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Introduction

We welcome you to NAACL-HLT Industry Track 2022.

The industry track was first introduced to a major NLP conference at NAACL-HLT 2018 in New Orleans
and has since become a standard track at the NAACL conferences. The Industry track provides a forum
for researchers, engineers, and application developers to exchange ideas, share results and discuss use
cases of successful deployment of language technologies in real-world settings. It also inspired industry
tracks at other conferences such as COLING and EMNLP.

Each conference year is unique, and 2022 was no exception. The roll-out of COVID vaccines made it
possible to return to in-person or at least hybrid conferences. Yet the unpredictability of this pandemic
meant that even at the time of writing this preface, we do not know how many people will be comfortable
attending in-person and who will prefer remote attendance.

Another big change in 2022 was the transition of the main track to ACL rolling review (ARR). Since the
criteria for Industry track papers differ from those used in ARR, we needed to organize a separate review
process. However, we used the OpenReview platform to streamline the author experience. This decision
came with a steep learning curve for us, and we are grateful to all authors and reviewers for being fle-
xible and working with us as we were learning the ropes. We are also very thankful to the OpenReview
support, who were always available to answer our questions.

Finally, we introduced senior area chairs. We selected ten experienced researchers with a broad range of
industry and academic experience who wrote meta-reviews for each paper and helped us make the final
decisions.

This year we received 128 paper submissions. Five submissions were rejected without review due to
incompleteness, non-compliance with format requirements, or submission policies (such as the double
submission policy). Our program committee reviewed the remaining 123 papers with a rich representa-
tion of the present spectrum of NLP researchers and professionals. Each submission was reviewed by at
least three members of the program committee. Reviews solicited committee opinions along two primary
aspects: Focus on real-world applications and lessons offered by the paper. Reviews also considered cla-
rity, methodological rigor, ethical use of datasets, and compliance with conference guidelines. The area
chairs then reviewed each paper and the reviews and provided their recommendation along with a short
metareview. Finally, we accepted 40 papers based on committee recommendations as well as alignment
of the papers with the goals of the industry track (acceptance rate of 32%).

This year, the Industry Track program will consist of two oral sessions (10 papers in total) and one poster
session (30 posters). Each oral session will have a diverse set of talks covering the areas of Text Mining,
Question Answering, Interactive or Dialog Systems, Summarization, Translation, Speech Technologies,
Green NLP, Bias, Fairness, and Ethics. The work presented in the poster session paints a rich picture
of the many real-world applications of language technologies and the challenges associated with these
applications.

NAACL-HLT 2022 Industry Track also features the now traditional “Careers in NLP” panel discussion.
This year we are expanding the range of careers discussed in the panel by introducing a career in pro-
duct. The panel will be moderated by Yunyao Li, and we expect the conversation to include trends in
NLP careers, emerging skills, main challenges and opportunities for cross-functional collaboration as
NLP professionals in today’s organizations, and more.
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It has been a privilege chairing the Industry Track this year. We thank the conference general chair,
Dan Roth, for inviting us to the organizing committee. Thanks also to Program Chairs Marine Carpuat,
Marie-Catherine de Marneffe and Ivan Vladimir Meza Ruiz, and all members of the organizing commit-
tee. Yunayo Li and Owen Rambow served as advisors for the Industry Track to provide continuity for
this new track. We were generously helped by every member of this committee over the past year, and
organizing this track was possible only with their advice and efforts. We once again recognize and thank
every member of the industry track program committee for volunteering their time. Finally, thanks to the
authors and attendees of the industry track for embracing this initiative and offering a reason to continue
the industry track at NAACL-HLT conferences.

Anastassia Loukina, Bonan Min, Rashmi Gangadharaiah
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Scalable and Robust Self-Learning for Skill Routing in Large-Scale
Conversational AI Systems

Mohammad Kachuee, Jinseok Nam, Sarthak Ahuja, Jin-Myung Won, Sungjin Lee
Amazon Alexa AI

Seattle, WA
{kachum, jinseo, sarahuja, youngone, sungjinl}@amazon.com

Abstract

Skill routing is an important component in
large-scale conversational systems. In contrast
to traditional rule-based skill routing, state-of-
the-art systems use a model-based approach to
enable natural conversations. To provide su-
pervision signal required to train such models,
ideas such as human annotation, replication of
a rule-based system, relabeling based on user
paraphrases, and bandit-based learning were
suggested. However, these approaches: (a) do
not scale in terms of the number of skills and
skill on-boarding, (b) require a very costly ex-
pert annotation/rule-design, (c) introduce risks
in the user experience with each model update.
In this paper, we present a scalable self-learning
approach to explore routing alternatives with-
out causing abrupt policy changes that break
the user experience, learn from the user inter-
action, and incrementally improve the routing
via frequent model refreshes. To enable such
robust frequent model updates, we suggest a
simple and effective approach that ensures con-
trolled policy updates for individual domains,
followed by an off-policy evaluation for mak-
ing deployment decisions without any need for
lengthy A/B experimentation. We conduct var-
ious offline and online A/B experiments on
a commercial large-scale conversational sys-
tem to demonstrate the effectiveness of the
proposed method in real-world production set-
tings.

1 Introduction

Large-scale intelligent conversational systems such
as Apple Siri, Amazon Alexa, Google Assistant,
and Microsoft Cortana are an integral part of the
transition from traditional human-machine inter-
actions to seam-less and natural interactions. A
conversational system is a complex interplay of
multiple components ranging from the hardware
and signal processing blocks to machine learning
models. Figure 1 shows an overview of the major
processing steps to handle a user request: (i) the

Figure 1: An overview of the major processing steps to
handle a user request in a conversational system.

automated speech recognition (ASR) block tran-
scribes the utterance along with generating a tran-
scription confidence signal and other voice features
such as user’s emotion (ii) the natural language un-
derstanding (NLU) generates a set of ranked inter-
pretations in terms of user intent as well as named
entity resolution and slots corresponding to each in-
terpretation, (iii) a skill routing system uses NLU
and ASR outputs as well as other contextual signals
to select a skill and NLU interpretation to serve the
request, (iv) the selected skill handles the request
and generates a response for the user (Sarikaya,
2017).

To provide the supervision necessary for training
skill routing models, different approaches such as
replicating a rule-based system, using human an-
notation, and relabeling based on user paraphrases
have been suggested in the literature (Park et al.,
2020b; Sarikaya, 2017; Sammut, 2001). Using hu-
man annotations is very expensive and suffers from
high turn-around times, making it impractical for
real-world large-scale systems in which new skills
are being introduced frequently. On the other hand,
relabeling methods such as the one introduced by
Park et al. (2020b) are limited to cases where we
observe enough rephrases with high precision.
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From the scalability and turn-around time per-
spective, the traditional approach of training mod-
els then conducting long A/B experiments before
each model deployment results in a limited model
update frequency, often insufficient for keeping up
with the introduction of new skills and other traffic
changes. An alternative would be to formulate the
problem as a contextual bandit and directly aim
to maximize the user satisfaction (Karampatziakis
et al., 2019). This approach can be more scalable
in terms of supervision as user satisfaction is al-
ready an established metric in conversational sys-
tems (Kachuee et al., 2021). Also, off-policy evalu-
ation can be used to reduce the need for conducting
A/B experiments. However, in a large-scale produc-
tion system relying solely on the user satisfaction
maximization may cause instabilities due to bandit
exploration or even estimation errors in the off-
policy learning (Sachdeva et al., 2020; Joachims
et al., 2018).

This paper presents a novel self-learning ap-
proach based on contextual bandit learning to con-
tinuously explore alternative decisions, get user
feedback, and learn to improve the skill routing
decisions. As frequent model refreshes are a part
of the self-learning loop, we suggest a hybrid pol-
icy architecture aimed to control policy deviations
ensuring consistent and robust improvements to the
user experience i.e., not causing an abrupt policy
change that results in a broken user experience on
certain use cases. The suggested method is simple
and yet effective as it supports different levels of
robustness-sensitivity for each NLU intent. Further-
more, the proposed approach relies on off-policy
evaluation followed by extensive tests rather than
the traditional A/B analysis. This approach enables
low turn-around time model refreshes in the real
service settings, while maintaining the best user ex-
perience for business-critical use-cases. To validate
the effectiveness of the proposed method, we con-
duct extensive offline and online A/B experiments
on real customer traffic in a real-world large-scale
commercial dialogue system.

2 Related Works

The first generation of skill routing in conversa-
tional systems used a rule-based system to serve
a user’s request. These rules can be defined at
multiple levels and on different signals such as
pre-recorded voice, utterance transcript, or NLU in-
terpretation (Sarikaya, 2017; Sammut, 2001). How-

ever, rule-based implementations suffer from the
inability to generalize and understand natural lan-
guage variations. Another important drawback of
rule-based routing systems is scalability issues aris-
ing when dealing with a large number of competing
skills and rules (Jadhav and Thorat, 2020; Agostaro
et al., 2005).

Model-based conversational systems use ma-
chine learning models to understand the user’s ut-
terance and select the best skill to serve the request.
A model-based system can generalize beyond the
capability of a rule-based system as a machine
learning model can potentially understand the se-
mantic meaning of a request (Park et al., 2020b).
Note that despite the promise of better general-
ization and scalability, in a real-world large-scale
system, the transition from a rule-based to a model-
based approach is challenging as complex models
are known for lack of robustness and interpretabil-
ity (Li et al., 2021).

Providing supervision for model training is an
important consideration in training skill routing
models. A rule-based system can be used to pro-
vide a supervision signal to a model, hoping the
model to generalize beyond the provided training
examples. This kind of replication objective is
relatively simple and desirable when considering
the robustness aspects; however, in practice, it
may not generalize much beyond the rule-based
approach (Li et al., 2021).

Another line of work is based on relabeling sam-
ples by detecting rephrase utterances (Park et al.,
2020b) as users tend to rephrase and repeat when
the agent fails to properly respond. However, such
a relabeling only covers correction patterns for a
subset of traffic presenting only a limited routing
improvement opportunity. For example, a user may
decide to abandon the dialogue rather than para-
phrasing the same request.

Considering user satisfaction being a major goal
of dialogue systems one can use satisfaction as a
supervision signal to guide the routing decisions.
User satisfaction measurement and prediction in di-
alogue systems has been studied extensively in the
literature (Kachuee et al., 2021; Park et al., 2020a;
Bodigutla et al., 2019; Jiang et al., 2015). One
possible approach is to formulate the skill routing
problem as a contextual bandit problem aiming
to maximize the user satisfaction (Karampatziakis
et al., 2019). It enables an active exploration of al-
ternative candidates guided by the user experience
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in user-agent interactions. However, in a real-world
production system, it is critical to control the agent
behavior changes as excessive exploration or off-
policy estimations errors in bandit learning may
cause unexpected behavior.

3 Proposed Method

3.1 Problem Definition

We consider the general problem of skill routing
in conversational systems. Specifically, we define
different pairs of NLU interpretation (e.g., domain,
intent, slots, etc.) and skill (e.g., weather skill or
shopping skill) as routing candidates, i.e. the action
space of our policies. Given a set of routing can-
didates and their corresponding contextual signals,
encoded in vector space as X = {x1 . . .xT |xi ∈
Rd}, the skill routing agent is tasked to select a
routing candidate, a ∈ {1 . . . T}, to serve the user.

Furthermore, we assume there exists a cur-
rent, not necessarily optimal, policy denoted by
Π0(a|X). The task is to learn from the experiences
collected from the current policy interactions in
an off-policy setting to train a new policy param-
eterized by θ, Πθ(a|X), aiming to improve user
satisfaction. Here, after taking an action, the agent
observes a reward signal, r, that is a measure of
user satisfaction. The reward signal itself consists
of multiple components such as implicit/explicit
user feedbacks and machine learning models.

3.2 Self-Learning Process

Figure 2 shows an overview of the proposed self-
learning process. First, a batch of logged interac-
tions is collected from the current policy (denoted
by HPi in the figure). Then, we use off-policy
learning to update the policy using a split of the
logged traffic (Section 3.4 and Section 3.5). The
new policy is evaluated before and after the actual
deployment enabling the use of guardrail metrics
for making a deployment decision as well as track-
ing the actual online performance of the new model
(Section 3.6).

3.3 Model Architecture

Figure 3 shows an overview of the model architec-
ture. Inputs to the model consist of NLU interpre-
tation and skill for each candidate as well as ASR
transcription and a diverse set of contextual signals
(e.g. ASR confidence, device type, device status,
etc.) shared among candidates.

Figure 2: An overview of the self-learning process:
model training, RPDR computation, pre-deployment
evaluation, and post-deployment evaluation.

Figure 3: An overview of the proposed model archi-
tecture: a set of hypothesis are encoded as vectors
(x1 . . .xT ) and fed to a bi-directional LSTM which
is followed by a shared MLP and a softmax layer to nor-
malize the predicted candidate selection probabilities.

We encode categorical features using an embed-
ding matrix with a feature size proportional to the
square root of the number of unique values. Ut-
terance text is encoded using word vectors and a
bi-directional LSTM. The sequence of embedded
vectors is reduced via a summation operation, and
contextual signals are concatenated to get the fi-
nal representation i.e. x ∈ Rd. Finally, the set
of encoded hypotheses, X , is sorted based on the
NLU interpretation confidence and fed through a bi-
directional LSTM, two fully-connected layers, and
a softmax activation to output action probabilities
for the Πθ(X) policy.

3.4 Model Training

We define two training objectives: replication pol-
icy (RP) and learning policy (LP). RP objective
tries to train models that replicate the logged ac-
tions. Specifically, we define the RP loss function
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to minimize:

LRP = EX,a∼D

T∑

i=1

−1[a = i]log(Πθ(a|X)).

(1)
In short, (1) is a cross-entropy loss encouraging the
new policy to assign the highest scores to actions
that replicate the logged actions. We also explored
other alternatives such as KL-divergence or soft-
distillation objectives but found that the simple
cross-entropy objective is very stable and shows an
excellent replication performance.

We define the LP loss function to be an off-
policy contextual bandit objective such as the in-
verse propensity scoring (IPS) objective:

LLP = EX,a,r∼D = r
Πθ(a|x)
Π0(a|x)

, (2)

r is the observed reward for taking action a logged
in the dataset. The objective of (2) trains a policy
aimed at maximizing the expected reward. Here,
for simplicity, we use the vanilla IPS estimator;
however, any other off-policy bandit objective (e.g.,
doubly-robust estimator) can be used instead.

3.5 Hybrid Policy

In a production system, any policy update directly
impacts the user experience. Training new policies
with a general reward maximization goal, without
any control on the changes in behavior, imposes
various practical risks. For example, a new model
may reduce the quality of skill routing for tail do-
mains while showing a better average performance.
As another example, the new policy may explore al-
ternatives aggressively which, considering the turn-
around time in the off-policy setting, may cause
a widespread negative experience until the next
model refresh. To mitigate this issue and limit the
changes in the policy behavior in a single model
update, we introduce the idea of using a hybrid
policy (HP). An HP consists of two internal mod-
els trained using the RP and LP objectives. Since
the RP replicates the current behavior and the LP
tries to maximize the reward, by stochastically se-
lecting RP or LP, we can create a balance between
replication of the current behavior and potential
improvement in the reward function by making
alternative decisions.

Specifically, to create an HP model, we start by
training two individual models using the RP and
LP objectives. Then, we use the validation set to

Figure 4: The hybrid policy consists of the LP and RP
models as well as the pre-computed RPDR values. At
the inference time, the RPDR value corresponding to
the NLU top intent used to stochastically decide which
model handles that sample.

compute the rate at which LP replicates the current
policy for each data segment, computed as:

κj = EX∼Dj [1−
|Πθ(X)−Π0(X)|1

2
], (3)

where j is the index of each data segment and κj is
the expected rate at which the new LP policy repli-
cates the current policy. In this work, we define
data segments to be based on the highest scoring
NLU intent. Furthermore, we set a desired mini-
mum replication rate (κ̃) for all data segments (e.g.
κ̃ = 99%). To achieve the desired level of replica-
tion, we define the reference policy decision rate
(RPDR) as:

RPDRj =

{
0 if κj ≥ κ̃
κ̃−κj

1−κj
otherwise

. (4)

Intuitively, assuming RP is a good replication
model, by using RPDR to stochastically decide
whether LP or RP should handle each sample, we
can achieve the desired level of minimum replica-
tion for each segment. The final HP model consists
of the LP, RP, and a dictionary of pre-computed
RPDR values for each intent. See Figure 4 for an
illustration of the HP.

To update the HP, depending on the LP/RP up-
date frequency, each time one of the models is
trained on the modeling data split, followed by
computing the RPDR values (see Figure 2). We up-
date LP models more frequently than RP (e.g., LP
is updated daily while RP is updated weekly). The
reason behind this decision is to limit the changes
in the routing behavior for longer periods. The
less frequently updated RP model act as a moving
average filter, gradually absorbing the LP behavior.

3.6 Pre/Post- Deployment Evaluation
After creating a new HP, the off-policy evaluation
(OPE) is used to evaluate the new policy before
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Metric Description

Replication rate of Πθ making actions

(defect/non-defect) similar to Π0

L1-distance average of L1-distance

between Π0 and Πθ

STD of L1-distance std of L1-distance

between Π0 and Πθ

Expected reward IPS weighted reward for Πθ

(counterfactual estimation)

Expected IPS weight average IPS weight

(ideally equal to 1.0)

Stochastic exploration the rate of not selecting

(defect/non-defect) the highest scoring candidate

Table 1: The summary of main metrics used in the pre-
deployment evaluation.

the deployment. Table 1 shows a summary of
main metrics reported for each data segment (here,
domain-intent of the top NLU interpretation) by
the OPE analysis. In the pre-deployment evalua-
tion, a set of expert-defined guard-rails is applied
to the evaluation results to ensure robust model up-
dates, especially for business-critical cases. If a
new model fails the guard-rail conditions, the de-
ployment will be aborted, and a human expert is
tasked to investigate the issue. Otherwise, the self-
learning loop will continue to optimize the policy
behavior incrementally based on the user feedback,
as new models are trained and deployed automati-
cally. This automated process effectively unblocks
the self-learning system from the high turn-around
times required for unnecessary human intervention
or A/B experimentation.

OPE provides valuable insights about the perfor-
mance of a model prior to the deployment; how-
ever, OPE estimates may suffer from an estimation
bias due to weight clipping usually used to bound
the IPS weights and high variance due to the log
dataset coverage issues (Swaminathan et al., 2016;
Joachims et al., 2018; Sachdeva et al., 2020). There-
fore, it is essential to track the post-deployment
performance of deployed polices and measure the
empirical replication and user experience metrics.

4 Experiments

4.1 Setup

To evaluate the proposed self-learning skill routing
method, we conducted extensive online and offline

experiments in real-world production settings. In
this section, we use the term baseline to refer to an
implementation of a policy similar to the relabeling
approach suggested by Park et al. (2020b).

We conducted online A/B experiments involving
about 6M unique customers where the baseline pol-
icy served the control, and the self-learning models
served treatment customers. We trained four con-
secutive self-learning HPs (denoted by HP1 to HP4)
with the cadence of one HP per week. Each model
was trained on a traffic window of two weeks of
treatment data, except the first treatment model
(HP1) which was trained on logged data from the
baseline collected prior to the experiment. Due
to A/B slot availability limitations in production,
we decided not to update the RP in this A/B ex-
periment and used OPE analysis to evaluate the
performance of trained RP models. Therefore, we
used a fixed RP model that replicates the baseline
policy and focused on updating LPs throughout the
experiment. We set the desired level of minimum
replication for individual intents (κ̃) to 90%.

Additionally, we had an initial A/B experiment
consisting of seven LP and two RP model updates
over 49 days, demonstrating stable, steady improve-
ments over a long period of time. However, due to
certain deployment issues, the schedule of model
updates was impacted and we decided to present
those results in the appendix.

4.2 Results

Figure 5 shows the percentage of the difference be-
tween the treatment and control for the A/B tested
models. From the figure, the proposed self-learning
model improves the average reward showing a gen-
eral trend of improvement over iterations. Note that
in a highly-optimized production system a 1% im-
provement is considered a significant improvement
in the user experience. Here, we use bootstrapping
method with eight re-samples to find 95% confi-
dence intervals and show them with filled regions
in the figure. Note that each reported value is the
average of about 40M utterances collected over a
week. Comparing the performance of the HP3 and
HP4 models, we can see a regression with the forth
model refresh that was predicted by OPE. How-
ever, since the reward regression did not exceed
our pre-deployment guard-rail tolerance values, the
deployment was proceeded.

Table 2 shows OPE results comparing the four
trained HPs. In addition to the reward, in this table,
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Figure 5: The comparison of the online reward mea-
sured for the baseline policy and four iterations of the
self-learning model. We report the percentage of change
normalized wrt. the baseline control policy.

Metric HP1 HP2 HP3 HP4

Reward (%) 93.37±0.02 93.41±0.02 93.88±0.02 93.75±0.04

Replication (%) 98.06±0.02 98.01±0.02 97.75±0.02 97.71±0.03

L-1 Distance 3.6e-2±4e-4 3.7e-2±3e-4 4.7e-2±5e-4 4.5e-2±5e-4

Stch. Explr. (%) 0.26±0.01 0.28±0.01 0.14±0.00 0.13±0.01

Table 2: OPE results comparing the performance of the
four HP models on the expected reward, replication rate,
L-1 distance, and the rate of stochastic exploration.

we report the rate of replication (i.e., the models
making similar actions to the baseline) as well as
the average L-1 distance of action propensities be-
tween each model and the baseline. Also, we report
the rate at which the policy takes actions that are
different from its highest-scoring action due to sam-
pling of the softmax policy outputs. The general
trend in Table 2 indicates that with each model
refresh the new policy, on average, shows more
reward and deviates more from the baseline policy.
Also, the rate of stochastic exploration appears to
be reduced with the consecutive updates perhaps
as the model gets more confident.

Figure 6 compares the empirically measured re-
ward values using online A/B experiments with
OPE estimates. From the calibration plot, the OPE
estimates tend to have different absolute values but
show a high correlation (r-value=0.89) compared
to the empirical measurements. Accordingly, OPE
is capable of providing insight into how the per-
formance of a new model would compare to the
current model if we were to deploy the new model.

In Figure 7, we compare the replication rates
with respect to the baseline policy for the trained
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Figure 6: A calibration plot showing the correlation be-
tween the OPE reward estimates and online A/B reward
measurements.
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Figure 7: The comparison of the replication rates with
respect to the baseline policy for the trained RP, LP, and
HP models.

RP, LP, and HP models. From this result, RP shows
very high replication rates. When comparing the
HP and LP replication rates, we can see HP shows
a higher replication rate as the RPDR logic is ad-
justing the replication rate for individual intents to
be no less than the desired threshold.

In addition to the presented quantitative results,
we present a qualitative comparison of the baseline
and self-learning models in the appendix.

5 Conclusion

We presented a novel self-learning approach for the
skill routing problem in large-scale conversational
AI systems. It leverages the user satisfaction signal
to constantly improve routing decisions while main-
taining frequent robust policy updates via a hybrid
architecture and extensive offline analysis. The sug-
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gested hybrid architecture provides a fine-grained
balance of replication and policy improvement for
each NLU intent providing controlled model up-
dates, especially for business-critical use-cases. We
demonstrated the effectiveness of the proposed ap-
proach using extensive offline and online experi-
ments in a commercial conversational system.
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A Appendix

A.1 Qualitative Results

Table 3 shows a qualitative comparison of the base-
line (relabeling approach) and self-learning (bandit-
based HP) decisions. We provide the actual user
utterance transcription and the selected skill using
each method. The green color shows the skills
providing the best user experience.

A.2 Additional A/B Experiment Results

Figure 8 shows the trend of change in the reduction
of user dissatisfaction rate over a 49-day long A/B
experiment. During the A/B experiment, we up-
dated the LP model seven times and the RP model
two times. As this long-running A/B was one of
our initial proof-of-concept experiments on the pro-
duction system, we faced several deployment and
technical issues that impacted the schedule of LP
and RP updates. Nonetheless, from the results,
we can see consistent and statistically significant

improvements in user satisfaction.

Selected Skill
Example Utterance Baseline Model Self-Learning Model

win-1 what is the best seasoning for mahi-mahi shopping knowledge (Q&A)

win-2 show me wildlife photography shopping photos (gallery)

win-3 give me n. b. c. news knowledge (Q&A) daily briefing (news)

win-4 get some cheeto puffs knowledge (Q&A) shopping

win-5 set up [DEVICE NAME] pairing (Bluetooth) setup (home automation)

loss-1 what is the best song in the world knowledge (Q&A) find music

loss-2 play announcement announcement get message

Table 3: A few examples of skill routing for the baseline and self-learning models. The green color is used to
indicate skills providing the best user experience.

Figure 8: The percentage of difference for the measured reward between the control (relabeling baseline) and
treatment (self-learning) slots over a 49-day initial proof-of-concept A/B experiment.
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Abstract

This paper focuses on automatically generating
the text of an ad, and the goal is that the gener-
ated text can capture user interest for achieving
higher click-through rate (CTR). We propose
CREATER,1 a CTR-driven advertising text gen-
eration approach, to generate ad texts based on
high-quality user reviews. To incorporate CTR
objective, our model learns from online A/B test
data with contrastive learning, which encour-
ages the model to generate ad texts that obtain
higher CTR. To alleviate the low-resource issue,
we design a customized self-supervised objec-
tive reducing the gap between pre-training and
fine-tuning. Experiments on industrial datasets
show that CREATER significantly outperforms
current approaches. It has been deployed online
in a leading advertising platform and brings
uplift on core online metrics.

1 Introduction

For businesses that want to promote their items and
services, running online advertisements on adver-
tising platforms is an effective way to achieve their
marketing goals. With the aim of attracting users to
know more about the displayed items, advertisers de-
sign ad creative (such as text, image and video). Fig-
ure 1 is an illustration that shows the creative of an
ad in news feed, which contains a text and an image.

An appropriate creative design capturing user in-
terest accurately can improve the ad’s click-through
rate (CTR). CTR is a key metric that quantifies the
effect of an ad, because click is the precondition for
any further actions such as sharing and purchase
taken by users. Thus designing ad creatives that can
achieve higher CTR is crucial for ad delivery.

Traditionally, advertisers need to manually de-
sign the creative of each ad, and then resort to online
A/B test results to continually refine initial creative
for catching user interests. Such trail-and-error
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               Ad Text (Translation) 
 

Shop around for the best deal. 
The fruit platter in this shop 
is fresh and affordable. A lot 
of customers bought it!

Figure 1: An illustration that shows the creative of an
online advertisement in news feed on mobile.

process is labor-intensive and usually inefficient.
In terms of the text in a creative, due to the variation
characteristic of language expressions, it may need
to be polished multiple times for obtaining an ideal
one. To improve the efficiency of ad delivery for
advertisers, especially for small advertisers that
may not afford to hire professional writers, this
paper focuses on automatically generating the text
for an ad, and the goal is that the generated text can
capture user interest for achieving higher CTR.

There are several challenges to achieve this
goal. (I) First, it is important to choose a suitable
source for generating ad texts. A straightforward
source is the corresponding item’s title in landing
page. However, a title is usually a mixture of item
attributes while may not reflect user preference. In
contrast, an ad text should contain insightful and
informative contents that can arouse purchasing
desire of users. (II) Second, most of current natural
language generation (NLG) models are optimized
using cross-entropy criterion, which is discrepant
to the CTR metric we concern. To encourage the
model to generate texts achieving higher CTR, there
is a great need to incorporate CTR objective into
training. (III) Last but not least, a well-trained NLG
model usually need a large amount of paired data.
However it is costly to collect sufficient human-
written ad texts, especially for small advertisers,
thus we are faced to low-resource problem.
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In this paper we propose CREATER, a CTR-driven
advertising text generation approach, to address the
above challenges. (I) First, we choose high-quality
user reviews as input source for generation.
Compared to titles, user reviews intuitively contain
contents that reflect real experience after purchasing.
We also introduce an aspect term as input control
code to improve the informativeness of generated
text. (II) Second, to explicitly incorporate CTR
objective during optimizing NLG models, we make
use of collected user feedback through online A/B
test. Advertisers always perform online A/B test
to compare two different texts of a same ad, where
online CTR metric reflects the distinction between a
relatively “good” text and a “bad” one. We employ
contrastive learning for model optimization, which
encourages our model to generate texts that can
achieve high CTR. (III) Finally, to alleviate the low-
resource problem, we make use of large-scale un-
paired reviews to perform pre-training that provides
warm-starting. We design a novel self-supervised
objective customized to our scenario, which reduces
the gap between pre-training and fine-tuning.

CREATER has been deployed online in a leading
advertising platform and it achieves significant
improvement on core online metrics. The main con-
tributions of this work are summarized as follows:
•We propose CREATER for generating ad texts

that capture user interest based on high-quality user
reviews. We make use of online A/B test data to
perform contrastive learning, which encourages the
model to generate texts that achieve higher CTR.
•We propose a novel self-supervised objective

to provide warm-starting with unpaired reviews,
which is customized to our scenario and reduces
the gap between pre-training and fine-tuning.
• Experiments on industrial datasets show that

CREATER outperforms previous approaches on both
automatic and human evaluation, and online results
verify that it brings significant uplift on core metrics.

2 Problem Formulation

Given a source x and a control code c for an ad,
where the source is a high-quality user review of
the ad item, the control code is an aspect term of
such review to guide generation, we aim to learn
a generation model pΘ(y |x, c) that can produce an
appropriate ad text y (where Θ denotes trainable
parameters of the model). Our goal is that the
generated ad text can capture user interest and
attract users to know more about the ad item.

3 Proposed Approach: CREATER

Figure 2 illustrates the workflow of our CREATER,
and it consists of two stages. The first stage
is Controlled Pre-Training, which learns from
unpaired user reviews to provide warm-starting
for low-resource scenario. The second stage is
Contrastive Fine-Tuning, which further learns from
online A/B test data that reflects user feedback,
aiming to encourage the model to generate ad text
that can achieve higher CTR.

3.1 Stage 1: Controlled Pre-Training
We construct a large set of user reviews as the
pre-training corpus Dx. Based on Dx, we extract
a set of aspect terms Dc using an off-the-shelf
unsupervised model ABAE (He et al., 2017), and
each aspect term is typically represented as a word.

Recall that we aim to learn a generation model
pΘ(y |x, c), while the pre-training stage only makes
use of unpaired user reviews Dx. To ensure that
the model benefits from pre-training, we propose
a novel self-supervised objective customized to
our scenario, which reduces the gap between
pre-training and fine-tuning. The core is that, for
each review x∈Dx, we construct an aspect-based
pseudo-target ỹ from the review x and mask this
segment in x. The self-supervised objective is to
perform aspect-controlled generation, which aims
to recover the segment ỹ given the masked review
with the guidance of corresponding aspect term.

Aspect-Controlled Masking For a review
x ∈ Dx, we tokenize it as a list of segments
[xseg_1, xseg_2, ...] based on punctuations and
dependency parser, where each segment xseg_i is
a sub-sequence of x. Given an aspect term c∈Dc

existed in the review x, we compute the matching
score between c and each xseg_i with a matching
function f (c, xseg_i).2 We then select the segment
with highest matching score as the pseudo-target
ỹ for the given pair of (source x, control code c):

ỹ=arg max
xseg_i ∈ x

f(c, xseg_i) (1)

For each triple (source x, control code c, pseudo-
target ỹ), our aspect-controlled masking strategy
masks the review x by replacing its pseudo-target ỹ
with a special word “[MASK]”. Thus we transform
each triple (x, c, ỹ) to a masked one (x̃, c, ỹ), where
the masked review x̃ is specific to the aspect term c.

2The function f(·,·) can either be a lexical-based one (such
as similarity of sparse TF-IDF vectors) or an embedding-based
one (such as similarity of averaged word embeddings).
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[SE
P]c

<latexit sha1_base64="vHF9fZYCNJvtZoddTTGm9lU0zf0=">AAACWXicbZFdSxtBFIZn16+4tjU2l94MBqGlbdgVRS+D3nip0KiQjWH25CQOzs4sM2fFsORP9kKQ/pVeOPkopLEHBl7e55wzzDtZoaSjOH4NwrX1jc2t2na08+Hjp9363ucbZ0oL2AGjjL3LhEMlNXZIksK7wqLIM4W32ePFlN8+oXXS6J80LrCXi5GWQwmCvNWvFxAdpoTPVM1X8snzd56mf00wmqxRHMzAI1hGhXGS5BNyEnaExCfj+2/LXONIrPAfX6OoX2/GrXhW/L1IFqLJFnXVr/9KBwbKHDWBEs51k7igXiUsSVA4idLSYSHgUYyw66UWObpeNUtmwg+9M+BDY/3RxGfu8kQlcufGeeY7c0EPbpVNzf+xbknDs14ldVESaphfNCwVJ8OnMfOBtAikxl4IsD4o4PAgrADynzENIVl98ntxc9RKjlsn18fN9vkijhrbZwfsC0vYKWuzS3bFOgzYC/sTbASbwe8wCGthNG8Ng8VMg/1TYeMN0pGypw==</latexit>

x1

<latexit sha1_base64="77nbz1THIGErut1CBSqhJY/RnSA="></latexit>

x2

<latexit sha1_base64="vsKS4TUkNNK9SM4pgaaUjiGBGKQ="></latexit>

x3

<latexit sha1_base64="K5x1jzS3FFfnOzTwPEbsoZAlNaE="></latexit>

xM

<latexit sha1_base64="ldWfp4S773MbkaJ5kMwWa8Uy3hE="></latexit>

Contrastive Fine-Tuning

(Shifted right) Pseudo-Target ỹ

<latexit sha1_base64="m1ZN2wlSXWNPk9qw7NMnU8GcVq8="></latexit>

(Shifted right) Positive Target y+

<latexit sha1_base64="/pQ0SWKEWY7frKWVM0g1pkt2LuQ="></latexit>

(Shifted right) Negative Target y�

<latexit sha1_base64="3frt+C9RYy191/ktDj+mksVFETU="></latexit>

Positive Target y+

<latexit sha1_base64="npnE7eZ8XnP7IknJOJZg2KcUdyw="></latexit>

Contrastive 
Loss

Modeling distinctness

Negative Target y�

<latexit sha1_base64="BWyKcI70P0UawQeMNXhp3OULV9E=">AAACFXicbVDJSgNBEO1xjXGLetNLYxC8GGYkosegF08SIRskMfR0KpMmPQvdNcEwBPwL/8Cr/oA38erZux9iZzmYxAcFj/eqqKrnRlJotO1va2l5ZXVtPbWR3tza3tnN7O1XdBgrDmUeylDVXKZBigDKKFBCLVLAfFdC1e3djPxqH5QWYVDCQQRNn3mB6AjO0EitzGED4RGTO/CM0AdaYsoDpMPBw1krk7Vz9hh0kThTkiVTFFuZn0Y75LEPAXLJtK47doTNhCkUXMIw3Yg1RIz3mAd1QwPmg24m4x+G9MQobdoJlakA6Vj9O5EwX+uB75pOn2FXz3sj8T+vHmPnqpmIIIoRAj5Z1IklxZCOAqFtoYCjHBjCuBLmVsq7TDGOJraZLZNLTSzOfAiLpHKec/K5i/t8tnA9DShFjsgxOSUOuSQFckuKpEw4eSIv5JW8Wc/Wu/VhfU5al6zpzAGZgfX1C26mn6Y=</latexit>

h̃Ñ

<latexit sha1_base64="VnwcE7kQBaRBDCy6c28y2kU4uMk=">AAACCnicbVC7TsMwFHV4lvIKMLIYKiSmKkFFMFawMKEi0YfURJXjOK1Vx45sB6mKMrPwKywMIMTKF7DxNzhtBmg5kuWjc+7VvfcECaNKO863tbS8srq2Xtmobm5t7+zae/sdJVKJSRsLJmQvQIowyklbU81IL5EExQEj3WB8XfjdByIVFfxeTxLix2jIaUQx0kYa2EeepiwkmRcIFqpJbD44ygdZKd/m+cCuOXVnCrhI3JLUQInWwP7yQoHTmHCNGVKq7zqJ9jMkNcWM5FUvVSRBeIyGpG8oRzFRfjY9JYcnRglhJKR5XMOp+rsjQ7Eq1jSVMdIjNe8V4n9eP9XRpZ9RnqSacDwbFKUMagGLXGBIJcGaTQxBWFKzK8QjJBHWJr2qCcGdP3mRdM7qbqN+fteoNa/KOCrgEByDU+CCC9AEN6AF2gCDR/AMXsGb9WS9WO/Wx6x0ySp7DsAfWJ8/rjmbiQ==</latexit>

hN

<latexit sha1_base64="aoxTQHaQihvfo61Y8UU0ViyAx+w=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6OViR6HXjzJBPcBWylpmm5haVqSVBih4L/ixYMiXv07vPnfmG496OaDkMd7vx95eUHKqFSO821VVlbX1jeqm7Wt7Z3dPXv/oCuTTGDSwQlLRD9AkjDKSUdRxUg/FQTFASO9YHJT+L1HIiRN+IOapsSL0YjTiGKkjOTbR3oYJCyU09hccJz7Wt/luW/XnYYzA1wmbknqoETbt7+GYYKzmHCFGZJy4Dqp8jQSimJG8towkyRFeIJGZGAoRzGRnp7Fz+GpUUIYJcIcruBM/b2hUSyLgGYyRmosF71C/M8bZCq68jTlaaYIx/OHooxBlcCiCxhSQbBiU0MQFtRkhXiMBMLKNFYzJbiLX14m3fOG22xc3Dfrreuyjio4BifgDLjgErTALWiDDsBAg2fwCt6sJ+vFerc+5qMVq9w5BH9gff4AELSWNQ==</latexit>

CrossEntropy 
Loss

Source (Review): x

<latexit sha1_base64="5uIlQlW4itaxjhe9GvINNxbItb8=">AAACAnicbVDJSgNBEO1xjXGLehIvjUGIlzAjEcVT0IvHuGSBJISeTiVp0rPQXRMThuDFX/HiQRGvfoU3/8bOctDEBwWP96q6q54bSqHRtr+thcWl5ZXVxFpyfWNzazu1s1vSQaQ4FHkgA1VxmQYpfCiiQAmVUAHzXAllt3s18ss9UFoE/j0OQqh7rO2LluAMjdRI7dcQ+hjfjd+jmVvoCXg4vqDDfiOVtrP2GHSeOFOSJlMUGqmvWjPgkQc+csm0rjp2iPWYKRRcwjBZizSEjHdZG6qG+swDXY/HJwzpkVGatBUoUz7Ssfp7Imae1gPPNZ0ew46e9Ubif141wtZ5PRZ+GCH4fPJRK5IUAzrKgzaFAo5yYAjjSphdKe8wxTia1JImBGf25HlSOsk6uezpTS6dv5zGkSAH5JBkiEPOSJ5ckwIpEk4eyTN5JW/Wk/VivVsfk9YFazqzR/7A+vwBnLeW7A==</latexit>

Recover the 
masked segment

1 2

[MASK]. Watermelon is 
delicious, and plating 
is excellent. 

