tasks, and
showed that both domain adaptive pre-training
and task adaptive pre-training lead to performance
gains.

5 Conclusion

In this paper, we propose CULG: a large-scale com-
mercial universal language generation model which
supports multi-lingual, multi-market, and multi-
task ad generation. As part of this, we propose 4 ad
generation tasks for CULG pre-training. We then
propose a two-stage pre-training and fine-tuning
strategy, and demonstrate the effectiveness of the
proposed strategy through extensive experiments.
We further compare CULG with other multi-lingual
generation models, and show the superiority of
CULG on commercial generation tasks. Finally, we
demonstrate the transferability of CULG in three
different settings.

6 Ethical Considerations

This work was conducted while the first author was
an intern at Microsoft Research Asia. All data was
sourced in strict adherence with the commercial
terms of service of the Bing search engine, and no
session history or personal data was used in this
research.
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Constraining word alignments with posterior regularization for label
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Abstract R L
Unsupervised word alignments offer a [el, e2, e3]

lightweight and interpretable method to
transfer labels from high- to low-resource
languages, as long as semantically related
words have the same label across languages.
But such an assumption is often not true in
industrial NLP pipelines, where multilingual
annotation guidelines are complex and deviate
from semantic consistency due to various fac-
tors (such as annotation difficulty, conflicting
ontology, upcoming feature launches etc.);
We address this difficulty by constraining the
alignment model to remain consistent with
both source and target annotation guidelines,
leveraging posterior regularization and labeled
examples. We illustrate the overall approach
using IBM 2 (fast_align) as a base model,
and report results on both internal and
external annotated datasets. We measure
consistent accuracy improvements on the
MultiATIS++ dataset over AWESOME, a
popular transformer-based alignment model, in
the label projection task (+2.7% at word-level
and +15% at sentence-level), and show how
even a small amount of target language
annotations helps substantially.

1 Introduction

The task of aligning words in parallel sentences (i.e
bitexts) originates from statistical machine transla-
tion (Brown et al., 1990), where semantic identifi-
cation was performed based on context similarity
in accordance to the well-known distributional hy-
pothesis. The most commonly used statistical align-
ers are built on top of the so-called IBM models
(Brown et al., 1993), a series of structured proba-
bilistic models that, while fully unsupervised, often
rely on additional assumptions (such as close-to-
diagonal alignment) to reach acceptable accuracies.
These approaches have since been superseded by
neural networks and pretrained embeddings. They
nonetheless enjoy a wide popularity across many
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source:
open|Action the|O app|Type

the|O lel:l |:|
app|Type E |:| |:| |:|

a=<1,23>

projected:
ouvre|Action I'|O appli| Type

groundtruth:
ouvre|Action I'| Type appli| Type

Figure 1: Example of word alignment with notations from
English to French. While the identity map is semantically
very natural in this example, it conflicts with the ground-truth
label. The whole group !’appli is labelled as Type in French,
possibly to reduce friction with human annotators.

NLP domains owing to their execution speed, data-
efficiency and self-contained implementations.

Cheap multilingual word alignments are appeal-
ing as they provide a transparent and interpretable
way to transfer features from a source language to
a target language (see Fig.1). They have been used
in the past to transfer costly annotations such as
part-of-speech (Yarowsky and Ngai, 2001) or co-
reference information from high- to low-resource
languages (Postolache et al., 2006). However, the
reliability of such a strategy depends on the use
case at hand and we argue that it can lead to subtle
but systematic failures in downstream tasks. In our
industrial use case (that of a voice assistant), multi-
lingual named-entity annotation guidelines factor
in a great number of aspects (country launches,
available features, human-friendly rules for anno-
tators e.t.c) and end up surprisingly riddled with
inconsistencies across languages (see table 1). In
such cases, even a slight mismatch between se-
mantics and annotation guidelines will lead to sys-
tematic errors: annotation guidelines of the source
language "bleed" into the target language. This in
turn generates friction for NLP pipelines that rely
heavily on annotated resources, such as task ori-
ented dialog systems. In this work, we show how
to guide word alignments produced by structured

Proceedings of NAACL-HLT 2022: Industry Track Papers, pages 121 - 129
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models to conform to the annotation guidelines of
the target language, extending them so that they do
not solely rely on semantic relatedness. We use the
posterior regularization technique of Ganchev et al.
(2010), a general framework that allows integrating
information coming from a variety of features as op-
timization constraints. We illustrate our approach
using IBM 2 as the base alignment algorithm. To
model the label constraints, we construct n-gram
tables that count the frequency of labels assigned
to n-grams in the target language. These label n-
grams, constructed using the same training data,
are then used to bias the alignments so they comply
with the annotation scheme. We use an EM-like
iterative procedure to train the resulting model -
label transfer is done by assigning to targets words
the label of their aligned source words.

We evaluate our method on two annotated
datasets and show that it combines the strengths
of both approaches: the inferred alignments pro-
duce better labels than either the baseline align-
ers or the n-gram models alone. It also remains
fast, interpretable, self-contained and data-efficient,
which makes it easy to integrate into industrial NLP
pipelines. However, it has the same drawbacks that
IBM model 2 has (no fertility modelling - i.e cannot
handle a single source word generating multiple
words in the target language, N-1 source-target
mapping, danger of local optima during training).
We release our implementation as FastLabel'.

2 Related Work

Statistical word alignment models continue to
be widely used to transfer labels from high- to
low-resource languages owing to their speed, low
memory footprint and interpretability. Their most
famous exponents are the IBM models 1 to 4
(Brown et al., 1993; Och and Ney, 2003), a
Bayesian models hierarchy of increasing sophis-
tication. fast_align (Dyer et al., 2013) is a fast
reparameterization of IBM Model 2 that signifi-
cantly cuts down training and inference time. Eflo-
mal (Ostling and Tiedemann, 2016) augments IBM
model 1 with priors on word order and fertility, and
uses Markov Chain Monte Carlo (MCMC) to do
inference. Much of the recent work depart from the
Bayesian modeling tradition by relying on contex-
tual embeddings to perform the alignment (Pour-
damghani et al. 2018, Alkhouli et al. 2018, Sabet
et al. 2021). AWESoME (Dou and Neubig, 2021)

"https://github.com/amazon-research/fast_label

uses multilingual BERT (Devlin et al., 2019) to
extract word alignments, and allows fine-tuning
the underlying BERT model on parallel corpora to
improve alignment quality. While very accurate,
they leverage embeddings from computationally
expensive neural networks, and as such, they are
not self-contained and the errors made by these
models are arguably less interpretable than the sim-
pler statistical models presented here.

Mann and McCallum (2007) introduced expecta-
tion regularization as a way to encourage unsuper-
vised model predictions to match an expectation
from an external prior. Chang et al. (2007) devel-
oped the constraint driven learning (CODL) frame-
work that is capable of allowing different levels of
constraint violation. Their formulation, however,
did not allow for tractable inference and the au-
thors used beam search to solve the optimization
problem. The posterior regularization framework
introduced by Ganchev et al. (2010) allows con-
straint violations while remaining tractable.