1 2

Positive Target y+

<latexit sha1_base64="wlCW0DOkWOOeT3kTWxBgyPCfEF0=">AAACA3icbZBLSwMxFIUzPmt9jbrTTbAIglBmpKLLohuXFfqCdiyZ9LYNzTxI7hTLUHDjX3HjQhG3/gl3/hvTx0JbDwQ+zrmXcI8fS6HRcb6tpeWV1bX1zEZ2c2t7Z9fe26/qKFEcKjySkar7TIMUIVRQoIR6rIAFvoSa378Z57UBKC2isIzDGLyAdUPREZyhsVr2YRPhAdNSpAWKAdAyU11AOhren7XsnJN3JqKL4M4gR2YqteyvZjviSQAhcsm0brhOjF7KFAouYZRtJhpixvusCw2DIQtAe+nkhhE9MU6bdiJlXoh04v7eSFmg9TDwzWTAsKfns7H5X9ZIsHPlpSKME4SQTz/qJJJiRMeF0LZQwFEODTCuTAuc8h5TjKOpLWtKcOdPXoTqed4t5C/uCrni9ayODDkix+SUuOSSFMktKZEK4eSRPJNX8mY9WS/Wu/UxHV2yZjsH5I+szx8VhpfM</latexit>

Negative Target y�

<latexit sha1_base64="Bc2p1e5Uu/dHPdOz79agoUG0GI0=">AAACA3icbVDJSgNBEO2JW4zbqDe9NAbBi2FGInoMevEkEbJBEkNPp5I06VnorgmGIeDFX/HiQRGv/oQ3/8bOctDEBwWP96qoqudFUmh0nG8rtbS8srqWXs9sbG5t79i7exUdxopDmYcyVDWPaZAigDIKlFCLFDDfk1D1+tdjvzoApUUYlHAYQdNn3UB0BGdopJZ90EB4wOQWukYYAC0x1QWko+H9acvOOjlnArpI3BnJkhmKLfur0Q557EOAXDKt664TYTNhCgWXMMo0Yg0R433WhbqhAfNBN5PJDyN6bJQ27YTKVIB0ov6eSJiv9dD3TKfPsKfnvbH4n1ePsXPZTEQQxQgBny7qxJJiSMeB0LZQwFEODWFcCXMr5T2mGEcTW8aE4M6/vEgqZzk3nzu/y2cLV7M40uSQHJET4pILUiA3pEjKhJNH8kxeyZv1ZL1Y79bHtDVlzWb2yR9Ynz/l2Zeu</latexit>

(Higher CTR)

<latexit sha1_base64="srMcvQ6tkksKiHNvd5QcsU0sSj4=">AAAB/HicdVDLSgNBEJz1bXxFc/QyGAS9LLNrgskt6CVHFaNCEsLspJMMzj6Y6RXDEn/FiwdFvPoh3vwbJzGCihY0FFXddHcFiZIGGXt3Zmbn5hcWl5ZzK6tr6xv5za0LE6daQEPEKtZXATegZAQNlKjgKtHAw0DBZXB9PPYvb0AbGUfnOEygHfJ+JHtScLRSJ1/YayHcYlaX/QFoenx+Ntrv5IvMrVZZqVSmzC0z3/crlrADv1L1qOeyCYpkipNO/q3VjUUaQoRCcWOaHkuwnXGNUigY5VqpgYSLa96HpqURD8G0s8nxI7prlS7txdpWhHSifp/IeGjMMAxsZ8hxYH57Y/Evr5lir9LOZJSkCJH4XNRLFcWYjpOgXalBoBpawoWW9lYqBlxzgTavnA3h61P6P7nwXa/klk9LxdrRNI4lsk12yB7xyCGpkTo5IQ0iyJDck0fy5Nw5D86z8/LZOuNMZwrkB5zXDzjTlIQ=</latexit>

(Lower CTR)

<latexit sha1_base64="V0Y56JB6MIXp9tzQiHlll5CYV+M=">AAAB+3icdVDLSgNBEJz1bXxFPXoZDIJeltk1weQmevHgQcWokIQwO+kkQ2YfzPRqwpJf8eJBEa/+iDf/xkmMoKIFDUVVN91dQaKkQcbenanpmdm5+YXF3NLyyupafn3jysSpFlAVsYr1TcANKBlBFSUquEk08DBQcB30jkf+9S1oI+PoEgcJNELeiWRbCo5WauY3dusIfcxO4zvQ9PjyYrjXzBeYW6mwYrFEmVtivu+XLWH7frniUc9lYxTIBGfN/Fu9FYs0hAiF4sbUPJZgI+MapVAwzNVTAwkXPd6BmqURD8E0svHtQ7pjlRZtx9pWhHSsfp/IeGjMIAxsZ8ixa357I/Evr5Ziu9zIZJSkCJH4XNROFcWYjoKgLalBoBpYwoWW9lYqulxzgTaunA3h61P6P7nyXa/ols6LhcOjSRwLZItsk13ikQNySE7IGakSQfrknjySJ2foPDjPzstn65QzmdkkP+C8fgCXKZQs</latexit>

(Source x,

Control code c,

Target1 y(1),

Target2 y(2))

<latexit sha1_base64="z+/vYolpHXT4Yg/bK/ZBuizFo9M=">AAACcHicbZHfTtswFMadbGOQDejGzaQNzVsFaqepSirQdonGzS5Bo4DUlMpxToOFY0f2CaKKcr33446H4IYnwG0jbfw5kqVP3+8cHftzUkhhMQxvPP/Fy1dLr5dXgjdvV9fWW+/eH1tdGg4DrqU2pwmzIIWCAQqUcFoYYHki4SS52J/xk0swVmh1hNMCRjnLlJgIztBZ49bfOIFMqIpJkSlI66CzHSNcYfVnvoHWV99pHAe0cfe1QqMl5Tp1jD9gR8xkgBGtp2dVJ+rWz8D+Ava7dTeIQaX/1o5b7bAXzos+FVEj2qSpg3HrOk41L3NQyCWzdhiFBY4qZlBwCXUQlxYKxi9YBkMnFcvBjqp5YDXdck5KJ9q4o5DO3f8nKpZbO80T15kzPLeP2cx8jg1LnPwcVUIVJYLii0WTUlLUdJY+TYUBjnLqBONGuLtSfs4M4+j+aBZC9PjJT8Vxvxft9HYPd9p7v5o4lslH8pV0SER+kD3ymxyQAeHk1tvwPnmb3p3/wf/sf1m0+l4zs0EelP/tHrDrub0=</latexit>

Figure 2: Overview of our proposed approach CREATER for CTR-driven advertising text generation.

Aspect-Controlled Generation Given a masked
review x̃with an aspect term c, our self-supervised
objective is to recover the masked segment (i.e.,
pseudo-target ỹ) of original review x with the
controlling of c:

min
Θ
−log pΘ(ỹ | x̃, c). (2)

Such aspect-controlled generation enforces the
model to understand the context of input masked
review better. Compared to general pretraining
models (Zhang et al., 2020; Lewis et al., 2020;
Raffel et al., 2020), the proposed objective is
customized to our scenario. The input information
x̃ does not contain the content to be generated,
improving the ability of generating abstractive
contents other than simply copying from input only.

Formally, we first prepend the control code c
to the masked source x̃, and add a special word
“[SEP]” between them. We then feed the con-
catenated sequence [c,[SEP], x̃] into CREATER to
generate the pseudo-target ỹ=[ỹ1,ỹ2,...,ỹT̃ ] (where
T̃ denotes the length), where the model architecture
is a Transformer encoder-decoder (Vaswani et al.,
2017) and it is optimized via teacher-forcing:

h̃1,h̃2,...,h̃Ñ = Enc([c,[SEP], x̃])

p(ỹt | ỹ0:t−1, x̃, c)∼Dec
(
ỹ0:t−1, h̃1:Ñ

)

min
Θ

T̃∑

t=1

−log pΘ(ỹt | ỹ0:t−1, x̃, c)

(3)

where Ñ is the length of the sequence [c,[SEP], x̃],
and h̃i is the i-th word’s representation.

3.2 Stage 2: Contrastive Fine-Tuning

To incorporate CTR objective during generation,
we make use of existing online A/B test data that
reflects user preference. Specifically, we construct
a dataset D, where each sample is a tuple (source
x, control code c, positive target y+, negative target
y−). Both y+ and y− are human-written ad texts
(given x and c), while y+ achieves higher CTR than
y− during online A/B test.

Next, we start from describing a vanilla fine-
tuning objective that only considers y+. We then
introduce two contrastive fine-tuning objectives
which take good advantage of online A/B test data.

Vanilla Fine-Tuning A straightforward objective
is to maximize the generation probability of positive
target y+:

Lft = −log pΘ(y+ |x, c). (4)

Obviously, this learning objective omits the utility
of negative targets.

To enhance the model’s discriminative ability
of ad texts with different CTR, we propose to
expose the decoder to both positive and negative ad
texts via modeling their distinctness. Specifically,
we leverage the paradigm of contrastive learning,
where the positive/negative target (i.e., ad text
with higher/lower CTR) is used to construct
positive/negative paired instance, and introduce two
contrastive learning based objectives to fine-tune
the pre-trained model.
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i. Margin-based Contrastive Fine-Tuning We
first propose to directly maximize the margin of
generation probabilities between the positive target
y+ and the negative target y−. This yields the
following loss function:

Lcont=max
{
0,−

(
log pΘ(y

+ |x, c)−log pΘ(y− |x, c)
)
+γ

}
(5)

where the margin γ is a hyperparameter. Through
this loss, the optimization procedure is encouraged
to maximize the probability gap of ad texts having
distinct CTR.

ii. InfoNCE-based Contrastive Fine-Tuning
From the perspective of representation learning, we
propose a contrastive loss based on InfoNCE (Oord
et al., 2018), which maximizes the similarity
between source and positive target, and minimizes
that between source and negative target:

Lcont=−log
exp

(
sim

(
(c,x), y+

)
/τ

)

exp(sim((c,x), y+)/τ)+exp(sim((c,x), y−)/τ)
(6)

where τ is temperature. sim(·, ·) is similarity
function of encoder and decoder representations.

We adopt mean-pooling to the top layer of the
encoder/decoder as their representations. Let h, z+

and z− denote encoder representation, decoder rep-
resentations for positive and negative targets. We
then add two fully-connected layers to the encoder
and the decoder side respectively, transforming
them to the same vector space. Thus an inner prod-
uct operation is used to obtain the similarity scores:

sim
(
(c,x), y+)=(Weh)

⊤(Wdz
+)

sim
(
(c,x), y−)=(Weh)

⊤(Wdz
−) (7)

where We and Wd learnable parameters.

Objective The final loss of contrastive fine-tuning
stage is the sum ofLft and contrastive loss:

Lft(y+) +Lft(y−) + αLcont (8)

where α is a trade-off hyperparameter, and Lcont
can either be margin-based or InfoNCE-based.

Comparison The advantage of margin-based
loss is that it does not add extra parameters, directly
incorporating CTR objective to generation proba-
bilities. InfoNCE-based loss considers encoder rep-
resentations to learn better decoder representations.
Although it adds a few parameters (i.e., two fully-
connected layers), they are pruned at inference. The
construction of positive-negative pairs in CREATER

is designed for CTR objective via user feedback,
unlike recent work tackling other issues (Cao and
Wang, 2021; Pan et al., 2021; Lee et al., 2021)

Dataset Pre-training (Dx) Fine-tuning (D)

# Samples 1,471,106 43,985
Avg. length of reviews 25.05 25.31
Avg. length of ad texts N/A 13.06

Table 1: Statistics of the datasets used in our experiments.
“Avg. length” means the average number of characters
in a sequence (review or ad text).

4 Experiments

4.1 Experimental Setup

Datasets To our knowledge, there is no available
public dataset that contains ad texts coupled with
CTR information, thus we collected data on a lead-
ing advertising platform. We construct a datasetD
where each sample is a tuple of (user review, aspect
term, positive ad text1, negative ad text2), in Chinese,
through online A/B test. Overall the user reviews are
ensured to be high-quality based on rules and filter-
ing models. Each ad text is written by human editors
given the review and aspect term, covering 4,047
advertisers. More details about data preprocessing
and filtering can be found in Appendix A.1.

We also produce a large-scale review corpus
Dx for constructing pre-training dataset via
aspect-controlled masking (§ 3.1). Table 1 lists
the statistics. We split D with 7:1:2 to obtain the
training/development/test set.

Comparative Approaches We choose two types
of comparative approaches in our experiments. The
first type contains non-CTR-driven approaches:
(1) SEGEXT (Segment extraction) employs
unsupervised aspect-controlled masking (§ 3.1)
to return a segment of source as the ad text. If the
returned segment is too short to display, we add
its left or right segment based on matching score.
(2) PGNET (Pointer-generator) is an RNN-based
approach via copying mechanism (See et al., 2017);
(3) C-PGNET improves PGNET by adding
control code during decoding, which imposes on
the generation gate; (4) TRM (Transformer) is the
state-of-the-art architecture for text generation; (5)
C-TRM improves TRM by adding control code
at both encoder and decoder sides, with the help
of fusion layers; (6) C-TRM-RL fine-tunes the
C-TRM with reinforcement learning (RL), where
an extra CTR regression model (trained on D) is
the reward estimator that produces click probability
of a generated text (Hughes et al., 2019). Negative
targets are used to train the reward estimator, and are
not explicitly used for optimizing generation model.
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The second type contains CTR-driven ap-
proaches. They exploit negative target y− during
training to explicitly incorporate CTR information:
(1) QUALITYMODEL employs click behavior
as a quality measure for paired samples (Wang
et al., 2019). It first builds a CTR latent space to
represent source and target, and then computes
the cosine similarity between them as the quality
score of the sample. Quality scores are used to
weight the cross-entropy objective and reduce
the probability of generating low-quality texts;
(2) CONTRAMODEL is a variant of CREATER,
which removes the controlled pre-training stage; (3)
BART+CONTRAMODEL performs pre-training
from scratch using the self-supervised objective
of BART other than our proposed one, and then
performs fine-tuning with CONTRAMODEL.

4.2 Implementation Details

Both the encoder and the decoder of CREATER

contain four layers, and the dimension of hidden
representations produced by each layer is set to 512.
For fair comparison, all comparative approaches
that based on Transformer employ the above
architecture. For text preprocessing, we tokenize
sources and targets to word sequences, and thus
our CREATER generates ad texts at word-level. We
restrict the max length of input as 128 words. The
overall parameter size is 129M. At the pre-training
stage, we employ Adafactor optimizer (Shazeer
and Stern, 2018), with a mini-batch size of 4096 for
training 10 epochs. Models are trained on 8 Tesla
V100 32GB GPUs. We implement our approach
with PyTorch3 and Transformers4.

In terms of the model for extracting aspect term
set, during early experiments we found that the
performance of CREATER is not sensitive to it and
thus we employ the representative model ABAE.
For matching function f(·,·) (Equation 1) used in
aspect-controlled masking for building pre-training
data, we try a lexical-based (similarity of sparse
TF-IDF vectors) and an embedding-based one (simi-
larity of averaged word embeddings), and found that
the performance of fine-tuned model is not sensitive
to them. Thus we choose the former for simplicity.

At the fine-tuning stage, we set the mini-batch
size to 1024 for 20 epochs. When the margin-based
contrastive loss is used, the margin parameterγ is set
to 1.0. Or if we the use InfoNCE-based contrastive

3https://github.com/pytorch/pytorch
4https://github.com/huggingface/

transformers

Approach BLEU-4 RG-1 RG-2 RG-L

Non-CTR-driven Approaches
SEGEXT 13.54 31.11 7.71 23.66
PGNET 24.85 44.79 16.76 35.21
C-PGNET 37.69 55.09 31.70 46.62
TRM 33.36 50.58 26.23 42.44
C-TRM 48.66 61.73 42.43 54.82
C-TRM-RL 50.11 62.59 42.26 55.43

CTR-driven Approaches
QUALITYMODEL 49.89 62.67 43.85 55.84
CONTRAMODEL 51.47 63.47 43.94 56.93
BART+CONTRAMODEL 53.35 65.04 46.20 58.51
CREATER 54.56 65.93 47.44 59.77

Table 2: Main results. “RG” stands for ROUGE. Both
BLEU and ROUGE scores are multiplied by 100.

loss, the temperature parameter τ is set to 1.0. We
set the trade-off hyperparameter α to 1e-3 (which
is searched from {1e-2, 1e-3, 1e-5}). We choose the
checkpoint that has lowest perplexity on validation
set as the final model. At inference time, we use
beam search algorithm to generate texts, where the
beam size is set to 5. The BLEU metric is evaluated
using NLTK5, and the ROUGE metric is evaluated
using pyrouge6. All reported results of different
approaches are run based on the same random seed.

4.3 Performance Comparison

Table 2 shows the comparison results, and we report
BLEU-4 and ROUGE-1/2/L (positive targets are
regarded as gold-standard).7 It is natural that the
approaches considering aspect terms outperform
those that do not perform controlling.

CTR-driven approaches usually outperforms non-
CTR-driven ones, demonstrating that exposing the
model to both positive and negative targets improves
generation quality. QUALITYMODEL and CON-
TRAMODEL represent two paradigms to incorporate
CTR information. CONTRAMODEL is superior
to QUALITYMODEL, which indicates that directly
modeling the distinctness as an auxiliary objective
is more effective than weighting the original loss.

BART+CONTRAMODEL performs better than
CONTRAMODEL by adding a pre-training stage.
CREATER proposes a customized controlled pre-
training objective and achieves the best result. This
verifies that designing a suitable self-supervised
objective is crucial to improve generation.

5https://github.com/nltk/nltk
6https://github.com/bheinzerling/

pyrouge
7Our CREATER performs significantly better than the

second best comparative approach at the level of p<0.05.

13



Variants of Pre-training BLEU-4 RG-1 RG-2 RG-L

CREATER (p(ỹ | x̃,c)) 54.56 65.93 47.44 59.77
w/o masking (p(ỹ |x,c)) 51.24 63.65 43.74 56.94
w/o control code (p(ỹ | x̃)) 53.11 64.64 45.91 58.28
w/o whole pre-training 49.92 62.20 41.91 55.09

Table 3: Comparison of pre-training objectives.
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Figure 3: Results with limited fine-tuning data. Dashed
lines are two strongest baselines trained on whole data.

4.4 Discussion

Effect of Aspect-Controlled Masking During
pre-training, aspect-controlled masking ensures the
ability of generating abstractive contents other than
simply copying from source. Besides, the model
takes aspect terms as control codes to generated
masked contents (pseudo-targets). Both the two
mechanisms reduce the gap between pre-training
and fine-tuning. We verify their effectiveness by re-
moving one of two mechanisms, and the fine-tuning
stage keeps unchanged. Results are shown in Ta-
ble 3. The two variants are inferior to the full model,
demonstrating that both of them can improve pre-
training to provide better warm-starting. Aspect-
controlled masking brings improvements over 3
BLEU score and 2 ROUGE score. Thus, our novel
controlled pre-training objective indeed enhances
the performance of advertising text generation via ef-
fective self-supervised learning on unpaired corpus.

Benefit in Low-Resource Scenario We further
verify the effect of controlled pre-training when
there are only limited paired data for fine-tuning.
We change the size of data (from 25% to 100% of the
whole training set), and compare to two strongest
baselines (QUALITYMODEL and CONTRAMODEL,
without pre-training) that are trained on the whole
training set. As shown in Figure 3, with only half
of fine-tuning data, CREATER performs on par
with QUALITYMODEL, verifying the benefit of our
controlled pre-training in low-resource scenario.

Variants of Contrastive Loss BLEU-4 RG-1 RG-2 RG-L
Pre-Train Contrastive Loss

✓ InfoNCE-based 54.56 65.93 47.44 59.77
✓ Margin-based 54.26 65.93 47.23 59.57
✓ No 53.70 65.38 46.57 58.94

× InfoNCE-based 49.92 62.20 41.91 55.09
× Margin-based 51.47 63.47 43.94 56.93
× No 50.37 62.27 42.19 55.36

Table 4: Comparison of contrastive learning objectives.

Approach Gram. Info. Suit. Avg. Rank (↓)

SEGEXT 4.97 2.19 1.92 4.53
C-TRM 4.95 2.69 2.44 3.65

QUALITYMODEL 4.96 2.81 2.49 3.19
CREATER 4.96 3.21 3.05 2.09

Human-written (high-quality) 4.99 3.60 3.22 1.48

Table 5: Human evaluation results. “Gram.”, “Info.”,
“Suit.” and “Avg. Rank” stand for grammaticality, infor-
mativeness, suitability and average rank, respectively.

Analysis of Contrastive Fine-Tuning Our CRE-
ATER exposes the model to both positive and nega-
tive targets for incorporating CTR information. Ta-
ble 4 shows the comparison of two contrastive ob-
jectives. For with and without pre-training, the best-
performing model is based on contrastive learning.

An interesting point is that when we perform
pre-training, InfoNCE-based model achieves best
performance, while margin-based model outper-
forms other variants if we do not pre-train the model.
We suggest that InfoNCE-based loss is designed
from the perspective of representation learning, and
pre-training can provide better text representations
compared to no pre-training. Thus in this situation
the utility of InfoNCE-based model is highlighted.

4.5 Human Evaluation

An ad text will be measured from the three views:
grammaticality, informativeness (whether its
content reflects the key points of aspect term and
the source) and suitability (whether it is suitable to
be displayed). Each view is ranging from 1 to 5 (5
is the best). We randomly choose fifty samples and
invite three human judgments.

Table 5 shows that CREATER performs well on
most views and achieves the best ranking results
among four comparative approaches, possessing
the ability of generating fluent, informative and
suitable ad texts. We found that the reason why
the informativeness and suitability of CREATER

are not as high as human-written ones is that the
faithfulness of generated texts is not always ideal.
We leave the improvement in future work.
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Approach Source: 水果很新鲜,口感很好吃着非常甜,价格优惠,
下次还会光顾 (The fruit is fresh, and it tastes delicious
and sweet. The price is favorable. Will buy it next time.)
Control code:口感 (taste)

SEGEXT 水果很新鲜,口感很好吃着非常甜 (The fruit is fresh,
and it tastes delicious and sweet.)

C-TRM 他家的水果挺新鲜,口感挺值的 (The fruit in this shop is
really fresh, and the taste is worth the price.)

QUALITYMODEL 超喜欢他家水果,品质好,口感很好 (Really like the fruit
in this shop, which is of good quality and tastes well.)

CREATER 份量很足,水果新鲜,口感
:::::::
甘甜很解渴 (The fruit is a big

portion and fresh. It tastes
:::
sweet,

::::::
quenching

:::
your

:::
thirst.)

Table 6: Case analysis. Texts in parentheses are the
corresponding contents translated to English.

Approach CTR (↑) CPC (↓)

BASE - -
QUALITYMODEL +4.5% -4.1%

CREATER +6.9% -6.1%

Table 7: Online results (relative improvement).

4.6 Case Analysis
We further show the generated ad texts from
different approaches for case analysis. Table 6 is a
case analysis that the input contains a source review
with an aspect term. By comparing these generated
results, We can see that the ad text generated by
CREATER is more suitable to attract users. The
generated phrase “sweet, quenching your
thirst” is more attractive than other results
like “tastes well”. On the whole, the overall
quality of the ad texts generated by CREATER is
better than other competitive approaches.

4.7 Online Experiments
We have deployed CREATER to a leading advertis-
ing platform. Our online experiment is conducted
for one-week, and all ads are displayed in mobile
news feed. For the ad that containing more than
one generated texts (because there may be multiple
control codes), we randomly choose one of them to
display. The experiment traffic covers over 12,000
advertisers, and results are computed based on over
ten million impressions to ensure the confidence
of online metrics.

We compare performance among the ad texts gen-
erated by CREATER, QUALITYMODEL, and those
provided by advertisers (as BASE). Core metrics are
CTR and cost per click (CPC): CTR = #click

#impression

reveals attractiveness; CPC = total cost of advertisers
#click

reflects ad delivery efficiency. Table 7 shows that
CREATER achieves significantly improvements on
both CTR and CPC, verifying its effectiveness of
improving delivery efficiency.

5 Related Work

Most studies focus on generating ad texts given
landing page contents (Thomaidou et al., 2013).
Hughes et al. (2019) employ a CTR model as reward
estimator with self-critical RL, and Kamigaito
et al. (2021) consider fluency, relevance and quality
rewards to capture the characteristics of effective
ad texts. Kanungo et al. (2021) incorporate masked
language modeling with self-critical learning to
improve the generation for multiple products. Wang
et al. (2021) design model-based RL system that
mimics real user feedback.

To model user click behavior, Wang et al. (2020)
take click as a measure of text fitness and design
click-based reward. Wang et al. (2019) build a CTR
space to obtain sample quality that weights cross-
entropy loss. Unlike these work, we directly model
the distinctness of positive and negative targets, and
propose a customized pre-training objective.

6 Conclusion

We propose CREATER for generating ad texts,
which employs contrastive learning to encourage
the model to generate texts achieving higher
CTR. We design a novel self-supervised objective
customized to our scenario, reducing the gap
to further fine-tuning. Experiments verify that
CREATER brings significant uplift on core metrics.

In future work we will take a next step to improve
faithfulness, and extend the model to handle
multiple aspects (Chan et al., 2021) and multiple
reviews (which may be conflicting) with graph
neural networks (Wei et al., 2021).
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Ethical Considerations

When we apply large-scale corpora from the Web,
alleviating bias issues is necessary. We make efforts
from two perspectives: (1) For input reviews, we
have filtering steps to remove harmful contents,
and ensure that they do not have user privacy
information like age and gender (“Data Collection
and Filtering” of § A.1); (2) For output ad texts,
we are cautious before online deployment with a
risk control procedure (“Post-Processing before
Deployment” of § A.1). (3) Our model does not use
user privacy information like age and gender.
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A Appendix

A.1 More Details of Dataset Construction
Data Collection and Filtering As mentioned in
§ 4.1, we construct the datasetDwhere each sample
is a tuple of (user review, aspect term, positive ad
text, negative ad text). The construction procedure
ofDmainly contains the following steps:

1) Collecting a set of high-quality user reviewsDx.
Firstly, a large size of reviews of e-commerce
and retail items are collected. We then filter out
low-quality ones via a set of rules (e.g., length
constraint, repeat term constraint and harm-
ful/abusive word vocabulary) and a spam detec-
tion model (trained based on both text contents
and fraud behavior features). After this step, we
obtain a review corpusDx containing 1,471,106
reviews, which is also utilized to pre-training.

2) Building an aspect term setDc, utilized to guide
generation and ensure the relevance between
review contents and ad texts. According to
business demands, we first construct a seed
set provided by advertisers. We then expand
this small set via an unsupervised extraction
model ABAE (He et al., 2017), trained on the
review corpusDx. Each aspect term is typically
represented as a word. After a simple filtering
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rule based on IDF to remove noise, we obtain
an aspect term setDc containing 991 terms.

3) Professional editors write two distinct ad
texts for each given (user review, aspect term)
pair. Because writing high-quality ad texts
is time-consuming and labor-intensive, this
procedure collects around 50,000 samples.
We check the correlation between input and
output via randomly sampling a fraction of all
tuples written by the same editor, and remove
low-quality ones. Besides, we ensure that in
a paired sample the ad text does not match
word-for-word to the original review.

4) Conducting online A/B test to collect user prefer-
ence (i.e., CTR) on these ad texts. Traditionally,
advertisers resort to this step to polish their ad
texts for catching user interests. In this work
we make use of these data to train contrastive
learning based generation model.

5) Filtering out invalid tuples to obtain the final
dataset D. We remove outlier samples during
online A/B test, e.g., the ads that do not have
sufficient impressions or obtain anomalously
high CTR. We also use Z-test to ensure that the
CTR difference between two ad texts of same ad
is significant. As a result, this dataset contains
43,985 samples and covers 4,047 advertisers.

No personal identifiable information is included
in our dataset: (1) During collection, only review
texts are saved, and other meta-information (such
as original authors) is not collected. (2) To exclude
identifying information which may be contained in
texts, we employ regular expression for replacement
by placeholders.

Post-Processing before Deployment Before
online deployment, we have a risk control procedure
to cautiously perform post-processing on the ad
texts generated by models, aiming to ensure the
suitability of ad texts before displaying. For
instance, text contents that contain false, useless or
harmful information cannot be displayed to users.
Specifically, this procedure removes the texts con-
taining non-compliant words (e.g., harmful words),
and performs manual-checking on generated texts.
Overall, the passing rate of generated texts is around
90% to 95%, which means that the generation
models can be deployed online in industry.
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Abstract

We describe Verse by Verse, our experiment in
augmenting the creative process of writing po-
etry with an AI. We have created a group of
AI poets, styled after various American clas-
sic poets, that are able to offer as suggestions
generated lines of verse while a user is com-
posing a poem. In this paper, we describe the
underlying system to offer these suggestions.
This includes a generative model, which is
tasked with generating a large corpus of lines
of verse offline and which are then stored in an
index, and a dual-encoder model that is tasked
with recommending the next possible set of
verses from our index given the previous line
of verse.

1 Introduction

There has been a lot of growing interest in po-
etry generation (Gonçalo Oliveira, 2017). Some
of these approaches have even shown quality ap-
proaching that of humans (Lau et al., 2018). How-
ever, much of this has been in the view of letting
an AI write a full poem by itself, thus writing
in a closed system. Only recently have some ap-
proaches started to explore human interaction when
composing a poem (Ghazvininejad et al., 2016,
2017; Gonçalo Oliveira et al., 2017; Zhipeng et al.,
2019).

Verse by Verse1 is our experiment in augmenting
the creative process of poetry composition with an
AI. Unlike past approaches that focused on gen-
erating a full poem, we are interested on how we
can use AI to offer suggestions to a user as they
compose a poem. This is a much more challenging
task, as one needs be able to offer suggestions with
minimal latency while meeting constraints of the
poem structure and handle the challenges of user
input. Additionally, to make this a more educa-

1https://sites.research.google/
versebyverse/

tional experience, we wanted to generate the verses
in the style of various classic American poets.

In this paper, we describe the underlying system
that powers Verse by Verse. Our main contributions
are:

• A novel approach using multiple models that
allows us to split local verse knowledge (how
to generate a line of verse) and global poem
knowledge (what line of verse would best fol-
low a previous line of verse).

• A novel way of determining rhyme phonemes
for verses that is robust with user input.

• The first approach that we know that incor-
porates techniques to help reduce possible
learned biases within a poetry system.

2 Verse by Verse Overview

As mentioned, Verse by Verse is an interactive ap-
plication that allows users to compose a poem while
getting suggestions from the system. To use this
application, users first pick a few classic American
poets to act as their muses. They will then pick the
structure of the poem (quatrains, couplets, or free
verse), and optionally syllable count and rhyme
schema (when applicable). Afterwards, they can
begin to compose a poem.

While the user composes a poem, the poets will
make suggestions of next possible lines of verse
given the previous verse (as shown in Figure 1).
Users may either use these suggestions (including
being able to edit the suggestions to make them
more personal) or continue writing verses of their
own. This goes on until a user is satisfied with their
poem, in which they can then optionally add a title2

2We had initially designed the system to start with a poem
title, but feedback from our initial user subject studies showed
that our poet enthusiasts preferred adding a title after a poem
had been written. Having the title first made users feel forced
to fit the poem to the title, while having the title last allowed
them more freedom of creativity during composition.
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Figure 1: UI of Verse by Verse, with a user composing a poem and the AI making suggestions.

and save the final poem as text or as an image.
Figure 2 shows an overview of how we suggest

verses to the user. Our system first receives from
the user as input: the previous verse, poem struc-
ture metadata (such as syllable count and selected
poets), and, if needed, a verse to rhyme with. When
a rhyming verse is provided, the system will find
the rhyming syllables for this verse. The rhyming
syllables along with the poem structure metadata
will then be used as filters on the generated verse
suggestions. With the previous verse input, the sys-
tem will then encode the verse using a feed forward
network. This encoding will be used in a search
against pre-generated and pre-encoded verses, tak-
ing the dot product of each pair of encodings. It
will then output a list of the n-best3 possible verses
per poet to suggest as the next verse based on the
dot product scoring.

The next few sections will cover the various parts
of the system: verse generation, verse retrieval, and
determining rhyme syllables.

3 Offline Verse Generation

We generate our verses offline and store them for
later retrieval, which differs from past approaches
of poetry generation. This allows for faster serving
(Henderson et al., 2017), especially when used in a
dual encoder network as described in Section 4.

Our verse generation is done in a pipeline
composed of multiple steps. Figure 3 shows an
overview of this. It takes original poetic sources

3The value of n is controlled by the UI, which considers
two factors: whether the user is on desktop or mobile (we can
show more suggestions when viewing on desktop) and how
many poets the user has selected to act as their muses.

Generated
verses

Previous
verse

Rhyming
verse +
poem

metadata Encoder

Encoder Verse
filter

Dot product
search

n-best next
verses per poet

Offline

Figure 2: Overview of underlying system that handles
user input and suggests next possible lines of verse.

and creates new verses (Section 3.1); then filters out
poorly-generated verses (Section 3.2); and finally
adds metadata for each verse such as the rhyme
syllables and syllable count (Section 3.3).

3.1 Generating Novel Verses

In our approach, we present users the option to
choose from 22 American poets to act as their
muses. These poets are restricted to those in which
there is substantial enough material available to
use that is no longer under copyright, with most
material found on Project Gutenberg4.

4http://www.gutenberg.org/
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Figure 3: Overview of how we generate our lines of verses offline. We begin with the full corpora of English
poetry and train a transformer model. We then copy this model and fine tune it for each of our poets on their
individual corpora, using Whitman and Dickinson as examples here. These models are then used to generate novel
verses, which are filtered for quality and amended with metadata. All these generated verses are then added to our
generated verses index, which is used for serving lines of verse to our uses.

3.1.1 Architecture and Training
We use a decoder-only Transformer model
(Vaswani et al., 2017) for generating these verses.
This model is trained to predict the next single sub-
word token given the previous tokens in a line of
verse. It is composed of 8 multi-head attention
layers with 8 heads each. The layers had a hidden
dimensionality of 128 and feed-forward dimension-
ality of 512.

We first pretrain the model on a large corpus
(1,116,297 lines of verse) of English-speaking po-
ems from Project Gutenberg, including the above
mentioned 22 American poets. This is done for
400 epochs. Following this, we make 22 copies of
the model and fine-tune each one on a given poet,
training for 50 epochs per poet. This fine-tuning
then allows us to capture the style of each poet. For
both phases of training, we use a batch size of 128,
dropout rate of 0.1, and the same learning rate as
described in the Transformer paper (Vaswani et al.,
2017).

3.1.2 Generation
After the generative models have been trained, we
next start generating all feasible lines of verse per
poet. This involves taking a set of starting tokens
and then extending with all the suggestions of the
model given a certain threshold is met. The set of
starting tokens is composed of the original starting
tokens of the lines of verse by a given poet com-
bined along with tokens that were common across
the 22 poets. The extra starting tokens are partic-
ularly beneficial for poets whose corpus is small
and might not have as many tokens to start a verse
with. But to help to avoid introducing uncommon

tokens that may be part of a poet’s style, we restrict
to tokens that have been used by at least 12 poets.

For each partial verse (any verse that does not yet
contain an end-of-line token), we expand it by con-
sidering all tokens whose normalized score (prob-
ability of being the next token normalized against
the maximum probability) are above a threshold of
0.925. An expansion that results in an end-of-line
token will then be included in that poets’ generated
corpus. Any incomplete verses will be considered
for another iteration of expansion. This continues
on for 10 iterations. To help contain the exponential
growth as we generate the lines, for each iteration,
we only carry over the 100M best partial verses
seen that iteration. This is determined by summing
the scores seen so far for a given partial verse.

3.1.3 Quality vs Quantity
As mentioned in the previous section, we had used
a threshold of 0.925 for the verse generation. We
had experimented with different values, and found
this to give us the best balance of quantity vs qual-
ity. Intuitively, having a higher threshold would
result in much better quality of verses, though al-
lowing for only a smaller set of generated verses.
And for a closed system, where topics can be more
restricted, this would have sufficed. But as we need
to handle any possible topic presented by the user,
we needed to loosen quality in order to allow for a
wider variety of verses.

3.2 Quality Control Filtering

After we have generated our collection of verses,
we then run them through various filters to remove
those of poor quality (especially as discussed in pre-
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vious section we have lowered the quality thresh-
old to allow for a wider variety of verses). This
includes: making sure parenthesis and quotation
marks are balanced, filtering out verses of syllable
counts not supported in the application, removing
verses which contain words that we do not want to
serve to the user (e.g., offensive words), and filter-
ing out any verse that matches one of the original
verses written by the given poet.

An additional filter we implemented is filter-
ing by part-of-speech. Using the large corpus of
English-speaking poems, we go through each line
of verse and get a POS “fingerprint,” which is a con-
catenation of POS tags representing a line of verse.
Then, for every generated verse, we check to see
if that line of verse’s POS matches that of one of
the fingerprints from the original verses. If so, we
keep the line of verse, otherwise it is removed from
our collection. The reasoning behind this is that
since we are doing a deep search of many possible
verses with our generative model, it will sometimes
generate lines of verse of very poor grammar.5 By
utilizing the POS used by our real poets, we can
then help to improve the quality of the generated
verses.6

After the filtering, we are left with a total of
26.9M generated verses for our 22 poets. But as
our poets all have different styles, along with a
different amount of available past works available,
some poets will have a resultant larger set of gener-
ated verses than others, ranging from 60K for our
smallest to 8.3M for our largest.

3.3 Metadata

All generated verses that are of good quality are
finally labeled with metadata. This metadata in-
cludes the poet source this was generated from,
syllable count and rhyming phoneme (to be dis-
cussed later in Section 5), and any other fields we
may need to filter upon for serving to our users.

5While poets may compose lines of verse that purposely
break the rules of grammar, we are more focused on filter-
ing out lines of verse that are unreadable due to their poor
grammar.

6Alternatively, we had experimented with language model
classifiers prior to implementing the POS fingerprint filtering.
These classifiers did not work very well, oftentimes removing
too many good verses or allowing too many poor quality verses
to pass through, especially for our poets with small bodies of
work available.

4 Next Verse Prediction

We use a dual encoder network architecture for
suggesting the next line of verse of a poem. We
will discuss training of the network, the indexing
of possible verses, and the retrieval of verses.

4.1 Dual Encoder Model

We use a dual-encoder architecture that is similar
to what was used in Gmail’s Smart Reply (Hender-
son et al., 2017). In the original work, the authors
would encode the user input with one encoder and
all possible replies with the other encoder. In our
model, one encoder is used to encode a parent (pre-
vious) verse and the other encoder is used to encode
a child (next) verse. Then, same as in the original
work, the model optimizes for a given verse’s dot-
product score with the true following verse to be
higher than with random negatives from the batch.

Our network does differ though from the orig-
inal work with respect to the composition of the
encoders. For the two encoders in our network (as
shown in Figure 2), they both take in an input and
feed that into a SentencePiece model (Kudo and
Richardson, 2018), consisting of a vocab size of
128K. This then feeds into a set of Transformer
layers (Vaswani et al., 2017). The Transformer
consists of 4 layers, each with 4 attention heads,
a hidden size of 1024, and a feed-forward size of
4096. Finally, these then feed into a set of 2 fully-
connected layers, with ReLU activation on the first
layer and Softsign activation on the second. These
deep layers consist of a hidden size of 500 each.
In terms of weights, the Transformer layers for the
two stacks share weights while the fully-connected
layers do not.

4.2 Training

We use two collections of data for training data.
One is a mixture of poems (such as those used
for poetry generation) and other similar mediums,
which we call poetic. This set’s purpose is to train
the model to predict the next line of verse given
the previous. The other is composed of comments
from internet discussion forums, which we call
comments. For this, we train to predict a comment
given the previous comment. Doing so allows us to
expose the model to a larger vocabulary and more
noisy data than what would normally be seen in
the poetic corpus, which is important when dealing
with user input.

To train the dual encoder, we first pretrain the
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model on our comment data for 20M steps with
a learning rate of 0.01. After this, we will fine-
tune the model on the poetic corpus for an addi-
tional 10M steps with a learning rate of 0.001. We
use dropout for both the Transformer attention and
ReLU layers of 0.1. We use a training batch size
of 100. Additionally during training, we use the
parent (previous verse or comment) as extra nega-
tive examples, which helped train the model not to
repeat itself.

4.3 Verse Indexing and Retrieval

After we have trained the dual-encoder model, we
can then use it to start to encode all our generated
verses from the previous section. Each generated
verse will be encoded using the encoder for the
child verse. These are then stored in an index. Dur-
ing retrieval, instead of using an exhaustive search
across all possible verses, we use a hierarchical
quantization approach for allowing for fast search
(Guo et al., 2016; Wu et al., 2017).

When composing a poem, the system will re-
ceive the previous verse and various metadata for
filtering, as shown in Figure 2. We first encode
the previous verse using the parent encoder. We
then take the dot product of this verse and all pos-
sible verses, filtering out verses based on what the
user needs. Afterwards, the system will return the
n-best possible next verses.