Applications of statistical word alignment to
label projection are numerous. Label projection
using word alignments is discussed in Yarowsky,
Ngai, and Wicentowski (2001), Hwa et al. (2005),
Ostling (2016), Das and Petrov (2011) and Duong
et al. (2013). The last three models use the stan-
ford POS tagger (Toutanova et al., 2003) on a high
resource source-language and transfer the labels to
the target language.

3 Model Formulation

We start with the notations and closely follow
(Dyer et al., 2013) for clarity. The source (tar-
get) sentence is denoted f (e), of length n (m).
The aim is to infer, from bitexts, an alignment
a = (ay,as, - ,ay) from source to target: each
a; refers to the position of the source sentence word
aligned to the ith word in the target sentence (see
Figure 1). We will assume that each target target
word is associated to at most one source word: this
N — 1 mapping limitation is not a concern in the
context of label projection. In the NER (Named
Entity Recognition) setup, both source and target
sentences may be annotated with NER labels, and
we write L the set of possible labels, and /., (resp.
£y,) the label attached to e; (resp. f;) ; le and (¢
refer to the label sequences of the whole sentences
eand f.

The parameters of the popular IBM models are
usually inferred through maximum likelihood (ML)
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Dataset | lang example
en atis_airfare show me round trip fares from denver to philadelphia O O B-round_trip I[-round_trip O O
B-fromloc.city_name O B-toloc.city_name
fr atis_airfare Me montrer les tarifs aller-retour de Denver & Philadelphie O O O O B-round_trip O B-
+ fromloc.city_name O B-toloc.city_name O
& pt atis_airfare Mostre tarifas de ida e volta de Denver para a Filadélfia O O O B-round_trip I-round_trip
= I-round_trip O B-fromloc.city_name O O B-toloc.city_name
é de atis_airfare Zeige mir Tarife fiir Hin- und Riick fliige von Denver nach Philadelphia O O O O B-round_trip
E I-round_trip I-round_trip O O B-fromloc.city_name O B-toloc.city_name
= es atis_airfare Muéstrame las tarifas de ida y vuelta desde Denver hasta Filadelfia O O O O B-round_trip
I-round_trip I-round_trip O B-fromloc.city_name O B-toloc.city_name
zh atis_airfare WoRMN FHEF B FEE A9 H9R ZE O B-fromloc.city_name O B-toloc.city_name
O B-round_trip O
hi atis_airfare s ¥ fearsfesar & f?«rq AT m SIS B-fromloc.city_name O B-
toloc.city_name O O B-round_trip O O
en Timer setlo anotherlo timerlaction forlo threellength minutesllength andlo thirtyllength secondsllength
fr Timer reglelo unlo autrelo minuteurlaction pourlo troisllength minutesllength etllength trentellength
— secondesllength
g en  Weather whatlo today’sldate temperatureldetail
f‘é’ it Weather chelo temperaturaldate c’lo &lo oggildate
- en  Appliance turnlaction offlaction thelo boseldevice lightldevice
pt Appliance desliguelaction alo luzldevice boseldevice

Table 1: Example training data. The text in teal are word-level labels, and the text in red indicate the overall intent of the sentence.
The examples from our internal dataset show some of the discrepancies present in annotation guidelines across languages - for
example, the English token-label pair "andlo" corresponds to "etllength" in French. We also observe inconsistencies arising due

to word fertility and tokenization choices

- "what" corresponds to "che ¢’ ¢" (i.e 3 different tokens) in Italian and the two words "turn off" corresponds to the single word
"desligue" in Portuguese.

0* = argmaxy L£(0) = argmaxy P(e, f|0). The
parametric family over which inference is per-
formed depends on the IBM models. In what fol-
lows, we illustrate our approach on IBM-2 (as used
in fast_align), which comes with a diagonal prior
and a set of lexical probabilities representing trans-
lations:

pFA(eiaai|mvn) = 5(ai|’iaman) X 9(6i|fa¢)

n
praleilm,n) =Y pralei,a; = jlm,n)
=0

where J(-) models the diagonal prior and the null
alignment probability (Dyer et al., 2013). Because
alignments are hidden variables, the ML optimiza-
tion can only be performed approximately, for ex-
ample with an Expectation Maximization (EM) it-
erative scheme. EM can be formulated as an ELBO
coordinate ascent (Neal and Hinton, 1998):

F(Q? ‘9) = log‘c(g) - DKL(quFA(‘ev fa m, ’I’l))
E-step : ¢'Y) = arg max F(q, 6")
q

M-step : 001 = argmax F(¢', 0)
0

where ¢ is a reference distribution and is used to in-
ject external knowledge into the optimization, and
maximization of the E-step is performed over an

arbitrary family of alignments probability distribu-
tion. For label projection however, we would like
to bias the ELBO optimization so as to favor align-
ments compatible with the target annotation guide-
lines, without losing information obtained from
the bitexts. The posterior regularization (Ganchev
et al., 2010) framework offers an elegant solution,
by noting that the E-step above can be easily solved
over a constrained set of distributions O, as long as
those constraints are defined in terms of moments
of g€ Q:

E-step (PR) : ¢} = arg max F(q,0"
qeQ

Q = {q : Eq [¢(eu f’ m?”)] = b}

where ¢ is an arbitrary function. In the context of
label projection, we wish to match the projected
label distribution P({c|e,f,m,n) to a reference
distribution (/e ), that can be defined quite arbi-
trarily. Given an alignment a, target words re-
ceive the same label as their aligned source words
le, =Ly, Vi € [e]. We can therefore rewrite such
matching condition as:

P(lele,f,m,n) =
Y P(lele, f,a)P(ale, f,m,n) (1)
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= Eq [1(le = £1,)] = r(le),

1, ifle=t;, 2
1(le =4y,) = *
(be = t5) 0, otherwise
The set of contraints, one per label configuration
per target sentence, is denoted C. In this case, the
E-step admits a dual formulation and the optimal
alignment distribution ¢* has a simple expression

in terms for the unconstrained pr 4:

.+ pra(ale,fe” Yeec Aeve
T =T @
P =t ) @

A = argmax [—log (Z({\:}))]Ve e C (5)

where \., ¢ € C is a family of Lagrange multipliers
enforcing the constraints over label space. The
iterative algorithm closely mimics the classical EM
coordinate ascent, with the addition of solving the
Lagrange multipliers (see Appendix A).

The value of the Lagrange multipliers A} are
computed through gradient ascent over Z({\}}).
IBM model 2 enjoys the property that its alignment
probability pr 4 factors over the words of each tar-
get sentence. It is therefore convenient to split C
accordingly: to each word e; and each possible
( € L, are attached a Lagrange multiplier A;* and
the cost v;" of labelling e; with £. In such case,

Z({\:)) further decomposes:

z{h = 11 1] Z.({x:h

eeccorp. ;€8

n
> prala; = jle,f)e
j=1

of =1 (b, =€) = ()

and its derivative w.r.t \j*:

Ze({N2}) = R

oz . _ €, €
o zm = jle, fyvre T
The stationary points is reached when v;* = 0,

selecting alignments for which the transferred label
distribution matches r(¢).

4 Experiments

4.1 Baselines

Eflomal? and AWESoME? were run using the re-
spective authors’ publicly released code. The hy-
perparameter settings used to run these models

Zhttps://github.com/robertostling/eflomal
3https://github.com/neulab/awesome-align

Lang | Avg.len. [ Avglen. of En translation
MultiATIS++
English (en) 11.05 NA
French (fr) 11.72 11.05 (+6.37%)
Portuguese (pt) 11.96 11.05 (+8.17%)
German (de) 11.29 11.05 (+2.13%)
Spanish (es) 11.88 11.05 (+7.62%)
Chinese (zh) 10.95 11.05 (-1.05%)
Hindi (hi) 10.97 11.05 (-0.73%)
Internal dataset
Italian (it) 5.29 5.20 (+1.82%)
French (fr) 591 5.18 (+14.17%)
Portuguese (pt) 5.42 5.17 (+4.73%)

Table 2: Average sentence lengths (in terms of the number
of labelled tokens) for each language present in our datasets.
The third column indicates how much longer (or shorter) the
sentences in a particular language are compared to their En-
glish translations. Unlike MultiATIS++, the English sentences
paired with each of languages in our internal dataset are dif-
ferent (i.e the English sentences in the pair en-it are different
from those in en-fr), resulting in slightly different average
sentence lengths. The translations in both MultiATIS++ and
our internal dataset were done by humans.

are described in Appendix C. Since our work is
an extension of fast_align, we ported the original
fast_align* code to Python and extended it to sup-
port posterior regularization. Just like the original
fast_align implementation, we did 5 iterations of
expectation-maximization to train the model. The
trained alignment model (i.e ¢* in equation 3) is
then evaluated on a held out set of bitexts. For each
aligned word pair, the label of the source word (usu-
ally from an English sentence) is transferred to the
aligned target word. All target words aligned to the

"null" token are given a label of "o" (for "other").
We then compare the transferred labels to the true
labels of the target sentence to calculate the accu-
racy. Though the label transfer happens at a word
level, we report accuracies at the sentence level as
well since perfectly annotated sentences are crucial
for our industrial use case. The n-gram classifiers
in the tables are simple frequency-based classifiers
trained on the target language - for a particular n-
gram in the test set, the classifier annotates the nth
word with the most frequent label assigned to that
n-gram in the training data. For n-grams that were
not present in the training data (even after backing-
off to unigrams), the classifier outputs the label "o"
(for "other"). These simple classifiers are essen-
tially the same models that are used to do posterior
regularization in our experiments - when used as
classifiers, they only output the most likely label
for a given n-gram while during regularization we
use their entire label distribution.

*https://github.com/clab/fast_align
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Figure 2: Distribution of word alignments between English-Hindi bitexts in the MultiATIS++ dataset. The left (resp. bottom)
axis represents the index of the source (resp. target) word within the source (resp. target) sentence. The left plot shows the
distribution of alignments using fast_align. The number inside individual cells represents the frequency of that alignment. The
right plot shows the distribution of alignments for the same Engish-Hindi bitexts using FastLabel. We can see from the plots
that fast_align has more alignments along the diagonal than FastLabel. Since English and Hindi generally follows different
word orders (eg: the Hindi sample present in table 1), the diagonal prior used by fast_align (i.e the assumption that words in
target sentence are aligned to the words in relatively the same position in the source sentence) can be problematic. The superior
performance of FastLabel (table 3) can be attributed to its ability to overcome fast_align’s diagonal prior.

100

o
S

>
9
Y
E
o
]
©
<
S / -
S
S
°
2
<
<

* —-— awesome_align
-— - fastalign
40 // R - eflomal
/ T —a- 1-gram classifier
/ 7 _.— —— 2-gram classifier 1
L7/ ——— e
20 /S ome———T T —*— 3-gram classifier
a P - x 1-gram FastLabel
4//’ -3 2-gram FastLabel
/)/ -4~ 3-gram FastLabel
%AO 0.2 0.4 0.6 0.8 1.0

Percentage of data used for posterior regularization

Figure 3: Sentence-level label transfer accuracies between
English-German bitexts in MultiATIS++. The amount of Ger-
man data used to construct the n-gram labels was increased
linearly while AWESoMe, eflomal, fast_align, and the word-
alignment part of FastLabel were always trained with all avail-
able training data.

4.2 Datasets

We ran our experiments on two different datasets
- a publicly available corpus of annotated bitexts
called MultiATIS++ (Xu et al., 2020) and an inter-
nal corpus of annotated bitexts. MultiATIS++ is
a multilingual extension of the ATIS (Price, 1990)
dataset, which is a transcript of flight information
requests to automated airline travel inquiry sys-
tems and contains approximately 5000 samples.
The queries in ATIS were originally in English
and the MultiATIS++ dataset contains annotated

human translations of the English queries into six
other languages. Our internal dataset consists of
queries to a task-oriented dialogue system and
contains ten thousand pairs of annotated English-
Italian, English-French and English-Portuguese bi-
texts. The English sentences in the different lan-
guage pairs in our internal dataset are not the same
- this means that there is considerable variation in
the distribution of intents across different language
pairs in this dataset. The scheme for certain type of
queries vary across languages (see table 1) as well.