In the end, this architecture allows us to do a lot
of the expensive process offline and allows for fast
retrieval and filtering when users are composing
a poem. Additionally, this adds the capability of
filtering verses by their respective metadata, so
that we can match the requirements of what a user
desires for the structure of their poem.

5 Rhymes and User Input

As we allow users to enter their own verses or edit
candidate verses, we then have to take this into ac-
count for next-verse suggestion when dealing with
rhyme. In many past approaches that are generating
a poem in full, they can use various heuristics to
help meet requirements for rhyme, such as restrict-
ing what words are available. Or in some cases,
such as with Deep-speare, learn a model for rhyme
(Lau et al., 2018). Since we were creating an in-
teractive approach, we then had to take a different
route for dealing with rhymes.

5.1 Text Normalization

For rhyme syllables (and syllable count), we ini-
tially used the CMU pronunciation dictionary7,
which has been used in past approaches such as
Ghazvininejad et al. (2016) and Hopkins and Kiela
(2017). This was unfortunately problematic – its
use is limited when dealing with words with multi-
ple pronunciations (e.g., past and present tense of
“read”), and failed when handling irregular spelling
and out-of-dictionary words both from what poets
used in their writings (e.g., “W’en daih’s chillun in
de house,” by Paul Laurance Dunbar) and when
handling user input. We also considered train-
ing a model for rhyme, similar to what was done
for Deep-speare (Lau et al., 2018). While this
would help alleviate some of the dictionary issues,
it would still be fragile when handling user input.

To overcome these issues, we used the Kestrel
text normalization system (Ebden and Sproat,
2015) for determining the rhyming syllables and
syllable counts of a verse. It is able to determine
correct pronunciations of words like “read” with
respect to tense, and is able to suggest phonemes
for out-of-dictionary words. Furthermore, it can
handle more extreme situations, such as “In my
pocket there is $.50”. In this case, the system is
able to understand that it needs to find a word that
rhymes with “cents”.

5.2 Perfect and Imperfect Rhymes

This work uses both perfect and imperfect rhyming.
For the imperfect rhyming, we loosely follow the
steps as described by Ghazvininejad et al. (2016),
with slight modifications to accommodate the dif-
ference between their use of the CMU dictionary
and our use of Kestrel.

Expanding beyond their work, we also allow for
imperfect rhymes on single-syllable words. For
this, we find similar consonant phonemes for the
last phoneme of the word where the logs-odd scor-
ing is 0 or greater from the work by Hirjee and
Brown (2010).

When a user is composing a poem and we need
to suggest a rhyming line of verse, the system will
attempt to show a mixture of both perfect and im-
perfect rhyming verses. Only if it is unable to
find any verses that rhyme, a possibility given the
wide range of possible inputs, it will then show
non-rhyming verses.

7http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Human Verse by Verse

Judged human 82.7% 47.0%
Readability 3.8 2.9
Relevance 3.9 3.2
Evocative 3.4 2.7
Aesthetic 3.7 3.0

Table 1: Human evaluations comparing poems written
by classic poets with those generated with Verse by
Verse. “Judged human” represents the percentage of
quatrains that the evaluators had judged as having been
written by a human. The four proceeding metrics were
judged on a scale of 1-5.

6 Evaluation

We ran comparative evaluations of Verse by Verse
against poems written by classic poets. While
Verse by Verse is meant to be used in an interactive
setting to aid a user in writing a poem, we felt it
was still worth evaluating how well it works on its
own in writing a poem given a first line of verse.

To do so, we gathered a collection of 100 qua-
trains written by the 22 classic poets. Then, for
each quatrain, we would take the first line of verse,
and use that as the first line of verse for Verse by
Verse. It would then take the top suggestion (using
the same poet as that who wrote the poem), to pick
the subsequent 3 lines. When possible, it would try
to follow an ABAB rhyme pattern.

We built upon the work of Hopkins and Kiela
(2017) for evaluating. We would show evaluators
one poem at a time. They then needed to classify if
the poem is human- or AI-written (they are shown
the full quatrain and asked to evaluate on the last
3 lines), and rate on a scale of 1-5 for readability
(to what extent is the quatrain easy to read? does
it make sense?, relevance (given the first line, how
relevant are the subsequent lines of verse?), evoca-
tion (how much does the quatrain evoke emotion
when reading it?), and aesthetic (how much does
the quatrain sound nice to read, such as in rhythm?).
Each poem was evaluated by 3 evaluators.

Table 1 shows the results of these evaluations.
As shown, while Verse by Verse does not do as well
as the poems written by classic poets, it still was
able to do well enough. More importantly, almost
half the poems written by Verse by Verse were
thought of to have been written by humans, which
shows the feasibility of our approach. A couple of
the highly rated poems can be seen in Figure 4.

Her eyes, twin pools of mystic light,
Forever in her radiance white—,

She sought the bosom of the Night.
Away it came, that mystic sight!

Whether I travel by land or by sea,
Just while I travel with its fairy tide,

Leaving a gleam that I may never see,
Although I travel close upon your side.

Figure 4: Example quatrains rated highly by evaluators.
The first line is by a poet and the subsequent 3 lines are
generated by Verse by Verse.

7 Related Work

Poetry generation is a growing field of research,
with many diverse approaches for generating full-
length poems of various forms (Gonçalo Oliveira,
2017). Some related areas to touch upon are user
interaction and verse generation.

7.1 Interactive Generation

There have been some recent work that have looked
at interactive approaches to composing poetry or
song lyrics.

Jiuge (Zhipeng et al., 2019) is a similar inter-
active approach to writing Chinese poetry. Users
would input keywords, text or images, and from
there the system would extract keywords to use
within a generative model for writing the poems.
Users could then edit or make use of suggestions.

Hafez (Ghazvininejad et al., 2016, 2017) offered
a variety of inputs for users to dictate how a poem
was generated (e.g., topic; desired words; control
for sentiment, alliteration, etc.), and then automat-
ically generated a full poem given these inputs.
Users could then further tweak the controls until
a poem was generated to their liking. Underneath,
given these set of input values, it would initiate
with a candidate set of rhyming words, and then
use a Finite State Acceptor to guide a Recurrent
Neural Network for generating new verses.

Co-PoeTryMe (Gonçalo Oliveira et al., 2017),
which was built on PoeTryMe (Gonçalo Oliveira,
2012), would generate full poems given some in-
puts (e.g., keywords, number of syllables). Users
were then allowed to edit lines and use suggested
lines as seeds for further generation of suggestions.

DopeLearning (Malmi et al., 2016) was focused
on generating rap lyrics. It allowed for interactive
rap composition – for each verse, a user could ei-
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ther pick from a list of candidates or enter their own
input. For determining its suggestions, DopeLearn-
ing treated their approach as an information re-
trieval task, ranking the best response given the pre-
vious verse. DopeLearning was restricted though
in only reused existing rap verses, as it did not
generate any novel verses.

7.2 Verse Generation

There have been many different approaches to how
a line of verse is generated. Earlier works included
template-based approaches (Colton et al., 2012;
Gonçalo Oliveira, 2012) while most recent works
have been neural-based approaches (Ghazvininejad
et al., 2016, 2017; Hopkins and Kiela, 2017; Lau
et al., 2018; Van de Cruys, 2020; Yi et al., 2018;
Zhang and Lapata, 2014).

As with recent approaches, ours is also consid-
ered a neural-based approach. Our approach is
closest to the work of Liao et al. (2019), which
involved a Transformer-based approach using GPT.
Both their approach and ours used pre-training and
fine-tuning of the models, though the type of data
used differs. Our model used poetry data for both
phases, while their approach first pre-trained on a
news corpus, then fine-tuned on Chinese poetry. An
additional difference is how the models are used –
they used their model for generating a whole poem
while we use our model for offline verse genera-
tion of single lines of verse and instead rely on a
dual-encoder model for determining the next line
of verse in a poem.

8 Conclusions

We have described the underlying system of Verse
by Verse. It is composed of two primary models,
one for verse generation and one for verse recom-
mendation. Results show that this approach works
well for an interactive setting, generative novel
verses that do well in human evals and meet the
more challenging demands of human interaction.

Ethical Concerns

As this system is intended to be deployed to a gen-
eral audience of all ages, there are concerns of how
the tool can accidentally suggest offensive verses.
We have taken some steps to help alleviate this:
augmenting the training data and filtering out prob-
lematic verses.

Augmenting Training Data

We have augmented some of the poetic data to
help reduce bias using the techniques described in
Sheng and Uthus (2020). In their work, they had
used a style transfer model to augment some of
the data to make the sentiment more positive, with
particular focus for the case when the parent verse
contained a demographic mention. In do so, this
then helps move the model to suggest verses of
more positive sentiment when the previous verse
of a poem contains a demographic mention.

As with their work, we augment all child verses
that have parent verses containing demographic
mentions and about 50% of those without a parent
verse containing a demographic mention. While we
followed much of their described approach, we use
a different style transfer model though for our aug-
mentations, using TextSETTR (Riley et al., 2021)
as a replacement. TextSETTR was shown to yield
better results in transforming sentiment while pre-
serving fluency (important aspects for our work).
As described in the TextSETTR paper, we use the
model that had been fine-tuned on English Com-
mon Crawl data. To change sentiment, we gave the
model 10 examplars each of negative and positive
lines, and then used this to change the sentiment
of negative lines of verse using the techniques de-
scribed in Sheng and Uthus (2020).8

We note that even though we have changed some
of the sentiment to make the system as a whole
more positive, it does not prevent users from writ-
ing negative poetry. If a user writes a negative
verse, the system can still suggest negative verses.
Additionally, the system does allow users to edit
suggestions, so a user can also edit a verse to make
it more negative if that is their desire.

Verse Filtering

We also filter out verses that can potentially be
offensive. This includes filtering out verses that
contain obscene words (especially as what was ac-
ceptable in the past might not be acceptable today),
along with verses that may contain groups of words

8For positive examplars, we used: “The food was great!”,
“I really loved it.”, “Absolutely my favorite book.”, “I am filled
with love.”, “The seas are calm.”, “She delights me”, “He
understands me,”, “My soul is full of light,”, “The scene is full
of heroes”, “This cup of tea tastes delightful”. For negative
examples, we used: “The food was awful!”, “I really hated
it.”, “I regret reading this book.”, “I am filled with hatred.”,
“The seas are violent”, “She annoys me”, “He ignores me,”,
“My soul is full of darkness,”, “The scene is full of villans”,
“This cup of tea taste horrible”.
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that, when put together, can be offensive.
One of the advantages of our system, where we

generate and store our verses offline in an index,
is that it makes it easier to explore how the filters
would impact what verses we have available. We
can see if certain grouping of words are present in
the index, and if such, filter out such verses. More
importantly, this allows us to further check if filter-
ing out a group of words may filter out too many
verses that would not be offensive, and thus allow
us to better refine the word filtering as needed.
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Abstract

Evaluation of keyword spotting (KWS) sys-
tems that detect keywords in speech is a chal-
lenging task under realistic privacy constraints.
The KWS is designed to only collect data
when the keyword is present, limiting the avail-
ability of hard samples that may contain false
negatives, and preventing direct estimation of
model recall from production data. Alter-
natively, complementary data collected from
other sources may not be fully representative
of the real application. In this work, we pro-
pose an evaluation technique which we call
AB/BA analysis. Our framework evaluates a
candidate KWS model B against a baseline
model A, using cross-dataset offline decoding
for relative recall estimation, without requiring
negative examples. Moreover, we propose a
formulation with assumptions that allow esti-
mation of relative false positive rate between
models with low variance even when the num-
ber of false positives is small. Finally, we
propose to leverage machine-generated soft la-
bels, in a technique we call Semi-Supervised
AB/BA analysis, that improves the analysis
time, privacy, and cost. Experiments with both
simulation and real data show that AB/BA
analysis is successful at measuring recall im-
provement in conjunction with the trade-off in
relative false positive rate.

1 Introduction

Keyword spotting (KWS) is the task of identifying
if one of a set of keywords, also called wakewords,
is present in a speech segment. It is the gatekeeper
component that enables hands-free interaction with
many smart assistants using voice-enabled smart
devices, such as Amazon Echo, Google Home, and
Apple HomePod. Extensive work has been done to
develop and improve KWS performance, including
improvements in architecture (Chen et al., 2014;
Sun et al., 2017; Shan et al., 2018; Wu et al., 2018;
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Gao et al., 2020), training efficiency (Tucker et al.,
2016; Raju et al., 2018), as well as audio front-end
(AFE) algorithms (Chhetri et al., 2018).

With many lines of research aiming to improve
the quality of the KWS, there is also growing inter-
est in techniques to measure if such new technolo-
gies are able to improve the customer experience,
but less research attention has been given to this
evaluation topic. One challenge is that KWS sys-
tems are designed to maximize user privacy by only
collecting data when the keyword is identified. As
a result, evaluations done using this biased dataset
do not allow direct measurement of gains in recall
metrics to determine if a new model is better than a
baseline. Alternatively, evaluations can also make
use of datasets not collected by the KWS, such as
media recordings, background noise, and environ-
mental sounds. However, these datasets may not
be fully representative of the user experience from
the evaluation point of view.

Prior research, such as from (Gao et al., 2020;
Sainath and Parada, 2015), has made use of datasets
with positive and negative labels in order to evalu-
ate, respectively, gain invariant KWS models and
CNN for small-footprint KWS. However, the neg-
ative data essentially consists of either negative
labels obtained from data accepted by the previous
models, or datasets composed of just background
noise and noise from environment. In a different
application context, (Miller et al., 2018) estimates
the recall and the derivative of the precision with
respect to the recall by modeling the unseen data
distribution according to underlying assumptions.
This distribution, however, is not clearly defined
in the context of KWS when a variety of sounds,
noisy conditions, and reverberation can occur.

In this paper, we present a new evaluation frame-
work called AB/BA analysis. To the best of our
knowledge, our work is the first to explore the prob-
lem of estimating recall improvement when only
accepted data is available, such as in a KWS system
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with rigorous privacy settings, in conjunction with
the trade-off with false positive rate, without un-
derlying assumptions on the data distribution. We
show that the AB/BA analysis is a cross-model of-
fline evaluation framework. In this framework, data
is collected from two KWS models, say a baseline,
A , and a candidate, B. By running offline model
A through data collected by modelB, and modelB
through data collected by model A, we are able to
calculate relative metrics without the need for data
not seen by individual models. We also present as-
sumptions that can be applied to the relative metrics
calculation that result in a lower variance estimator,
even if the number of false positive is small. We
additionally describe a Semi-Supervised formula-
tion of AB/BA analysis which provides improve-
ments in the analysis time, cost, and data privacy
by utilizing soft machine-generated labels instead
of human annotations from the models being eval-
uated. We present experiments using simulation
data, real data, and also experiments comparing
the performance of AB/BA and Semi-Supervised
AB/BA.

2 Methods

In this section, we describe the proposed method
for estimation of recall improvement. Basic metrics
concepts can be found in Appendix A.1.

2.1 AB/BA Analysis

The AB/BA analysis framework is composed of
four main steps, as depicted in Figure 1: Online
data collection, Offline decoding, Labeling, and
Metrics computation.

In order to collect data, given two KWS models,
say A and B, the models are deployed simultane-
ously to two populations of users, also called A
and B, as shown in Figure 1 (A). The percentage
of users in each model is usually based on the pre-
sumed risk of deploying each model, as well as
the statistical significance desired for the metrics
computed, as shown later. It is important, though,
that models are deployed simultaneously, with ran-
dom assignment, similar to a conventional A/B-
Test. Notice that the data collected by the models
will only contain samples where the keyword is
detected in order to preserve user privacy.

The collected data is then used for offline decod-
ing, in which models are run offline on the data
collected online. As shown in Figure 1 (B), the
data collected by model A is used by model B for

keyword spotting, and model B is run on the data
collected by the model A. A detailed review on
keyword spotting can be found in (López-Espejo
et al., 2021). Running a keyword spotter on an ut-
terance i will produce a score si representing how
likely it is to have detected the keyword.

The data that is collected and decoded offline by
the KWS systems will also require labeling in order
to be used for metrics estimation. This step, shown
in Figure 1 (C), is usually done by either human
annotation, or machine-generated. The process to
use machine-generated labels is described in more
detail in Section 2.2.

Human annotation is an expensive and time con-
suming process, in addition to being susceptible to
error. Therefore, it is desirable to carefully select
which utterances to annotate. Stratified sampling
can be used to provide more annotations on models
disagreement to reduce the need for human annota-
tions (details in Appendix A.2). The labeled data
is then used to compute metrics that represent the
relative improvement of model B with respect of a
baseline model A, as shown in Figure 1 (D).

AB/BA analysis utilizes two relative metrics:
False Positive Rate Ratio and Recall Ratio. The
Recall Ratio (rRecall) is a relative metric used for
comparing two models to determine which model
yields better recall. Given two KWS models A and
B with datasets containing utterances collected by
the same models online, and labeled as L ∈ {0, 1},
using the Bayes’ theorem, the rRecall can be de-
fined as:

rRecall =
P (B = 1|L = 1)

P (A = 1|L = 1)

=
P (B = 1|A = 1, L = 1)

P (A = 1|B = 1, L = 1)
,

(1)

where P (B = 1|A = 1, L = 1) indicates the
probability model B found the keyword when run
offline (B = 1) on true positives from model A
used online (A = 1, L = 1).

Therefore, a key aspect of AB/BA analysis is that
the rRecall can be computed using terms P (B =
1|A = 1, L = 1) and P (B = 1|A = 1, L = 0)
that are directly observable.

Concretely, we can compute rRecall using the
following quantities:

rRecall =
NTPBA_on_A

NPosA
∗ NPosB
NTPAB_on_B

, (2)
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Figure 1: The four main components of the AB/BA analysis

where NTPAB_on_B is the number of TPs of
model A and B on data collected by model B and
NPosB is the number of positive labels on the data
collected by B.

Similarly, the FPR Ratio (rFPR) between two
models A and B can be calculated as:

rFPR =
NFPBA_on_A

NNegA
∗ NNegB
NFPAB_on_B

, (3)

where NFPAB_on_B is the number of FPs of
model A and B on data collected by model B and
NNegB is the number of negative labels on the
data collected by B.

Notice that the number of FPs can be small, lead-
ing to large variance in the rFPR estimation. There-
fore, assuming that keywords and confusing sounds
(those that induce FPs) generated by population A
and population B are randomly drawn from the
same distribution, we propose to assume that the
ratio of TPs and FPs in the streams accepted by
both models is the same, represented as:

NFPBA_on_A

NTPBA_on_A
≈ NFPAB_on_B

NTPAB_on_B
(4)

Then, by introducing the following variables:

NTPAB = NTPBA_on_A +NTPAB_on_B

NFPAB = NFPBA_on_A +NFPAB_on_B

α =
NTPBA_on_A +NFPBA_on_A

NTPAB +NFPAB

β =
NTPAB_on_B +NFPAB_on_B

NTPAB +NFPAB

(5)

We can find rFPR and rRecall using:

rFPR =
α(NFPB + βNFPAB)

β(NFPA + αNFPAB)

rRecall =
α(NmissA + βNTPAB)

β(NmissB + αNTPAB)
,

(6)

where NmissA is the number of TPs accepted by
model B but not accepted by A. With this estima-
tor, uncertainties on NFPAB have less impact on
the rFPR uncertainty. This is shown in the simula-
tion on Section 3.1.1.

2.2 Semi-Supervised AB/BA Analysis

Semi-Supervised AB/BA (ssAB/BA) analysis is
a technique to estimate rFPR and rRecall met-
rics, while avoiding the need to label utterances
by human annotation, which are instead estimated
in a semi-supervised way. Because of that, the
technique has lower cost and is faster to run than
AB/BA analysis. The process also improves audio
privacy, since no audio is listened to by annotators.
However, since it relies on a machine-labeling pro-
cess, the technique is more susceptible to errors
due to bias.

There are several lines of research on Semi-
Supervised Learning models, such as Teacher mod-
els (Li et al., 2017; Tarvainen and Valpola, 2017),
which provide posterior probabilities as soft labels
in order to train Student models.

Assuming that we have a Label Machine M,
we apply this machine on utterance i to produce
a score mi. However, if mi produces a soft la-
bel mi, a mapping function φM(mi) = pi can be
used to convert the machine-generated score mi

from machine M to a probability of true accept
pi. Appendix A.4 illustrates this process using a
polynomial mapping.

When only soft labels are available, representing
a probability of true label, we can apply the Bayes’
theorem on Equation (1) to calculate rFPR using:

rFPR =

P (L=0|B=1,A=1)∗P (B=1|A=1)
P (L=0|A=1)

P (L=0|A=1,B=1)∗P (A=1|B=1)
P (L=0|B=1)

, (7)
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which results in:

rFPR =

∑NA
i=0 p(Li = 0|Ai = 1, Bi = 1)
∑NA

i=0 p(Li = 0|Ai = 1)
∗

∑NB
i=0 p(Li = 0|Bi = 1)

∑NB
i=0 p(Li = 0|Bi = 1, Ai = 1)

,

(8)

Equations (3) and (8) are, therefore, equivalent
if p(Li = 0) is a hard ground-truth label (either 0
or 1).

Similarly, in Semi-Supervised AB/BA the
rRecall can be written as:

rRecall =

∑NA
i=0 p(Li = 1|Ai = 1, Bi = 1)
∑NA

i=0 p(Li = 1|Ai = 1)
∗

∑NB
i=0 p(Li = 1|Bi = 1)

∑NB
i=0 p(Li = 1|Bi = 1, Ai = 1)

,

(9)

where p(Li = 1) = 1− p(Li = 0) is the probabil-
ity of TP for a given utterance i.

2.3 Threshold selection

Another important aspect to consider during a
KWS model evaluation is the model sensitivity.
In order to determine if a given utterance will be
considered an accept or reject by the model, as-
suming high model scores si are given to higher
chance of detection, the utterance i will be con-
sidered an accept by the model X , i.e., Xi = 1,
if si > tX , where tX is a threshold attributed to
model X sensitivity.

Notice that tX directly impacts the rFPR and
rRecall. Essentially, as we increase tX , it will make
the model more restrictive, so both FPR and Re-
call are reduced. Appendix A.3 gives an example
where the threshold tB of the candidate model B
is found according to the trade-off between rFPR
and rRecall.

3 Experiments

In this section we present experiments to show the
performance of AB/BA and ssAB/BA on simula-
tion and real data.

3.1 Simulations

This section presents the simulations performed.

3.1.1 AB/BA analysis simulation
We created a simulation to show how the calcu-
lations from the AB/BA formulas (Equations (2)
and (3)) are equivalent to the direct computation
of rFPR and rRecall, but without the need for data
not accepted by the models. We also show confi-
dence intervals on those metrics as a function of
the number of labels. Assume we have a source
that emits positive utterances with a probability of
0.3. The model A has a Recall of 0.8 and FPR of
0.1. We consider two pairs of values for model B:
Recall and FPR of (0.82, 0.075) leading to rRecall
and rFPR of (1.025, 0.75), and Recall and FPR of
(0.84, 0.05) leading to rRecall and rFPR of (1.05,
0.5). In addition, data accepted by model A has a
probability of being accepted by B of 0.95 and 0.5
for TPs and FPs respectively. We run the simula-
tion considering half of the data is collected by A,
half by B. The simulation assumes that the model
that does not collect the data is run only on the ac-
cepts of the model that does. We report estimated
rFPR, rRecall in 3 scenarios, using AB/BA direct
estimation, AB/BA with the introduced assumption
Equation (6), and using a classic A/B test (only
estimating rFPR in this case).

Table 1 shows the rRecall and rFPR, along with
95% confidence interval from 1000 bootstrapping
replicates. We can notice in the table that we can
detect improvement as small as a 5% Recall im-
provement and 50% FPR reduction by labeling less
than 5000 utterances. We can also see that using
the assumption of same TPs and FPs between the
models, represented as Approx. AB/BA in the ta-
ble, to estimate 25% rFPR improvement, the confi-
dence intervals shrink from −25%(−52%,+16%)
to −26%(−48%,+2%), while keeping median es-
timation equally accurate, showing that this is a
helpful assumption. The table also shows that the
rFPR predicted by regular A/B-Test on the model
accepted data also gives close estimation according
to the simulated parameters. However, this ap-
proach leads to higher confidence interval than the
proposed approach and cannot estimate the rRecall.

3.1.2 Semi-Supervised AB/BA analysis
simulation

One important point when working with ssAB/BA
is with respect to the quality of the label genera-
tion process. Therefore, we start with a simulation
showing this effect.

In our experiment, we do a Monte Carlo simula-
tion by generating data that can be used to compute
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Streams Labeled Expected rRecall
/ rFPR Improv.

rRecall / rFPR
Direct AB/BA

rRecall / rFPR
Approx. AB/BA rFPR AB-Test

10K 500 1.025 / 0.75 1.025 [0.963, 1.103] /
0.75 [0.48, 1.16]

1.025 [0.964, 1.102] /
0.74 [0.52, 1.02] 0.74 [0.43, 1.19]

100K 5K 1.05 / 0.5 1.051 [1.028, 1.075] /
0.5 [0.45, 0.55]

1.051 [1.028, 1.075] /
0.49 [0.45, 0.54] 0.49 [0.41, 0.58]

Table 1: Simulation of AB/BA analysis

the rRecall and rFPR metrics. Data is generated
such that models A and B collect, respectively,
40% and 20% as TPs. The probability that FPs and
TPs from model A are also accepted by model B
are, respectively, 0.3 and 0.9, and the probability
that FPs and TPs from model B are also accepted
by model A are, respectively, 0.6, and 0.8. Then,
we simulate three soft label machines M1, M2,
andM3 using a Beta distribution.

Among the three machines, M1 is simulated
to generate soft-labels with B(2, 1000|L = 0)
and B(300, 5|L = 1) to have the same accu-
racy for both models A and B that will be eval-
uated in ssAB/BA. Then, M2 is simulated with
B(5, 100|B = 1, L = 0) and B(300, 5|B =
1, L = 1) to make more mistakes in the form
of higher TP probability on the FPs collected by
model B, andM3 with B(2, 1000|B = 1, L = 0)
and B(100, 10|B = 1, L = 1) to make more mis-
takes in the form of lower TP probability on the
TPs collected by the model B. Notice that we keep
the accuracy of the machines on model A data con-
stant, since B is a candidate model with new data
never seen before.

Notice that based on the parameters chosen the
expected AB/BA rRecall for the simulation is 1.12,
since P (B = 1|A = 1, L = 1)/P (A = 1|B =
1, L = 1) = 0.9/0.8 = 1.12. Similarly, the ex-
pected rFPR is 0.5. Results of the simulation, along
with 95% confidence interval from 1000 bootstrap-
ping replicates, are shown in Table 2.

rRecall rFPR
AB/BA 1.12[1.10,1.14] 0.50[0.48,0.52]
ssAB/BAM1 1.12[1.10,1.13] 0.51[0.49,0.53]
ssAB/BAM2 1.08[1.05,1.10] 0.51[0.49,0.53]
ssAB/BAM3 1.12[1.10,1.15] 0.56[0.54,0.57]

Table 2: Simulation comparing AB/BA and ssAB/BA
analysis according to label quality

From Table 2, as expected, M1 results are al-
most exactly the same as in AB/BA, since M1

mean TP probabilities are 0.2% for L = 0 and
98.4% for L = 1, which are close to ground-truth.
When using M2, however, we can see that the

rRecall measured drops from 1.12 to 1.08, as this
model makes more mistakes on the FPs collected
from modelB, increasing the machine TP probabil-
ity on this data from 0.2% to 4.8%. In this case, we
can see that the rFPR is unchanged at the reported
precision. Similarly, in the case ofM3 we see a
change in the reported rFPR, which increases from
0.51 to 0.56 as this model makes more mistakes on
the TPs collected from model B, dropping the TP
probability on this data from 98.4% to 90.9%. In
this case, the rRecall is mostly unchanged. This
results show that, although the label-generation pro-
cess by machine can be imperfect, it gives good
approximations on the Recall Ratio and FPR Ratio
in order to make deployment decisions.

3.2 AB/BA Analysis on Real Application
Next, we show how AB/BA performs when applied
to real customer data in order to guide the decision
on how much customer experience is being im-
proved with the deployment of new KWS models.
Comparison between AB/BA and ssAB/BA analy-
sis on real data is show in Appendix A.5.

3.2.1 Comparison between deployments with
different threshold tb

We show results from two real deployments, called
D1 and D2. In D1, the AB/BA analysis ratio met-
rics are used to compare a baseline model to a
candidate model with high threshold (more restric-
tive), while in D2 the same baseline is compared
to the same candidate model with low threshold
(more permissive). The two deployments use about
5000 annotated utterances per model. Results are
show in Table 3.

As we can see in Table 3, D1 resulted in loss of
Recall by 5% relative, but improving the rFPR in
43% relative. By deploying the candidate model

D rRecall rFPR
D1 0.95 [0.94-0.96] 0.57 [0.46-0.68]
D2 1.07 [1.05-1.09] 1.33 [1.17 - 1.44]

Table 3: AB/BA Analysis results when deploying
models with different thresholds
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Dataset rRecall rFPR
Test set 1.03 0.5
AB/BA 1.16[1.15-1.19] 0.21[0.14-0.26]

Table 4: AB/BA Analysis Recall Ratio comparison
to test set metrics

with low tB threshold (D2), the AB/BA analysis
then shows 7%(5%, 9%) relative improvement in
Recall, with a trade-off of 33%(17%, 44%) relative
increase in FPR. AB/BA analysis correctly found
that the D1 model is a more conservative model,
and D2 a more sensitive model than the baseline
model.

3.2.2 Comparison between AB/BA analysis
and the evaluation a test dataset

New candidate models are evaluated on offline test
datasets to decide if they can be deployed to cus-
tomers. However, offline test datasets are com-
posed of utterances collected by the current or older
deployed models, and recall improvement of those
candidate models may be under-estimated. Here
we show measurements from offline evaluation and
AB/BA analysis in a real deployment. The AB/BA
analysis was performed with approximately 7000
annotated utterances per model.

As we can see in Table 4, the rRecall estimation
from the offline test set resulted in 3% relative im-
provement at the same FPR. That was significantly
less than the 16% relative improvement measured
during AB/BA, in which data from model B is
used in the analysis. Similar observation can be
made in terms of rFPR, where evaluation on the
test set resulted in a 50% relative improvement at
the same Recall, but by also accounting for data
collected by the B model in AB/BA, we see that
the improvements was 79% relative. This shows
the importance of techniques such as AB/BA anal-
ysis to better assess the customer experience on the
model being deployed.

4 Conclusion

In this paper, we presented a new framework called
AB/BA analysis for recall improvement estima-
tion of KWS under high privacy settings. We have
shown that by running a candidate model offline on
data collected by a baseline, and the baseline model
offline on data collected by the candidate model,
we were able to compute the relative Recall and
relative FPR ratios using only utterances accepted
by both models and use it to indicate if a candidate

model is better than the baseline. We have also
shown that reasonable assumptions can be used
to construct an estimator with low variance, even
when the number of FPs is small. Finally, we saw
that a Semi-Supervised formulation of AB/BA can
be used with machine-generated labels represent-
ing the probability of a true accept. This techniques
brings further improvements to AB/BA analysis,
especially regarding privacy on the audio collected,
which does not need to be listened to and annotated.

In the past few years, much improvement has
been made on the KWS systems. Evaluation met-
rics, however, are typically based on previously
collected data from similar KWS models or data
from other sources, resulting in evaluations that do
not necessarily translate to customer experience,
as it fails to show improvements in data never col-
lected due to privacy constraints. Given that not
much attention has been paid to this research topic,
we believe that AB/BA analysis is a valuable con-
tribution, and we hope it helps bringing interest in
this line of research.
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A Appendix

A.1 Basic Evaluation Concepts
During our discussion we assume that we have a
classification model,M(x)→ y, which gets an ar-
bitrary input x and output y ∈ {0, 1}, where 1 and
0 represent, respectively, a positive and negative
label.

A.1.1 Precision and Recall
The Precision and Recall metrics help to distin-
guish between Type-I and Type-II errors. They are
defined as the following:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
=
TP

P
(11)

Precision measures the proportion of correct
positive predictions with respect to everything the
model believes is a positive, where lower precision
represents more Type-I errors. On the other hand,
Recall measures the proportion of correct positive
predictions with respect to all the data that is actu-
ally positive, where lower recall represents more
Type-II errors.

As illustration, in a case where 90% of the data
has label 1 and the model always gives output 1,
this model will have 100% recall, and 90% preci-
sion.

A.1.2 False Positive Rate and False Discovery
Rate

There are also multiple ways to evaluate a model
with respect to the number of False Positives (FPs)
it makes. Two of them, which are explored in
this paper, are False Positive Rate (FPR) and False
Discovery Rate (FDR). They are defined as:

FPR =
FP

N
(12)

FDR = 1− Precision =
FP

TP + FP
(13)

Therefore, we can see that the FPR is similar to
Recall in the sense that the reference is only one
class of the data, which in this case are the negative
samples. It measures the proportion of negative
samples that are miss classified by a model. The
FDR, however, is the complement to the Precision,
measuring the number of false positives among all
samples that the model classifies as positive.

Considering again the example where 90% of
the data has label 1 and the model always gives
output 1, its FPR is 100%, while its FDR is 10%.

A.1.3 A/B Test

Another related concept to our proposed method is
the A/B test. The A/B test is a frequently used tech-
nique in multiple areas, such as medicine (Stolberg,
2006), marketing, political campaigning, product
pricing, among others. The technique consists of
doing a hypothesis test by giving two randomized
and unbiased set of populations, called A and B,
two different versions of the subject being com-
pared. For example, in the context of marketing,
one could choose to give two different versions of
user interface to users in order to measure differ-
ences in engagement, which is measured through
statistical tests.

In the context of model evaluation, the A/B test
can be explored by given two different models to
users. After data collection, metrics can be com-
puted for each population, such as metrics pre-
sented in Section A.1, and statistical tests, such
as t-test, can be used to compare the metrics in the
different populations.

The A/B test has, however limitations, when
used to evaluate keyword spotting with audio pri-
vacy settings. Given that only data where the key-
word is detected is collected by the models, the
amount of negative data is highly biased towards
the false positives from the models that collected
the data. Therefore, metrics that rely on negative
data, such as Recall and FPR, cannot be computed
and compared using A/B test. This limitation is
explored in this paper with our proposed AB/BA
technique in order to tackle this challenge of Recall
improvement estimation.

A.2 Stratified Sampling

To decide if a model is better than the other one, we
could simply annotate the utterances where the two
models disagree. However, if it is also desirable to
calculate absolute metrics, such as False Positive
Rate (FPR), then annotation of model agreements
is also needed. In order to reduce the amount of an-
notations for this task, we propose to use stratified
sampling, with two strata, agreement and disagree-
ment, such that different number of annotations are
done per strata.

Our stratified sampling strategy uses the Ney-
man allocation principle. The optimal number of
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annotations Nj for a strata j can be found using:

N∗j =
Nwj

√
pj(1− pj)∑L

i=1wi

√
pi(1− pi)

, (14)

where N is our annotation budget, wj is the pro-
portion in each strata, and pj is the expected model
FPR, assumed to be estimated, for example, from
previously annotated data.

The efficiency improvement of the stratified sam-
pling strategy compared to a random sampling strat-
egy, in terms of variance in the FPR, is:

Eff = 1− V(fpr∗)
V(fpr)

= 1−
1
N (
∑

j wj

√
pj(1− pj))2

1
N p(1− p)

,

(15)

For the purpose of illustration, assume we have
a 10% disagreement between models, with FPR of
20% in this strata, whereas the agreement strata has
a FPR of 5%, and the overall FPR of 8%, Equation
(14) gives us, for the disagreement strata:

N∗j
N

=
0.1
√
0.2(1− 0.2)

0.1
√
0.2(1− 0.2) + 0.9

√
0.05(1− 0.05)

≈ 17%,

(16)

indicating that the disagreement strata should op-
timally be 17% of the annotation budget, without
affecting the FPR variance. The efficiency gain of
this method is:

Eff =

1− (0.1
√
0.2(1− 0.2) + 0.9

√
0.05(1− 0.05))2

0.08(1− 0.08)

≈ 24%,

(17)

indicating that the annotation budget can be re-
duced by approximately 24%, without affecting the
overall FPR variance.

A.3 Threshold Selection Example
Given two models A and B, where A is a baseline
and B a candidate, we assume that A has a known
tA, previously obtained according to the desired
FPR and Recall trade-off. Therefore, in order to
determine if the candidate model B is better, we

can calculate the FPR Ratio and Recall Ratio for
multiple thresholds tB . Next, the decision will
be guided towards the goal of model B. Say, for
example, that the goal of model B is not to im-
prove FPR, but only Recall, then we select tB = t
such that when applying this threshold it results in
FPR_Ratio = 1. One example, illustrating this
process, is given in Table 5.

tB FPR Ratio Recall Ratio
0.1 1.5 1.20
0.2 1.0 1.05
0.3 0.8 1.01
0.4 0.7 0.98

Table 5: Threshold selection: The table shows an ex-
ample of how FPR Ratio and Recall Ratio change, as
a function of tB . It shows that, by selecting tB = 0.2,
model B has the same FPR Ratio as model B, but im-
proves Recall in 5%.

Figure 2: Model sensitivity selection: The green area
in the figure shows the region where the recall is im-
proved, and the red area where the FPR improves. We
can see that 0.2 and 0.3 are potential thresholds for tB
to improve the performance of model A.

Table 5 shows the FPR Ratio and Recall Ratio
as a function of tB , similar to the data behind a
traditional DET curve, but using the proposed ratio
metrics. We can see that, by selecting tB = 0.2,
model B has the same FPR Ratio as model B, but
improves Recall in 5% relative. It is also interesting
to see that using tB = 0.3 causes improvement in
both FPR Ratio and Recall Ratio. Using tB = 0.1
has 20% relative improvement in Recall, but with
a high trade-off in FPR and, similarly tB = 0.4
has 30% relative improvement in FPR, but with
degradation in Recall.

We see, therefore, that the model threshold can
be selected according to the goal in the trade-off
between FPR Ratio and Recall Ratio. It is clear
though that the model B is superior than model A,
since it has a threshold region that improves both
FPR and Recall, as shown in Figure 2.
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A.4 Soft-Label Score Calibration

Given a set of utterances composed of N machine-
generated soft labels m ∈ RN and human labels
y ∈ RN , we propose to learn φ(mi) using a polyno-
mial of degree 3. Notice that, as the target variable
is binary, and we expect to have more TAs as m
increases, the polynomial should be a monotonic
increasing function between [0, 1]. Although not
guaranteed, our experiments show this to be an
empirically good choice. One example is shown
in Figure 3. However, since the polynomial is not
guaranteed to have probabilities bounded between
[0, 1], we have also explored to use a B-Spline
Logistic Regression with monotonic constraints
(Eilers and Marx, 1996; Barlow and Brunk, 1972).
However we have not seen significant difference
and have decided to use the polynomial approach
for simplicity.

Once we have soft-labels for the utterances from
model A and B to be compared, we can use Equa-
tions (8) and (9) in order to estimate the FPR Ratio
and Recall Ratio trade-off.

Figure 3: Probability mapping function: Using a
polynomial of degree 3, arbitrary for this illustration,
we can see that scores from a model between 0 and 50
are mapped to a probability of True Positive.

A.5 Semi-Supervised AB/BA Comparison to
AB/BA on Real Data

Next we show real data examples where we used
both AB/BA and ssAB/BA, in order to see if the
ratios reported are similar. In this case, machine-
generated scores were generated by a cloud-side
verification system, and its scores converted to
a TP probability according to a polynomial map-
ping function learned from other existing labeled
datasets, following the process described in Section
2.2. Results are shown in Table 6.