For the set of constraints, we compute a fre-
quency based n-gram model on the annotated
monolingual data: the probability of label ¢; de-
pends on the word e; to be labelled, its context
of length n — 1 and the intent of the sentence:
P(€1|e) = P(£i|€i> €i—1," " €Ci—n+1, il’ltel’ll‘). We
include the intent in the counts since labels may
strongly depend on it: for example, "play frozen"
will be different depending on whether the over-
all intent is "Music" (resulting in "playlaction
frozenlalbum) or "Video" (resulting in "playlaction
frozenlmovie). We construct the n-grams based on
the same data that was used to train the word align-
ment model, and during inference apply the same
back-off strategy used by the n-gram classifiers
described in the previous section. If an n-gram
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Method it fr pt de es zh hi
MultiATIS++
fast_align N/A 48.75 (90.44) 40.14 (90.07)  63.821 (94.54) 52.54(90.54) 43.04 (83.84) 32.31(85.17)
eflomal N/A 67.17 (94.08) 63.56 (93.71) 76.43(97.20)  66.10 (93.7)  56.58 (87.8)  73.36 (95.00)
baselines AWESoME N/A 74.08 (94.94) 73.23 (95.68) 79.59(97.83) 72.31(94.95) 55.47(89.20) 65.06 (94.69)
1-gram classifier N/A 27.88 (86.23) 25.51 (84.43) 29.36 (86.68)  29.05 (85.08) 34.38 (81.81) 33.33(87.44)
2-gram classifier N/A 57.88 (93.35) 57.72 (92.79) 59.66 (93.91)  56.79 (92.1) 66.91 (90.56) 59.64 (94.14)
3- gram classifier N/A 66.92 (94.91) 67.78 (94.52) 68.21 (95.42) 67.54(93.43) 67.28 (91.01) 72.80 (96.06)
1-gram FastLabel N/A 75.81 (95.96) 69.88 (95.84) 84.97 (98.18) 68.92 (94.69) 73.09 (94.11) 76.85(96.37)
ours 2-gram FastLabel N/A 79.46 (97.10) 78.25 (97.20) 90.53(98.90) 76.45(96.39) 76.43 (95.13) 79.03 (97.11)
3-gram FastLabel N/A 79.27 (97.16) 78.99 (97.30) 91.09 (98.96) 76.83 (96.56) 75.88 (95.11) 80.34 (97.23)
Internal dataset
fast_align x (x") y (") z(z") N/A N/A N/A N/A
eflomal +13.32 (+2.25)  +11.14 (-1.14) -0.98 (-0.7) N/A N/A N/A N/A
baselines AWESoME +7.49 (+2.07) +1.4 (+0.02) +2.4 (+0.55) N/A N/A N/A N/A
1-gram classifier | -78.97 (-23.20) -78.76 (-21.72)  -81.05 (-22.92) N/A N/A N/A N/A
2-gram classifier | -76.97 (-22.25) -76.44 (-20.68) -78.551 (-22.04) N/A N/A N/A N/A
3-gram Classifier | -76.64 (-22.19) -75.98 (-20.58)  -78.65 (-22.04) N/A N/A N/A N/A
1-gram FastLabel | +18.48 (+4.36) +13.62 (+2.89)  +5.08 (+1.48) N/A N/A N/A N/A
ours 2-gram FastLabel | +19.98 (+4.77) +16.72 (+3.42)  +8.61 (+2.13) N/A N/A N/A N/A
3-gram FastLabel | +19.65 (+4.67) +16.10 (+3.42)  +8.61 (+2.10) N/A N/A N/A N/A

Table 3: Percentage of perfectly annotated target sentences obtained as a result of label transfer between bitexts - the word level
label transfer accuracy is written inside parentheses. Experiments conducted on our internal dataset report accuracies relative to

fast_align.

was not observed in the training data, we leave
finding the alignment of the corresponding target
word unconstrained. Though we stick to simple
frequency-based n-gram models for the sake of
speed and interpretability, posterior regularization
can accommodate any model that can predict a
label distribution, including neural networks.

5 Results

Our results are reported in Table 3. Apart from
fast_align, we include eflomal, a more sophisti-
cated statistical alignment model, and AWESoME,
a strong model that leverages recent advances in
pre-trained language models, as additional base-
lines. On the MultiATIS++ dataset, FastLabel out-
performs AWESoME, our strongest baseline, by
around 2.7% at word-level label transfer accuracy
and gave around a 15% increase in the amount
of perfectly annotated target sentences (averaged
across all languages). On our internal dataset,
FastLabel resulted in an improvement of around
7% (compared to eflomal, which performed better
than AWESoME, averaged across all languages) in
the amount of perfectly annotated target sentences.
The simple n-gram classifiers perform reasonably
well on MultiATIS++. After a deeper inspection,
we find that most of the words in this dataset re-
ceive the label "O", and entities with richer labels
(such as city names) are usually present in both the
train and test sets, and makes MultiATIS++ easier
to annotate correctly. Our internal dataset is more
complex, comprising of 185 intents (eg: "Appli-

ance", "Music") and 211 different label types (i.e
"0" or "date" or "song") (for comparison, Multi-
ATIS++ has 23 intents and 122 label types). This
is reflected in the much poorer performance of the
n-gram classifiers on our internal dataset. Though
poor as independent annotators, the same n-gram
label distributions are beneficial to FastLabel when
used for posterior regularization, indicating that
our regularization framework is successful in incor-
porating the right amount of information from the
external prior.

We observe a large drop in performance for
fast_align when aligning language from different
families (such as English-Chinese bitexts), due to
the well-known limitations of the diagonal prior
assumption. Moreover, as observed in table 2,
Hindi and Chinese sentences are usually slightly
shorter than their English counterparts, while the
sentences from the other European languages tend
to be longer. For example, the Italian translation of
the phrase "personalize my echo" could be "person-
alizza il mio echo" - here the two tokens "my echo"
generate three tokens in Italian (high word fertility),
while a non-Indo-European language might have
the opposite problem with respect to English (low
word fertility). Despite these challenges, FastLabel
performs comparatively well on these languages
thanks to its ability to overcome the diagonal prior
of the underlying fast_align algorithm. Figure 2
illustrates the effect of posterior regularization on
word-alignments. All subplots show alignments
between English-Hindi bitexts in the MultiATIS++
dataset. The plot to the left (fast_align) clearly
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id | source

fast_align

ours

1 | tracklo alo wetlattribute diaperlitem

enregistrelo unelo couchelattribute cu-
lottelattribute mouilléelitem

enregistrelo unelo couchelitem cu-
lottelitem mouilléelattribute

2 | c.source n.Isource n.| source reportlo

lelo comptelsource rendulsource delo
c.Isource n.Isource n.lsource

lelo comptelo rendulo delo c.lsource
n.Isource n.lsource

montrelvisual
poulpelitem

3 | showlvisual melo anlo octopuslitem

montrel  visual — moilvisual  unlo

poulpelitem

moilother unlo

Table 4: Three examples representative of the type of errors in label overcome by posterior regularization. All examples are
from the FastLabel evaluated on the English-French bitexts in our internal test dataset. 1) Alignments away from the diagonal -

AN

the French word corresponding to "wet" ("mouillée

) appear at the end of the sentence. 2) Fertility - "report" is translated into

French as "le compte rendu de". 3) Discrepancies in annotation guidelines - though "moi" should be semantically aligned to
"me" in the English sentence and hence given the label "0", our internal annotation scheme for French consistently annotates

"moi" as "visual" if it follows "montre".

shows a stronger alignment along the diagonal,
while this tendency to align along the diagonal is
weaker in the plot to the right (FastLabel). Table 4
contains some examples where fast_align made a
mistake in transferring the labels from the source
sentence, but FastLabel was correct.

How much annotated data is required for Fast-
Label to improve upon fast_align? Figure 3 reports
label transfer accuracy between English-German
bitexts in MultiATIS++ using varying amounts of
training data to construct the n-gram models. Using
only 20% of all available training data to construct
the n-gram models gives FastLabel a significant
boost over fast_align, demonstrating the applicabil-
ity of our approach in data-sparse regimes. With
growing training data, n-grams become better an-
notators (to a point where the 3-gram model out-
performs fast_align), but a performance gap with
FastLabel persists. Although the focus of our work
was on maximizing the label transfer accuracy, we
also note that posterior regularization resulted in a
more semantically accurate translation table (see
Appendix B) compared to fast_align.

5.1 Conclusion

We illustrated how to augment existing algorithms
(such as fast_align) with information about anno-
tation guidelines, through posterior regularization.
Lightweight, self-contained and data-efficient, our
approach retains the benefits of statistical align-
ers while leading to higher quality alignments. It
also mitigates semantic inconsistencies that can
appear in the annotation guidelines of large scale
industrial NLP systems. A natural extension of
this work is to use more sophisticated models than
n-grams to predict the label distributions. The task
of matching the distribution of source labels onto
some target through word alignments also bears
some similarities with optimal transport. We leave
such investigation to the future.
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A EM steps with posterior regularization

The iterative algorithm closely mimics the classical
EM coordinate ascent, with the addition of solving
the Lagrange multipliers:

1. (Start) Random initialization of the IBM 2
model parameters 6.

2. Compute pr4 as specified by the IBM 2
model, given 6;.

3. Find the optimal Lagrange multipliers A} and
compute the tilted distribution g*.

4. Find the optimal parameters ;1 using ¢* in
place of pr 4.

5. Iterate from step 2 until convergence.

B Excerpt of the translation table for
English-French bitexts

In table 5, French words that are not semantic trans-
lations of the English source word are highlighted
in red. The "count" represents the number of bi-
texts where the English and French words appeared
in the source and target sentences respectively. We
observed that posterior regularization using labels
improved the quality of the translation table (and
consequently, alignments) as well.
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fast_align FastLabel count
English French English French
list courses list liste 222
theater au theater theater 22.0
please te please plait 117.0
closed est closed fermé 5.0
app application app r 6.0
diaper culotte diaper couche 12.0
don’t ne don’t pas 11.0
march le march mars 32.0
funniest la funniest drole 3.0
beauty la beauty belle 4.0
cinema au cinema cinéma 9.0
baby baby baby bébé 11.0
mode mode mode multilangues 4.0
frozen des frozen reine 5.0
SNow des Snow neige 3.0
oatmeal d’ oatmeal flocons 3.0
text un text message 3.0
hip hop hip hip 3.0

Table 5: All disagreements appearing more than thrice be-
tween the translation tables produced by fast_align and Fast-
Label on the English-French bitexts in our internal dataset.

C Hyperparameters

Eflomal was run using the "model3" argument so
that the final model makes use of IBM model 1,
Hidden Markov Models, and also models fertil-
ity. Both the forward and reverse alignments (i.e
they were not symmetrized) were used to make the
priors.

AWESOME was fine-tuned for 2 epochs in an
unsupervised fashion independently on the training
split of both MultiATIS++ and our internal data,
with the following hyperparameters:

hyperparameter value(s)
extraction softmax
training epochs 2

training objectives Masked Language Modelling
(MLM), Translation Language

Modelling (TLM), Self-training

objective (SO)
gradient accumulation | 4
steps
learning rate 0.00002
maximum training steps | 20000

D Compute

FastLabel, eflomal and fast_align were run on cpu
on a consumer-grade laptop. AWESoME was fine-
tuned for 2 epochs on a single Nvidia Tesla V100
GPU. Our python re-write of fast_align trains at
the rate of approximately 260 samples per second.
With posterior regularization using trigrams, the
training speed drops down to approximately 80 iter-
ations per second. This translates to a training time
of 15 seconds per iteration (MultiATIS++ dataset,

4300 training samples) with fast_align and almost 1
minute per training iteration for FastLabel (with tri-
grams). Though our rewrite of fast_align (and con-
sequently FastlLabel) is faster to train compared to
recent models such as AWESoME, it is still slower
than the original implementation of fast_align and
eflomal (which are written in c) - this is currently
a limitation of our work and we intend to address
this in a future code release.
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Abstract

Pretrained Transformer based models finetuned
on domain specific corpora have changed the
landscape of NLP. However, training or fine-
tuning these models for individual tasks can be
time consuming and resource intensive. Thus, a
lot of current research is focused on using trans-
formers for multi-task learning (Raffel et al.,
2020) and how to group the tasks to help a
multi-task model to learn effective representa-
tions that can be shared across tasks (Standley
et al., 2020; Fifty et al., 2021). In this work,
we show that a single multi-tasking model can
match the performance of task specific mod-
els when the task specific models show similar
representations across all of their hidden layers
and their gradients are aligned, i.e. their gradi-
ents follow the same direction. We hypothesize
that the above observations explain the effec-
tiveness of multi-task learning. We validate
our observations on our internal radiologist-
annotated datasets on the cervical and lumbar
spine. Our method is simple and intuitive, and
can be used in a wide range of NLP problems.

1 Introduction

Since the seminal work by (Vaswani et al., 2017),
Transformers have become the main architecture
for almost all Natural Language Processing (NLP)
tasks. Self-supervised pretraining of massive lan-
guage models like BERT (Devlin et al., 2019) and
GPT (Brown et al., 2020) has allowed practition-
ers to use these large language models with lit-
tle or no finetuning to various downstream tasks.
Multi-task learning (MTL) in NLP has been a very
promising approach and has shown to lead to per-
formance gains even over task specific fine-tuned
models (Worsham and Kalita, 2020; Raffel et al.,
2020; Aribandi et al., 2021). However, apply-
ing these large pre-trained Transformer models to
downstream medical NLP tasks is quite difficult.
Medical NLP has its unique challenges ranging

nabila.abraham,
anasuya.das, rherzog,
ron.vianu}@coverahealth.com

from domain specific corpora, noisy annotation
labels and scarcity of high quality labeled data.
Despite these challenges, a number of researchers
and practitioners have successfully finetuned these
large language models for various medical NLP
tasks. However, there is not much literature that
uses multi-task learning in medical NLP to classify
and extract diagnoses from clinical text (Peng et al.,
2020; Crichton et al., 2017). Moreover, there is al-
most no work in predicting spine pathologies from
the radiologists’ notes (Azimi et al., 2020).

In this article, we are interested in extracting
information from radiologists’ notes on the cer-
vical and the lumbar spine. In a given note, the
radiologist discusses the specific, and often multi-
ple pathologies, present in the medical images and
grade their severity. Extracting relevant patholo-
gies from these reports can facilitate the creation
of structured databases that can be used for a num-
ber of downstream use-cases, such as cohort cre-
ation, quality assessment and outcome tracking.
Single-task learning for information extraction in
medical NLP has enjoyed much success in deep
learning (Kanakarajan et al., 2021).