Results in Table 6 show that ssAB/BA is able
to well-approximate the AB/BA results, having
results with overlapping margin of error in most

Example ssAB/BA rRecall
at rFPR

AB/BA rFPR
at rRecall

1 1.03 [1.03-1.03] 1.04[1.04-1.05]
2 1.01 [1.01-1.01] 1.0[0.97-1.05]
3 0.99 [0.98-1.01] 1.01[0.99-1.04]

Table 6: Semi-Supervised AB/BA and AB/BA analy-
sis comparison on real data: The table shows three
examples comparing AB/BA and Semi-Supervised
AB/BA on real customer data

cases. It is important to notice, however, that there
is a risk of using ssAB/BA related to the quality of
labels generated. In the Example 3, we can see that
ssAB/BA results suggest a Recall loss of 1% rela-
tive, while AB/BA suggests a Recall improvement
of 1% relative, although the confidence intervals
overlap. That represents the case where, when the
recall improvement is small, the uncertainty of the
machine-label generation may limit its applicabil-
ity. It is important, therefore, to monitor the quality
of the label machines in order to know how trust-
worthy they are, and to also use other auxiliary
metrics that help reducing the risk of trusting the
ssAB/BA results by itself.
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Abstract
Spoken Language Understanding (SLU) mod-
els in industry applications are usually trained
offline on historic data, but have to perform
well on incoming user requests after deploy-
ment. Since the application data is not avail-
able at training time, this is formally similar
to the domain generalization problem, where
domains correspond to different temporal seg-
ments of the data, and the goal is to build a
model that performs well on unseen domains,
e.g., upcoming data. In this paper, we explore
different strategies for achieving good tempo-
ral generalization, including instance weight-
ing, temporal fine-tuning, learning temporal
features and building a temporally-invariant
model. Our results on data of large-scale SLU
systems show that temporal information can
be leveraged to improve temporal generaliza-
tion for SLU models.

1 Introduction

Spoken Language Understanding (SLU) models
play an important role in voice-controlled devices,
such as Alexa or Google Home. Two common SLU
tasks are intent classification (IC) and slot filling
(SF). Given a user request, IC aims to extract the
user’s intent, while SF is a sequence labeling task
which assigns a slot label to each of the tokens. For
example, the user request “play volbeat” should be
classified as PlayMusic by the IC task, while SF
should assign the labels O and Artist to “play” and
“volbeat”, respectively. State-of-the-art approaches
typically model the two tasks jointly via DNNs (Do
and Gaspers, 2019; Chen et al., 2019).

In deployed industry SLU systems, new data con-
tinuously flows into the system, and the underlying
data distributions keep drifting over time. In this
paper, we focus on the setting of temporal covari-
ate drift, where the distribution of utterances may
change, but the correct label for an utterance or to-
ken remains fixed (i.e., no concept drift) (Schölkopf
et al., 2012). Such data drifts happen, for example,

because customer usage patterns change over time,
as new movies are being released or new artists
and songs become popular. Another cause of data
drifts are seasonal changes or changes related to
(re-)occurring events. For instance, the utterance
“will it snow tomorrow” is more likely to appear
during the winter than the summer season, and the
utterance “put on the Christmas lighting” is likely
uttered around Christmas.

To accommodate for temporal distributional
changes, industry SLU models are typically re-
trained and redeployed over time; in the follow-
ing sections, we also refer to this process as model
release, and we assume that model releases are ex-
ecuted at fixed time intervals, e.g., once per month.
We further assume that for each release, new la-
beled data become available, which were collected
since the previous release, yielding data belonging
to different time periods.

The common approach to utilize new data is to
simply combine them with all previously available
data, and subsequently split them into training, val-
idation, and test datasets. We can then build and
evaluate a model on these datasets, which we also
refer to as offline data in this paper. In industry ap-
plications, SLU models are subsequently deployed
to customers and have to perform well on incoming
customer requests, which we also refer to as online
data. Importantly, aiming to provide the best possi-
ble experience for our customers, our main goal is
building models which perform well on the online
rather than the offline data. Since the online data
are not available for model building and evaluation,
we need to utilize the offline data to build a model
which generalizes well to unseen online data from
the upcoming time period.

In this paper, we study this temporal general-
ization task assuming that data from several con-
secutive time periods, i.e., months in our case, are
available, and we aim to build a SLU model which
yields high performance on data from an upcoming
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time period. We aim to improve performance over
the common approach of simply combining all of-
fline data, which ignores the temporal nature of
the data and implicitly assumes that data from all
time periods are equally useful for model training.
Instead, relating back to the previous examples, we
assume that modeling the temporal nature of the
data may be beneficial and that data from certain
time periods may be particularly valuable. For in-
stance, data from recent time periods may better
reflect upcoming trends, and w.r.t. seasonality pat-
terns, data from the same period in previous years
may be particularly valuable.

To tackle the task, we explore four directions:
i) instance weighting based on our assumptions
about the task, ii) temporal finetuning, iii) learning
temporal features and iv) building a temporally-
invariant model. We present extensive experiments
on real-world SLU data of German and Portuguese
voice-controlled devices. Our results indicate that
temporal information can be leveraged to improve
temporal generalization of SLU models. We also
show that simple temporal fine-tuning is not very
effective and in fact leads to performance drop in
certain cases.

2 Related Work

To the best of our knowledge, the temporal gen-
eralization scenario studied in this paper has not
yet been explored for SLU in the literature, which
may be due to the fact that common Academic SLU
datasets are rather small and do not have a temporal
notation. In general, work addressing the tempo-
ral nature of SLU datasets has been limited. Kim
et al. (2017) address temporal data drift by adapt-
ing from stale to current data with an adversarial
domain adaptation approach, treating the stale and
current dataset as source and target domain, respec-
tively. Contrasting with our work, they assume the
availability of data from the target and they focus
on two time periods only. Other work has explored
short-term temporal information, e.g., the utterance
context provided by a couple of prior utterances to
resolve ambiguities (Lin et al., 2021).

In NLP, previous research has explored the sig-
nificance of temporal drift for several tasks, such
as headline generation (Søgaard et al., 2021), sen-
timent analysis (Lukes and Søgaard, 2018) and
named entity recognition (NER) (Rijhwani and
Preotiuc-Pietro, 2020), providing evidence that
model performance drops when training data age

increases compared to the test data. However, de-
spite this evidence, the vast majority of NLP re-
search does not take the temporal nature of data
into account for evaluation (Lazaridou et al., 2021).

Lazaridou et al. (2021) show that (downstream
task) performance of pre-trained language models
suffers when performance is measured on future
data. Since (re-)training of larger language models
is costly, the authors propose to update model pa-
rameters by executing few steps of gradient decent
on new data. Other approaches to mitigate tem-
poral drift include predictive feature selection for
sentiment analysis (Lukes and Søgaard, 2018), and
selecting data based on frequent n-grams for NER
(Chen et al., 2021). The most similar to our work
is the study conducted by Rijhwani and Preotiuc-
Pietro (2020) who tackle temporal drift for a small-
scale NER task, i.e., including only 3 named enti-
ties. They consider data from several consecutive
years and aim to build a model which performs well
on data of the following year, focusing – in line
with the previously described work – on the effects
of data receny. The best performance is achieved
by using instance weighting of recent data and tem-
poral finetuning for a Bi-LSTM-CRF with Flair
and GloVe embeddings, respectively. By contrast,
we study temporal generalization in the context of
a large-scale SLU production system covering a
large numbers of labels. We focus on smaller time
periods, i.e., spanning one month instead of a year,
and we consider cyclic/seasonal changes in addi-
tion to data recency. For this purpose, we include
methods which have not yet been explored in tem-
poral generalization tasks, such as building models
that leverage temporally-invariant representations.

3 Method

Given labeled SLU data from several consecutive
time periods, our goal is to build a model which
generalizes well to unseen data from an upcoming
time period. In the following, we first provide a
formal definition for our tasks and subsequently
present the modeling approaches.

3.1 Learning scenario

We assume that labeled data are available, which
span N consecutive time periods, i.e., D =

[D1, . . . , DN ] with Di ∈ D = {(xi,j , yi,j)}|Di|
j=1,

where xi,j1 , . . . , xi,jn is an utterance with n tokens
which was observed during time period Di. For the
SF task, a slot label is available for each token in
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xi,j , and yi,j is a sentence-level intent label for the
IC task. In this work, each Di ∈ D comprises data
of one month.

The goal is to build a model using
[D1, . . . , DN−1] which generalizes well to
the unseen data DN . [D1, . . . , DN−1] corresponds
to the offline data in a release scenario, while DN

corresponds to the online data.
Note that this learning scenario corresponds to

the task of domain generalization (DG) (Wang
et al., 2021) when considering the time periods
as individual domains. In DG, one aims to build a
model given several different but related domains
(datasets) which works well on data of a new (un-
seen) domain during testing. However, in work
addressing DG, typically the domains under consid-
eration are more distant than the datasets of differ-
ent time periods in our scenario, which are in fact
drawn from the same overall source (domain), and
contrasting with our scenario, the domain datasets
in DG usually do not have a natural order.

Note further that DG differs from domain adap-
tation (DA) in that DA assumes the availability of
some (unlabeled) data of the target domain, which
can be utilized for adaptation.

3.2 Basic SLU model

Our basic SLU model is a common state-of-the-art
SLU architecture for joint intent classification and
slot filling. It is comprised of a BERT encoder,
an intent decoder and a slot decoder. The BERT
encoder’s outputs at sentence and token level are
used as inputs for the intent and slot decoders, re-
spectively. The intent decoder is a standard feed-
forward network including two standard dense lay-
ers and a softmax layer on top. The slot decoder
uses a CRF layer on top of two dense layers to
leverage the sequential information of slot labels.
As loss we use a weighted sum of the loss of IC Li

and the loss of SF Ls, i.e.

L = λiLi + λsLs, (1)

where λi and λs are weights. We use cross-entropy
and CRF loss for IC and SF, respectively.

3.3 Instance weighting

Instance weighting assigns a weight to each train-
ing data instance. In a DA task, a weight may be
selected such that it reflects the instance’s similar-
ity to the target (Jiang and Zhai, 2007). However,
since we do not assume the availability of data

from the target time period, we cannot compute
such similarity scores. Instead, we simply weight
instances based on our assumptions about the task.

We assume that recent data, i.e., data from the pe-
riod prior to the target period, may be particularly
valuable, because this period may better reflect
recent and upcoming trends, Moreover, instance
weighting of data from a recent year has already
been shown to improve performance on data of a fu-
ture year for a small-scale NER task (Rijhwani and
Preotiuc-Pietro, 2020). On the other hand, with
respect to seasonal changes, data from the same
period in previous years could also be of particu-
lar value. Thus, taken together, we explore three
instance weighting strategies based on recency, sea-
sonality, and combination of both:

1. Reweight each data instance in the period
prior to the target period by a weight w > 1
(i.e., reweight DN−1),

2. Reweight each data instance from the same
calendar month as the target data by w > 1,

3. Reweight all instances from either the same
calendar month as the target data or from the
period prior to the target data by w > 1.

Given an utterance and a corresponding weight, we
weight the losses of both IC and SF.

The described instance weighting techniques do
not require any temporal information during the
application phase and no architectural changes.

3.4 Temporal finetuning

We explore temporal finetuning, as it has been
previously shown to improve performance on
other temporal tasks. In particular, Rijhwani and
Preotiuc-Pietro (2020) i) trained Bi-LSTM-CRF
models for a small-scale NER task on data from
several years, and ii) fine-tuned these models on
data of the most recent year, yielding improved per-
formance over the initial models when evaluated
on data of a future year. Similarly, we first train a
model on all offline data, i.e., on D1 ∪ . . .∪DN−1,
and subsequently we finetune it on data of the most
recent offline time period, i.e., on DN−1.1

1We do not explore sequential temporal finetuning, i.e.,
first train on D1, then on D2, etc. This approach degraded per-
formance on the small-scale NER task explored by Rijhwani
and Preotiuc-Pietro (2020), and we expect it to not perform
well for our task either, as it corresponds to a life-long learn-
ing scenario in which catastrophic forgetting of previously
acquired knowledge is a known issue.
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Figure 1: SLU architecture for joint IC and SF with an auxiliary task for predicting the month of an input utterance.
While the model is trained by alternating across tasks, during inference only the SF and IC decoders are used.

This technique does not require any temporal
information during the application phase and no
architectural changes.

3.5 Learning temporal features

We hypothesize that learning temporal features
could be beneficial for our SLU task and therefore
aim to build a temporally-aware model. For this
purpose, we explore two established techniques
for injecting auxiliary information, i.e., i) via ad-
ditional input features, and ii) via an auxiliary
task. The training of an auxiliary prediction task
to improve embeddings is sometimes called self-
supervised learning, and has also been shown to im-
prove generalization in vision tasks (Albuquerque
et al., 2020).

3.5.1 Using additional input features
We define a special token for each month, e.g.,
“[JAN]”, . . . “[DEC]”. For each utterance, informa-
tion about the month in which it was observed is
added before model training and inference using
the corresponding special token. E.g., “[DEC] play
Christmas songs” indicates that the utterance “play
Christmas songs” was observed in December.

While this technique does not require any archi-
tectural changes, temporal information is needed
during the application phase, which, however,
should be easily accessible in most cases.

3.5.2 Using an auxiliary task
We extend the basic SLU model described in sec-
tion 3.2 by an auxiliary task which predicts the
month given an utterance. Specifically, we apply a
multi-task model which is comprised of a joint IC
and SF task and an additional classification task;
the overall architecture is illustrated in Fig. 1. The
auxiliary task decoder is a standard feed-forward
network comprising two standard dense layers and
a softmax layer on top. We optimize the model by
alternating across the two subtasks (joint SF and
IC vs month prediction), and we use a combined

loss
L = λiLi + λsLs + λtLt (2)

where Li, Ls and Lt are the losses of the IC, SF
and month prediction tasks, respectively, and λi,
λs and λi are weights. We use cross-entropy loss
for the IC and month prediction tasks and CRF loss
for the SF task.

For inference, we apply only the joint SF and IC
task, and temporal information is not required dur-
ing the application phase. The intuition is that via
the joint training, temporal information is acquired
by the model which can then influence the SF and
IC predictions during inference.

3.6 Building a temporally-invariant model

Relating back to section 3.1, our learning scenario
corresponds to the task of DG when considering
the time periods as individual domains. We se-
lected a popular direction explored in DG (Wang
et al., 2021) and DA (Ramponi and Plank, 2020),
i.e., invariant representation learning. The intuition
is that by removing information which is specific
to individual domains, the model should generalize
better to an unseen target domain. Thus, contrast-
ing with the approaches described in the previous
section which aim to learn temporal features, in this
approach we aim to build a temporally-invariant
model by removing features which are specific to
certain time periods.

Note that both approaches may be reasonable,
as there may be different kinds of temporal fea-
tures and artifacts related to our data, out of which
we may want to leverage some, but abstract away
from others. For instance, it may be beneficial if
the models learn a notation of seasonality and/or
recency, but we may want to abstract away from
artifacts related to out-dated trends, annotation in-
consistencies across time, etc.

One established approach to domain-invariant
representation learning is adding an auxiliary do-
main classifier to a main task predictor, and then
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optimizing for an accurate task predictor while ap-
plying an adversarial training strategy to confuse
the auxiliary domain classifier by making the fea-
tures from source and target domain indistinguish-
able, thus yielding domain-invariant features. A
gradient-reversal layer can be applied for this pur-
pose (Ganin and Lempitsky, 2015; Ganin et al.,
2016). We adapt the approach from Ganin and
Lempitsky (2015) to build a temporally-invariant
model, i.e., we apply it with our SLU model as
the main task predictor and using an auxiliary
month classifier instead of the domain classifier
(and BERT as the feature extractor).

As in case of learning temporal features using an
auxiliary task, for inference we apply only the main
task, and thus temporal information or architectural
changes are not required during the application
phase.

4 Experiments

4.1 Data

We use data from large-scale industry SLU sys-
tems comprising user requests to voice-controlled
devices; all requests were de-identified, annotated
with intent and slot labels, and marked with a time
stamp. We collected data for two languages, i.e.
German and Portuguese, and three domains, i.e.
Music, Video and Shopping. The data range from
May 2019 to December 2020, and we split them
into one dataset per month based on timestamps,
resulting in 20 datasets D1, . . . , D20 for each do-
main and language. Thus, one dataset is available
per month, domain and language. For each do-
main and language, D20 is used for testing, and
for D1, . . . , D19 we create training and validation
datasets. For German, for each domain we have
more than 100,000 data instances available, while
for Portuguese for each domain the data amounts
are on the order of tens of thousands.

Qualitative data analyses indicate that both grad-
ual and seasonal drifts are indeed present in the
data, but there are domain-specific differences. Due
to confidentiality reasons, a detailed data analysis
is beyond the scope of this paper.

4.2 Experimental setup

For each domain and language, we use the
D1, . . . , D19 training datasets for model training,
and D20 for testing. Since we do not have access
to target period data, we study two options for cre-
ating an offline validation dataset:

1. vala comprises the offline validation data
from D1, . . . , D19. This corresponds to the
common approach.

2. valr comprises only recent offline validation
data, i.e., the validation data of D19.

We train and evaluate our modeling approaches on
the described setup. As baseline, we train a model,
i.e., the basic SLU model described in section 3.2,
following the common approach of simply training
on the combined offline data (without leveraging
any temporal information). In the following, we
refer to this approach as concat.

We measure performance using a semantic error
rate, which measures intent classification and slot
filling jointly and is defined as follow:

SemER =
#(slot+intent errors)
#slots in reference + 1

(3)

4.3 Settings

We used pre-trained multilingual BERT (Devlin
et al., 2019) (size 768, 110M parameters)2, and
max-pooling for sentence representations. Each
of our decoders has 2 dense layers of size 768
with gelu activation. The dropout values used in
IC, SF and month decoders are 0.5, 0.2 and 0.5,
respectively. We used equal weights for λs and
λi (1.0:1.0) and Adam optimizer with a learning
rate of 0.1 and a Noam learning rate scheduler.
We trained our models for 20 and 25 epochs for
German and Portuguese, respectively, with a batch
size of 32. These hyper-parameters were used for
all models (where they apply). The best models
were selected on offline validation data (valall or
valrec). We tried w ∈ [2, 5] and we varied λt from
0.2 to 0.6. Each model was trained on a single
GPU.

5 Results and discussion

The results on the “online” test data for using either
all offline validation data valall or recent validation
data valrec to select the best model are shown in
Table 1. For confidentiality reasons, we report the
relative change in SemER compared to the concat
baseline using valall. In the following, we discuss
the results w.r.t. different research questions.

2The model is taken from https://github.com/google-
research/bert/blob/master/multilingual.md (Apache 2.0) and
was used for experiments only, not for production cases.
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German Portuguese
Method Music Video Shopping Music Video Shopping

vala valr vala valr vala valr vala valr vala valr vala valr
Concat 0 -1.48 0 -3.0 0 -4.59 0 -1.67 0 -11.0 0 -0.54
Weight prev. period -1.48 -0.67 -2.96 -4.47 -8.68 -7.06 -1.89 -0.33 -4.85 -4.86 -1.99 -5.87
Weight same month -1.75 -0.47 0.84 -1.48 1.49 -5.09 0.39 -0.78 -4.56 -8.73 -0.09 -3.07
Weight both 1.34 -0.2 -1.96 -2.96 -4.47 -9.31 -1.83 -0.39 -7.15 -5.14 -2.8 -5.78
Temporal finetuning -0.2 -0.2 -1.76 -3.04 4.84 -2.73 0.06 2.33 -3.05 0.11 3.43 0
Month feature -0.94 -1.28 1.045 1.52 -1.61 -0.99 -1.1 1.0 -3.38 -1.69 -2.35 3.61
Auxiliary task -1.75 -1.75 -1.72 -2.32 -2.98 -7.94 -3.06 -2.22 -5.96 -2.37 -8.57 -6.23
Temp.-invariant -3.63 -0.74 -0.92 1.76 -4.84 -5.58 -2.44 -0.67 -6.65 -1.19 -3.88 -9.2

Table 1: Results on the “online” test data for using either all offline validation data (vala) or recent offline validation
data (valr). We report the relative change in SemER compared to the concat baseline using vala.

RQ 1: Can temporal information be leveraged
to improve temporal generalization for SLU?
Across all domains and languages, improvements
in SemER on future data can be achieved by tak-
ing the temporal nature of data into account. The
best methods differ across domains and languages,
which is expected, given that there are domain and
language specific differences w.r.t. seasonal and
gradual shifts. However, two of the methods yield
consistent gains across all domains and languages,
i.e., instance weighting of the previous time period
and using an auxiliary task yield improved perfor-
mance compared to the baseline for all considered
conditions. Using an auxiliary task achieves the
best performance most often.

RQ 2: What is the impact of seasonality and re-
occurring events vs recency effects? Previous
work in NLP on temporal adaptation and gener-
alization has focused on larger time periods and
the effects of data recency, showing strong perfor-
mance for instance weighting of recent data and
temporal finetuning on a small-scale NER task (Ri-
jhwani and Preotiuc-Pietro, 2020). By contrast, our
domain datasets cover smaller time periods, with
different seasonal effects and re-occruring patterns.

On our task, temporal finetuning gives mixed re-
sults, with decreasing performance in several cases.
We assume that the models may overfit to the re-
cent data, and some previously acquired knowledge
related to older time periods might have been for-
gotten. However, unlike in the NER task which
included only the three named entities PER, LOC,
and ORG and in which there might be mostly grad-
ual temporal trends, in our task seasonal drifts exist,
potentially making certain older knowledge more
relevant. By finetuning on recent data, the models
may lose too much relevant seasonal knowledge,
harming performance for domains with changes
related to seasons or re-occurring events. Instance

weighting of recent data gives consistent improve-
ments, which is in line with previous findings,
while instance weighting of the same time period
gives mixed results, i.e., it helps in some cases,
but decreases performance in others. To some ex-
tent this may be due to domain-specific differences.
However, an issue might also be that there can be
conflicting seasonal and gradual drifts. In particu-
lar, weighting is performed at the dataset level and
a dataset from a year ago might include relevant
seasonal data instances, but also less useful data
instances such as data related to older (already out-
dated) trends. The negative effects can be mitigated
to some extent by selecting the best model on re-
cent validation data, which yields consistent gains
in performance across all domains and languages.
Future work may explore how to disentangle these
effects, and in temporal DA scenarios one may se-
lect utterances based on the similarity to the target.
However, in our scenario which does not assume
the availability of target period data, modeling sea-
sonal and re-occurring patterns indirectly via an
auxiliary month prediction task appears to be a bet-
ter choice in most cases, yielding consistent – and
in most cases higher – gains.

How to create a validation dataset without
having access to target data? For half of the
domain-language pairings, performance is im-
proved by using a recent offline validation dataset.
The choice of the best validation dataset may be
both method-specific and domain-specific, as drifts
differ across domains.

Interestingly, performance of the concat base-
line model, which ignores the temporal nature of
the data, is consistently improved across domains
and languages when using recent validation data.
This shows that model performance can also be
improved by taking the temporal nature of the data
into account for creating a validation dataset in-
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stead of model building.

Should we aim for a temporally aware or in-
variant model? In this paper, we have explored
both building temporally-aware and temporally-
invariant models, since there may be different kinds
of temporal features and artifacts related to our data,
out of which we may want to leverage some, but
abstract away from others. Our results show con-
sistent gains for temporally-aware models using
an auxiliary month classifier as well as gains in
all but one case for temporally-invariant models,
with temporally-aware models giving better per-
formance in most, but not all cases. Thus, both
directions appear to be generally promising.

Future work may explore different approaches to
learning temporally aware or invariant models, for
instance, by exploring others DG approaches in the
latter case. One potentially interesting direction is
to learn disentangled representations that separate
temporally-invariant and seasonal components.

6 Conclusion

We studied a temporal generalization task in which
we used offline data of time periods spanning one
month each to build a model that performs well
on future online data. We explored four directions
to leverage temporal information which are rather
easy to apply in production, i.e., i) instance weight-
ing based on our assumptions about the task, ii)
temporal finetuning, iii) learning temporal features
and iv) building a temporally-invariant model. Our
results on real-world SLU data covering two lan-
guages and three domains each show that temporal
information can be leveraged to improve tempo-
ral generalization for SLU. While several of the
explored methods provide consistent gains across
all domain-language pairings, the best methods
differ, as different domain datasets have different
gradual and seasonal drifts. Moreover, our results
indicate that methods, such as temporal finetun-
ing, which have been previously shown to provide
strong performance on small-scale academic tasks
with longer time periods and mostly gradual tem-
poral drifts, do not necessarily yield the best per-
formance in our large-scale SLU task including
seasonality patterns.
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Abstract

Summarizing sales calls is a routine task per-
formed manually by salespeople. We present a
production system which combines generative
models fine-tuned for customer-agent setting,
with a human-in-the-loop user experience for
an interactive summary curation process. We
address challenging aspects of dialogue sum-
marization task in a real-world setting includ-
ing long input dialogues, content validation,
lack of labeled data and quality evaluation. We
show how GPT-3 can be leveraged as an offline
data labeler to handle training data scarcity and
accommodate privacy constraints in an indus-
trial setting. Experiments show significant im-
provements by our models in tackling the sum-
marization and content validation tasks on pub-
lic datasets.

1 Introduction

An integral part of salespeople daily routine is sum-
marizing sale calls. The summarization process
aims to distill salient information from sales di-
alogues into succinct highlights, which are then
leveraged by salespeople for productivity and
coaching purposes. Manually curating a call sum-
mary is considered as one of the biggest time
wasters for B2B sellers (Zhang et al., 2020). It dis-
tracts salespeople from nurturing the relationship
with their next customer. Recently, this practice
has become more demanding due to the emerging
landscape of remote selling where virtual meetings
become the new norm (Gavin et al., 2020).

Dialogue summarization induces a variety of
unique challenges compared to summarization of
documents such as news or scientific papers (Zhu
and Penn, 2006). Information density is a key chal-
lenge in dialogue text; information is scattered over
multiple utterances and participants, leading to fre-
quent coreferences and topic alternations. Spoken
dialogues, usually transcribed by speech recogni-
tion engines, impose additional challenges such as

Figure 1: A customer-agent call transcript with corre-
sponding summary highlights. Challenges imposed by
automatic speech recognition engine can be observed.

redundancies and misrecognized words. The length
of these dialogues, e.g. 50K tokens in a 45 minutes
call, imposes another challenge to state-of-the-art
summarization models as it exceeds their input lim-
its (Zhang et al., 2021). Figure 1 illustrates parts
of the challenges imposed by automatically tran-
scribed sales dialogues.

Developing a production system which is both
fully automatic and agnostic to the input text
genre is an extremely difficult task given the
current state-of-the-art technology. To this end,
we present a pragmatic solution that enables
users to interactively edit machine-generated
summary for customer-agent sales calls as appears
in Figure 2. Our solution summarizes the call
into a collection of abstractive highlights to
accurately capture the various details of the call.
The machine-human interaction is enabled through
a designated human-in-the-loop user experience
(Ostheimer et al., 2021). It enables users to modify
the generated summaries, yet, the intervention is
designed to be minimal so that the overall time
consumption of users is significantly reduced.

Overall, our contributions are listed as follows:
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Figure 2: Illustrating human-in-the-loop experience
which enables users to interactively handle summariza-
tion challenges by adding relevant summary highlights
to the editing canvas and modify them, if necessary.

1. Dialogue summarization system. We intro-
duce an innovative production summarization
system for summarizing call transcripts with
a human-in-the-loop setting. Our system uses
an advanced summarization model to generate
abstractive summaries for dialogues. Addi-
tionally, it employs a novel model for quanti-
fying the coherence of the summaries to com-
pensate for the summarization model limita-
tions.

2. GPT-3 as an offline label generator. We
present a technique for leveraging GPT-3
model to generate pseudo labels without the
need to deploy and maintain it in production.
This enables us to (i) efficiently generate la-
bels in low-resource setting, (ii) distill GPT-3
knowledge into lighter models, and (iii) ac-
commodate data privacy constraints.

3. Custom evaluation metric. We examine the
importance of leveraging a comprehensive
evaluation metric which takes into account
various quality aspects of the generated sum-
mary. The metric is utilized to focus our ef-
forts on potential candidate models during the
development phase. The suggested metric
goes beyond lexical overlap and help us val-
idate that our production model is optimized
for generating summaries which are fluent,
relevant and factually reliable.

2 Related Work

Document Summarization Summarization
methods can be categorized into two classes:

extractive and abstractive. Early works focused on
extractive methods (Hovy and Lin, 1997; Marcu,
1997), followed by rule-based approaches for
abstractive summarization (Barzilay and Elhadad,
1997; Barzilay et al., 1999). Advancements in
capabilities of deep neural models led to works
such as Rush et al. (2015) where a seq-2-seq
attention-based model is used for abstractive
summarization. See et al. (2017) overcomes some
of the former work’s limitations by introducing a
pointer generator network that has the ability to
copy words from the source document. A major
advancement in the field of deep neural models
was the introduction of Transformer architecture
(Vaswani et al., 2017), which is the basis for
current state-of-the-art summarization approaches.
Recently, several powerful Transformer-based
models have been developed and showed remark-
able results on various benchmark summarization
tasks (Lewis et al., 2020; Zhang et al., 2019a;
Raffel et al., 2020) .

Dialogue Summarization The task of dialogue
summarization has been witnessing many com-
monalities as document summarization as well as
new techniques for handling unique structures of
various dialogue types. Early works in the do-
main suggested tackling the problem using extrac-
tive methods (Murray et al., 2005; Riedhammer
et al., 2008). Shang et al. (2018) used a pure
unsupervised graph-based method for keyword
extraction and sentence compression. Goo and
Chen (2018) proposed to explicitly model relation-
ships between dialogue acts using attention-based
sentence-gated mechanism. Chen and Yang (2020)
extracted Transformer-based representations for
different views of dialogues, conditioned on view
representations, to generate summaries using a sec-
ond Transformer. Zhu et al. (2020) presented a hi-
erarchical Transformer architecture to encompass
the structure of dialogues.

3 Method

While most existing methods summarize a call tran-
script as a single paragraph, our system provides
a collection of sentences that summarize the en-
tire dialogue in a chronological order. Given a call
transcript, the system utilizes word embeddings to
break the transcript into semantically coherent seg-
ments (Alemi and Ginsparg, 2015). Each segment
is summarized independently capturing key infor-
mation such as: customer’s issue, agent’s solution
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or the underlying topic of the discussion. Finally,
the grammatical coherence of highlights is ana-
lyzed using a dedicated model before suggesting
them to the user. Figure 3 provides a high-level
overview of the system’s flow.

Next, we introduce the key components of our
dialogue summarization system in details.

3.1 DialogBART: Dialogue Summarization
Model

Unlike general documents, conversation transcripts
have unique structures associated with speakers
and turns. In sales calls, participants can either
be a customer or an agent and these roles impose
a unique language style that can be leveraged by
the model. Motivated by this observation, we
propose an encoder-decoder model called Dialog-
BART, which adapts the well-known BART (Lewis
et al., 2020) model with additional embedding pa-
rameters to model both turns and speakers positions
(Zhang et al., 2019c; Bao et al., 2020). For speaker
embeddings, we introduce designated vectors to
represent each speaker which can be easily gener-
alized to multi-participant dialogues. Additionally,
we leverage another set of vectors to model turn
position embeddings. During inference, the model
determines the speaker and turn indices by lever-
aging a special token that separates the dialogue’s
turns.

As shown in Figure 4, DialogBART’s input is
calculated as the sum of the corresponding token,
position, speaker and turn position embeddings.
These parameters are randomly initialized, how-
ever, the remaining parameters are initialized with
weights from a pretrained1 BART-like encoder-
decoder models (Lewis et al., 2020; Shleifer and
Rush, 2020). All these weights are further fine-
tuned on dialogue summarization tasks.

3.2 Acceptability Validation

Despite the human-in-the-loop user experience,
customers still expect high quality summaries
which require minimal modifications by them. We
propose a novel model that determines the quality
of each summary highlight in terms of coherence,
fluency and its acceptability in general.

Grammatical acceptability, a property of natural
language text, implies whether a text is accepted
or not as part of the language by a native speaker.

1https://huggingface.co/sshleifer/
distilbart-xsum-12-3

The notion was widely investigated through vast
work done in automatic detection of grammati-
cal errors (Atwell, 1987; Chodorow and Leacock,
2000; Bigert and Knutsson, 2002; Wagner et al.,
2007) and on acceptability judgment of neural net-
works (Lau et al., 2017; Warstadt et al., 2019). And
yet, we are not aware of works that observe the
acceptability of neural generated summaries for
validation purposes. To determine a highlight’s ac-
ceptability, we compute the perplexity of each high-
light given by a Pretrained Language Model (PLM).
This PLM is fine-tuned on summaries from Dialog-
Sum dataset (Chen et al., 2021a) and in-domain
proprietary data in a traditional self-supervised
manner. Recall that the perplexity of a sequence
W = w0w1...wn is defined as:

PP (W ; θ) = n

√√√√
n∏

k=1

1

pθ(wk|w0w1...wk−1)
(1)

where θ are the language model specific parame-
ters and pθ is the probability function correspond-
ing to distribution over vocabulary tokens induced
by the same model.

Based on the perplexity score, the system deter-
mines whether a given highlight should be filtered
out, presented to the user, or presented with an in-
dication that its revision may be required. Figure 2
illustrates how the system helps users focus their ef-
forts on modifying borderline acceptable highlights
based on the perplexity score.

4 GPT-3 as an Offline Labeler

Training a dialogue summarization model requires
a large amount of labeled examples. Manually an-
notating data for abstractive summarization is a
time-consuming and labor-intensive process, let
alone the data privacy constraints. In this work,
we provide a method to automatically pseudo label
examples to overcome these challenges. We lever-
age GPT-3 model (Brown et al., 2020) to generate
pseudo labels in a zero-shot setting for each call
segment. GPT-3 is a large auto-regressive language
model with 175 billion parameters that achieves
promising results on various NLP tasks, including
question answering. We treat the problem of la-
bel generation as a question answering task. For
each segment, we concatenate a question-based
prompt with the segment’s content while expecting
the GPT-3 model to provide the answer as appears
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Figure 3: A high-level overview of the system’s flow

Figure 4: Input representation of DialogBART’s en-
coder.

in Figure 5. These answers are used as pseudo
labels for the corresponding segments. This formu-
lation provides the flexibility of defining multiple
questions per segment to summarize the segment
from different perspectives. Finally, these pseudo
labels, combined with proprietary human labeled
data, are used to fine-tune the DialogBART model
on conversational text.

Figure 5: Utilizing GPT-3 model to generate task-
oriented summaries in an offline manner.

5 Custom Evaluation Metric

Common evaluation metrics for text summariza-
tion task, i.e. ROUGE and METEOR, have salient
limitations as both metrics track lexical overlap
between the summary and the original text. This
kind of assessment falls short when the summary
content perfectly aligns with a reference text but
does not necessarily contain any lexical overlap,
e.g. abstractive summaries.

In an industrial setting, one needs to consider
various quality perspectives to guarantee that the
summary’s quality does not introduce productivity

blockers for users or negatively affect business de-
cisions. We introduce a custom evaluation metric,
SumSim, that relies on lexical overlap as well as
other quality aspects to ensure that summaries are
fluent, coherent and factually reliable. SumSim
aims to cover the following quality perspectives:

• Coverage - how many units from the refer-
ence text are covered by the summary (Sr)

• Relevance - measures semantic consistency
between the summary and the reference text
(Sb)

• Informativeness - how well it captures pre-
defined keywords which are critical to the
business (Si)

• Factuality - how factual the summary is with
respect to the original text (Sf )

Our metric uses ROUGE-L (Lin, 2004),
BertScore (Zhang et al., 2019b), exact match of
keywords and FactCC (Kryscinski et al., 2019) to
capture the above quality aspects, respectively. The
quality of a given summary is calculated as follows:

S0 = α · Si +
1− α
2
· (Sr + Sb) (2)

SumSim = β · Sf + (1− β) · S0 (3)

where α and β are determined empirically based
on the business scenario sensitivity.

6 Experimental Results

In this section we evaluate the performance of our
proposed models on various datasets: DialogSum
(Chen et al., 2021b), SAMSum (Gliwa et al., 2019),
CoLA (Warstadt et al., 2019) and a proprietary data
from the sales domain. We also show the potential
of SumSim metric compared to traditional evalu-
ation metrics on the text summarization task. We
use Huggingface Transformers (Wolf et al., 2020)
as a training framework in all of our experiments.
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6.1 DialogBART

In the following experiments we show the perfor-
mance of DialogBART model in summarizing dia-
logues by examining two factors: (i) speaker/turn
position embedding parameters, and (ii) data aug-
mentation by GPT3-labeled data. For comparison
purposes, we leverage two baseline models, BART-
large and distilBART, which achieved state-of-the-
art results on the summarization task (Lewis et al.,
2020; Shleifer and Rush, 2020). All models, includ-
ing the baseline models, were initially fine-tuned
on XSum dataset (Narayan et al., 2018).

First, we examine the contribution of Dialog-
BART’s position embeddings on DialogSum and
SAMSum datasets. All models were fine-tuned
using the relevant training sets and evaluated on
the test sets of the corresponding datasets. Table 1
shows that the suggested speakers/turns positions
embeddings provide better results when compared
to the baseline models.

Model R1 R2 RL
DialogSum

distilBART 35.93 11.71 28.86
+ embeddings 46.97 21.34 39.45

BART-large 46.48 20.89 38.12
+ embeddings 46.68 21.46 38.32

SAMSum

distilBART 41.93 19.17 34.05
+ embeddings 50.21 25.89 41.99

BART-large 52.45 28.08 43.84
+ embeddings 52.91 28.39 43.90

Table 1: Effectiveness of DialogBART’s speaker and
turn embedding parameters using ROUGE metrics.

Second, we examine the implications of fine-
tuning DialogBART model using different data
types: human-labeled (20K samples) and GPT3-
labeled (21K samples) data 2.

We evaluated the models on the test subset of: (i)
DialogSum (500 samples), (ii) SAMSum (819 sam-
ples), and (iii) proprietary data (100 samples). The
evaluation on the public datasets was conducted
without fine-tuning the models on the correspond-
ing training sets. Table 2 shows that DialogBART

2The anonymized data was collected and used based on a
data sharing agreement with customers from different business
domains. The human-labeled data is composed of anonymized
agent’s notes which were captured as part of the daily routine
of the agents and not in a crowdsourcing setting.

model outperforms the baseline models on pub-
lic datasets even in out-of-domain setting. Addi-
tionally, results show that DialogBART fine-tuned
on a mixture of human and pseudo labels outper-
forms its counterparts which were fine-tuned on
either fully human labels or fully pseudo labels.
We note that fine-tuning DialogBART on pseudo
labels yielded higher ROUGE scores compared to
human labels. This could be explained by human
tendency to generate variable summaries which in-
duces disagreements between human annotators
(Clark et al., 2021). While a model fine-tuned on
pseudo labels is less variable in its generations, a
model fine-tuned using human data produces text
that is, in turn, more variable and leads to less lex-
ical overlap with test references as measured by
ROUGE metrics3 .

6.2 Acceptability Validation

We examine mutiple candidate PLMs with lan-
guage model objective for this task. Initially we
fine-tune the candidate PLM on summaries from
DialogSum dataset and later on positive examples
from the train subset of our internal acceptabil-
ity benchmark consisting of in-domain summaries
(100 samples). As candidate PLMs, we experiment
with GPT-2 (Radford et al., 2019), DistilGPT-2
Sanh et al. (2019) and a RoBERTa encoder (Liu
et al., 2019) with a language model head, RoBERTa-
LM. Table 3 shows comparison results between the
examined models and leaderboard competitors on
the development set of CoLA as well as on the test
subset of an internal benchmark.

We observe that all of the models trained using
our method, in the bottom half of the table, which
were not trained on CoLA data yield competitive
results compared to models explicitly fine-tuned
for the task, top half of Table 3. We also found that
the RoBERTa-LM model achieves highest results
on the internal set. Additionally, we fine-tuned De-
BERTa, the strongest CoLA competitor, in a clas-
sification setting on the internal benchmark. We
observe that results achieved by our models are sig-
nificantly better. We hypothesize, this phenomenon
is due to the fact that valid in-domain highlights, as
generated by DialogBART, share a unique structure
and can be viewed as forming a specific language
which properties are better captured by a language
model rather than a classifier.