However, an ultimate NLP system for a com-
plete understanding of the medical report must be
able to perform many diverse information extrac-
tion and classification tasks simultaneously and
efficiently. Such a system can be enabled by MTL,
where one model shares weights across multiple
tasks and makes multiple inferences in one forward
pass. Such networks can not only be trained with
limited resources, but are more scalable and deploy-
able when compared to several single-task models.
Moreover, the shared features within these MTL
networks can induce more robust regularization and
boost performance. Thus there is a lot of interest in
the academic and industry research communities to
understand when multi-task learning improves per-
formance over single-tasking models (Crawshaw,
2020), and how to group a diverse set of tasks to
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STUDY ID: 97981
TYPE: MRI Lumbar Spine

s e e s s stenosis.

L1: No evidence of disc bulging or
posterior element hypertrophy. No
central canal or neural foraminal

L1/L2:  Disc : Normal
Stenosis : Normal
Nerve : Normal

Report

Segmenter

foraminal
stenosis.

L3/L4:No evidence of disc bulging
or posterior element hypertrophy.
No central canal or neural

L3/L4: Disc: Normal
Stenosis : Normal
Nerve: Normal

Classifier

Models

canal stenosis

L5/S1:3 mm posterior disc bulge
indenting ventral surface thecal
sac. Mild left neural foraminal
stenosis due to disc bulge and
annular tear. No significant central

L5/S1 : Disc: Mild
Stenosis: Normal
Nerve: Normal

Figure 1: Figure showing how a report looks as it goes through our pipeline.

encourage the model to learn a representation that
can be shared across tasks (Standley et al., 2020;
Fifty et al., 2021; Bingel and S@gaard, 2017; Zamir
et al., 2020). Some of the aforementioned works,
most notably in (Shui et al., 2019), define a notion
of task similarity via the Wasserstein distance and
show that a small Wasserstein distance between
tasks aids in MTL.

This work is an extension of our earlier work (Se-
hanobish et al., 2022) where we used parameter
efficient MTL models to extract information from
cervical spine. In that work, we defined tasks as
a conditional distribution over the classes, and we
attributed our success of MTL to smaller Wasser-
stein distance between tasks. However, computing
Wasserstein distance is expensive and suffers from
the curse of dimensionality (Cuturi, 2013), which
requires the number of samples to be significantly
larger than the dimension of the representation (768
for many transformer models) in order for the dis-
tance to be accurately estimated. This prevents us
from being able to estimate Wasserstein distance
for some of our minority classes, which have about
200 examples. Even for majority classes where we
have about 5k samples, our work suffers from large
error rates. Thus, to alleviate the above drawbacks,
in this work, we sought to use methods that are
applicable to small data regimes that lie in high
dimensional space.

Inspired by the work of (Yu et al., 2020; Chen
et al., 2020) and (Kornblith et al., 2019), we hy-
pothesize if the single-task models show similar
representations across their hidden layers and the
task specific gradients are aligned (see Definition
1 in Section 4.2), the multi-task model can match
or outperform the task-specific, single-task models.
We validate this hypothesis on two multi-task set-
tings on our internal datasets: (a) Four of the most
common pathologies in the cervical spine - cen-

tral canal and foraminal stenosis, disc herniation
and cord compression, and (b) Three pathologies
in the lumbar spine - central canal stenosis, disc
herniation and nerve root impingement.

In this work, we (a) extend our novel pipeline to
extract and predict the severity of various patholo-
gies in the lumbar and cervical spine at each mo-
tion segment, (b) compute Central Kernel Align-
ment (CKA) and show similarity between the trans-
former layers trained for individual tasks on a given
dataset, (¢) compute dot products between the gra-
dients of the task specific loss functions with re-
spect to various parameters and show that most of
the gradients flow along a similar trajectory and
(d) show how to leverage that information into a
simple MTL framework allowing us to achieve sig-
nificant model compression during deployment and
also speed up our inference without sacrificing the
accuracy of our predictions.

2 Datasets

We use an internal dataset consisting of radiolo-
gists’ MRI reports on the cervical and the lumbar
spine. Our dataset is heterogeneous and is diversely
sampled from a large number of different radiology
practices and medical institutions; the cervical MRI
data consists of 1578 reports from 97 different radi-
ology practices detailing various pathologies of the
cervical spine and our lumbar MRI data contains
2004 reports from 170 different practices.

We annotate the cervical reports with the 4 fol-
lowing pathologies: spinal stenosis, disc herniation,
cord compression, and neural foraminal stenosis,
and the lumbar reports with the 3 pathologies: disc
herniation, spinal stenosis, and nerve impingement.
Each of these pathologies is accompanied by an
indication of severity. In the cervical reports, the
three categories for the central canal stenosis are
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based on gradation; none/mild are not clinically
significant, moderate and severe definitions involve
cord compression or flattening. The moderate ver-
sus severe gradation refers to the varying degrees
of cord involvement. For disc herniation and cen-
tral canal stenosis, the categories are based on a
continuous spectrum and it is a standard practice
in radiology for any continuous spectrum to be
bucketed in mild, moderate and severe discrete
categories. Cord compression severity is binary:
compression/signal change versus none. This is
because both cord compression and signal change
can cause symptoms, and are therefore clinically
relevant. Foraminal stenosis is treated as a binary
task as well: severe versus non-severe, as severe
foraminal stenosis may indicate nerve impinge-
ment, which is clinically significant. Similar con-
siderations are taken into account when annotating
the lumbar reports. The splits and the details of
each category can be found in Table 1. The data dis-
tribution is highly imbalanced, and about 25% of
these reports are OCR-ed, which leads to additional
challenges stemming from bad OCR errors.

Dataset  Pathology Training Label Distribution  Test Label Distribution

None/Mild : 1885 None/Mild : 1068
Disc Moderate : 1998 Moderate :1588
Severe : 456 Severe :332

None/Mild : 3787
Moderate : 350
Severe : 202

Lumbar

None/Mild : 2411
Moderate : 304
Severe : 273

Stenosis

Normal : 3790
Abnormal : 549

None/Mild : 2731
Disc Moderate : 2699
Severe : 797

None/Mild : 5488
Moderate : 561
Severe : 178

Normal : 2376
Abnormal : 612
None/Mild : 401
Moderate : 378
Severe : 101
None/Mild : 793
Moderate : 68
Severe : 19
Normal : 806
Abnormal : 74
Normal : 789
Abnormal : 91

Nerve

Cervical

Stenosis

Normal : 5702
Abnormal : 525
Normal : 5262

Neural Foraminal Stenosis Abnormal : 965

Cord Compression

Table 1: Table showing statistics of our datasets

For a given report, each task is to predict the
severity of a pathology for each motion segment -
the smallest physiological motion unit of the spinal
cord (Swartz et al., 2005). Breaking information
down at the motion segment level in this way en-
ables pathological findings to be correlated with
clinical exam findings, and can inform future treat-
ment interventions.

Every report is tagged by annotators with labels
for relevant pathologies and severities, along with
span information indicating which part(s) of the
report mentions each pathology. For example, in
a report for the lumbar spine, the sentence “L1-
L2: There is no disc herniation. No spinal canal

or foraminal narrowing" would be given normal
or O class for each of the 3 pathologies (central
canal stenosis, disc herniation and nerve root im-
pingement). Similarly in a cervical spine report,
the sentence ““ C2-3: Normal; no disc herniation
or bulge. No central canal stenosis or neuroforami-
nal narrowing" would be given a normal or 0 class
for all the 4 pathologies. An example of a full
radiology report can be found in Appendix A.

3 Workflow

In this section, we will briefly describe our pipeline.
The reports are first de-identified according to
HIPAA regulations. Next, a Spacy (Honnibal et al.,
2020) parser is used to break the report into sen-
tences.

A BERT based NER model which we call the
report segmenter is then used to identify the mo-
tion segment(s) referenced in each sentence, and
all the sentences containing a particular motion
segment are concatenated together. This report seg-
menter has been shown to achieve an F1 score of
.9 on our internal datasets, and the same model is
common across both the lumbar and the cervical
datasets. More details about the NER model and
the hyperparameters used to train it can be found in
Appendix B and C. All pathologies are predicted
using the concatenated text for a particular motion
segment. Finally, the severities for each pathology
are modeled as multi-label classification problem,
and a pre-trained transformer is finetuned using the
text for each motion segment.

For more details about our pipeline and data
processing, please see Appendix B. Figure 1 breaks
down how a report looks as it is processed through
our spine pipeline.

4 Similarity of Representations between
Task Specific Models

In this section we will describe our methodology
to understand the similarity between the represen-
tations of various single task models. For all the
experiments in this section, we use the PubMed-
BERT (Gu et al., 2020) as the backbone.

4.1 Central Kernel Alignment

We use the linear Central Kernel Alignment (CKA),
introduced in (Kornblith et al., 2019). CKA is a
scalar similarity index that can be used to compare
representations within and across neural networks.
(Linear) CKA can be defined by the following:
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Figure 2: CKA between activation matrices between different finetuned single-task models. The top 2 rows are
single-task models trained to predict specific pathologies from cervical dataset and the bottom row for the lumbar
dataset. The y-axis is chosen to be between the min and the max values, i.e. in the interval (.86, 1.0)

Given IV examples and two activation outputs on
these examples, Ry € RYV*% and Ry € RV*d2,

R/ R
CKA(R1, Rp) = — 17y QHTF (1
|R) Ral|rl|Ry Rollr
where || - || ¢ is the Frobenius norm.

It is widely believed that similar representa-
tions lead to similar performances on downstream
tasks (Nguyen et al., 2021). In this work, we com-
pare the representations learned by various single
tasking models. For two single task models trained
on a specific part of a spine, the CKA between
the matrix of activations for each layer of the cor-
responding models is computed. For illustration
purposes, we collect all the CKA values for various
activation matrices in a given layer and plot them
in a box plot, as shown in figure 2. We observe that
for various tasks on both cervical and lumbar spine,
all layers of the task specific models learn similar
representations.

Additional results on comparing models from
the tasks from the lumbar dataset and the cervical
dataset can be found in Appendix D.

However, the high value of CKA may also
be attributed to the following factors : (i) larger
and deeper networks converge to similar solu-
tions (Morcos et al., 2018) and (ii) CKA values
do not change drastically when models start from
pretrained weights and are only trained for a few
epochs (Mirzadeh et al., 2021).

Thus in addition to the above analysis of the
activations with the CKA, in the next subsection

we look at the gradient level information to un-
derstand the trajectory of the task specific learned
activations.

4.2 Gradient Alignment

There has been a lot of work in understanding the
task specific gradients in the context of MTL. Given
tasks 11, - - - T}, (for example, they can be classifi-
cation tasks), one can define n loss functions ETj
for each task 7). In our work, all loss functions
are cross-entropy losses. Then the task specific
gradients are defined to be ng ETj where 0; are
the parameters of the task specific model. More
specifically, it is shown in (Chen et al., 2018), that
MTL is competitive with single task learners when
the norms of the task specific gradients have similar
magnitudes. However in (Yu et al., 2020; Javaloy
and Valera, 2021), the authors show that the direc-
tion of the gradient flow is more important than
the magnitude for the success of MTL. More pre-
cisely, Theorem 1 in (Yu et al., 2020), shows that
the multitask objective converges to the optimum
of one of the tasks or a sub-optimal minima in the
presence of conflicting gradients. Furthermore, au-
thors in (Javaloy and Valera, 2021) use a synthetic
toy example to show the difficulties of optimiz-
ing a multi-task loss in the presence of conflicting
gradients.

Inspired by the above works, we define the fol-
lowing:

Definition 1 Two gradient vectors g; and g; are
aligned if g; - g; > 0, i.e. the vectors are pointing
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in the same direction.

To show that the gradients get more aligned as
models are trained, we store the gradients for all
the parameters for all the mini-batches after every
epoch. We then compute the dot products between
the corresponding gradients for two tasks. We ob-
serve that as the task specific models gets trained,
an overwhelming proportion of these gradients are
aligned (see Table 2). To illustrate our findings,
we take the proportion of these aligned parameters
in a given layer and plot them using a box plot in
Figure 3. Finally, we compute the proportion of
weights across all layers for which the gradients
are aligned which we call the Average Proportion
of Aligned Gradients (APAG).

1 1

APAG = — — 0(g;-g) 2
J\flayers]\/*headsZ Z (g g]) (2)

layers heads

where 6(x) is the Heaviside step function. This
is a scalar value that summarizes the box plot and
we show the progression of alignment of the gradi-
ents as training progress and the end of the training
(Table 2 and Table 6 in Appendix D respectively).
Note that, in the above formula, the token embed-
ding layer is included in the computation and it is
assumed to have 1 head.

Dataset ~ Task Comparisons  Epoch 1 Epoch2 Epoch3 Epoch4
Cord-Stenosis 46 .67 75 .81
Cord-Disc 37 52 .69 74

Cervical - Cord-Foraminal .49 61 77 83
Disc-Stenosis 51 .62 .69 18
Disc-Foraminal A7 .59 .65 73
Foraminal-Stenosis .54 .66 72 79

Lumbar  Disc-Stenosis 44 53 .59 .68
Nerve-Stenosis S1 .57 .66 73
Disc-Nerve A48 .55 .63 71

Table 2: Results showing the Average Proportion of
Aligned Gradients between various task specific models
at various epochs.

To summarize: The task specific models not only
show similar representations but they arrive at these
representations by moving in a similar direction af-
ter starting from the pretrained weights. We would
also like to point that we observe similar behavior
when we run our experiments with the BERT (De-
vlin et al., 2019) and the Clinical BERT (Alsentzer
et al., 2019) models.