3https://github.com/google-research/
google-research/tree/master/rouge
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Model DialogSum SAMSum Proprietary
R1 R2 RL R1 R2 RL R1 R2 RL

distilBART 17.1 3.6 13.5 20.3 4.1 15.5 16.3 1.1 13.1
BART-large 17.7 3.9 13.7 24.9 5.5 18.9 16.9 1.5 13.3
DialogBART

+ human 21.7 4.5 19.1 18.9 3.0 16.8 20.2 5.3 19.2
+ pseudo 28.0 5.9 22.2 26.0 5.1 20.6 28.5 10.5 24.8
+ human & pseudo 33.5 9.0 24.5 30.4 7.5 22.4 33.1 13.0 26.3

Table 2: Results of fine-tuning DialogBART model on human labels, pseudo labels and mixture of them.

Model CoLAdev Internal

TinyBERT (Jiao et al., 2020) 54 -
Synthesizer (Tay et al., 2021) 53.3 -
DeBERTa (He et al., 2021) 69.5 54.5

DistilGPT-2 61.7 63.6
GPT-2 62.5 60.6
RoBERTa-LM 64.2 66.7

Table 3: Accuracy of acceptability validation models.

6.3 Custom Evaluation Metric

We leverage the DialougSum test set to show the po-
tential of the SumSim metric. Table 2 shows that
DialogBART fine-tuned on pseudo labels,Mpseudo,
outperforms its counterpart that was fine-tuned on
human labels, Mhuman. However, Figure 6 shows
contradicting insights when comparing the perfor-
mance of these two models by different quality
aspects, i.e., lexical overlap (ROUGE) and factual
reliability (factCC).

This observation emphasizes the need for non-
standard quality measures for evaluating the per-
formance of abstractive summarization models.
This need is critical for customer-facing enterprise
products where business decisions can be affected
by the generated summary. Figure 6 shows the
strengths and weaknesses of different quality met-
rics in evaluating three DialogBART variants. The
Mpseudo model outperforms the Mhuman in all
quality dimensions except of factuality. This ob-
servation is consistent with recent studies which
report that large size language models are less truth-
ful than their smaller peers (Lin et al., 2021).

7 Conclusions

In this paper, we present an end-to-end system for
abstractive summarization of agent-customer calls.
We employ a two-stage strategy to summarize long

Figure 6: The capacity and limitation of various qual-
ity metrics. The bars’ colors represent three different
models which were fine-tuned on human labels, pseudo
labels and a mixture of them, respectively.

call transcripts by (i) splitting the dialogue into se-
mantically coherent segments, and (ii) generating
summaries using our DialogBART summarization
model. We demonstrate how a pragmatic solution
that combines a content selection model with a
human-in-the-loop user experience can help com-
pensate on generative models’ limitations. We
show how GPT-3 model can be leveraged as an
offline data labeler to train lighter models and ac-
commodate data privacy constraints. Experiments
show that the introduced embedding parameters
combined with fine-tuning on in-domain data sig-
nificantly improve the quality of the generated sum-
maries with respect to publicly available BART-
based summarization models. We emphasize the
need for non-standard evaluation metrics and show
how common metrics fall short when evaluation of
abstractive summaries is considered.
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Abstract

Use of synthetic data is rapidly emerging as
a realistic alternative to manually annotating
real data for industry-scale model building.
Manual data annotation is slow, expensive and
not preferred for meeting customer privacy ex-
pectations. Further, commercial natural lan-
guage applications are required to support con-
tinuously evolving features as well as newly
added experiences. To address these require-
ments, we propose a targeted synthetic data
generation technique by inserting tokens into a
given semantic signature. The generated data
are used as additional training samples in the
tasks of intent classification and named entity
recognition. We evaluate on a real-world voice
assistant dataset, and using only 33% of the
available training set, we achieve the same ac-
curacy as training with all available data. Fur-
ther, we analyze the effects of data generation
across varied real-world applications and pro-
pose heuristics that improve the task perfor-
mance further.

1 Introduction

One of the common challenges to deploying nat-
ural language understanding (NLU) techniques at
scale in commercial applications is the necessity
for continuous annotation of user data. Models
can then be re-trained and updated to capture new
usage patterns. This process is expensive, labor
intensive, and time-consuming.

At an age when user privacy is becoming the
focus of increased concern in all AI applications,
manual review of user data normally required for
such annotation becomes highly undesirable. Con-
sequently, multiple initiatives are undertaken to-
wards minimizing the amount of human annota-
tions needed for training NLU models.

Data augmentation (DA) refers to strategies that
aim at increasing the diversity of training samples
without explicitly collecting new data. In this work,

we present a generative model that is used to gener-
ate labeled synthetic data. Given a set of utterance
templates 1 that we construct from a limited amount
of labeled data, our goal is to generate synthetic
utterances and augment the original (reduced) train-
ing data, with the objective of improving the model
robustness and performance.

We focus on the special case where the synthetic
data must retain a specific fine-grained interpreta-
tion of the original utterance, such as token-level
annotation. For example, we would like to control
the composition of entities (and their combinations)
in the training data when expanding to new features
while maintaining NLU model performance. In our
proposed approach, we control the desired anno-
tation by re-framing the generation process as in-
sertion rather than left-to-right generation. We pre-
serve the desired entities in the synthetic example
by including them in the model’s input during gen-
eration and introduce methods to explicitly prevent
entity corruption during the generation process.

Our contributions are as follows: (i) We propose
a novel synthetic data generation technique using
insertion transformers that allows for token-level
control over the generated synthetic utterance. (ii)
We demonstrate the usefulness of the proposed ap-
proach for NLU model building. Our model which
is trained using a limited fraction of user data com-
bined with synthetic data matches the performance
of a model trained with the entire real data. (iii)
We apply domain-specific heuristics to improve
the quality of synthetic data, which would further
improving task performance.

2 Background

Our NLU models are responsible for interpreting
the corresponding domain, intent and actionable
slots of customer utterances. These categories are
modularized, i.e., utterances belonging to a partic-

1For the purposes of this work, we define a template as the
sequence of intent label, slot labels and slot values.
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PlayMusicIntent AlbumName(shake it off) ArtistName(taylor swift)

PlayMusicIntent  can you play  AlbumName(shake it off)  by  ArtistName(taylor swift) now

Input Template

Generated Output  

Figure 1: An input template to GIT with its generated labeled utterance. The output maintains the original template
but inserts new phrases (shown within brackets) between the slots.

ular domain (e.g., Books) are supported by a spe-
cific set of intents (e.g., PlayBook) and actionable
slots (e.g., BookName), and served by the domain-
specific intent classification (IC) and named entity
recognition (NER) models. In this work we ex-
periment and evaluate IC and NER tasks across
multiple domains. We explore the use of synthetic
data as an additional source for training the models
of these domains.

While a number of data augmentation techniques
for natural language have been proposed, ranging
from token-level perturbations (Wei and Zou, 2019)
to paraphrase generation (Chen et al., 2020; Jolly
et al., 2020) and auto-regressive models (Ding
et al., 2020; Malandrakis et al., 2019; Anaby-Tavor
et al., 2020; Kumar et al., 2020), these techniques
can not be directly applied to token labeling tasks
such as NER. Specifically, synthetic data genera-
tion for NER involves two additional challenges:
(1) Label preservation: producing correct token-
level annotation in the generated utterances, e.g.,
in Figure 1 “shake it” may be incorrectly labeled
as AlbumName instead of “shake it off” (2) Entity
control: controlling slot-type and slot-values in
the synthetic data. e.g., we would like to generate
requests for other artists and albums. The first chal-
lenge is typically addressed by a label projection ap-
proach (Ehrmann et al., 2011) or semi-supervised
learning, however this is known to introduce errors
in the resulting annotation. To handle the second
challenge, methods such as (Jolly et al., 2020; Ma-
landrakis et al., 2019) input the desired slot types
and values to the model but cannot force the gener-
ator to include these slots in the synthetic example.

3 Methodology

3.1 Synthetic Data Augmentation with GIT

Our approach, dubbed generative insertion trans-
former (GIT) is based on non-autoregressive inser-
tion transformer model introduced in (Stern et al.,
2019). Previously, it has been shown that these
models can be used effectively for generating an-
notations; given an utterance generate the correct
NLU interpretation (intent and slots) using inser-

tion operations (Zhu et al., 2020). In this work, we
extend the idea to solve the inverse NLU problem;
given a template produce a valid labeled utterance
that matches the annotation (Figure 1).

The insertion transformer is a generative model
in which the decoder generates a sequence by in-
serting tokens between previously generated tokens.
We adopt this idea to insert carrier tokens (token
without an entity label) between the labels in the
template in an iterative manner. (An example of
template is provided in Figure 1, and the insertion
process is illustrated in Figure 2). The insertion
process at each position in the utterance is inde-
pendent of every other position and stops when the
EOS token is generated at all positions, resulting
in a fully annotated synthetic utterance that can be
directly augmented with real data for model build-
ing purpose. We now describe the stages involved
in building and deploying GIT.

Pre-Training: We pre-train GIT using BERT
encoder (Devlin et al., 2019) and KERMIT (Chan
et al., 2019) objective on an unsupervised LM
task: given a sentence with masked tokens, GIT is
trained to insert the masked tokens. We test two
configurations (1) Pre-training using only English
Wikipedia2 (wiki), and (2) Pre-training using an
internal corpus of 800M unlabeled utterances ran-
domly sampled from de-identified Alexa requests,
using English Wikipedia pre-trained models as ini-
tialization (wiki+in-domain).

Fine-Tuning: We fine-tune the pre-trained GIT
models for each domain (e.g., Books) using anno-
tated real data (reduced). Table 1 shows a few data
samples and derived templates. For each utterance,
we provide the template as model input and the
complete (annotated) utterance as output. During
training, at each insertion slot, we have multiple
candidate tokens from the ground truth unlike au-
toregressive generation which entails a single token
per generation step. For example, in Figure 2 the
tokens “can”, “you” and “play” can be inserted be-
tween “PlayMusicIntent” and “Album(”. Hence,
we cannot use the traditional cross-entropy loss

2https://en.wikipedia.org
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Table 1: Representative examples for labeled utterances and derived templates from 3 domains. Carrier tokens
(slot label "|Other") are removed from the labeled utterance and intent names added to create a template

ID Domain Intent Labeled Utterance Derived Template
1 Recipes SearchRecipe find|Other breakfast|Meal recipe|InstructionType please|Other breakfast|Meal recipe|InstructionType
2 Books NavigateBooks skip|Other to|Other chapter|SectionName one|SectionNumber chapter|SectionName one|SectionNumber
3 Home GetSettingsDetails what’s|Other the|Other heat|Setting set|Other at|Other heat|Setting

Encoder

Non Autoregressive Decoder

by nowyou

can you play

EOS

shake Tayloroffit SwiftAlbum( Artist()Album )ArtistPlayMusicIntent

shake Tayloroffit SwiftAlbum( Artist()Album )ArtistPlayMusicIntent

EOSEOS

EOSEOS

EOSEOSEOSEOS

EOS

EOS

Figure 2: A generation example with GIT. An utterance template is provided as input to the decoder. The decoder
generates one or more (carrier) tokens between every two input tokens and stops the generation process when the
End of Sequence (EOS) token is generated (we set maximum number of non-EOS generated tokens to three). The
model learns to only generate EOS tokens within entity tokens (e.g., "shake it off") but this is not enforced. We
discard generated examples when it is not the case (<0.01%).

and instead compute KL divergence between the
predicted token distribution and the ground truth
distribution at each position, and use the mean di-
vergence over all insertion slots as the training loss
(Zhu et al., 2020). The ground truth distribution
sets non-candidate token probabilities to 0 and uni-
formly weighs all candidate token probabilities.

Generation: To generate synthetic data for
NLU, we first construct a template that contains
the desired intent, slot types, and slot values for
the synthetic example. This priming sequence is
provided as an input to the decoder, which inserts
carrier tokens in an iterative manner to form a co-
herent utterance. The generation process is shown
in Figure 2 and addresses both the label projec-
tion and entity control challenges. Templates used
in inference are constructed from the reduced real
data.

4 Experimental Setup

In order to study the effectiveness of synthetically
generated data, we evaluate NLU model perfor-
mance in reduced data regime. For each domain,

we build multiple IC-NER models using all real
data, a reduced set of real data and combination
of real and synthetic data. All models within a
domain share the same training hyper-parameters,
including architecture and encoder. They differ
only in training data composition. Similar to (Ding
et al., 2020), we limit the focus of this work to syn-
thetic data generation and defer hyper-parameter
optimization to future work. We use Apache
MXNet (Chen et al., 2015) to build both GIT and
IC-NER models in this work.

Full: This baseline is trained using all real data
and default training hyper-parameters for each do-
main. This setup reflects the current performance
of NLU models in production and serves as an esti-
mate for lower bound in error metric for all other
models.

Reduced: We train another baseline using one-
third of real data. Our reduction of two-thirds of
the data is motivated by a privacy control feature
allowing customers to delete their data. Given the
trends, we estimated a worst case drop of 67% in
our annotated data before it can be refilled with
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more human annotations. To simulate this worst
case scenario, we randomly downsample across all
utterances.

Duplicate: To reduce the impact of hyper-
parameters we also train a model with the Reduced
set duplicated to reach the full training size. We
refer to it as Duplicate. We note that duplication
has been used as a baseline for data augmentation
in (Estabrooks et al., 2004; Kumar et al., 2019; Wei
and Zou, 2019)

EDA: Easy Data Augmentation (EDA) consists
of four simple operations: synonym replacement,
random insertion, random swap, and random dele-
tion. EDA has shown to be a strong baseline, out-
performing complex model-based baselines par-
ticularly for small datasets (Wei and Zou, 2019).
Similar to GIT, EDA can provide control and flex-
ibility over the type of data generated, which is a
key requirement from our users.

GIT: (ours). We use the Reduced set to fine-
tune domain-specific GIT models and also as in-
put templates during inference, with fixed hyper-
parameters. During inference, we control the num-
ber of generated synthetic utterances which is aug-
mented with Reduced set. We test two configura-
tions: in GIT_50, the fraction of synthetic to real
data is set to 50% while with GIT_200, the frac-
tion of synthetic to real data is set to 200%. In the
former, synthetic data size is kept smaller than real
data while in latter, we add enough synthetic data
to compensate for removed data.

4.1 Confidence filtering of synthetic data
selection

Not all synthetic utterances may be useful for
model training, such as duplicates of real utter-
ances, semantically incorrect samples ("play al-
bum” instead of "buy album” for BuyAlbumIntent),
etc. A handful of previous approaches have investi-
gated filtering synthetic utterances before augmen-
tation: using influence functions (Yang et al., 2020),
reinforcement learning (Bhattarai et al., 2020), etc.
In this work, we use the confidence score obtained
using Reduced models to filter synthetic utter-
ances. Assuming M represents Reduced model,
we predict labels ŷ for a synthetic utterance x using
M , i.e

ŷ, c =M(x) (1)

Here, c is a confidence score derived as the un-
weighted mean of IC and NER scores and scaled to
(0,1). We select x for augmentation if (i) ŷ = y and

(ii) c ∈ (tlow, thigh), where y is the ground truth
label of x available from its template, and tlow and
thigh are threshold hyper-parameters >0.5. Hence,
we select those synthetic samples which are cor-
rectly labeled by M and avoid incorrect utterances
(tlow) and duplicates (thigh). We consider y = ŷ if
the predicted intent label and all slot labels exactly
match with the ground truth.

4.2 Evaluation

We evaluate the models on each domain’s test set.
For each model, we use weighted semantic error
rate (SemERw Su et al. (2018)) to jointly evaluate
IC-NER performance. SemER is defined as the
ratio of Leveshtein distance between reference and
hypothesis labels, and total count of reference la-
bels. We concatenate the intent and slot labels to
arrive at an utterance-level label. We weigh each
domain’s SemER by its test utterance count and
report the mean SemER (SemERw) for each model.
We report relative performance gains with respect
to Full baseline: we only report relative perfor-
mance as we are not allowed to publish absolute
performance numbers.

5 Results

Table 2 shows relative SemERw across differ-
ent methods (lower is better). We can see that
SemERw for Reduced model increases 2.42%. In-
terestingly, Sports domain improves in SemER
(>5%) when reducing real data (Reduced vs Full;
Figure 3): We found that Sports is a relatively
smaller domain and tends to have noisier train-
ing data (Section 6.3). While Duplicate and EDA
do not improve over Reduced, GIT_50 (wiki+in-
domain) achieves the same error rate as training
with all available data. Not surprisingly, using in-
domain data during pre-training GIT_N (wiki+in-
domain) improves results significantly over pre-
training only on Wikipedia GIT_N (wiki).

6 Discussion

While the overall regression appears modest, there
exists significant variation among domains (Fig-
ure 3). We can see that GIT improves SemER
only among certain domains when compared to
Reduced (e.g., Music but not Sports). In general,
domains with relatively higher traffic exhibit mod-
erate regression (<5%). Recall that for simplicity
we use the same hyper-parameters across all do-
mains.
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Figure 3: Relative change in per-domain SemER comparing Reduced and GIT_50_wiki+in-domain to Full.
Domains are sorted according to decreasing traffic volume

Table 2: Relative SemERw (weighted mean, by traffic volume) for baselines and GIT models for different pre-
training corpora and synthetic data sizes. All results are reported relative to Full baseline

Full Reduced Duplicate EDA GIT_200
(wiki)

GIT_50
(wiki)

GIT_200
(wiki+in-domain)

GIT_50
(wiki+in-domain)

0% +2.38% +2.57% +3.07% +9.94% +1.27% +2.66% -0.05%

6.1 Value of Synthetic Data

While we observe that GIT_50 (wiki) and GIT_50
(wiki+in-domain) configurations provide over-
all improvements over Reduced, we investigate
whether data reduction effects are related to im-
provements with synthetic data addition. Specif-
ically, using the null hypothesis that the relative
SemER (%) between data reduction (Full→ Re-
duced) and data addition (Reduced → GIT) are
not related, we estimate the Pearson correlation
between them using two-tailed t-distribution. In
Table 3, we present the correlation coefficients (r)
along with significance information. We notice
in all configurations that a domain’s SemER im-
provement with added synthetic data is inversely
proportional to the regression with data reduction.
In other words, domains which are most affected
by data reduction benefit from adding synthetic
data and vice versa, irrespective of the source and
quantity of synthetic data.

Table 3: Pearson correlation coefficient (p < 0.01**)
for domain-level relative SemER between (Full → Re-
duced) and (Reduced → GIT)

Method r

GIT_200 (wiki) -0.711**
GIT_50 (wiki) -0.751**
GIT_200 (wiki+in-domain) -0.234
GIT_50 (wiki+in-domain) -0.700**

6.2 Confidence Filtering

Among domains where GIT_50 (wiki+in-
domain) performance is worse than Reduced,

we notice that there exist real utterances which
lack the appropriate context necessary for GIT
inference and are more error-prone, such as
those without an entity slot (E.g., “stop|Other”,
“turn|Other off|Other”). As described in Section
4.1, we implement confidence filtering for the top 5
domains with highest SemER degradations for GIT
(Figure 3) and present results in Table 5. Based
on empirical observations, we choose (tlow, thigh)
= (0.5, 0.85). We find that confidence-filtering
results in consistent SemER improvements across
domains compared to GIT, with upto 12.85%
relative improvement for Bookings. When com-
bined with confidence filtering, GIT marginally
improves over the Reduced baseline for these 5
domains.

6.3 Synthetic Data Diversity

In this section, we analyze the generated synthetic
data using quantitative metrics and qualitative ex-
amples. We use the distinct-n metric (introduced
by Li et al. (2016)), which measures the fraction of
unique n-grams to the n-gram count (higher met-
ric indicates more diverse utterances). We com-
pare distinct-2 and distinct-3 metrics between real
and synthetic utterances for domains with high-
est (Bookings, Books, Sports) and lowest (Home,
Video, Health) relative SemER in Table 6. We no-
tice a clear decrease in token diversity in synthetic
data among former domains and increase in token
diversity among latter domains. This hints at the
usefulness of distinct-n as a measure for predicting
value of synthetic data for IC-NER model building.
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Table 4: Some representative utterance templates and generated synthetic utterances. Tokens in orange represent
carrier tokens which are replaced by tokens in blue during synthetic data generation by GIT
Domain ID Real utterance Synthetic utterance

Video

1 youtube|AppName denis|VideoName daily|VideoName
half|VideoName hour|VideoName song|MediaType

search|Other youtube|AppName for|Other denis|VideoName
daily|VideoName half|VideoName hour|VideoName song|MediaType

2 youtube|AppName baby|VideoName car|VideoName search|Other on|Other youtube|AppName for|Other baby|VideoName
car|VideoName

3 find|Other pineola|VideoName lucinda|ArtistName
william|ArtistName

search|Other for|Other pineola|VideoName by|Other lu-
cinda|ArtistName william|ArtistName

4 show|VisualModeTrigger the|Other video|MediaType nurs-
ery|VideoName rhymes|VideoName

show|VisualModeTrigger me|Other a|Other video|MediaType of|Other
nursery|VideoName rhymes|VideoName

Sports

1 can|Other you|Other give|Other me|Other the|Other sports|Other
news|Other of|Other the|Other day|Other

tell|Other me|Other a|Other sports|Other updates|Other

2 can|Other you|Other give|Other me|Other the|Other latest|SortType
sports|Other headlines|Other

what’s|Other the|Other latest|SortType in|Other sports|Other up-
date|Other

3 what’s|Other the|Other latest|SortType in|Other the|Other sports|Other
program|Other

what’s|Other the|Other latest|SortType in|Other sports|Other up-
date|Other

Table 5: Relative SemER (compared with Full) results
using confidence-filtered synthetic utterances for 5 do-
mains with highest regressions

Domain Reduced GIT + Conf. filtering
Bookings 0% 11.1% -3.1%
Books 8.8% 10.5% 7.7%
Sports -10.8% 7.8% -1.3%
Weather 4.8% 6.3% 3.8%
Knowledge 6.3% 6.3% 6.3%
Total (Weighted) 6.3% 8.4% 5.6%

Table 6: Quantitative estimate of n-gram diversity of
real and synthetic utterances as measured with distinct-
2 and distinct-3 metrics for each domain. Relative di-
versity is provided for comparison purposes.

Domain Distinct-2 Distinct-3
Real Syn Rel(%) Real Syn Rel(%)

Bookings 0.119 0.108 -9.1 0.194 0.174 -10.4
Books 0.097 0.055 -43.9 0.197 0.116 -40.81
Sports 0.024 0.006 -77.26 0.047 0.010 -78.27
Health 0.076 0.086 13.23 0.139 0.154 10.95
Video 0.072 0.095 31.42 0.158 0.188 18.88
Home 0.018 0.021 18.47 0.045 0.050 10.33

We further discuss two domains which show the
highest magnitude of diversity change.

Sports: Similar to typical real-world tasks,
Sports domain contains class-imbalanced training
data (ranging from O(102) to O(104) samples per
intent), ambiguous short utterances (∼65% of ut-
terances in a minority intent contain a single-token
and repeat in a majority intent) and 95.3% of ut-
terances do not contain any tokens with slot labels.
In addition to reduced token diversity, these fac-
tors contribute to shorter synthetic utterances on
average (Mean utterance length: real = 3.73 vs
syn = 2.32). Representative examples are provided
in Table 4: utterances 2 and 3 result in the same
synthetic utterance even though their tokens are
different.

Video: From Table 4, we observe that GIT en-

hances the semantics of real utterances by appro-
priate carrier token insertions, specifically for ut-
terances that search for video titles. In example 1,
GIT inserts the tokens “search” and “for” which
convey the meaning of the utterance more clearly
and disambiguate tokens representing the applica-
tion and video title. Similarly, in example 3 GIT
inserts the correct preposition “by” between “pe-
neola” and “lucinda william” using their slot label
information. We hypothesize that such synthetic
utterances are a better representation of token-level
labels when compared to corresponding real utter-
ances, and better assist NLU model building.

7 Limitations

Since our primary focus in this work was develop-
ing insertion transformers for DA, we did not ex-
plore extensive hyper-parameter optimization while
building IC-NER models using combination of real
and synthetic data. For example, we observed that
adding the same fraction of synthetic data results in
significant performance variations across domains,
suggesting that per-domain parameter optimization
may be yield improved performance.

8 Conclusion

We demonstrated DA using GIT as a feasible data
generation technique to mitigate reduced annota-
tion volumes for IC and NER tasks. We showed
that NLU models trained on 33% real data and syn-
thetic data perform similar to models trained on full
real data. Further, on domains with highest SemER
regressions we improved the quality of synthetic
data by filtering them with model confidence scores.
Among domains which benefit from synthetic data,
we showed that appropriate carrier token insertion
enhances utterances’ semantics and their value as

59



training samples. In the future, we would like to ex-
plore data generation with entities replaced through
knowledge base sampling. Such finer control over
entities better supports new feature expansion and
enhances customer privacy.

9 Ethical Considerations

Risk: In this work, we have not controlled the
entities in utterance templates during generation.
This presents a risk of private information
propagating into the synthetic data. We note that
the entities themselves are not introduced during
generation, but carried over from real data. As
mentioned in Section 8, entity control methods
such as considered in the present work with GIT
can prevent such identifiable information from
being exposed to model training.

Data Protection: There are multiple guardrails to
safeguard customer data in our organization. In ad-
dition, we remove all metadata and personal iden-
tifiable information (PII) from utterances before
using them for NU model building and synthetic
data generation with GIT in this work.
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Abstract
Recently, large-scale transformer-based mod-
els have been proven to be effective over var-
ious tasks across many domains. Neverthe-
less, applying them in industrial production
requires tedious and heavy works to reduce
inference costs. To fill such a gap, we intro-
duce a scalable inference solution: Easy and
Efficient Transformer (EET), including a se-
ries of transformer inference optimization at
the algorithm and implementation levels. First,
we design highly optimized kernels for long
inputs and large hidden sizes. Second, we pro-
pose a flexible CUDA memory manager to re-
duce the memory footprint when deploying a
large model. Compared with the state-of-the-
art transformer inference library (Faster Trans-
former v4.0), EET can achieve an average of
1.40-4.20x speedup on the transformer decoder
layer with an A100 GPU.

1 Introduction

In recent years, transformer-based models have
achieved impressive performance across vari-
ant domains, such as natural language process-
ing (Vaswani et al., 2017; Devlin et al., 2019; Raf-
fel et al., 2020; Brown et al., 2020), computer vi-
sion (Jiang et al., 2021; Dosovitskiy et al., 2020)
and speech processing (Baevski et al., 2020, 2021).
The scaling law proposed by Kaplan et al. (2020)
indicates that the validation PPL of a neural lan-
guage model scales as a power-law with model
sizes, dataset sizes, and the amount of training com-
putation. Such law is corroborated empirically by
many following works (Brown et al., 2020; Zhai
et al., 2021).

However, the mega-sized models are notoriously
expensive for deployment in the industry. For
example, GPT-2 medium model (700M parame-
ters (Radford et al., 2019)) spends up to 10s to gen-
erate 512 tokens given a prompt with the length of

∗ Equal contribution
† Corresponding Author

512 on an RTX 2080ti GPU, which is not allowed
in the industrial application. Multiple approaches
have been proposed to solve such problems, includ-
ing knowledge distillation (Hinton et al., 2015; Jiao
et al., 2020), model pruning (Voita et al., 2019), and
quantization (Shen et al., 2019). Apart from these
works, much attention has also been paid to opti-
mizing CUDA implementation of a transformer
layer for better hardware utilization. Previous
works (e.g.: TensorRT (NVIDIA, 2021b), Light-
Seq (Wang et al., 2021) and Faster Transformer
(FT) (NVIDIA, 2021a)) have implemented many
optimization techniques, including kernels fusion,
gemm optimization, quantization, etc. However,
these works still have several limitations. TensorRT
only contains the multi-head attention(MHA) oper-
ation, lacking a complete transformer model. Light-
Seq cannot support the model hidden size and input
sequence length over 1024. FT contains some per-
formance flaws which need to be improved.

In this paper, we propose a novel transformer
inference acceleration library, Easy and Efficient
Transformer (EET) . First, we implement custom
CUDA kernels to avoid explicit matrix addition of
attention and padding masks with attention weights.
As a result, the attention mask matrix is no longer
required, while FT spends overhead to initialize an
attention mask on the CPU and push it to CUDA. In
addition, compared with FT, padding masks are no
longer needed in computation, leading to additional
performance improvement. Second, we propose a
new method, thread block folding, to extend all ker-
nels to support a larger model size up to 12288 and
a longer sequence up to 4096. For FT, it directly
assigns the thread number in a CUDA block, which
may hurt the parallel efficiency. Finally, we design
a dynamic CUDA memory management mecha-
nism to reduce the CUDA memory occupation for
the same model size, while FT needs to manually
allocate memory usage.

We have conducted comprehensive experiments
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to compare EET with Fairseq,1 LightSeq and FT. In
our experiments, EET achieves about 4.48-20.27x
and 4.30-27.43x speedup over Fairseq on 2080ti
and A100 respectively. When we set the model size
to 768 and 1024 on 2080Ti, EET makes 0.82-2.46x
speedup over LightSeq. Compared to FT(v3.1),
EET achieves about 1.21-6.30x and 1.62-8.16x
speedup on 2080ti and A100 respectively. Com-
pared to FT(v4.0), EET achieves about 1.40-4.20x
speedup on A100. The remarkable experimental
results corroborate the effectiveness of our EET.

2 Custom Kernels

FT (NVIDIA, 2021a) has implemented highly opti-
mized CUDA kernels for transformer inference. To
make further optimization, we design our custom
kernels with the considerations below:
• Because padding tokens do not affect the final

results, preventing padding tokens from participat-
ing in MHA instead of simply applying padding
masks can significantly reduce the computational
overhead.
• Although an attention mask is essential for

MHA in text generation, constructing a mask that
varies with the input length is time-consuming.
• The hidden sizes and input lengths of the large-

scale pre-trained models can easily exceed 1024.
It is necessary to extend these kernels to support
large hidden sizes and input lengths elegantly and
efficiently.

To remove previously mentioned masks in com-
putation, we redesign the kernels and call the mech-
anism mask fusion. To extend all the kernels to
support the model size or sequence length greater
than 1024, we improve the CUDA thread structure
and call the method as thread block folding. Next,
we describe these two methods in detail.

2.1 Mask Fusion

The attention mask indicates the attention boundary
for each token to prevent the attention from look-
ing forward. The padding mask indicates where
the padding tokens are. Thus they both charac-
terize the position information of the tokens in a
sequence. Meanwhile, each CUDA thread also
has a unique positional index. So we can map
each token in the MHA to a thread or block in the
CUDA kernels. The function of the attention mask
is achieved by comparing whether the CUDA po-
sition of the query token being processed is larger

1https://github.com/pytorch/fairseq

than the CUDA position of the key token. The func-
tion of the padding mask is achieved by starting
the valid calculations from the padding offset when
sequentially processing each token. Therefore, we
transform the mask computation to logical opera-
tion with CUDA thread index comparison. Thus
there is no need to store any explicit functional
parameters of the masks and the computation over-
head of masking operation is saved. The algorithm
pseudo-code is shown in Algorithm 1.

Algorithm 1 MHA with mask fusion
Input: qk, paddingLen, seqLen, batch, headNum
Output: the attention weights back to qk
CUDA Initialize grid← (batch ∗ headNum)
CUDA Initialize block ← (seqLen)
batchId← blockIdx.x/headNum
padLen← paddingLen[batchId]
qkOffset← blockIdx.x ∗ seqLen ∗ seqLen
qkOffset← qkOffset+ paddLen ∗ seqLen
s← padLen ▷ start at first non-pad
e← seqLen ▷ end at last token
reduceMax← −inf
reduceSum← 0
for i = s to e do

position← qkOffset+ threadIdx.x
data← qk[position]
u← padLen ▷ upper boundary
l← i ▷ lower boundary
if l < threadIdx.x < u then

reduceMax← blockReduceMax(data)
reduceSum← blockReduceSum(data)
data← softmax(reduceMax, reduceSum)

end if
qk[position]← data

end for

2.2 Thread Block Folding
Large-scale models often have model sizes and
input lengths larger than 1024. For example, the
standard GPT-3 has a model size of 12288 and an
input length of 2048. However, the CUDA block
only supports a maximum thread number of 1024,
most inference frameworks, such as FT(v3.1) and
LightSeq, have implemented kernels that restrict
the model size and input length up to 1024, leading
to limited availability.

To deal with large model sizes and sequence
lengths, we propose to use several blocks to sim-
ulate a large block, shown as Figure 1. Imagine a
virtual block large enough to hold all the tasks, then
we can fold it once to create two blocks, with each
block having half the size of the original block. We
can repeat the process until the sub-blocks size sat-
isfies the CUDA constraint. Then, the large model
sizes or input lengths can be handled correctly, and
a new CUDA thread dimension is created to man-
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Figure 1: The schematic diagram of thread block folding.

age the folding procedure. We call this method
thread block folding, which allows us to extend
any kernel to any model size and any sequence
length with minimum changes and non-degraded
performance. For instance, assuming the model
size is 1280, we fold it once and create two half-
size blocks, then the data can be assigned into two
separate blocks with 640 threads in each.

We introduce a folding coefficient to characterize
the number of folding. Given the model size h, the
folding coefficient t and the number of threads n
in one block is defined as:

t = 2⌈
h

1024
⌉−1; n =

h

2t

As for simplicity, thread block folding only adds
a new dimension for the block, which slightly im-
pacts the basic CUDA thread grid structure. As
for efficiency, the minimum thread number is 512
when the model size or input length is larger than
1024 and makes full use of thread parallelism. The
sequence expansion process is similar to the model
expansion process. Finally, we support the model
size no larger than 16384 and sequence length no
longer than 4096.

3 Dynamic Memory Manager

The inference is much more sensitive to latency
compared to training. As a result, model paral-
lelism (Shoeybi et al., 2020) and pipeline paral-
lelism (Huang et al., 2019) are undesirable for in-
ference. Their communication overhead introduced
by tensor slicing or layer split is significant even
with the support of NVLink and GPUDirect. To
reduce the latency and hardware requirements for
online service, minimizing the memory footprint
is of exceptional value when loading very large
models. Thus we propose a dynamic memory man-
agement strategy for this issue.

Except for the model weights, the memory foot-
print includes the caches and the buffers. It is hard
to reduce the memory footprint of weights because

they are inherent to the model. Similarly, The
K/V caches for MHA are also hard to compress
because they are pre-allocated to avoid runtime
memory requests, the size of which depends on the
model size, maximum batch size, and maximum
sequence length. Whereas the activation cache and
the buffers used to store the operator’s results are
compressible. Hence our dynamic memory man-
agement strategy mainly focuses on the activation
caches and the operation result buffers.

3.1 Cache Reuse

The caches include K/V caches and activation
caches. In incremental decoding, the keys and
the values for every step are stored for the next
step’s attention computation. The maximum size
of K/V caches is predictable because we can deter-
mine the maximum batch size and decoding steps
at the start of the running instance. We allocate the
maximum required memory in advance to reduce
the forward latency, avoiding malloc overhead and
memory corruption.

Different from K/V caches, the activation re-
sults are useless after we have calculated and
passed them to the next layer. The memory for
these activations can be reused across different lay-
ers and different operators. We could reuse the
activation caches in the following cases.
• The embedding operator shares the cache with

the feed-forward operator and the final output. Yet
the attention operator holds another cache because
of the residual connection.
• The cache for input sequences can be reused

by the decoded tokens. The maximum size is deter-
mined by the maximum input length.
• The cache can be reused across different layers.
We use the following notations: b, the maximum

batch size; s, the maximum sequence length; p, the
maximum prompt length; h, the hidden units; l, the
layer number. The total activation cache size is:

2 ∗ b ∗ h ∗ p
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The total K/V cache size is :

2 ∗ b ∗ h ∗ s ∗ l

3.2 Buffer Reuse

The continuous CUDA kernels are not always
fused, especially when it comes to Cublas GEMM
calls. So we need some buffers to store the returns
for those non-fused kernels. Managing the buffers
manually like FT is complicated and inefficient.
We develop a dynamic buffer manager to avoid
the tedium of manual design and achieve a highly
efficient memory allocation.

Figure 2: The schematic diagram of buffer decision
strategy.

We maintain a list of buffers and use different
strategies within and across modules to improve
memory utilization. When within modules, we
reuse the buffer only when the request size is iden-
tical to an idle buffer in the list, preventing memory
fragmentation. When across modules, we reuse the
buffer when the request size is smaller than any idle
buffer in the list, avoiding duplicated malloc. The
decision process is demonstrated in Figure 2. In our
design, the developer only needs to request a buffer
of a specified size and mark it as idle when it is
useless, without concerning how to reuse memory
exactly. The total buffer size is:

b ∗ p ∗ (6 ∗ h+ n ∗ p)

where b is the batch size, p is the input length, h is
the hidden size, and n is the head number.

4 Experiments

During inference, many factors can affect the ac-
tual performance, including model size, prompt
length, sequence length, padding ratio in a batch,
and hardware feature. Completely traversing all
combinations requires a huge amount of works.
Because the dataset has no effect on the experiment
results, we adopt the fake inputs for convenience.
To compare fairly and reduce our works, we de-
fine some typical experiment settings. If there is
no special instruction, the experiment is conducted
based on Configuration A in Table 1. Fairseq is
an intuitional baseline because it is implemented
using pure PyTorch code.

Table 1: Configuration A and B

CONFIG A CONFIG B

BATCH SIZE 4 8
MODEL SIZE 1024 2048
MAX PROMPT 1024 1024
MAX SEQUENCE 1024 1024
DATATYPE FP16 FP16

4.1 Speedup for GPT-2 Layer with Different
Sequence Lengths

We first apply EET over GPT-2 on NVIDIA
2080ti and A100. Figure 3 and 4 reveal that
EET achieves about 4.48-20.27x and 4.30-27.43x
speedup than Fairseq and about 1.21-6.30x and
1.62-8.16x speedup than FT(v3.1), on 2080ti and
A100 respectively. For Fairseq and FT(v3.1), the
incremental decoding processes the input tokens
one by one, while EET improves the tokens paral-
lelism by processing input tokens all at once. As a
result, the speedup grows with the increase of the
input length.
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Figure 3: Inference speedup of EET with different
prompt lengths on 2080ti compared to Fairseq and
FT(v3.1).
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Figure 4: Inference speedup of EET with different
prompt lengths on A100 compared to Fairseq and
FT(v3.1).

The recent version of FT(v4.0) also introduces
the parallel decoding of the input sequences for
text generation as we did, so the performance of
EET and FT(v4.0) is getting closer with the input
length increasing. However, EET still has some per-
formance advantages, which are attributed to our
operation kernel optimization. Figure 5 shows that
EET achieves about 1.40-2.54x speedup compared
to FT(v4.0) with the configuration B in Table 1.
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Figure 5: Inference speedup of EET with different
prompt lengths on A100 and 3090 over FT(v4.0).

When processing a batch of inputs, the length of
them may be uneven. The FT(v4.0) uses the mini-
mum length of the prompts for full decoding, while
the EET uses the maximum length. For example,
if there is a batch containing sequences of different
length like [5, 2, 4, 10], the final prompt length
used for parallelism is 2 in the FT. In contrast, it
is 10 in the EET. Figure 6 shows that we make
2.74-4.42x speedup with the prompt fixed to 512
and other configurations keeping the same as the
configuration B in Table 1.

Unlike Fairseq and FT(v4.0), LightSeq only sup-
ports model sizes that are smaller than 1024, we
also make a comparison here as a supplement. Fig-
ure 7 shows that we make 0.82-2.46x speedup when
we set the model size to 768 and 1024.
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Figure 6: Inference speedup of EET with different
padding ratio on A100 and 3090 compared to FT(v4.0)
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Figure 7: Speedup compared to LightSeq.