5 Results on Multi-Task Models

In this section, we give empirical evidence on the
success of MTL for our datasets. The results shown
in this section are from our test set.

For our classification task, the PubMedBERT
model is used as the backbone. This BERT model
is finetuned on the the cervical tasks resulting in
4 task-specific BERT sequence classifier models
which provides our baseline results. For the lumbar
dataset, the PubMedBERT model is finetuned on
the 3 classification tasks resulting in 3 task-specific
BERT sequence classifier models.

Now, instead of finetuning the task specific mod-
els for extracting various pathology information
from the cervical spine dataset, 4 classifier heads
(i.e. 4 linear layers) are added to a single PubMed-
BERT model to create an output layer of shape
[3, 3,2, 2], where the first 3 outputs correspond to
the logits for the stenosis severity prediction, the
next 3 for the disc severity, the next 2 for the cord
severity and the final 2 logits for the foraminal
severity. For the lumbar dataset, 3 classifier heads
are added to the PubMedBERT model to create
an output layer of shape [3, 3, 2], where the first
3 outputs correspond to the logits for the stenosis
severity prediction, the next 3 for the disc severity,
and the final 2 logits for the nerve severity.

For the experiments, with both the datasets, a
dropout of .5 is added to the BERT vectors before
passing them to the classifier layers. Each of these
classifier heads is trained with a cross entropy loss
with the predicted logits and the ground truth tar-
gets. All the losses are added up which allows
the gradients to backpropagate through the whole
model and train these classifier heads jointly.

The results for our experiments are shown in
Table 3 for the lumbar dataset and Table 4 for the
cervical dataset.

Backbone Model Disc Stenosis Nerve
BERT Baseline
; c p
BASE (single tasker) 78+ .03 .79+.02 .8+.03
Multi-Tasking .77 +£.02 .78 +.01 .79+.02
CLINICAL Baseline )
BERT (single tasker) 81+.03 .83+.02 .82+.03
Multi-Tasking .83 +.02 .8+£.04 .81+.02
MSR PubMedBERT D3 g4 03 83403 81+.04
(single tasker)
Multi-Tasking .84+.01 .84+ .03 .86+.04

Table 3: Table showing the macro F1 scores over 5
trials of our Baseline and Multi-Tasking Models on the
Lumbar Dataset.

For fair comparisons, we also conduct experi-
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Figure 3: Box Plot showing the proportion of aligned gradients between various task specific models, after training.
The top 2 rows are single tasking models trained to predict specific pathologies from the cervical dataset and the
bottom row for the lumbar dataset. The y-axis is chosen to be between the min and the max values, i.e. in the

interval (.38, .725).

ments with the BERT base and the Clinical BERT
models as well. We notice that the PubMedBERT
produces slightly better results than both the Clin-
ical BERT and the BERT base. We believe this
is due to the fact that the vocabulary for PubMed-
BERT is tailored for clinical text, unlike that of
Clinical BERT, which uses the same vocabulary as
that of BERT.

Backbone Model Stenosis Disc Cord Foraminal
BERT Baseline ;
BASE (single tasker) 62+.03  .64+£.03 .70£.03 .79+.03
Multi-Tasking  .62+.02 .65+.03 .72+.02 .78+ .01
CLINICAL Baseline . . .
BERT (single tasker) 64+.05 66+.02 .71+£.02 .824.01
Multi-Tasking .63 +£.02 .67+.01 .75+.01 .79+.03
MSR PubMedBERT DOl 6o 03 654 04 7305 84+.01
(single tasker)
Multi-Tasking .67 +£.01 .69+4+.01 .72+ .04 .83+.03

Table 4: Table showing the macro F1 scores over 5
trials of our Baseline and Multi-Tasking Models on the
Cervical Dataset.

The hyperparameters and other training and im-
plementation details can be found in Appendix C.

6 Deployment

We deploy our spine pipeline system on an AWS
p3.2x machine with a single NVIDIA V100 GPU.
Reports are passed through the pipeline daily and
first go through the report segmenter which tags

sentences belonging to our set of motion segments.
Post-processing is done per report to aggregate sen-
tences belonging to each motion segment group and
to filter out any reports that do not contain motion
segments. Each grouping of motion segments is
individually classified through our MTL model to
predict a severity class per pathology. Both the re-
port segmenter and the multi-tasking model are pro-
cessed in batch mode with latencies of 31ms/report
and S6ms/report, respectively. Compared to single
pathology models, we observe a 3x improvement in
latency per study when using the MTL pathology
model. The spine pipeline is routinely evaluated
in an offline setting for studies that do not produce
any motion segment groupings or fail to capture
any sentences for a given motion segment, per re-
port. Our current deployment only supports the
lumbar reports and we are in the process of extend-
ing our deployment to also support the cervical
pathologies.

7 Conclusion and Future Work

In this work, a simple multi-tasking model is pre-
sented that is competitive with task specific mod-
els. Instead of training and deploying task specific
models, only one model is trained and deployed.
This allows us to save significant costs during train-
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ing and faster inference during deployment while
achieving significant model compression, without
any loss in the quality of performance. Our work
opens the possibility of using multi-tasking models
to extract information over various different body
parts, allowing users to leverage large transformer
models using limited compute resources.

Our novel pipeline is one of the very few works
that attempts to extract pathologies and their sever-
ities from a heterogeneous source of radiologists’
notes on lumbar and cervical spine MRIs at the
level of motion segments. These findings suggest
that our approach may not only be more widely
generalizable and applicable, but also more clini-
cally actionable.

We believe our analysis with CKA and gradi-
ent alignment sheds more light on the success of
MTL. This insight has led to our process change
from single-task BERT based models to a more
cost-effective MTL system. Our analysis is widely
applicable for other datasets and tasks.

It is tempting to ask if one can use one multi-task
model for both the lumbar and the cervical datasets.
This is a work in progress and we have found strong
similarity between single task models in the two
datasets (most notably between the lumbar disc and
the cervical disc models and the lumbar stenosis
and the cervical stenosis models). However, un-
like in the above analysis, we see low CKA scores
between various other task specific models which
may make MTL difficult (see Appendix D). We
are in the process of using our analysis, along with
insights borrowed from (Standley et al., 2020; Yu
et al., 2020) to either group tasks from the two
datasets or align different task-specific gradients to
create an efficient learner.

The biggest drawback of our work is the limited
amount of data on which our observations are ver-
ified. We are actively addressing this issue as we
annotate more reports concerning various patholo-
gies in different body parts.

Ethical Considerations

Because of legal and institutional concerns arising
from the sensitivity of clinical data, it is difficult for
the NLP community to gain access to relevant data
except for MIMIC (Johnson et al., 2016). Despite
its large size (covering over 58k hospital a