4.2 Speedup for Transformer Decoder Layer
with Different Model Sizes

To prove the scalability of our EET, we evaluate
the performance on different model sizes with con-
figuration C in Table 2. Figure 8 and Figure 9
reveal that EET achieves about 2.25-7.50x speedup
than Fairseq and about 1.71-4.61x speedup than
FT(v4.0). The acceleration ratio decreases as the
model size increases due to the increased ratio of
matrix multiplication in the inference. Neverthe-
less, with the help of thread block folding, EET
can still deliver significant speedup with very large
model sizes, compared to Fairseq and FT(v4.0).

Table 2: Configuration C

CONFIG C

BATCH SIZE 4 / 8
PROMPT 512
MAX SEQUENCE 1024
DATATYPE FP16

4.3 Speedup for Bert Layer on 2080ti

We conduct experiments to validate the perfor-
mance of the Bert encoder layer in EET on 2080ti.
It is worth noting that the padding tokens take up
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Figure 9: Speedup with different hidden sizes compared
to FT(v4.0).

half of the total tokens. The result is shown in
Figure 10. Deprecation of the padding masks with
the mask fusion trick brings in 0.99-1.27x speedup.
As for Bert, its hidden size is fixed to 1024 and
it has no sequence mask, which kicks off the op-
timization of thread-block folding and sequence
mask fusion, then the speedup is not as significant
as GPT2.
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Figure 10: Performance speedup for Bert layer on
2080ti compared to FT(v4.0).

4.4 Memory distribution
Given the batch size 16, the maximum sequence
length 1024, the vocab size 13672, we plot the
memory distribution of the hidden size of 1024 and
4096 with layer numbers 24 and 40 respectively,

as shown in Figure 11. Regardless of the hidden
size, we can find that model weights and K/V
caches occupy most memory. The activation caches
and the buffers only take up a small part, which
shows the effectiveness of our dynamic memory
management strategy.
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Figure 11: Memory distribution for 1024/4096 hidden
sizes.

Given the batch size 4, the maximum sequence
length 1024, we plot the memory occupancy of dif-
ferent model parameter sizes, see Figure 12. Com-
pared with the 10 billion of PyTorch’s maximum
model parameter sizes, it is up to 18 billion for our
EET, which proves that we can place much larger
models onto one GPU, thus avoiding unnecessary
waste of GPU resources and inter-GPU communi-
cation overhead on multiple cards.
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Figure 12: Memory occupancy for different model sizes.

5 Conclusion

This paper comprehensively describes a series of
optimization techniques for transformer inference
acceleration exploiting both algorithmic and GPU
hardware features. These techniques are packed
into the EET, a library dedicated to inference ac-
celeration for large transformer-based models and
long input lengths. EET has a 1.40-4.42x speedup
for the GPT-2 layer and a 0.99-1.27x speedup for
the Bert layer compared to the state-of-the-art trans-
former inference library FT. To make EET easier to
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apply to a specific task, we provide operation level
and model level API, meanwhile integrating web
service with dynamic batching. We will continue
to improve and keep it up-to-date.
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Abstract

Writing an ad text that attracts people and per-
suades them to click or act is essential for the
success of search engine advertising. There-
fore, ad creators must consider various aspects
of advertising appeals (A3) such as the price,
product features, and quality. However, prod-
ucts and services exhibit unique effective A3

for different industries. In this work, we focus
on exploring the effective A3 for different in-
dustries with the aim of assisting the ad creation
process. To this end, we created a dataset of
advertising appeals and used an existing model
that detects various aspects for ad texts. Our
experiments demonstrated that different indus-
tries have their own effective A3 and that the
identification of the A3 contributes to the esti-
mation of advertising performance.

1 Introduction

Search engine advertising (SEA) displays an ad
text that consists of a title and a description that
are relevant to search queries in search engines, as
illustrated in Figure 1. SEA plays an important
role in sales promotion and marketing as it allows
advertisers to approach users who are interested in
specific search queries effectively (Fain and Peder-
sen, 2006). Ad creators write an ad text that attracts
the attention of users and persuades them to click
or act by introducing various aspects of advertising
appeals (denoted as A3 in this paper for short), such
as special deals, as shown in Figure 1. However,
products and services exhibit unique effective A3

for different industries. For example, limited offers
may be attractive to users in the e-commerce (EC)
industry, whereas the quality of products may be
more important in the automobile industry.

Thus, we argue that the suggestion of effective
A3 for various industries can offer assistance to ad
creators. Therefore, we need to discover the effec-
tive aspects. However, although aspect-based text
analysis has attracted significant attention in the

TokyoHotels.com - Best Price Guarantee

tokyo hotel discount

special deals

discount price, limited-target offer

User’ s Seach Query Keyword (bid phrase)

Matched tokyo japan hotel discount

AD Texts
Title

Desc-
ription Find your Hotel in Tokyo. Members get an extra 20% off.

TEL: XXX-XXX-XXX

Figure 1: Example ad text and its corresponding A3.

review analysis for products and services (Akhtar
et al., 2017; Chen et al., 2019), it has received less
focus in the advertisement field.

In this work, to deal with this problem, we de-
fined the A3 and constructed a dataset of ad texts
that are annotated with A3 in various industries as
a first attempt towards assisting ad creators with
A3. Subsequently we developed an aspect detection
model to identify different A3 and performed cor-
relation analysis between A3 and the click-through
rate (CTR), which is used for supporting ad cre-
ation, as an advertising performance metric to ex-
plore the effective aspects in different industries.
Furthermore, we investigated the effectiveness of
A3 in CTR prediction as a potential application for
ad creation support.

Through correlation analysis in our experiments,
we found that different industries exhibit unique ef-
fective A3. Furthermore, we found that the identifi-
cation of the A3 contributes to the CTR prediction.

2 Related Work

Ad Creation Support Attempts have been made
to perform automatic generation of ad texts and
keywords (Ravi et al., 2010; Hughes et al., 2019;
Kamigaito et al., 2021) as well as the estimation of
advertising performance metrics such as the CTR
(Richardson et al., 2007; Zhang et al., 2014; Mishra
et al., 2021) to support the ad creation process. In
this work, we tackle the discovery of the effective
A3 for various industries and apply the A3 to CTR
prediction with the goal of improving the efficiency
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Labels #spans Labels #spans

(1) Special deals 343 (12) Limited offers 52
(2) Discount price 120 (13) Limited time 61
(3) Reward points 85 (14) Limited target 114
(4) Free 430 (15) First-time limited 25
(5) Special gift 126 (16) Track record 75
(6) Features 1,360 (17) Largest/no. 1 141
(7) Quality 65 (18) Product lineup 258
(8) Problem solving 17 (19) Trend 99
(9) Speed 142 (20) Others 182
(10) User-friendliness 337 (21) Story 98
(11) Transportation 89

Table 1: A3 and statistics of annotated dataset, where
“#spans” represents the number of span texts annotated
with each label.

of the ad creation process.

Aspect-based Text Analysis Although aspect-
based text analysis has attracted significant atten-
tion, the majority of studies have been limited to
specific domains such as hotels, restaurants, and
home appliances (Pontiki et al., 2016; Akhtar et al.,
2017; Chen et al., 2019). Moreover, as the product
review analysis focuses on the aspects of each prod-
uct, the defined aspects are extremely fine grained
(e.g., the modes, energy efficiency, and noise for re-
frigerators (Li et al., 2020)). These aspects are not
suitable for ad creation because ad creators must
deal with ad texts for various products in multiple
industries. Therefore, ad creators are required to
consider numerous A3. In this study, we carefully
designed labels that cover the A3 for the general
purpose of exploring these in a wide range of indus-
tries. Furthermore, we explored methods for aspect
detection, as in the previous work (Bagheri et al.,
2013), as well as the identification of the effective
aspects in terms of advertising performance metrics
such as the CTR.

3 Construction of A3 Dataset

3.1 Data Collection

We constructed a dataset of advertising appeals
to understand the A3 in ad texts. Many A3 ex-
ist in real-world advertisements, including prod-
uct features, price, and campaigns. We collected
782,158 ads from March 1, 2020 to February 28,
2021 through Google Ads,1 which is an online
advertising platform, to cover the expressions of
advertising appeals in a wide range of industries.
In this work, we used ads in Japanese. Each ad

1https://ads.google.com/

consists of a title, a description, and a landing page
(LP), which is a web page for a specific advertising
campaign. We used the meta-description2 of each
LP as the LP content. We sampled 5,000 ad texts
for each advertiser to alleviate the bias owing to
a different quantity of ad texts for the advertisers.
Moreover, we excluded ad texts that comprised less
than 15 characters or more than 200 characters. The
aforementioned two steps yielded 34,952 ad texts.
Furthermore, we excluded duplicates and highly
similar texts using the normalized Levenshtein dis-
tance metric (Levenshtein, 1966; Greenhill, 2011),
because the majority of the ad texts were created
from templates for the sake of cost efficiency (Fu-
jita et al., 2010). As a result, we collected 2,738
ad texts consisting of 666 titles, 1,532 descriptions,
and 440 LP contents from 13 types of industries.3

We provide the detailed statistics of the collected
ad texts in Appendix A.

3.2 Label Types and Annotation Scheme

Owing to the existence of various A3, we believe
that the systematic organization of the A3 can aid
the ad creation process. We manually defined as-
pect labels in the following two phases. First, we
conducted a preliminary analysis of the collected
ad texts and found that approximately eight aspects
appeared: special deals, quality, problem solving,
speed, user-friendliness, limited offers, product
lineup, and trend. Second, we presented these as-
pects and the collected ad texts to experienced ad
creators and asked for their opinions on the A3

with the aim of refining the aspect labels. Conse-
quently, the ad creators suggested that we further
subdivide special deals and limited offers. For ex-
ample, special deals was subdivided into discount
price, reward points, free, and special gift. The
reason for this is that there are differences in the
strength of the aspects between free and special
gift, even though they appear to be similar. Fur-
thermore, largest/no.1 was added as another aspect
label because it attracts a lot of users.

Table 1 lists the A3 that we manually defined.
Detailed descriptions and examples are provided
in Appendix B. Finally, we carefully designed a
hierarchical scheme for A3 to help ad creators and
annotators to understand the differences between

2A meta-description is an HTML attribute that provides a
brief summary of a web page, such as an LP.

3EC, Media, Finance, VOD&eBook, Cosmetics, Human re-
sources, Education, Travel, Automobile, Entertainment, Real
estate, and Beauty&health
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the labels. The aspect hierarchy consists of five
types of coarse-grained labels including special
deals, which are underlined in Table 1, and 16
types of fine-grained labels such as discount price.

Because an ad text often contains multiple ex-
pressions of advertising appeals, as depicted in
Figure 1, we defined an advertising expression as a
span text to be annotated. For example, annotators
provide the aspect label (e.g., special deals) for
the span text “best price guarantee.” Each span
was annotated during the annotation work. More-
over, we allowed the annotators to provide multiple
labels for each span because an expression of ad-
vertising appeals may contain multiple aspects. For
example, the advertising expression “members get
an extra 20% off” contains two aspects discount
price and limited-target offer, because it means that
only users belonging to a membership program can
receive an extra 20% discount.

3.3 Annotation Process
We recruited six participants who worked at an ad-
vertising agency. We separated 2,738 collected ad
texts into two sets consisting of 1,100 and 1,638
texts, and assigned three participants to each set.
We presented a one-hour lecture to the participants
to explain the detailed definitions of the labels and
to provide annotation examples. Furthermore, we
asked them to annotate 30 ad texts that were sep-
arated from the collected dataset as a practice ses-
sion. After the session, we answered questions
from the participants. During the annotation, we
answered any additional questions from them and
shared information when a difficult case appeared,
which was relatively rare.

3.4 Annotated Dataset Statistics
Table 1 displays the statistics of the annotated
dataset. We adopted annotated spans only if at
least two of the three annotators for each span text
agreed with their boundaries and labels. The anno-
tation work for the 2,738 ad texts required a total
of 42 hours; thus, the average time per ad text was
55.2 seconds. A single ad text contains 1.54 spans
on average. Furthermore, we calculated the Co-
hen’s Kappa coefficients (κ) between the tokens
annotated by different pairs of annotators to deter-
mine the inter-annotator agreement. Moreover, fol-
lowing the previous work (Brandsen et al., 2020),
we also report the F1 scores that were calculated
between the spans annotated by different pairs of
annotators, where we considered one annotation

O O O O O O O O O O … O O O O O B I I I I I I … I I I I I I E

[CLS]Watch Docs,Movies & More - Get the First Month Free

{Free, First-time limited offer}

BERT & CRF

MLP

Get the First Month Free

Span Detection

Label Prediction

修正版（ʼ22/01/13）

Figure 2: Overview of the span-based model.

as the ground truth and another as the prediction.
We obtained relatively high agreement among the
annotators: κ = 0.612, F1 = 0.451.

4 Aspect Detection Model

We investigate two existing models for aspect de-
tection, i.e., the span-based (Zheng et al., 2019)
and document-based (doc-based) models (Devlin
et al., 2019). These models receive an ad text
x = (xi)

|x|
i=1 as an input and predict aspect labels

y = (yi)
K
i=1, where xi and yi represent a token

of an ad text and a binary label for each aspect
label, respectively. As each span may contain mul-
tiple aspects, both models perform label prediction
in the form of multi-label classification (Kurata
et al., 2016). K is the number of aspect labels
defined in Table 1. We consider an expression of
the advertising appeals in an ad text, such as “best
price guarantee” in Figure 1, to be a span. We
use S(i, j) to represent the span from i to j, where
1 ≤ i < j ≤ |x|. The span-based model con-
sists of two steps: (i) extracting a span S(i, j) from
x and (ii) predicting the aspect labels y for each
span. In contrast, the doc-based model predicts
the aspect labels y for an entire ad text x. We em-
ployed a pre-trained BERT (Devlin et al., 2019) for
both models owing to the limited amount of the
annotated dataset.

4.1 Span-Based Model
Figure 2 presents an overview of the span-based
model. The task of extracting a span from an ad
text can be considered as named entity recognition,
and we introduce the boundary-aware neural model
proposed by Zheng et al. (2019). We consider char-
acters as a unit (token) in the span-based model.
We use the BIOE scheme to create boundary labels
l = (li)

|x|
i=1 for the input tokens x. We feed x into

the BERT to obtain a vector hi for xi for span de-
tection. Subseqently, we obtain the distribution of
the boundary labels vi ∈ RL by applying a mul-
tilayer perceptron (MLP) vi = MLP(hi), where L
is the number of boundary types (BIOE). We also
use a linear-chain conditional random field (CRF)
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Figure 3: Overview of the CTR prediction model.

(Lafferty et al., 2001) to model the dependencies of
the boundary labels (e.g., label E must appear after
B or I). As a result, we can obtain the boundary
labels l that are predicted by viterbi decoding for
the input x.

For label prediction, we create a vector repre-
sentation havg(i,j) for a span S(i, j) using the av-
erage of the output vectors of the BERT (i.e.,
hi, hi+1 · · ·hj). Thereafter, we obtain the prob-
ability that each span S(i, j) belongs to the as-
pect labels y by applying an MLP and a sig-
moid function m = Sigmoid(MLP(havg(i,j))), where
m = (mk)

K
k=1 and mk = p(yk = 1|S(i, j)). For

example, in Figure 2, the expression “Get the First
Month Free” is detected as a span, and the model
predicts two aspect labels free and first-time limited
offer for the detected span.

4.2 Doc-Based Model

Although the span-based model offers the advan-
tage of detecting a specific expression using span
detection, we are concerned that errors in span de-
tection could affect label prediction. Therefore, we
also introduce the doc-based model as an alterna-
tive to the span-based model.

The doc-based model is a BERT-based classifi-
cation model. Following the original BERT-based
classifier (Devlin et al., 2019), the doc-based model
consists of a BERT and an MLP, which take an
entire ad text x as an input and outputs labels y.
Specifically, we first input the ad text x into the
BERT and obtain the vector representation h[CLS]

for a [CLS] token. Subsequently, we feed the
vector h[CLS] into the MLP to obtain the proba-
bility that the ad text x belongs to the aspect la-
bels y as a multi-label classification task m =
Sigmoid(MLP(h[CLS])), where m = (mk)

K
k=1 and

mk = p(yk = 1|x).

5 CTR Prediction with A3

Within the context of ad creation support, the esti-
mation of advertising performance for an ad text
(e.g., the CTR) plays a key role in both the im-
provement and cost efficiency of the ad creation
because it helps us understand the user’s interest.

Therefore, we also investigate whether the A3 con-
tributes to the prediction of the advertising perfor-
mance. For this task, we input an ad text x con-
sisting of a title and description, an industry type
of the ad t (e.g., EC), and keywords k (e.g., tokyo
and hotel). We also introduce the predicted aspect
labels ŷ (e.g., features) for x as additional features,
which were detected by either the span-based or
doc-based model. In this case, we use the CTR
z ∈ [0, 1] as the advertising performance (CTR =
clicks ÷ impressions).

Figure 3 presents an overview of the regression
model. Similarly to recent work (Mishra et al.,
2021), we design this regression model based on
the BERT. In the model, we feed the three types
of tokens x, t, k into the BERT to obtain the
vector h[CLS] for a [CLS] token. Subsequently,
we input h[CLS] and the aspect labels ŷ for the ad
text x into the following MLP. Thereafter, we ob-
tain the concatenated vector hout = [had;haspect],
where “;” is a concatenation operator. The final
MLP then predicts a CTR score z from hout as
z = Sigmoid(MLP(hout)).

6 Experiments

We conducted experiments on three tasks: (1) as-
pect detection for the A3, (2) correlation analysis
between the A3 and CTR, and (3) CTR prediction.

6.1 Experimental Settings
Dataset We used the annotated dataset in Table 1
for the aspect detection. We separated the dataset
into 1,857 samples for training, 465 for develop-
ment, and 410 for testing after excluding 6 ad texts
that we determined were inappropriately annotated.
We collected 168,412 pairs of ad texts, keywords,
and industry types from March 1, 2020 to February
28, 2021 through Google Ads for the CTR pre-
diction. We carefully separated the dataset into
136,352, 16,084, and 15,976 samples for training,
development, and testing, respectively. The de-
tailed statistics of the dataset for the CTR predic-
tion are presented in Appendix C. We used the
training dataset for the CTR prediction for the cor-
relation analysis between the CTR and A3. We
used the campaign ID of each ad for data division
to prevent leakage between the datasets.

Implementation We used the character-level
BERT4 for the span-based model, and the word-

4https://huggingface.co/cl-tohoku/
bert-base-japanese-char
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Labels Span-based Doc-
Pred Orac based

(1) Special deals 0.11 0.19 0.70
(2) Discount price 0.00 0.00 0.57
(3) Reward points 0.62 0.74 0.75
(4) Free 0.68 0.88 0.94
(5) Special gift 0.28 0.40 0.65

(6) Features 0.50 0.70 0.72
(7) Quality 0.00 0.00 0.44
(8) Problem solving 0.00 0.00 0.00
(9) Speed 0.51 0.66 0.92

(10) User-friendliness 0.46 0.59 0.56
(11) Transportation 0.91 1.00 0.53

(12) Limited offers 0.38 0.53 0.62
(13) Limited time 0.00 0.00 0.47
(14) Limited target 0.26 0.57 0.44
(15) First-time limited 0.00 0.00 0.00

(16) Performance 0.27 0.50 0.48
(17) Largest/no. 1 0.67 0.80 0.82
(18) Product lineup 0.42 0.67 0.67
(19) Trend 0.41 0.56 0.47

(20) Others 0.00 0.00 0.39
(21) Story 0.32 0.83 0.53

Macro average 0.32 0.46 0.56

Table 2: Results of the aspect detection (F1 scores)

level BERT5 for the doc-based model and CTR pre-
diction. We fine-tuned the models on the dataset
and applied an early stopping strategy with 10
epochs. The training was stopped if there was
no improvement in the validation loss for three
consecutive epochs in all experiments. Further im-
plementation details are described in Appendix D.

Evaluation Metrics We calculated the F1 scores
of the aspect labels for the aspect detection. For
the span-based model, a detected label was con-
sidered as a true positive if both its span and label
were correctly detected. We used the area under
the receiver operating characteristic curve (AUC)
(Fawcett, 2006), which is a widely used metric
in the field of CTR prediction (Zhou et al., 2018;
Xiao et al., 2020). Moreover, we used the root-
mean-squared error (RMSE) and mean absolute
error (MAE) to measure the differences between
the ground-truth and predicted scores.

6.2 Aspect Detection

In this experiment, we evaluated two models, the
span-based and doc-based models. As errors in
the span prediction may affect the label prediction
in the span-based model, we also introduced the
Oracle model, which predicts their labels, pro-

5https://huggingface.co/cl-tohoku/
bert-base-japanese
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Figure 4: Visualization of attention weights in the doc-
based model. Each example consists of the original
Japanese ad text with the literal translation for each
subword and the corresponding English ad text.

vided with oracle spans, in addition to the Pred
model, which predicts both the spans and labels.

The evaluation results for the aspect detection
are presented in Table 2. The doc-based model
outperformed the span-based model, including the
Oracle model, for most A3. As the Pred model
is required to predict both the spans and labels cor-
rectly, its task is relatively more difficult than that
of other models. In fact, we found that the F1 score
for the span detection is 0.69 for the Pred model.
Therefore, we conclude that it is the reason why the
macro-average F1 score of Pred was lower than
those of the doc-based and Oracle models.

In the comparison between the Oracle and doc-
based models, the doc-based model outperforms
the Oracle model. We hypothesize that its train-
ing objective for the span-based model is more dif-
ficult as it is more fine grained than the doc-based
model.

We observed that the scores for free, speed, and
largest/no. 1 are high in the doc-based model. This
implies that the advertising expressions for these
aspects are relatively monotonous and easy to de-
tect compared to the other aspects. For example,
the advertising expression “free shipping,” which
belongs to free, often occurs frequently in ad texts
for a wide range of industries. The aspect detection
was difficult for several aspects in which the num-
bers of annotated cases were limited, such as (8)
and (15), as indicated from Tables 1 and 2. Hence,
they exhibited an F1 score of 0.00.

We also conducted an analysis of the attention in
the doc-based model to understand to which signals
the model attended in the aspect detection. Figure
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Labels eBook EC Fin HR Travel

(1) 0.229 0.011 -0.171 − 0.017
(2) -0.135 -0.166 -0.128 − -0.176
(3) 0.183 0.000 0.443 − 0.377
(4) -0.126 -0.163 -0.052 0.116 −
(5) 0.086 0.122 0.339 -0.024 -0.332

(6) -0.128 -0.121 -0.094 -0.040 0.050
(7) -0.001 -0.081 -0.034 − −
(8) − − − − −
(9) -0.017 0.065 -0.109 0.024 −

(10) -0.236 0.053 -0.252 -0.004 0.205
(11) − − − − −
(12) -0.036 -0.149 -0.044 0.003 0.221
(13) -0.090 0.186 0.014 -0.006 -0.184
(14) -0.020 -0.162 -0.011 0.023 −
(15) -0.165 − − − −
(16) 0.108 -0.161 -0.099 0.237 -0.148
(17) 0.283 -0.073 0.143 0.102 −
(18) -0.206 0.044 -0.005 -0.159 -0.195
(19) -0.074 -0.007 0.157 − −
(20) 0.022 -0.083 0.134 -0.042 0.268
(21) -0.093 − − − −

#cases 30,536 20,671 20,183 10,823 8,093

Table 3: Point-biserial correlation coefficient r, where
“# cases” denotes the number of ad texts for each indus-
try type and “−” indicates that the corresponding labels
were not found.

4 depicts the visualized attention patterns with re-
spect to the [CLS] token of the final layer of the
BERT. We found that many of the attention heads
attend to the words “design” and “for free” for the
ad text (a) and (b), respectively. This suggests that
the doc-based model classified the ad text (a) and
(b) as features and free, respectively, because these
words were related to the aspects.

6.3 Correlation between Aspects and CTR

To realize the ad creation process considering the
A3, we analyzed which A3 were effective in each
industry through correlation analysis between the
CTR6 and the aspect labels that were predicted
by the doc-based model. Because the aspect la-
bels are binary for each aspect (e.g., whether or
not each aspect is included in an ad text) and the
CTR is continuous, we used the point-biserial cor-
relation coefficient r for the analysis. Table 3
lists the point-biserial correlation coefficients r be-
tween the aspect labels and the CTR. We inves-
tigated the correlation among the industry types
VOD&eBook (eBook), EC, Finance (Fin), Human
resources (HR), and Travel. As indicated in bold
text in Table 3, we observed a weak correlation

6We used the actual CTR for each ad rather than the pre-
dicted CTR.

AUC (↑) RMSE (↓) MAE (↓)
BERT 0.683 0.220 0.142

+ lspan 0.709 0.218 0.137
+ ldoc 0.713 0.217 0.136

Table 4: Results of CTR prediction

(0.25 < |r| < 0.5) between the CTR and the labels,
such as (3) reward points for Finance. This implies
that ad texts that include effective A3 tend to attract
more attention from users. However, there was no
correlation with regard to the other aspects. This
may be because (1) features, for example, is con-
sidered to be a general-purpose aspect and can be
used in any situation.

Based on the above insights, we also investigated
the expressions for the effective A3 in our annotated
dataset. For example, regarding the VOD&eBook
industry, we found that the expression “one of the
largest websites in Japan” (国内最大級サイト)
was annotated as (17) largest/no. 1. Furthermore,
the expressions for Finance “get [N] points for
new membership” (新規入会＆利用で[N]ポイ
ント) and “earn [N] points per [N] yen” ([N]円
につき[N]ポイント貯まる) were labeled with
(3) reward points.7 We believe that the presenta-
tion of these effective expressions to ad creators
may provide actionable insights and aid in the ad
creation process.

6.4 CTR Prediction

We investigated whether the identification of the A3

contributes to the estimation accuracy of the CTR.
Table 4 presents the results of the CTR prediction.
For comparison with a baseline (BERT), that does
not use A3, we introduced two models that consider
A3 predicted by the span-based model (+lspan) or
the doc-based model (+ldoc). It can be observed
that the aspect-aware models that leverage the A3

outperformed the baseline model in terms of all
evaluation metrics. This suggests that the identifi-
cation of the A3 that are included in ad texts can
contribute to the improvement of CTR prediction.
In the comparison between the two models, +ldoc
improved the performance of the CTR prediction
more than the +lspan. This is likely because the
doc-based model predicted the aspect labels more
accurately than the span-based model, as indicated
in Table 2. We believe that improving the aspect
detection with more refined methods will lead to

7Numbers (e.g., price, points) are masked with [N].
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better correlation and prediction for the CTR.

7 Conclusions

In this work, we have explored the effective A3 by
means of aspect detection and correlation analysis
towards ad creation support with the A3. Our ex-
perimental results demonstrated that each industry
exhibits unique effective A3 and that identification
of the A3 can contributes to CTR prediction.

We demonstrate two possible directions for fu-
ture studies. First, we will investigate whether in-
troducing the effective A3 in the ad creation process
can help ad creators write effective ad texts in real-
world applications. Second, we will develop an
aspect-aware model to automatically generate ad
texts to support the ad creation process. For the
latter, we will train the model with a dataset that
includes pairs of ad texts and their corresponding
aspect labels predicted using aspect detection.
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2016. SemEval-2016 task 5: Aspect based sentiment
analysis. In Proceedings of the 10th International
Workshop on Semantic Evaluation, pages 19–30.

Sujith Ravi, Andrei Broder, Evgeniy Gabrilovich, Vanja
Josifovski, Sandeep Pandey, and Bo Pang. 2010. Au-
tomatic generation of bid phrases for online advertis-
ing. In Proceedings of the Third ACM International
Conference on Web Search and Data Mining, pages
341–350.

Matthew Richardson, Ewa Dominowska, and Robert
Ragno. 2007. Predicting clicks: Estimating the click-
through rate for new ads. In Proceedings of the 16th
International Conference on World Wide Web, pages
521–530.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45.

Zhibo Xiao, Luwei Yang, Wen Jiang, Yi Wei, Yi Hu, and
Hao Wang. 2020. Deep multi-interest network for
click-through rate prediction. In Proceedings of the
29th ACM International Conference on Information
& Knowledge Management, pages 2265–2268.

Yuyu Zhang, Hanjun Dai, Chang Xu, Jun Feng, Taifeng
Wang, Jiang Bian, Bin Wang, and Tie-Yan Liu. 2014.
Sequential click prediction for sponsored search with
recurrent neural networks. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelli-
gence, pages 1369–1375.

Changmeng Zheng, Yi Cai, Jingyun Xu, Ho-fung Le-
ung, and Guandong Xu. 2019. A boundary-aware
neural model for nested named entity recognition. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing, pages 357–366.

Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan,
Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li,

and Kun Gai. 2018. Deep interest network for click-
through rate prediction. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 1059–1068.

76



A Collected Ad Texts for Annotation

Table 7 lists the detailed statistics of the collected
ad text. We collected 2,738 ad texts compris-
ing 666 titles xtitle, 1,532 descriptions xdesc, and
440 LP contents xlp from 13 industries: EC, Me-
dia, Finance, VOD&eBook, Cosmetics, Human re-
sources, Education, Travel, Automobile, Entertain-
ment, Real estate, and Beauty&Health.

B Descriptions and Examples of A3

Table 5 lists the detailed descriptions and examples
of A3 that we have defined. For example, the ex-
pression “enjoy free shipping” is labeled with (4)
free, as it represents free offers for products or ser-
vices. In the table, “#spans” represents the number
of span texts annotated with each label.

C Dataset for CTR Prediction

Table 8 lists the detailed statistics of the datasets
used for CTR prediction. We carefully separated
the dataset into 136,352, 16,084, and 15,976 sam-
ples for training, development, and testing, respec-
tively. For correlation analysis between the CTR
and aspect labels of advertising appeals, we used
the training dataset for CTR prediction.

D Additional Implementation Details

Table 6 lists the implementation details, e.g., hy-
perparameters, for the aspect detection and CTR
prediction models. We developed our models using
pre-trained BERT models, which are publicly avail-
able from the Transformers library (Wolf et al.,
2020).8 The framework is available under the
Apache 2.0 license. We trained the models with a
Tesla V100 GPU on the Google Cloud Platform,
which is the cloud computing infrastructure. More-
over, we performed a hyperparameter search, using
Optuna (Akiba et al., 2019) with default parameters
for the aspect detection models on the validation
set. In the experiment, the hyperparameter search
is limited to 30 trials. Therefore, we performed our
experiments in a single run.

We used CRF and binary cross-entropy (BCE)
loss for span detection and label prediction in the

8https://huggingface.co/cl-tohoku

span-based model, respectively. We used the mean
squared error (MSE) as an objective function to
train the CTR prediction model. Furthermore, we
applied an early stopping strategy to all the mod-
els. Specifically, we stopped training if there was
no improvement in the validation loss after three
consecutive epochs.
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Aspect labels Description & Example #spans

(1) Special deals Expressions representing special deals (e.g., Compare hotels and save money) 343
(2) Discount price Specific discount rate or amount (e.g., Buy 1 get 1 50% off) 120
(3) Reward points Customers can earn points (e.g., Use our app to earn points) 85
(4) Free Free offer for products or services (e.g., Enjoy free shipping) 430
(5) Special gift Special gifts or presents for customers (e.g., Join today and get a free brush set) 126

(6) Features Features of services or products (e.g., Ergonomically designed to protect children) 1,360
(7) Quality Top-quality or high-grade services (e.g., Find premium kitchen appliances) 65
(8) Problem solving Solutions to customer problems (e.g., Get bright, clear skin) 17
(9) Speed Speed of delivery and services (e.g., Fast & free shipping) 142

(10) User friendliness Usability of services and products (e.g., Quick, simple, and easy to use ) 337
(11) Transportation Convenience of transportation (e.g., Centrally located in the heart of Tokyo) 89

(12) Limited offers Limited availability of services and products (e.g., Limited to 1,000 items per day) 52
(13) Limited-time offer Offers available for a limited time only (e.g., Three days only at 20% off) 61
(14) Limited-target offer Offers available for target customers only (e.g., Discount for members only) 114
(15) First-time limited offer Limited offers for first-time customers (e.g., Take 15% off your first order) 25

(16) Track record Track records of services or companies (e.g., 45M+ users worldwide) 75
(17) Largest/no. 1 Largest/No. 1 products or services (e.g., Boston’s no. 1 hair salon) 141
(18) Product lineup Wide range of products or stores (e.g., Large selection of hotels) 258
(19) Trend Popularity or favorable reputation (e.g., Top trending shoes and boots) 99

(20) Others Other advertising appeals (e.g., An experience like no other) 182
(21) Story Synopsis of a movie or drama (e.g., After Peter Parker is bitten by a· · · ) 98

Table 5: A3 and statistics of annotated dataset.

Aspect Detection Model CTR Prediction Model
Span-based Doc-based

Pre-trained model bert-base-japanese-char bert-base-japanese bert-base-japanese
Number of heads 12 12 12
Number of hidden layers 12 12 12
Hidden layer size 768 768 768
Dropout probability 0.1 0.1 0.1
Vocab size 4,000 32,000 32,000
Batch size 10 10 30
Max sequence length 512 512 512
Number of epochs 10 10 10
Learning rate 8.6× 10−5 5.5× 10−5 2.0× 10−5

Optimizer Adam Adam Adamax
Loss CRF loss, BCE loss BCE loss MSE loss

Table 6: Hyperparameters and implementation details.

Industry Title Desc. LP Sub-total

EC 131 314 87 532
Others 137 272 123 532
Media 119 250 27 396
Finance 105 203 56 364
VOD&eBook 38 112 78 228
Cosmetics 43 110 20 173
Human resources 72 75 8 155
Education 58 50 10 118
Travel 23 62 18 103
Automobile 18 32 5 55
Entertainment 14 36 3 53
Real estate 5 12 2 19
Beauty&Health 3 4 3 10

Total 766 1,532 440 2,738

Table 7: Statistics of collected ad texts.

Industry Train Dev Test

VOD&eBook 30,536 3,823 3,812
EC 20,671 2,584 2,583
Finance 20,183 2,521 2,521
Others 15,526 1,936 1,936
Human resources 10,823 1,348 1,348
Media 10,434 1,295 1,274
Education 9,592 1,344 1,228
Travel 8,093 1,002 1,042
Cosmetics 5,584 231 232
Entertainment 2,455 0 0
Automobile 1,697 0 0
Beauty&Health 445 0 0
Real estate 313 0 0

Total 136,352 16,084 15,976

Table 8: Statistics of dataset for CTR prediction.
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Abstract

Product Listing Ads (PLAs) are primary online
advertisements merchants pay to attract more
customers. However, merchants prefer to stack
various attributes to the title and neglect the
fluency and information priority. These seller-
created titles are not suitable for PLAs as they
fail to highlight the core information in the visi-
ble part in PLAs titles. In this work, we present
a title rewrite solution. Specifically, we train
a self-supervised language model to generate
high-quality titles in terms of fluency and in-
formation priority. Extensive offline test and
real-world online test have demonstrated that
our solution is effective in reducing the cost
and gaining more profit as it lowers our CPC1,
CPB2 while improving CTR3 in the online test
by a large margin. It is also easy to train and
deploy, which can be a best practice of title
optimization for PLAs.

1 Introduction

Product Listing Ads (PLAs) are crucial online mar-
keting tools for merchants to attract more cus-
tomers and encourage them to click their ads. They
have different names in various ads channels, for
example, Dynamic Product Ads in Facebook and
Instagram, Shopping Ads on Google, as shown
in Fig 1. PLAs usually have a limit on display
text length, for instance, in Google Shopping Ads,
users can see only the first 70 or fewer characters
of the title4). Therefore, PLAs titles are expected
to reveal the product type and core attributes ear-
lier so that users can clearly identify the product,
as illustrated in Table 1. However, to trigger ads
more often and affect the user’s purchase intention
more positively, sellers list as many attributes as
possible in the title without considering the fluency

1Cost Per Click
2Cost Per Buyer
3Click Through Rate
4https://support.google.com/merchants/

answer/6324415?hl=en

Figure 1: Product Listing Ads from different channels

and readability, most importantly, the information
priority. as illustrated in Table 2. These titles fail to
highlight the core information and make it difficult
to comprehend as a whole.

Existing work has made the attempt to gener-
ate titles from keywords(de Souza et al., 2018)
and product images(Zhang et al., 2019), or gen-
erate description text(Shao et al., 2021) for prod-
ucts, however, little work has investigated the title
optimization for PLAs. At first, we explored the
rule-based method by assigning weight to attribute
words and reordering the words/chunks by weight.
However, the rule-based method heavily relies on
the accuracy of attribute detection, phrase bound-
ary detection, and the appropriateness of attribute
weights. It is hard to optimize rules without ex-
hausting human effort. Therefore, we attempt to
use language models in our title rewrite task.

The biggest obstacle of model-based method is
the lack of high-quality titles regarding fluency and
information order as labels for supervised learning.
In this work, we solve the problem by performing
self-supervised learning. Instead of writing high-
quality titles as labels, we design a multi-level shuf-
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Figure 2: The framework of our product title rewrite solution. The upper part shows model training details: title
cleaning, multi-level shuffling, data preparation, and multi-step training. The multi-level shuffle module creates
(pseudo title, title) pairs for self-supervised training. The lower part illustrates the model usage: the input title is
cleaned and then input to the trained ProphetNet to generate a high-quality one.

Priority Attribute Type Attribute Value
1st Product Type phone case
2nd Core with magsafe, for

iphone13, leather
3rd Common new style, golden

brown, 6.1 inches
Quality Title Example

good iphone13 leather phone case with
magsafe new style golden brown
6.1 inches

bad fluency with magsafe new style golden
brown 6.1 inches phone case for
iphone13 leather

bad priority new style golden brown 6.1
inches phone case for iphone13
leather with magsafe

Table 1: Examples of attribute priority for a phone case
and possible titles. Small case is used in the paper.

fle module that uses titles to generate low-quality
pseudo titles. Then the language model is trained
on (pseudo title, title) pairs, during which it can
learn to reorder the words to recover the original
titles. Moreover, we propose a multi-step training
procedure consisting of pre-train and fine-tune to
enable the model to generate good titles.

The overall framework of our solution is illus-
trated in Fig 2. Moreover, for the sake of infor-
mation accuracy, we only focus on information
reordering and avoid any word insertion, deletion,

title suitable for apple 12pro mobile
phone case iphone12 protective
case genuine leather drop-resistant
new style all-inclusive silicone
ultra-thin 11pro max high-end for
men and women limited

optimized mobile phone case silicone ultra-
thin genuine leather protective
case drop-resistant suitable for ap-
ple 12pro iphone12 11pro max all-
inclusive new style high-end for
men and women limited.

Table 2: Example of product title optimization.

and modification to the original title.

2 Method

We first introduce our multi-level shuffle module,
which creates the (pseudo title, title) pairs for self-
supervised training. Then we elaborate on the
multi-step training procedure. It is worth noting
that our solution can be built upon any language
models, such as BART (Lewis et al., 2019) and
GPT2 (Radford et al., 2019). We use the Prophet-
Net (Qi et al., 2020) framework in practice as it
is superior to BART and GPT2 and has achieved
new state-of-the-art in multiple text generation
tasks(Dayiheng Liu and Duan, 2020).
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2.1 Multi-level Shuffle Module
We overcome the absence of a learning target by
thinking about the problem from an interesting
perspective. The only available titles are seller-
created: accurate, informative while uneven in qual-
ity, where good titles can train the model to gen-
erate better while the bad ones can also be good
learning targets in terms of wording and phrasing
of attributes, grammar, and the semantic context of
the words. If we shuffle the word order of titles as
input, even the bad titles become good supervision
as they have better fluency than the corrupted ones.
In light of these considerations, we build a multi-
level shuffle module to mimic the problematic titles
and generate low-quality pseudo titles as model in-
put. Specifically, we have three strategies to cover
almost all the word order issues in the titles.
Chunk-level We use the chunking tools5 to split
the title into chunks, then we randomly swap two
or more chunks to obtain low-quality titles. From
Table 1, the good title can be split into “iphone13
leather phone case | with magsafe | new style |
golden brown | 6.1 inches". After shuffling, the
title may become the bad ones in Table 1.
Span-level We create the text spans by combin-
ing the random number of adjacent chunks arbitrar-
ily into a larger text span without overlapping, then
we randomly exchange the position of two or more
spans. This strategy generates the easiest case for
the model to learn because most of the words are
still in proper order after shuffling.
Token-level After tokenization, the title is split
into a list of tokens. We switch the position of
two or more tokens to mimic the word order is-
sue with the highest severity since it needs a more
complicated adjustment to recover.

In practice, we make sure to keep 15% titles
unchanged. We apply chunk-level strategy to 55%
titles, span-level strategy to 25% titles, and process
only the rest 5% titles with token-level strategy
because such messy corruption hardly happens in
titles while a large portion of such hard cases will
delay the model convergence.

2.2 Model Training
We introduce the training objective, and the multi-
step training in detail.
2.2.1 Training Objective
As mentioned before, we use ProphetNet(Qi et al.,
2020) as our language model, which is trained with

5https://alinlp.alibaba-inc.com/

a novel self-supervised objective called future n-
gram prediction. Given the training data (X,Y ),
where X = {xi}, i ∈ [1,M ] is the M -length
input and Y = {yi}, i ∈ [1, T ] is the T -length
output. Typically, the language model is trained
to maximize the probability of the next token yt
conditioned on X and all the precedent tokens in
Y . ProphetNet is different as it also predicts the
future n-grams:

L(θ;X) = −α0 ·
(

T∑

t=1

log p(yt|y<t, X; θ)

)

−
n−1∑

j=1

αj ·
(

T−j∑

t=1

log p(yt+j |y<t, X; θ)

)

(1)
The first part of equation is the original language
model loss while the second part is the loss from
predicting the future n-grams. The parameters α
and other model parameters are all consistent with
open-source ProphetNet6.

2.2.2 Multi-step Training
We propose a multi-step training procedure which
allows the language model gradually acquire the
generation ability of high-quality titles.

General Pre-train Pre-training is a successful
technique to boost the generation quality of lan-
guage models (Dong et al., 2019). ProphetNet has
different open-source pre-trained versions for dif-
ferent languages. For example, ProphetNet-EN
is pre-trained with 160GB English raw texts, in-
cluding Wikipedia, news, and web texts, etc. For
convenience, we use a pre-trained ProphetNet (Qi
et al., 2020).

Domain-specific Pre-train The pre-trained
ProphetNet has a strong ability to generate fluent
text in various contexts, but we hope it can focus
more on the e-commerce domain. Therefore,
we collect 20GB of e-commerce data consisting
of the titles and the attribute keywords for
domain-specific pre-training, for instance, the title
and the attribute values in Table 1. We concat the
keywords as model input X , and use product title
as model output Y , continuously train the model
by minimizing Eq. 1 until reaching convergence.

Title Rewrite Pre-train Our task is to rewrite
the seller-created titles into better quality. To

6https://github.com/microsoft/
ProphetNet
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help reduce the gap between the pre-trained lan-
guage model and our task, we continue pre-training
ProphetNet with product titles. We create (pseudo
title, title) pairs with tens of millions of titles we
have as (X,Y ), and pre-train ProphetNet by min-
imizing Eq. 1. As stated before, all the titles, in-
cluding the bad ones, can be used as the learning
target, since even the bad titles have basic knowl-
edge about titles and still maintain a better fluency
compared to the corrupted ones.

Refined Title Fine-tune In particular, the model
should learn from high-quality titles about informa-
tion priority. Intuitively, titles from brand owners or
high-rating sellers are more reliable than the others.
Online CPC, CPB performance can also be a good
indicator of title quality. We combine these rules
and select about 10% of all titles, which is millions,
as high-quality for refined fine-tuning. We sampled
500 of them and found the portion of good titles
reaches 98.0%. Similarly, we create the title pairs
then train our model by minimizing Eq. 1.

We start the multi-step training from the domain-
specific pre-train step and use 2 32GB Tesla V100
GPUs running for 7 days until convergence.

3 Experiment

We conduct offline and online test to evaluate the
generated title in terms of accuracy, information
order, fluency, and real-world profits.

3.1 Offline Accuracy

We evaluate token-level accuracy and investigate
how much the multi-level shuffle module helps in
model training.

Token-level Accuracy Given the golden label
(original title) Ȳ = {ȳi}, i ∈ [1,m] and the gen-
erated title Y = {yi}, i ∈ [1, n], we calculate a
token-level accuracy as Eq. 2.

Acc =

∑min(m,n)
i=0 1(yi == ȳi)

min(m,n)
(2)

where 1 is an indicator function which equals 1
when yi == ȳi, 0 otherwise. In general, if the pre-
diction mistake happens in the earlier steps, it will
propagate the error and affect the future word pre-
diction. Therefore, a title with a wrong beginning
and necessarily wrong future tokens will obtain
a very low token-level accuracy. Comparably, in
PLAs, the beginning of the title is more important.
Therefore, the metric somehow shows the quality
of generated text as a PLAs title.

Model Acc_u Acc_c Acc_m
Model+ 100.0% 38.88% 34.92%
unchanged
Model+

92.41% 62.35% 54.61%
random shuffle
Model+

93.26% 73.32% 64.50%
multi-level

Table 3: Generation accuracy using different shuffle
modules. Acc is accuracy; u, c, m means test data un-
changed, chunk-level shuffled, and multi-level shuffled.

Baselines To examine the effectiveness of the
multi-level shuffle module, we train three versions
of the model using the original title as output while
using different shuffled data as input: unchanged
(not shuffled), random shuffle (shuffle the tokens
by chance), and multi-level shuffle.
Test Data With 5, 000 selected high-quality
product titles (separated from the training data
beforehand), we create three versions of input
data for testing: unchanged, chunk-level shuf-
fled, and multi-level shuffled, and obtain the (un-
changed/corrupted title, title) as the test data. We
test the models and calculate the token generation
accuracy on three test dataset, by which we can
have a more reliable result. However, it is more
convincing if a model can recover the original titles
from the corrupted ones with higher accuracy.
Result From Table 3 we can observe that Prophet-
Net trained with multi-level shuffled data outper-
forms the other models on the shuffled test datasets
by a large margin. The multi-level shuffle strategy
achieves higher accuracy than random shuffle on
all test datasets, so it does help the model gener-
ate better. Moreover, the model achieves 100%
accuracy when trained and tested on the unchanged
data, yet becomes the worst when tested on the cor-
rupted titles because the model only learns making
no change to the input.

3.2 Information Priority and Fluency
We examine the information order and fluency via
human GSB evaluation, which means to judge the
generated title as Good, Same or Bad compared to
the original one. We have three PLAs marketing
experts from e-commerce online marketing team.
Given 1, 000 pairs of the original and generated ti-
tle, every rater votes every pair with one of the GSB
labels. We also provide the product image, brand,
and category information to help raters resolve the
core information from the title. As shown in Ta-
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ble 4, the generated product titles have obtained
+25% and 21.9% GSB improvement compared to
original titles and rule-based titles, respectively.

Baseline Good Same Bad GSB
Original 47.5% 30% 22.5% +25%

Rule-based 37.5% 46.9% 15.6% +21.9%

Table 4: Human evaluation. GSB=Good Rate-Bad Rate

3.3 Online Test

We run the test on Google Shopping Ads in three
countries (MY, PH, SG) for two months. Before
the test, we split the items into the control group
and test group, then upload them to GoogleAds.
In this way, the traffic of the two groups is almost
even and with fairly close cost and impressions.
We make sure traffic is large enough to keep stable
and influential (over 100MM daily impressions).
In the first month, we run campaigns and observe
the gap of core metrics between the two groups.
Then we update the titles into generated titles in
the test group and continue running campaigns nor-
mally for another month. At last, we assess the gap
change brought by the generated titles after online
for a month.

Country 1st CPB 2nd CPB CPB
MY 1.75% -15.23% -16.98%
PH -0.19% -12.14% -11.95%
SG -0.80% -12.44% -11.65%

Country 1st CPC 2nd CPC CPC
MY +1.81% -1.01% -2.82%
PH +5.15% +3.53% -1.62%
SG -0.19% +0.17% +0.36%

Country 1st CTR 2nd CTR CTR
MY -0.58% +9.93% +10.51%
PH +0.10% +7.01% +6.91%
SG +2.52% +7.85% +5.33%

Table 5: Online test result on Google Shopping Ads.1st

means the original metric gap between control and test
groups; 2nd is the gap after running generated titles. The
gap change is considered as the final metric.

Our core metrics are CPC, CPB, and CTR . From
Table 5 we learned that the generated titles are
profitable in view of lowering the cost and bringing
more conversions7. For example, the generated
titles have brought 5.33%~10.51% CTR increment,
and 11.65%~16.98% CPB drop while saving the

7Google Shopping Ads charge by clicks, dropping CPC
means saving the cost.

cost of PLAs about -2%. We can see a slight CPC
fluctuation in SG with a +0.36% increment, which
is not hurtful given the significant positive change
of CPB and CTR.

4 Discussion
Besides titles, merchants usually also have a great
deal of information such as product categories, at-
tributes, etc. We experiment further on how such
information helps in model training.

4.1 Category-specific Models
To explore if a category-specific model trained
only for the target category can generate bet-
ter than the model trained on all categories,
we train and test the model only on the “Elec-
tronics" category, one of our largest categories.
In specific, Model+EL Finetune is ProphetNet
fine-tuned only on the Electronics titles without
any pre-training step, which is a basic category-
specific model. Model+Pretrain+EL Finetune is
a more advanced category-specific model, which
is first pre-trained on our raw text and key-
words and title pairs and titles from all cate-
gories then fine-tuned only on the Electronics ti-
tles. Model+Pretrain+Finetune is our standard
multi-step training on all titles. As shown in

Model Acc_u Acc_c Acc_m
Model+

77.35% 42.14% 38.34%
EL Fine-tune
Model+

91.44% 76.33% 68.07%Pretrain+
EL Finetune
Model+

93.69% 77.35% 68.92%Pretrain+
Finetune

Table 6: Generation accuracy of category-specific model
and proposed model.

Table 6, the category-specific model is weak at
the generation when only fine-tuned without pre-
training. However, the model trained on all cat-
egories achieves better accuracy in the target cat-
egory than the model pre-trained and fine-tuned
only for the target category. This may be because
training on all categories can facilitate the repre-
sentation learning of words shared by different cat-
egories.

4.2 Attribute-guided Shuffle
The most frequent circumstance in bad titles is
the attribute priority. Therefore, we design an
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S1-title olympia dz-220btx series electronic calculator
S1-gen olympia electronic calculator dz-220btx series
S2-title 27mm aeroforce hammer with double colour handle
S2-gen aeroforce hammer with double colour handle 27mm
S3-title household multifunctional plastic multi-clip folding drying rack underwear socks clip drying

rack baby hanger
S3-gen multi-clip folding drying rack household multifunctional plastic underwear socks clip drying

rack baby hanger
S4-title (6 months warranty) replacement toshiba satellite t115-s1100 laptop ac power adapter charger
S4-gen laptop ac power adapter charger replacement toshiba satellite t115-s1100 (6 months warranty)
S5-title reflective colorful angel wings laser car stickers six-pointed star beauty body free stickers

modified cool decorative
S5-gen angel wings laser car stickers six-pointed star beauty body free reflective colorful cool

decorative stickers modified
S6-title 100% authentic otterbox case symmetry series case for iphone 8 & iphone 7 (not plus)
S6-gen otterbox case for iphone 8 & iphone 7 (not plus) symmetry series case 100% authentic
S7-title suitable for lenovo ideapad 320s notebook charging cable 310s-14isk 15ise power adapter
S7-gen power adapter suitable for lenovo ideapad 320s notebook charging cable 310s-14isk 15ise
S8-title moon japanese and korean ins fresh flowers for huawei mate40pro phone case internet

celebrity mate30/p40
S8-gen phone case for huawei mate40pro mate30/p40 ins fresh flowers moon japanese and korean

internet celebrity

Table 7: Samples of the original titles and the generated titles by the proposed solution.

attribute-guided shuffle strategy that creates low-
quality pseudo titles by changing the positions of
attributes. We expect this kind of corruption can
train models to concentrate more on attribute words
and then learn to arrange them better. Surprisingly,
as shown in Table 8, the attribute-guided shuffle
is comparative but not superior to the multi-level
shuffle module, which may be because multi-level
shuffle can cover various types of title issues, not
only the attribute positions.

Model Acc_u Acc_c Acc_m
Model+

91.14% 71.92% 63.17%
attribute
Model+ 93.26% 73.32% 64.50%
multi-level

Table 8: Generation accuracy of different shuffle strate-
gies.

4.3 Why the Optimized Titles Work in PLAs

We sample the generation titles to get a clear view
of the generation quality, as displayed in Table 7.
First, the core information is prioritized by putting
it at the beginning of the title, especially the infor-
mation that helps users quickly identify the product.
For example, S1 moves the model “dz-220btx" to

the behind and makes sure the product type “ elec-
tronic calculator" is visible to users. Similarly, S2,
S4, S7, S8 put the product type first. The model is
not moving product type to the first blindly. From
S3, S6 we can see that model keeps the core at-
tributes in front of the product type to maintain
better fluency. Second, the long titles become more
fluent and readable. For example, S7 generates a
more natural title as a sentence. S5 and S8 prop-
erly reveal the product types earlier so that users
understand immediately what is selling and make
the complicated attribute list more comprehensible.
Therefore, the model considers both information
priority and fluency to make the product title easier
to read and the visible part in PLAs more clear. It
is worth mentioning that the trained model fits the
titles data perfectly and only predicts the words in
the original titles. Hence, the information in the
generated titles is usually accurate and complete.

5 Conclusion
We present a practical solution of product title op-
timization for PLAs which consists of multi-level
shuffling for pseudo title production and multi-step
training to generate high-quality titles. It can help
merchants conveniently build their own profitable
title optimization systems.
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Abstract

Manually labeled training data is expensive,
noisy, and often scarce, such as when devel-
oping new features or localizing existing fea-
tures for a new region. In cases where labeled
data is limited but unlabeled data is abundant,
semi-supervised learning methods such as con-
sistency training can be used to improve model
performance, by training models to output con-
sistent predictions between original and aug-
mented versions of unlabeled data.

In this work, we explore different data augmen-
tation methods for consistency training (CT)
on Natural Language Understanding (NLU) do-
main classification (DC) in the limited labeled-
data regime. We explore three types of augmen-
tation techniques (human paraphrasing, back-
translation, and dropout) for unlabeled data and
train DC models to jointly minimize both the
supervised loss and the consistency loss on un-
labeled data. Our results demonstrate that DC
models trained with CT methods and dropout-
based augmentation on only 0.1% (2,998 in-
stances) of labeled data with the remainder as
unlabeled can achieve a top-1 relative accu-
racy reduction of 12.25% compared to fully
supervised model trained with 100% of labeled
data, outperforming fully supervised models
trained on 10x that amount of labeled data.
The dropout-based augmentation achieves sim-
ilar performance compare to back-translation-
based augmentation with much less computa-
tional resources. This paves the way for appli-
cations of using large scale unlabeled data for
semi-supervised learning in production NLU
systems.

1 Introduction

Deep learning, especially transformer-based lan-
guage models (Vaswani et al., 2017), have achieved
state-of-the-art performance in many tasks and are
widely used in NLU systems. A challenge in deep
learning is that it often requires large amounts of
labeled training data in order to reach a desirable

performance level. This is especially a problem for
NLU systems in commercial production as the cost
of labeling data scales with the expanding number
of supported features and languages.

Recent research in semi-supervised learning
(SSL) demonstrated that it is possible to combine a
small amount of labeled data and a large amount of
unlabeled data to match or even outperform purely
supervised learning (Xie et al., 2020; Gao et al.,
2021). One of the most promising approaches in
SSL is called consistency training (Bachman et al.,
2014; Rasmus et al., 2015; Tarvainen and Valpola,
2017; Verma et al., 2019). In short, consistency
training is a technique that regularizes model pre-
dictions to be invariant to augmentations of unla-
beled data. Examples of augmentations include ap-
plying noise to input features (Sajjadi et al., 2016;
Miyato et al., 2018) or hidden states (Bachman
et al., 2014).

In this paper, we experimented with consistency
training in a major NLU task: Domain Classifi-
cation (DC). We tested three different types of
data augmentations: paraphrasing by user feed-
back, back-translation, and dropout. As a testbed
for our approach, we applied our experiments to
BERT (Devlin et al., 2019)-based models using
a real-world dataset collected from Portuguese
users of a voice-controlled assistant. We found
that all three types of augmentations can be ef-
fectively used alongside consistency training to
improve model performance compared to a base-
line model trained without consistency training.
For the scenario where labeled data was limited
to only 0.1% of all available labeled data, the
best top-1 accuracy, which was -9.14% compared
to fully supervised model trained with 100% la-
beled data, was achieved by consistency training
on data augmented using back-translation. If we
use dropout-only augmentation, the relative top-1
accuracy change was -12.25%. Lastly, we observed
a relationship between the amount of labeled data
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used for training and the size of CT benefits, with
larger benefits for smaller sets of labeled data. Our
results demonstrate the possibility of using con-
sistency training to drastically reduce the amount
of labeled data needed for an NLU system while
retaining a reasonable accuracy. This can be done
on large unlabeled datasets without using compu-
tationally expensive back-translation or financially
costly human-authored augmentation.

2 Background

2.1 Consistency training

Consistency training (Bachman et al., 2014; Ras-
mus et al., 2015; Tarvainen and Valpola, 2017;
Verma et al., 2019) is a Semi-Supervised Learn-
ing technique that utilizes unlabeled data to en-
force consistency of the model output given simi-
lar inputs. The general schematic of this method
is shown in Figure 1. In summary, consistency
training is multitask learning with two objectives:
minimizing the supervised loss for labeled data and
the consistency loss for unlabeled data. The super-
vised loss is a regular cross-entropy loss for the
labeled data. For the consistency loss, the unla-
beled data is first paraphrased with data augmen-
tation methods. Then the original data x and the
augmented data x′ will be passed through the same
encoder model M to generate two output distri-
butions respectively pM (y|x) and pM (y|x′). The
consistency loss is defined by the Kullback–Leibler
divergence between the two output distributions
D(pM (y|x)||pM (y|x′)). Finally the consistency
loss and supervised loss are combined and back-
propagated to update the model parameters. In this
way consistency training forces the model to be
insensitive to the noise introduced by data augmen-
tation.

Figure 1: Training objective for consistency training.
Note that the three model blocks in this figure represent
the same encoder model with the same set of parameter.

2.1.1 Paraphrasing by user feedback

MARUPA (Falke et al., 2020) (Mining Annotations
from User Paraphrasing) is a tool to leverage real-
world user implicit feedback to collect paraphrased
utterances. Sometimes when a user is having a
failed interaction with the system, the user will
paraphrase the utterance and retry. MARUPA col-
lects these utterances fully autonomously without
the need for human annotators using paraphrase
detection, friction detection and label projection
models. This dataset is filtered to make sure it is rel-
evant to the main task (Domain classification). In
our experiment, we use the MARUPA dataset with-
out the labels as the augmented unlabeled dataset
for the consistency training.

2.1.2 Paraphrasing by back-translation

Back-translation a common approach for data aug-
mentation in NLP (Xie et al., 2020; Edunov et al.,
2018). Recent development of Neural Machine
Translation (NMT) (Vaswani et al., 2017), has pro-
duced models with impressive accuracy in trans-
lating text. Back-translation leverages this to gen-
erate augmented data by translating example text
sequences from an original language to an inter-
mediate language and then back to original lan-
guage. This method allows us to generate para-
phrases while retaining semantic meaning, and has
been shown to improve performance in question-
answering tasks (Yu et al., 2018; Dong et al., 2017).
In our experiment, we leverage a commercially
available cloud-based translate service to para-
phrase the unlabeled dataset using back-translation.

2.1.3 Dropout as data augmentation

Dropout (Srivastava et al., 2014) is a technique to
prevent overfitting in training deep neural networks
by randomly dropping units inside the network. In
recent research, dropout is also shown to be an ef-
fective method for data augmentation (Bouthillier
et al., 2015; Gao et al., 2021). The underlying idea
is to pass the same input sequence to the encoder
twice with different dropout masks. The two re-
sulting embeddings are then used to compute the
consistency loss. This method outperforms sev-
eral deterministic augmentation approaches such
as word deletion and replacement (Gao et al., 2021).
Another advantage of dropout-based augmentation
is that no extra paraphrase process is needed and we
can directly use the unlabeled data for consistency
learning.
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3 Experiment

We designed our experiments to explore the perfor-
mance impact of incorporating consistency training
using each type of data augmentation. We also in-
vestigated how performance changes as the amount
of labeled data or unlabeled data used for training
is varied.

3.1 Consistency-training (CT) models

All the models were based on a distilled (Hin-
ton et al., 2015) Portuguese BERT (Devlin et al.,
2019) language model. This model had 4 trans-
former layers and feedforward hidden dimension
of 1200 compare to 12 and 3072 in the BERT-Base
model. All experiments were trained on Amazon
Web Services EC2 p3.16xlarge instances. We im-
plemented CT using a multi-task learning frame-
work that trained models to jointly minimize the
sum of supervised cross-entropy error on labeled
data and the consistency loss on unlabeled data.
All models were configured to train for up to 20
epochs. During training, CT models alternated be-
tween computing loss on the supervised task and
the consistency-loss task. The task sampling rates
were set such that both tasks would finish iterating
through their associated data at approximately the
same time. We compare the CT models against a
set of baseline models that only performed super-
vised training.

3.2 Augmentations

We experimented with a total of five CT mod-
els varying in type of data augmentation used for
consistency regularization: paraphrase by humans
(MARUPA), back-translation, and dropout.

For MARUPA CT models, augmentations were
comprised of paraphrase data. We leveraged the
MARUPA paraphrase dataset as unlabeled pairs
of augmented data. This dataset consisted of
2,258,828 utterance pairs (4,517,656 total).

For Back-translate CT models, augmentations
were comprised of back-translated utterances. We
used a cloud-based translation service to trans-
late from Portuguese to an intermediate language
and back to Portuguese, generating a total of
2,998,782 pairs. For some pairs the original and
back-translated utterances were the same, and in
that case we switched to a different intermediate
language until a different back-translated utterance
was obtained. The list of intermediate language
was English, French, Japanese, Korean, Chinese,

Hindi and Hungarian.
For Dropout CT models, we used dropout to

generate an equivalent of data augmentation on the
embedding space. Our dropout augmentation in-
volved applying dropout to the same data instance
twice with different dropout masks using the same
dropout probability. Dropout layers were located in
each BERT transformer blocks and fully connected
layer with dropout probability set to 0.1. The unla-
beled data used in Dropout CT was the same as the
original data in the back-translation dataset.

We also tested two combinations of augmen-
tations. In Dropout+MARUPA CT models, we
combined dropout and paraphrase augmentations.
Specifically, we applied independently sampled
dropout to both utterances in a paraphrase pair,
and then compute the consistency loss between
the dropout-augmented pair. For Dropout+Back-
translate CT models, we combined dropout with
back-translation pairs in a similar fashion.

3.3 Training data
We experimented with six different labeled-data
sizes: 0.1%, 1%, 2%, 5%, 25%, and 100% of
the available training data. We randomly sampled
three sets of data for each labeled-data size less
than 100%. Within each sample, we used a ran-
domly selected 90% as the training data and use
the remaining 10% as the validation set. Unless
otherwise stated, for each model we experimented
with we trained three separate instances, each using
a different data split.

We also experimented with different unlabeled
data sizes. For this set of experiments we limited
our exploration to Dropout CT models that were
trained with 0.1% of the available labeled data. For
all Dropout CT models, we treated the remaining
labeled data as the set of available unlabeled data
(i.e., for a model trained using 0.1% of the labeled
data, we take the remaining 99.9% and removed
the label). We experimented with models that used
25%, 50%, 75%, and 100% of the available unla-
beled data. As before, we created three random
samples for each unlabeled-set size less than 100%
and trained a separate model on each split.

3.4 Evaluation
We evaluated our models using a held-out test set.
We considered two different types of testing scenar-
ios. In the first, we tested against the full test set of
191,762 utterances, approximating the distribution
of a real-world application scenario. In the second,
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we tested against a test set that had been filtered
to remove all utterances appearing in the training
set. This filtered set contained 46,211 utterances
and was intended to examine how well our models
were able to generalize to unseen utterances.

Our experiments were performed using a pro-
duction BERT-based domain classification model.
Models with differing architectures or for different
ML tasks may not yield the same results. Similarly,
our results may not generalize to industry applica-
tions of NLU in other domain areas, using different
spoken languages, or with access to substantially
larger amounts of labeled training data.

4 Results

Here we present the results of our consistency-
training experiments and illustrate how model per-
formance changed as we varied the underlying
training data.

4.1 Metrics definition
All metrics are reported as relative change, includ-
ing Top-1 accuracy, Top-1-Unseen accuracy, false
accept rate and false reject rate. The relative change
is defined by

(µ− µr)/µr
where µ is the experiment metric and µr is the
reference metric achieved by the fully supervised
model trained on 100% of labeled data.

4.2 Size of labeled data
Our results show that consistency training on aug-
mented data can lead to significant improvements
in performance in limited-data settings. As shown
in Table 1, when restricting models to use only 1%
of the available labeled data as training data, the
baseline supervised model achieves a top-1 accu-
racy of -67%. For the Dropout CT model trained
on the same 1% of labeled data, we saw a top-1
accuracy of -4%. The difference in performance
was even more apparent in models trained using
only 0.1% of the labeled data. For models trained
with 0.1% of the labeled data, the baseline model
achieved an top-1 accuracy of only -99%. The
Dropout CT model trained on the same amount of
labeled data achieved a top-1 accuracy of -12.25%.
This improvement in top-1 accuracy demonstrates
the utility of consistency training on unlabeled data
when labeled data is extremely limited. Table 1
also compares the top-1 accuracy of the baseline
and Dropout CT model when tested on utterances
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Figure 2: Comparison of top-1 accuracy relative change
for baseline and Dropout CT models trained on different
amounts of labeled data. Data points are shown for all
three experiments run for a given model differing only
in training sample (often overlapping).

not seen during training. Given the same model
the top-1-unseen accuracy was lower than the top-1
accuracy, as expected since this represents a more
difficult task. However, we still saw a performance
improvement in top-1-unseen accuracy when ap-
plying consistency training.

In Figure 2 we plot the top-1 accuracy of the
baseline and Dropout CT model as we varied the
amount of labeled training data. While both the
baseline and Dropout CT models benefited from
training with additional labeled data, the benefit
was much greater for the baseline model. Figure 2
also sheds light on the difficulty of the domain
classification task. We see that a baseline model
trained on 2% of the labeled data has comparable
perfomance to a baseline model trained on all the
labeled data.

4.3 Size of unlabeled data

Results on varying the size of the unlabeled train-
ing data our Dropout CT model trained with 0.1%
of the available labeled data are shown in Figure 3.
We see that even when using only 25% of the un-
labeled data (742k instances), consistency training
with dropout-based augmentations achieved a top-1
accuracy of -23%. Increasing the amount of unla-
beled data generally led to improved performance.

4.4 Types of augmentation

Table 2 shows our experiments comparing CT mod-
els that used different types of data augmentations,
where each model was trained on only 0.1% of
the labeled data. Overall, every data augmenta-
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Top-1 Top-1-Unseen

% Labeled data Count Baseline Dropout CT Baseline Dropout CT

0.1% 2998 -98.96% -12.25% -98.16% -26.66%
1% 26989 -67.33% -4.16% -67.67% -9.09%
2% 53978 -2.40% -2.71% -14.73% -5.62%
5% 134945 -1.52% -2.50% -3.12% -4.64%
25% 674725 -0.60% -0.64% -1.39% -1.39%
100% 2698903 0% - 0% -

Table 1: Top-1 accuracy relative change for baseline models trained on different amounts of labeled data.

FAR FRR

Top-1 Video Shopping Music Video Shopping Music

Baseline -98.96% -100% -100% -100% 137% 766% 2877%
Dropout CT -12.25% 308% 344% 71% 59% 346% 543%
MARUPA CT -22.42% 1145% 2844% 14% 64% 191% 1760%
Back-translate CT -9.14% 370% 733% 106% 27% 20% 132%
Dropout+MARUPA CT -21.79% 839% 3372% 14% 73% 236% 1695%
Dropout+Back-translate CT -9.66% 267% 567% 131% 32% 14% 91%

Table 2: Top-1 accuracy, false acceptance rate (FAR), and false rejection rate (FRR) relative change for the
supervised baseline model and the consistency-training models using different underlying data augmentations. All
models are trained with 0.1% labeled data. Metrics are reported as relative change compared to a fully supervised
model trained using 100% of labeled data. The ground truth test data included 44,221 Music utterances, 2,145
Shopping utterances, and 904 Video utterances.

5.9 6.0 6.1 6.2 6.3 6.4 6.5
log10(unlabeled data size)

24%

22%

20%

18%

16%

14%

12%

10%

R
el

at
iv

e 
ch

an
ge

 in
 T

op
-1

 a
cc

ur
ac

y

100% unlabeled

25% unlabeled

50% unlabeled

75% unlabeled

Figure 3: Comparison of top-1 accuracy relative change
for Dropout CT models trained on different amounts of
unlabeled data. All models were trained using 0.1% of
the labeled data.

tion method helped CT to perform better than the
baseline model. Out of all the augmentation meth-
ods we tested, Back-translate CT performed best.
The Back-translate CT model achieved an aver-
age top-1 accuracy of -9.14%, followed by the
Dropout+Back-translate CT model with a top-1
accuracy of -9.66%. MARUPA models in general

performed worse than Back-translate models, but
still had significant improvement over the baseline.

We found mixed results on the performance
benefit of combining types of augmentations
together for consistency training. While the
Dropout+MARUPA CT model had a slightly higher
top-1 accuracy than the MARUPA CT model (-
21.79% vs. -22.42%), the Dropout+Back-translate
CT model performed slightly worse than Back-
translate CT (-9.66% vs. -9.14%).

We note that the Dropout CT methods, although
slightly less performant than Back-translate CT
models, have a greater advantage from an oper-
ations perspective. Dropout augmentation does
not require any kind of domain expertise, pre-
computation, or external translation models, which
can greatly reduce data-preprocessing time and op-
erational costs.

In addition to top-1 accuracy, Table 2 shows
false acceptance and false reject rates for three dif-
ferently sized domains. The baseline model incor-
rectly rejected all utterances for which the ground
truth domain was one of Video, Shopping, or Mu-
sic. More interestingly, for a pair of models the
better performing model in terms of top-1 accu-
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racy was not always the better performing model
in terms of false acceptance or rejection rates for a
given domain. For example, although the Dropout
CT model had a higher top-1 accuracy than the
MARUPA CT model (-12.25% vs. -22.42%), if
lowering the false reject rate for the Shopping do-
main is the highest priority, then the MARUPA CT
model may be more appropriate.

5 Related work

5.1 Data Augmentation in NLP

Hedderich et al. (2021) provide a survey of NLP
techniques for training models in low-resource sce-
narios. One of the most common techniques to
address this is data augmentation, which produces
new input instances by applying transformations to
existing data.

In our study, we applied hidden-space augmen-
tations by using independently sampled dropout
masks for the same instance. Prior work has also
proposed dropout as a data augmentation technique.
Bouthillier et al. (2015) demonstrate that the effect
of dropout on a neural network can be replicated by
projecting dropout noise back into the input space
and training a model on the generated data. Zhao
et al. (2019) show that dropout can be viewed as
equivalent to data augmentation whenever the in-
put space dimension is equal to or higher than the
output space.

5.2 Consistency training

Consistency regularization, also known as consis-
tency training (Chen et al., 2021), is a popular tech-
nique in Semi-Supervised Learning. The underly-
ing idea is that model predictions for a given data
instance should not change much when that data
instance is perturbed. Xie et al. (2020) proposed
UDA, a framework for leveraging data augmenta-
tion in SSL settings by jointly minimizing a stan-
dard supervised loss with consistency-based loss
on data and its augmentations.

5.3 Contrastive learning

The goal of contrastive learning (Chopra et al.,
2005), which is very similar to consistency learn-
ing, is to learn a data representation such that simi-
lar data instances are located near to each other in
the representation space and dissimilar instances
are pushed apart. Wang and Isola (2020) showed
that optimizing a contrastive metric can lead to
better alignment and uniformity of features in the

embedding space. Gao et al. (2021) show that stan-
dard dropout noise can outperform other types of
data augmentation for contrastive learning of sen-
tence embeddings.

6 Conclusion

With the aim of developing a strategy to efficiently
leverage large amounts of unlabeled data in de-
ployed NLU systems, we examined three different
augmentation techniques for consistency training
using real-world data. Back-translation performed
the best, dropout was slightly behind and para-
phrase by human users was the worst-performing
technique. From an operations perspective dropout
is more favorable because it doesn’t require any ex-
tra system resources and is quick to compute. Para-
phrasing by back-translation requires a machine-
translation model that can translate to an interme-
diate language and back. This adds extra cost
and processing time for unlabeled data which
scales linearly with the amount of unlabeled data.
For industry-scale NLU applications with massive
amounts of data, dropout-based consistency train-
ing can provide performance gains over purely su-
pervised methods with minimal additional resource
overhead.
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A Appendix

A.1 Ablation studies
The training of our CT models depends on a few
hyperparameters, including: training signal anneal-
ing (TSA) schedule, softmax temperature control,
and a confidence threshold for computing consis-
tency loss. We explored the impact of each hyper-
parameter on resulting model performance. For
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these experiments, we used the Dropout CT model
trained on 0.1% of labeled data. We did not train
multiple models for each random data split.

Top-1 relative change

Dropout CT* -11.84%

confidence thresh= 0.6 -11.01%
confidence thresh = 0.3 -11.42%
confidence thresh = none -32.37%

TSA schedule = log -13.70%
TSA schedule = exp -85.69%
TSA schedule = none -14.22%

softmax temp = 0.7 -13.70%
softmax temp = 0.9 -12.87%
softmax temp = none -11.94%

Table 3: Ablation studies related to confidence-
based thresholding (confidence thresh), training-signal-
annealing (TSA) schedule, and softmax temperature. In
this table Dropout CT is the base model that each subse-
quent model modifies. We report the Dropout CT score
only for the model trained on the same 0.1% data sample
as used for the ablation-study experiments. All reported
numbers are Top-1 accuracy relative changes compared
to the performance of a baseline model trained with
100% labeled data. *For the base Dropout CT config-
uration, we used a linear TSA schedule, a consistency-
loss softmax temperature of 0.85, and consistency-loss
confidence threshold of 0.45.
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Abstract

Product aspect extraction from reviews is a
critical task for e-commerce services to un-
derstand customer preferences and pain points.
While aspect phrases extraction and sentiment
analysis have received a lot of attention, clus-
tering of aspect phrases and assigning human
readable names to clusters in e-commerce re-
views is an extremely important and challeng-
ing problem due to the scale of the reviews that
makes human review infeasible. In this pa-
per, we propose fully automated methods for
clustering aspect words and generating human
readable names for the clusters without any
manually labeled data. We train transformer
based sentence embeddings that are aware of
unique e-commerce language characteristics
(eg. incomplete sentences, spelling and gram-
mar errors, vernacular etc.). We also train
transformer based sequence to sequence mod-
els to generate human readable aspect names
from clusters. Both the models are trained us-
ing heuristic based distant supervision. Addi-
tionally, the models are used to improve each
other. Extensive empirical testing showed that
the clustering model improves the Silhouette
Score by 64% when compared to the state-of-
the-art baseline and the aspect naming model
achieves a high ROUGE-L score of 0.79.

1 Introduction
The aspect mining based insights and its polar-
ity extraction from reviews is a critical task for
e-commerce services that enables seller to under-
stand fine-grained customer preferences and im-
prove product offerings. Extracting important key-
words and analyzing their sentiment is a very
well studied area. However, the sheer scale of
e-commerce services poses important novel chal-
lenges. Firstly, review phrases/keywords about

∗work done while author was at India Machine Learning,
Amazon

the same aspect category need to be grouped to-
gether, since each product may have thousands of
reviews and there are millions of products. Such
aggregation will enable downstream individual as-
pect analysis by sellers. Secondly, each review
phrases/keyword group needs to be assigned an
interpretable aspect name to enable easy analysis.
Finally, both steps have to be done without human
annotations, as human review at e-commerce scale
is infeasible. Note that, in this paper, we would
refer to the terms, “phrase”, “review phrase” and
“snippet” interchangeably to denote subsets of a
review text, obtained by splitting a multi-context
review into smaller sentences of single context.
For example, if review text is “The headphone has
a good sound quality but not so good bass quality.
It is useful for playing music while working out.”
then the corresponding review phrases would be
“The headphone has a good sound quality”, “not
so good bass quality” and “It is useful for playing
music while working out.” We have used some
syntactic/lexical rules for context splitting.

For unsupervised aspect grouping, extant meth-
ods use clustering (Bancken et al., 2014) (eg. k-
means) and topic modeling (Brody and Elhadad,
2010) (eg. LDA) approaches. LDA based topic
models assume the words are independently gen-
erated given the topic and consequently can’t
leverage the full context of the review sentences.
k-means based techniques can overcome the draw-
back by using contextual embeddings typically
generated by transformer based models (Devlin
et al., 2018). However, these general purpose
transformer language models fail to capture the
nuances of e-commerce reviews’ language char-
acteristics, such as code mixed sentences includ-
ing vernacular, incomplete sentence formation,
spelling errors. Consequently, these models fail
to generalize to e-commerce domain.Another ma-
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jor drawback of the LDA/k-means based methods
is that these techniques are not able to generate
a human interpretable name for the aspects (top-
ics/clusters).

In this paper, we propose a practical framework
for grouping aspect phrases from reviews into
clusters and generate meaningful aspect names for
the clusters at scale without any human labeled
data. Specifically, the contributions of this paper
are as follows:
(1) The proposed framework is able to cluster
reviews into clusters by training a transformer
model that is aware of the nuances of e-commerce
review language characteristics.
(2) The proposed framework is able to generate
human readable aspect names for the clusters by
training a transformer based conditional natural
language generation model.
(3) The proposed framework uses a heuristic
distant supervision, thereby avoiding the need for
manually labeled data.

To arrive at aspects, we first cluster the phrases
by clustering the phrase embeddings generated
by the state-of-the-art general purpose semantic
matching SBERT model (Reimers and Gurevych,
2019). We fine-tune the transformer based condi-
tional natural language generation (NLG) model
T5 (Raffel et al., 2019) for aspect name genera-
tion that is distantly supervised using a heuristic
TF-IDF distance based algorithm using the above
clustering. Finally, to improve the aspect cluster-
ing, we train a transformer on the reviews cor-
pus using masked language model (MLM) and
subsequently fine-tune it Siamese style using the
pairwise triplet loss. The training data (relevant
and irrelevant pairs of phrases) for triplet loss is
generated using a novel distant supervision strat-
egy that leverages the earlier clustering output
and the name generation model outputs. Conse-
quently, the learned text embeddings are very ro-
bust to nuances of the e-commerce reviews do-
main. We empirically evaluate our framework at
scale on reviews from a popular e-commerce ser-
vice. The distantly supervised semantic embed-
ding based clustering model is able to improve Sil-
houette Score by 64% over a baseline technique
using a state-of-the-art general purpose semantic
embedding model. Our distantly supervised as-
pect name generation model is able to improve the
Rouge-L score by 16%.

2 Related Works
Aspect phrase extraction from text corpus is a
widely researched topic (Quan and Ren, 2014; Qiu
et al., 2011; Zhang et al., 2020; Xu et al., 2019,
2018; Wei et al., 2020; He et al., 2017; Vargas
et al., 2020). In this paper we explore two tasks
after aspect phrase extraction, (1) aspect grouping
into clusters, and (2) aspect name generation, that
are specifically important to the e-commerce re-
views domain due to its large scale and lack of an-
notation requiring unsupervised techniques. As-
pect grouping is done typically by clustering/topic
modeling approaches once the aspect phrases have
been extracted. Topic modeling approaches in-
clude LDA, pLSA, NMF based aspect extrac-
tion (Titov and McDonald, 2008; García-Pablos
et al., 2018; Mukherjee and Liu, 2012; Chen et al.,
2014; W. Xu and Gong; C. Ding and Peng). A
number of clustering approaches have also been
explored (Zhai et al., 2010; Chen et al., 2016;
Zhai et al., 2011; Bancken et al., 2014; Pessutto
et al., 2020). One limitation of extant topic model-
ing/clustering approaches is that these techniques
fail to leverage the semantic context of the entire
text while clustering. Recently, pre-trained mod-
els capable of capturing contextual representations
have been developed (Peters et al., 2018; Devlin
et al., 2018). However, vanilla pre-trained em-
beddings doesn’t lead to coherent groupings of as-
pects as the e-commerce review language is signif-
icantly different from general English/web text on
which these embeddings models are pre-trained.
In this paper, we propose a transformer language
embedding model that captures the semantics of e-
commerce reviews, thereby leading to robust clus-
tering. Note that our generated embeddings may
be used with any existing clustering techniques to
improve their quality.

3 Proposed Solution

The proposed framework for aspect grouping and
naming has two main components: (i) phrase clus-
tering, and (ii) aspect name generation. Our goal
is to develop a phrase embedding model that cap-
tures the nuances of e-commerce reviews, and a
conditional NLG model that generates meaning-
ful names for the aspects without any manually la-
beled data. To achieve this, we propose a novel
distant supervision scheme that uses the two com-
ponents to improve the other along with some
heuristic based automated supervision. Note that
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Table 1: Sample output of the aspect insights framework on headphones

Aspect Name Example Review Snippets

sound quality

[‘its just like mentioned in description very good quality of sound’,
‘i must say that i dont regret my decision as its sound quality is too good’,
‘i can definitely say its sound quality is very good’, ‘definitely very nice
choice its sound is very nice’]

value for money

[‘just go for it on this price bracket it is the complete value for money’,
‘nothing to dislike as such in this amount of money this is the best
thing u get’, ‘nothing more 1 can ask and to top it all at an amazing price
point’, ‘go for these guys for the price range these are the best’]

bass quality

[‘build quality is pretty good and yeah it does have a punchy bass’,
‘this must be a nice purchase if you are bass lover’, ‘just go for it
if you are a bass lover’, ‘just go for it if u are bass lover’, ‘it is the
king of bass so i strongly recommended’]

we get the review phrases extracted by the existing
pipeline at a popular e-commerce service. Figure 1
shows an overview of the proposed framework

Figure 1: workflow diagram for clustering and naming

and table 1 shows a snapshot of the final output
for a headphone.

3.1 Initial Phrase Clustering

Recently advances in language modeling have re-
sulted in text embedding models (Devlin et al.,
2018) such that the embeddings are able to cap-
ture the semantics of the text and consequently
similar text phrases are mapped to similar vec-
tors. Since our goal is to semantically group re-
view phrases into clusters, we chose the state-
of-the-art transformer based semantic text embed-
ding model SBERT-STS (Reimers and Gurevych,
2019) that was trained for the semantic textual
similarity (STS) task (Wang et al., 2018). Once
each review phrase embedding is generated, we

use agglomerative clustering to cluster the review
phrases into aspect groups. We chose agglomer-
ative clustering technique instead of k-means as
agglomerative clustering is parameterized by only
the distance threshold that is easier to tune and
interpret in our usecase. While SBERT-STS is a
state-of-the-art general purpose semantic embed-
ding model, it fails to generalize to e-commerce
reviews. The underlying reason is the nuances of
e-commerce reviews, such as the phrases often be-
ing short incomplete sentences, presence of code
mixed phrases including regional words, presence
of spelling and grammar errors. To improve the
text embeddings to capture the characteristics of
reviews, we propose a novel distant supervision
strategy to finetune the SBERT-STS model. We
describe this strategy in section 3.3.

3.2 Initial Aspect Name Generation

The goal of this component is to generate a name
that represents the common theme of a cluster.
We use a sequence-to-sequence based NLG model
to generate meaningful aspect names. The main
challenge with sequence to sequence models is
that they require a significant amount of training
data for a stable model. We designed a heuris-
tic based distant supervision strategy that enables
us to generate labeled data at scale without hu-
man annotation. We chose T5 (Raffel et al., 2019)
as the base model as it has been pre-trained on a
huge amount of data on multiple NLP tasks, mak-
ing it a great candidate for transfer learning and
stable NLG capabilities. We use k randomly se-
lected review phrases concatenated as the input to
T5. We choose the most descriptive n-gram from
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a cluster of review phrases that satisfy certain lin-
guistic rules as the distantly supervised label (as-
pect name) for that cluster as follows:We first col-
lect all n-grams (n=1,2,3,4) from the corpus of re-
views in a cluster. Next, we eliminate “ineligible
phrases” based on POS-tag based rules. We use
SPACY (Honnibal et al., 2020) for POS-tagging.
Based on the ngrams, we employ the below rules
to eliminate ineligible ngrams. Let t be a ngram
whose eligibility we would evaluate. Let post be a
set of POS tags for each corresponding word in t.
t is an ineligible n-gram if either of the following
is satisfied:
1. len(post) > 1 and last element of post
∈ [’DET’, ’ADP’, ’CCONJ’, ’ADV’, ’PRON’,
’AUX’, ’SCONJ’, ’PART’]
2. len(post) > 1 and first element of post
∈ [’ADV’, ’AUX’, ’PART’, ’PRON’, ’ADP’,
’CCONJ’, ’DET’]
3. post ∈ {[’ADP’, ’NOUN’], [’ADP’, ’PROPN’],
[’DET’, ’NOUN’],[’AUX’], [’ADV’], [’INTJ’],
[’DET’], [’VERB’], [’CCONJ’]}
4. if first or last word of t is "i".
t is an eligible n-gram overriding the above crite-
ria if either of the following is satisfied:
1. len(post) > 1 and last element of
post ∈ [’ADJ’] and first element of post ∈
[’NOUN’,’PROPN’]
2. First word of t is “not”.
For an eligible set of n-grams, we propose the fol-
lowing two heuristic algorithms for training label
(cluster name) generation:
(1) TF-IDF-based Naming: We derive TF-IDF
scores for each n-gram and weight the TF-IDF
score by n (in n-gram), i.e. providing higher
weight to longer n-grams. This allows us to get
more descriptive names. The candidate n-gram
with the highest weighted TF-IDF score is the
cluster name.
(2) Distance-Based Naming: For each n-gram we
compute the mean cosine distance with each mem-
ber phrase of the cluster. The n-gram with the min-
imum distance is considered as the cluster name.
For generating the distantly supervised training la-
bels for our model, we choose high confidence
cluster names by setting high thresholds for the
aforementioned scores.

3.3 Improving Clustering & Name
Generation

Next, we use the initial versions of the reviews
phrase clustering and aspect name generation
model to distantly supervise and improve each
other. One of the main limitations of the ini-
tial clustering model was the usage of general
purpose semantic embeddings from SBERT-STS
that fails to capture the distinct characteristics
of e-commerce reviews language. Consequently,
many phrases could not be assigned a cluster even
though they were relevant to certain aspect of a
product and in many cases different clusters were
formed for the same aspect. To overcome this
limitation, we finetune the transformer based text
embedding model with reviews text. We use the
unsupervised masked language model (MLM) on
the reviews text and couple it with distant super-
vision signal generated from the T5 based aspect
name generation model. Below is the algorithm
for training our transformer based text representa-
tion model.

We first train the transformer using the stan-
dard MLM loss (as described in BERT (Devlin
et al., 2018)) on reviews text. This enables the
model to learn a robust language model specific to
the reviews domain. Furthermore, to enhance the
semantic matching capabilities, we finetune our
model Siamese style using the following triplet
loss:

loss = max(||ea− ep||− ||ea− en||+m, 0) (1)

where ea, ep and en are embeddings of anchor
phrase, positive phrase and negative phrase, re-
spectively. m is margin. Negative samples should
be at least margin further apart from the anchor
than the positive. The anchor and positive phrases
refer to the same aspect, whereas anchor and neg-
ative phrase refer to different aspects. Minimiz-
ing this loss would ensure that embeddings of the
phrases mentioned in “anchor phrase” and “pos-
itive phrase” are close, while the phrases men-
tioned in “anchor phrase” and “negative phrase”
is far away. The methodology to generate triplet
data is described below:
(1) Positive Pairs: We hypothesize that clusters
with the same/similar names are talking about the
same aspect. Therefore, any randomly selected
phrase from one cluster could act as a positive
pair for another randomly selected phrase from an-
other. For this, we find the cluster names for each
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cluster by leveraging the T5 based aspect name
generation model. We also find the medoid of each
cluster. Medoid is defined as an element in a clus-
ter which has the least average distance from the
remaining elements in the cluster. We use the ini-
tial SBERT-STS embeddings to generate embed-
dings of the cluster names and medoids and pick
positive samples from clusters where (a) cosine
distance between cluster names <= 0.08, or (b) co-
sine distance between cluster medoids <= 0.05 or
(c) cosine distance between cluster names <= 0.1
and cosine distance between medoids <= 0.1 as
positive pairs. These thresholds were tuned em-
pirically. We sample a small number of anchor
phrases with code-mixed or fully regional phrases,
and we added their English translation as a posi-
tive pair to enable the model’s semantic matching
robustness in the presence of vernacular.
(2) Negative Pairs: If names of 2 clusters have a
distance higher than a particular threshold (0.4),
then the phrases from one cluster qualify to be
negative pair to phrases of another cluster.
Once the text embedding model is trained and fine-
tuned for e-commerce review text, we again use
the same agglomerative clustering technique (as
described in section 3.1) to generate robust and
high quality aspect grouping. After re-clustering
using the fine-tuned embeddings, we then use the
T5 based aspect name generation model that was
developed in section 3.2 to generate the aspect
names for these new clusters. Even though the as-
pect name generation model wasn’t re-trained in
this step, but still the aspect name generation im-
proves due to the new clusters being more coher-
ent.

4 Experiments

4.1 Baselines

We use the following baseline algorithms to com-
pare with our proposed framework.
(1) SBERT-STS-Clustering: We use the state-
of-the-art sentence transformers (Reimers and
Gurevych, 2019) model trained the STS task 1 for
phrase embedding and agglomerative clustering to
create aspect groups. We use this baseline to com-
pare with our aspect grouping model that uses dis-
tant supervision.
(2) DS-Clustering: This is our proposed final
clustering model as described in section 3.3.

1https://huggingface.co/sentence-transformers/stsb-bert-
base

(3) Heuristic-Name-Generation: We use the
heuristic algorithm (used for distant supervision)
using TFIDF scores and distance threshold as de-
scribed in section 3.2 as a baseline for aspect name
generation.
(4) DS-BART-Name-Generation: We train the
state-of-the-art conditional language generation
model, BART (Lewis et al., 2019) with our dis-
tant supervision strategy as a baseline for aspect
name generation model.
(5) DS-T5-Name-Generation: This is our pro-
posed final aspect name generation model as de-
scribed in section 3.3 using T5 (Raffel et al.,
2019).

4.2 Experimental Setup

We use the sentence-transformers 2, Hugging-
Face 3 and Pytorch 4 libraries to train our reviews
phrase embedding model. Training was done on a
single Nvidia V100 GPU. Batch size was set to be
16. Learning rate was set to be 2X10−05 with 10%
of total training iterations as warmup steps and a
linear decay schedule. We used the ADAM opti-
mizer with parameters (beta1: 0.9, beta2: 0.999,
epsilon: 10−8). We train the phrase embedding
model for 10 epochs. We use the python SKLearn
library for agglomerative clustering. For DS-
Clustering, we used a cosine distance margin of
0.5. For the baseline SBERT-STS-Clustering, we
use the SBERT-STS model for phrase embedding
and the agglomerative clustering threshold was set
to 0.2. We train the T5 model using HuggingFace
and Pytorch libraries for our aspect name gen-
eration model, DS-T5-Name-Generation. Batch
size was set to be 2. Learning rate was set to be
5X10−05. We used the ADAM optimizer with pa-
rameters (beta1: 0.9, beta2: 0.999, epsilon: 10−8).
We train DS-T5-Name-Generation for 3 epochs.
For our BART based baseline training, we set
batch size to be 2, learning rate to be 5X10−05.
The baseline was trained for 3 epochs. All the
heuristic thresholds described in section 3 were
hand-tuned experimentally.

4.3 Results

aaDataset: To evaluate the proposed framework
at scale, we collect customer reviews and return
comments of a random sample of 1500 products

2https://www.sbert.net
3https://huggingface.co
4https://pytorch.org
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of a popular e-commerce service. The total num-
ber of reviews and return comments were around
40 million. These 40 million reviews/comments
were broken down into review phrases. The re-
view phrases were on an average 5.5 words long.
Language of the corpus is a mix of English and
common vernacular languages in India e.g. Hindi.
Some phrases have mix-coded tokens from En-
glish and Hindi Language. A sentiment model was
applied to remove the neutral phrases, resulting in
33 million phrases. Neutral phrases were removed
in this exercise, as the intention was to understand
the likes and dislikes of a customer for the product.
Our goal is to cluster these phrases into coherent
aspect groups and subsequently generate human
readable names for these clusters.

Phrase Clustering: To evaluate aspect cluster
quality, we use the popular Silhouette Score. In-
tuitively, it measures the closeness of samples to
its own cluster as compared to other clusters. Sil-
houette Score computation doesn’t require ground
truth labels and consequently can be computed at
scale. We also did a human annotation driven eval-
uation. We define the following two metrics: (i)
intra-cluster accuracy: probability that a pair ran-
domly selected from a cluster refers to the same
aspect, and (ii) inter-cluster accuracy: probability
that a pair randomly selected from different clus-
ters refers to different aspects. We generate a ran-
dom sample of intra-cluster phrase pairs and inter-
cluster phrase pairs from the output of the DS-
clustering and the baseline methods. The annota-
tion team marked each pair as similar (pair belongs
to same aspect) or dissimilar (pair belongs to dif-
ferent aspects). We estimate intra-cluster accuracy
as the fraction of intra-cluster sampled pairs that
were similar. Similarly, we estimate inter-cluster
accuracy as the fraction of inter-cluster sampled
pairs that were dissimilar. We report the cluster-
ing metrics in Table 2. Table 3 shows qualitative
examples of clustering.

Table 2: Comparison of aspect clustering methods.
Method A: SBER-STS-Clustering, B: DS-Clustering
w/o MLM, C: DS-Clustering

A B C
Silhouette Score 0.33 0.52 0.54
intra-cluster accuracy 0.88 0.88 0.91
inter-cluster accuracy 0.90 0.98 0.98

We see from table 2 that DS-Clustering im-

Table 3: Example review phrases that are correctly
clustered by DS-Clustering inspite of presence of
spelled errors(isound) and code mixing (paisa vasool
translates to value for money). Baseline fails to cluster
these.

Review Phrase Cluster Name
isound quality is amazing sound quality
fully paisa vasool. value for money
truly value for each paisa spent value for money

proves over all baselines across all metrics. DS-
Clustering improves by upto 64% over the base-
lines on Silhouette Score. On annotation driven
inter/intra cluster accuracy, DS-Clustering is able
to improve by upto 9%. DS-Clustering is able to
improve over the baselines as our distantly super-
vised text embedding model is able to capture the
unique language characteristics of e-commerce re-
views where the general purpose text embedding
models such as SBERT-STS fail to generalize. Ex-
amples of such cases are shown in table 3.

Aspect Name Generation: The name genera-
tion models in section 4.1 generate cluster names,
which are on an average 2.7 words long. We mea-
sure the quality of the generated names by annotat-
ing 53K clusters generated by DS-Clustering. The
annotation team reviewed sample phrases from
each cluster and created a name that best de-
scribed the aspect of the cluster as per their judge-
ment. We treat this as ground truth and eval-
uate how close is the name generated via our
model and the baselines to the ground truth. We
measure closeness using ROUGE-F scores. The
summary of metrics can be seen in table 4.
We see that DS-T5-Name-Generation model out-

Table 4: Comparison of aspect name generation meth-
ods. Method A: Heuristic-Name-Generation, B: DS-
BART-Name-Generation, C: DS-T5-Name-Generation

A B C
ROUGE-1-F score 0.70 0.71 0.79
ROUGE-2-F score 0.46 0.47 0.63
ROUGE-L-F score 0.68 0.71 0.79

performs both the Heuristic-Name-Generation as
well as the DS-BART-Name-Generation models
in all metrics showing that our model generates
names that are most similar to that of human
annotation team. Consequently, DS-T5-Name-
Generation is able to generate human readable
names using our novel distant supervision tech-
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nique. DS-T5-Name-Generation is able to im-
prove by 37% over Heuristic-Name-Generation on
ROGUE-2 score even though distant-supervision
was created through similar heuristics. This shows
that the transfer learning capabilities of T5 com-
bined with our heuristics based distant supervision
results in a robust conditional NLG model with-
out any manual labeling. Additionally, we ana-
lyzed cases where DS-T5-Name-Generation gen-
erated different names when compared to anno-
tated names (i.e. ROUGE-L = 0) in table 5. Our
model is able to perform well even in these cases.
The ROUGE-L score is 0 as there is no word over-
lap, however, the generated names are semanti-
cally similar to the annotated names showing the
semantic language understanding capabilities of
our T5 based sequence to sequence model. In ta-
ble 5, we report such examples. In the first exam-
ple, a spelling error (“dimesions”) in human an-
notation is leading to a Rouge score of 0, whereas
our naming model generates names with correct
spelling. In the second example, both the names
are semantically similar.

Table 5: Examples where model generated names do
not match annotated names. A: DS-T5-Naming. B:
Manual Annotation

Cluster Phrases A B
[’the dimensions too
are incorrect’,’dimen-
sions not appropriate
for my usage’]

wrong
dimensions

inaccurate
dimesions

[’creating pain in foot’,
’hurts feet on walking’,
’itspainful for foot’]

hurts the
feet

Getting
foot pain

5 Conclusion

In this paper we presented a practical aspect clus-
tering and naming framework for e-commerce re-
views. Our models leverage distant supervision
thereby avoiding the need of manually labeled
data. Extensive evaluations show improvement in
clustering by 64% and naming by 16%. Survey
results in appendix show that the approach gener-
ates more interpretable aspects when compared to
an existing e-commerce baseline. We hypothesize
that our novel distant supervision paradigm is gen-
eralizable across domains and in future we wish
to explore the application of our novel distant su-
pervision scheme to other domains. We also plan
to explore principled approaches to handle multi-

context phrases (phrase talking about multiple as-
pects) without needing manual annotations.
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6 Appendix

6.1 Comparison with a e-commerce baseline
We also compare the performance of our frame-
work with the existing system at a popular e-
commerce service that uses a non-negative ma-
trix factorization (NMF) based topic modeling ap-
proach 5 on the “document-term” matrix created
from the review corpus to extract aspects. A
sample output of the framework is shown in ta-
ble 7.The NMF based system is not able to distin-
guish semantically different aspects, resulting in
incoherent clusters. E.g. “money, refund, wastage,
value” are grouped together. Our proposed frame-
work, howerver, is able to distinguish and capture
the nuanced aspects. For example it is able to cap-
ture “value for money” as a separate aspect.

We use a human annotation driven approach to
compare our proposed framework with the exist-
ing baseline. For each product type we get the
aspect names generated by the topic modeling ap-
proach as well as our proposed framework. In each
solution, for each aspect, we asked 3 “yes/no”
questions to the annotation team.
(1) Does this aspect name describe the aspect of a
product?

5Details can’t be disclosed due to proprietary information
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Table 6: User Responses to Survey. Improvement in Favorable Response quantifies how many more favorable
responses were received for the DS-clustering + DS Naming framework as compared to the NMF framework.

Questions Asked
Improvement in Favorable

Response
(a) Does this aspect name describe the aspect of a product? +34.78%
(b) Is the supplementary information helping in understanding
the aspect better?

+42.72%

(c) Does this help in knowing more about the customer likes
and dislikes?

+42.22%

(2) Is the supplementary information helping in
understanding the aspect better?
(3) Does this help in knowing more about the cus-
tomer likes and dislikes?
The results of the survey is summarized in table 6.
In the table, the “term” aspect refers to a cluster of
reviews. “Aspect Name” refers to the name given
to the cluster. “Supplementary Information” are
the additional information given along with clus-
ter and cluster name. In the case of DS-Clustering,
they are a sample of review phrases belonging to
the cluster. In the case of NMF Based Topic Mod-
eling, they are the additional words obtained with
each topic words. We can see the annotation team
found our proposed framework to be significantly
more helpful the topic modeling based baseline.
Sample output of DS-Clustering + DS-T5-Name-
generation is shown in table 1.

We also compare the performance of our frame-
work with the existing system at a popular e-
commerce service that uses a non-negative ma-
trix factorization (NMF) based topic modeling ap-
proach on the “document-term” matrix created
from the review corpus to extract aspects. A sam-
ple output of the framework is shown in table.The
NMF based system is not able to distinguish se-
mantically different aspects, resulting in incoher-
ent clusters. E.g. “money, refund, wastage, value”
are grouped together. Our proposed framework,
howerver, is able to distinguish and capture the
nuanced aspects. For example it is able to cap-
ture “value for money” as a separate aspect. We
also compare the performance of our framework
with the existing system at a popular e-commerce
service that uses a non-negative matrix factoriza-
tion (NMF) based topic modeling approach on the
“document-term” matrix created from the review
corpus to extract aspects. A sample output of the
framework is shown in table.The NMF based sys-
tem is not able to distinguish semantically differ-

Table 7: Results NMF Based topic modeling on re-
views of headphones

aspect name related words

stopped
left, suddenly, 10, usage,
earpiece, working, 15,
warranty, function

money
value, waste, completely,
spend, wastage, spent,
want, refund, definitely

working

fine, left, speaker,
button, perfectly,
microphone, touch, 15,
device

sound
clarity, clear, balanced,
base, effect, loud,
output, average, quality

range
mids, 10, meters, quite,
frequency, audio,
available, 500

battery

backup, hours, hrs,
10, long, drains,
upto, performance,
continuously

ent aspects, resulting in incoherent clusters. E.g.
“money, refund, wastage, value” are grouped to-
gether. Our proposed framework, howerver, is
able to distinguish and capture the nuanced as-
pects. For example it is able to capture “value for
money” as a separate aspect.
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Abstract

In production SLU systems, new training data
becomes available with time so that ML mod-
els need to be updated on a regular basis.
Specifically, releasing new features adds new
classes of data while the old data remains
constant. However, retraining the full model
each time from scratch is computationally ex-
pensive. To address this problem, we pro-
pose to consider production releases from the
curriculum learning perspective and to adapt
the local-to-global learning (LGL) schedule
(Cheng et al., 2019) for a neural model that
starts with fewer output classes and adds more
classes with each iteration.

We report experiments for the tasks of intent
classification and slot filling in the context of a
production voice-assistant. First, we apply the
original LGL schedule on our data and then
adapt LGL to the production setting where the
full data is not available at initial training it-
erations. We demonstrate that our method im-
proves model error rates by -7.3% and saves up
to 25% training time for individual iterations.

1 Introduction

In many real-world NLP systems with ML models,
new data becomes available with time and there is
a need to refresh the model (Diethe et al., 2018).
In some cases it is a passive flow, when new data
arrives due to the properties of the application (e.g.
daily search queries) or an active act of collecting
new data to be incorporated into the system (e.g.
a new feature). In this paper, we regard the use
case of an active extension of data to incorporate
a new customer-facing feature into a production
NLP model. We consider a Spoken Language Un-
derstanding (SLU) model that is used to interpret
user requests in a commercial task-oriented voice-
assistant. The model is a joint intent classification
(IC) and slot filling (SF) architecture that is used to

process utterances in a single domain.1 We select
one data-rich domain for our experiments, Music,
and construct a scenario when an existing IC+SF
model is extended with a new user-facing feature
that comprises a set of intents and slots to be now
recognized by the model.

It is conventional to re-train the original ML
model on a combination of the old training data
and the additional data for the new feature, starting
from the same randomly initialized or pre-trained
architecture as the previous time. The practitioners
tend to use pre-trained models (language modeling
and transfer learning are widely used here) to im-
prove the generalization performance of the model.
It seems logical also to re-use the previous iteration
of the model trained on the old data in the previous
model release to warm-start the next iteration. This
could result in a reduced training time and a smaller
computational and environmental footprint of the
model updates in a scenario where new features
are added regularly. Yet, in practice it is usually
considered ‘safer’ to start training from scratch or
from the same general-purpose pre-trained model
every time, the main concern being that repeated
warm-starting would lead to overfitting and poorer
generalization (Ash and Adams, 2020).

Re-training the same model architecture on
nearly the same data with minimal changes, but
extending the output space with a new class is a
unique problem for industry applications. Many
previous works on continual learning have fo-
cused on learning from a continuous stream of
data (Biesialska et al., 2020) or on an incremen-
tal learning of new tasks (Kanwatchara et al., 2021)
and languages (Castellucci et al., 2021). Payan
et al. (2021) discuss a single-task continual learn-
ing setup and simulated a passive data extension

1Intent classification model determines the intent class the
query belongs to (e.g., PlayMusic) and slot filling is respon-
sible for identifying slot instances in the query (e.g., Song-
Name).
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scenario where new examples are coming in for
all output classes on a public dataset. Similarly,
Ash and Adams (2020) evaluate a batch-learning
setup, where each model iteration is warm-started
from the previous step and the whole training data
is always available, while some new data is added
across all output classes in each batch. In our sce-
nario, we consider active data extension for new
features and we do not restrict the access to the
old training data. We rely on an offline training
paradigm, where each model release is trained on
the latest batch of data until convergence.

If each release adds data for new features with
the old data being constant, we can view a sequence
of model releases as a subclass of curriculum learn-
ing, a machine learning paradigm that aims to ar-
range training data into a meaningful order to im-
prove model training. In our scenario, the data is
arranged by feature. Cheng et al. (2019) describe a
local-to-global learning (LGL) schedule for a statis-
tical model that starts with fewer output classes and
adds more classes with each iteration. We build
upon their results in our work, but remove their
assumption that the whole data is available in the
first iteration.

In this paper, we repeatedly apply a warm-start
for training a set of subsequent IC+SF model re-
leases, each one being extended with a new set of
features. We define a single feature as a set of new
intents and slots to be recognized by the model
that are added to the output space. We focus on a
real-life production setting and report results on a
dataset sampled from a commercial German voice
assistant.2 As our main contribution, we show that
warm-start is an effective strategy to reduce training
time for later model releases and improve overall
model performance in a scenario when the added
training data pertains to new features only.

2 Related work

2.1 Spoken language understanding
Recent research in the field of SLU has made sig-
nificant advancements through the application of
deep learning (Mesnil et al., 2013) and the joint
modeling of IC and SF (Zhang and Wang, 2016;
Chen et al., 2019; Louvan and Magnini, 2020).
Semi-supervised learning and paraphrasing are fre-
quently applied to bootstrap new features, over-
come the class imbalance problem and improve

2The data was de-identified prior to the experiment so that
any user identifiable information was removed.

the overall SLU performance (Cho et al., 2019;
Sokolov and Filimonov, 2020). These methods
often rely on the assumption that the number of
classes is static, while in a real production SLU
system, new classes are added on a regular basis,
affecting the target data distribution. In contrast,
in this work, we propose to focus on the learn-
ing schedule of a model that benefits directly from
the increasing number of classes and thus can be
adapted to the real-world scenario, where new fea-
tures are added to the system iteratively.

2.2 Local-to-global learning schedule

The main idea of local-to-global learning (LGL)
schedule used in this work is to gradually train a
neural network starting with a few output classes
and subsequently extending to more classes. It was
first introduced in the work of Cheng et al. (2019),
who applied it to a computer vision problem. LGL
does not require any additional annotated training
data, instead it utilises the entire training set in each
iteration, but only the data for the classes that are
being learned in this iteration is annotated. The
data for the rest of the classes is added masked
(unlabeled). In each LGL iteration, a set of new
classes is added and the model weights are trans-
ferred from the previous iteration (see Figure 1).

Cheng et al. (2019) compare the LGL schedule
to other curriculum learning and self-paced learn-
ing strategies. A typical curriculum learning ap-
proach relies on prior knowledge about the data
to define a training schedule, such as, for exam-
ple, the input length (Tay et al., 2019). Self-paced
learning alleviates the requirement for prior knowl-
edge by assigning a weight to each training sam-
ple based on model’s loss (Kumar et al., 2010).
Yet, it introduces additional model passes to com-
pute the per-sample loss during training and makes
self-paced learning approaches challenging to opti-
mize (Cheng et al., 2019). LGL defines a learning
schedule based on the target output classes, by fo-
cusing the early stages of training only on a subset
of classes. We propose to view feature expansion
in a production SLU system as a special case of
curriculum learning akin to LGL.

LGL can be also considered a form of a task
specific pre-training strategy or transfer learning.
Numerous transfer learning strategies were sug-
gested for NLP problems (Ruder et al., 2019) and
a complete overview is beyond the scope of our
work. In that view, the final stage of LGL train-
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Figure 1: Local-to-Global model training set-up with 3 label batches (3 features) and hence 3 training iterations.

ing with complete annotations would correspond
to the usual fine-tuning step. The preceding stages
with a subset of classes are pre-finetuning steps,
where pre-training is done repeatedly on the same
task and with a reduced number of classes. The
task-adaptive pre-training approach (Gururangan
et al., 2020) uses a similar task to the target task
to pre-train the model with a task-specific objec-
tive. Pruksachatkun et al. (2020) combine language
model pre-training with task-specific pre-training
and fine-tuning on the target task to test 110 pre-
training task combinations. They conclude that it is
still hard to predict, which task would be the most
optimal for pre-training. From this perspective,
LGL does not have this problem, as it pre-trains on
the same task and the same dataset.

A sample LGL training set-up with 3 label
batches and 3 training iterations is illustrated in
Figure 1. In the first iteration the model is initial-
ized from a pre-trained LM and the first batch of
labels are unmasked in the training data, while the
rest of data is left masked. In the next iteration, the
embeddings and the encoder are initialized from
the embeddings and the encoder of the previous
iteration model. The second batch of labels is un-
masked. In the final iteration, the embeddings and
the encoder are initialized from the embeddings and
the encoder of the second iteration model, while
all three label batches are unmasked. After the last
iteration the final model is exported and applied on

the test set.3

In this work, we focus on applying LGL in a pro-
duction SLU setup, where new models are released
and new classes are added regularly. The exper-
imental setup of Cheng et al. (2019) focuses on
improving the final model performance on the full
dataset and includes full (partially-masked) train-
ing data at each iteration. We first apply LGL to
our internal data from a production SLU system.
Second, to simulate a real-life situation, we mod-
ify this setup and conduct experiments where the
data for new classes is not available at the early
model training iterations. In Figure 1, this would
correspond to not using the masked data batches.

3 Experimental setup

3.1 Dataset

We use a dataset sampled from a commercial Ger-
man SLU system. The data was de-identified prior
to the experiment (so that any user identifiable in-
formation was removed), and subsequently anno-
tated across domains, intents and slots. For our ex-
periment, we have selected Music domain, which
contains mutually exclusive classes (intents), such
as PlayRadio or FindSoundtrack. The evaluation
set comes from the same distribution and was anno-
tated in the same way. The distribution of relative
frequencies of intents is typically a heavily skewed
one; in the case of LGL, that can result in a large

3See Appendix A for an extended definition of LGL.
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fraction of the annotated data being masked all at
once. However, the main motivation behind LGL
is that it is easier to learn fewer classes, while the
amount of training data per class may vary (Cheng
et al., 2019).

3.2 Model
We use an SLU architecture based on BERT for
all of our experiments. Architectures based on pre-
trained transformers have recently demonstrated
the strongest performance on SLU tasks (Chen
et al., 2019; Gaspers et al., 2020; Weld et al., 2021).
The model consists of a pre-trained BERT encoder
and an intent and slot decoders. The BERT en-
coder’s outputs at sentence and token level are used
as inputs for the intent and slot decoders, respec-
tively. The intent decoder is a feed-forward net-
work consisting of two dense layers and a softmax
layer on top. The slot decoder uses a CRF layer on
top of two dense layers to leverage the sequential
information of slot labels. During training the IC
and SL objectives are jointly optimized.

3.3 Metrics
We report results with two common metrics used
in production SLU: intent classification error rate
(ICER) and semantic error rate (SEMER). Both
metrics are Recall-based, as they are computing
the error rate with respect to the ground-truth do-
main (annotated manually by language experts).
ICER is the ratio of incorrect intents to the total
number of utterances (and we will mainly rely on
this evaluation metric further for intent classifica-
tion):

ICER =
(# incorrect intents)
(# total utterances)

. (1)

SEMER considers both intent classification and
slot classification together. SEMER allows us to
measure the effect of improved intent classification
on the overall joint model performance. It is com-
puted based on the number of insertions, deletions
and substitutions for slots and the intent in a recog-
nised utterance compared to a reference utterance:

SEMER =
(# slot errors + intent errors)
(# reference slots + intents)

(2)

4 Results

First, we study the impact of an unmodified LGL
method on model training (4.1, 4.2), splitting our
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Figure 2: Masked data distribution per iteration (% of
the full dataset) for random and gradual orderings in
LGL for IC experiment. The last iteration (the 5th or
the 10th) contains always only unmasked data.

ordering, # of batches
Metric (r, 5) (g, 5) (r, 10)
SEMER -2.61 -1.98 -2.50
ICER -3.39 -2.34 -9.11

Table 1: Evaluation results for LGL applied to IC. The
relative difference is with respect to baseline model
that does not use any form of LGL or other curriculum
learning.

training data into several batches and masking parts
of the data as described in Section 2. The batches
are split per intent, with each batch containing sev-
eral classes. We train the model in several itera-
tions, gradually unmasking the data. Second, we
adapt LGL to SLU production scenario and con-
duct experiments where the data for new classes is
not available at the early model training iterations
(4.3). In all experiments, we compare the result
against a baseline, which is the same model trained
on all classes in a single iteration.

4.1 LGL for intent classification
In the first experiment, we apply LGL to intent clas-
sification, i.e. only masking intent labels. Specifi-
cally, we replace all intent labels in masked batches
by a placeholder (OtherIntent). We randomly
group classes in the dataset into 5 and 10 batches
for LGL training, so that each batch contains 5 to 6
intents (we include masked data statistics per batch
in Figure 2). To account for the unbalanced class
distribution in the dataset, we evaluate two strate-
gies for selecting the order of batches for LGL:

• Random order (r). We select the order ran-
domly, which results in 66% of the annotated
data being included in the first iteration.

• Gradual order (g). We select batches based
on the corresponding data size, starting with
the smallest one. In that scenario, the first 4
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Figure 3: Evaluation results for LGL applied to NER
and IC tasks (relative difference). The relative differ-
ence is with respect to the baseline model that does not
use any form of LGL or other curriculum learning.

iterations include 33% of the annotated data,
while the largest classes are added in the last
iteration.

The results of the experiments on a real-life Mu-
sic dataset are presented in Table 1. We can see
that the experimental models trained using LGL
outperform the baseline across all metrics, which
confirms the results first obtianed in Cheng et al.
(2019). For the ICER metric, our best model (LGL
(r, 10)) improves the error rate by -9.11% compared
to the baseline. We conclude that the increasing
number of batches has a positive impact on the
LGL performance here, as the model trained on 10
batches outperforms the same model trained on 5
batches by 5.72%. The improvement in SEMER
is smaller, which is expected as we apply LGL to
intent classification only (i.e., the dataset was split
into batches based on intents only, and all slots
were left unmasked).

The selection strategy (r vs. g) has a substan-
tial impact on the model performance. The model
trained on a random selection of the training classes
performs better on both SEMER and ICER metrics
than the same model trained on the sets of classes
selected gradually (cf. (r, 5) vs. (g, 5) in Table 1).
Therefore, we only use the random ordering in the
other experiments.

We also experiment with LGL approach without
resetting the learning rate. In the current model, we
used learning rate scheduler to control the learning
rate using the specified steps, where the first step
reset the learning rate to 0 for each model iteration.
However, since the encoder is initialised from the
encoder of the previous model starting from the
second iteration, we experimented with keeping the
learning rate multiplier constant (0.1) for that and
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Figure 4: Data distribution per run and iteration (% of
the full dataset; the last iteration always contains 100%
of the data). Each run represents a different feature
grouping and order.

all subsequent iterations. The results with respect
to the (LGL (r, 5)) approach show only marginal
improvement (avg. -0.27 rel. improvement over
ICER and SEMER), therefore we conclude that
resetting the learning rate does not have significant
impact on the LGL training.

4.2 LGL for NER and IC

In this experiment, we apply masking to both intent
and slot labels, splitting the training dataset into
3, 5 and 10 batches to further study the impact
of the batch size4. In addition to intent masking
(described in 4.1), slot masking is done as follows:
madonna|ArtistName -> madonna|OtherSlot.

The results for the Music domain are visual-
ized in Figure 3. As one can see, the best result
is achieved when selecting a middle number of
batches (between 3 and 5), while a very large num-
ber of batches (10) potentially overfits the model.
This result differs from the LGL result on IC only
(where using 10 batches is superior to using 5 on
ICER metric) potentially due to a much larger num-
ber of slots that are left masked.

4.3 Gradually adding new features

Having applied LGL to the task of IC and NER, we
showed that it is able to improve IC performance
by -9.1% relative ICER and -2.5% relative SEMER.
However, the downside of LGL for production SLU
setup is the increased number of training iterations,
which is associated with additional computational
cost. In addition, in a real-life scenario, the data
for new classes only becomes available with time.
Therefore, in the following experiments, we modify
the original LGL setup and conduct experiments
where the data for new classes is added gradually
within several iterations. Note that we select this
setup to account for a production scenario when a

4We do not include data statistics here for space reasons.
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Figure 5: Average training time per LGL iteration com-
pared to the baseline (note that the baseline here is the
full model trained once on all available data in each it-
eration, which represents the upper bound).

model is trained in several iterations within a fixed
release cycle (e.g., a period of several weeks); for
simplicity, we assume that after each iteration the
model is fully retrained on all data to avoid any
model drift-related effects (which are out of scope
of this work). This would also correspond to a
100% data replay strategy in continuous learning
approaches (Payan et al., 2021).

We split the Music domain dataset into 4 batches
corresponding to model releases, each one con-
taining a new set of features (another reason for
that is best result observed using 3 to 5 batches,
cf. 4.2). With each iteration, a new batch of data
(comprising several new classes and representing
a new feature) is added to the model. We experi-
ment with different feature order when grouping
the data into batches (for instance, the first run
may contain features represented by PlaySong and
PlayAlbum intents grouped together for the first
iteration, PlayRadio for the second iteration, while
the second run could have PlayAlbum as the first
iteration, and PlaySong and PlayAlbum for the sec-
ond, etc.). We do not apply any masking in this
scenario and at every step only the data for the
currently supported features is used to train the
model. The data distribution per iteration and run
is presented in Figure 4.

The results after the final iteration are presented
in Table 2 relative to a baseline that was once
trained on full data. The experimental models
trained using modified LGL setup outperform the
baseline across SEMER and ICER in 2 out of 3
cases. In the last case, LGL outperforms the base-

Run # ICER SEMER
music-1 -2.2 -2.3
music-2 -3.2 -2.7
music-3 2.9 -7.3

Table 2: Evaluation results for modified LGL method
per run (each run represents a different feature group-
ing and order). The relative difference is with respect
to a baseline model that does not use any form of LGL
or other curriculum learning.

line on SEMER (-7.3%), while ICER slightly in-
creases (+2.9%). This could be explained by the
different number of classes added to the model –
in the last iteration, we add 9.2% of training data,
while for other orderings, a much smaller amount
is added in the last step.

Another benefit of the modified LGL method is
that it helps reduce training time when new fea-
tures are added on top. In Fig. 5, we compare
the training time for two runs and their average to
the baseline model (we use the model trained once
on all available data as upper bound; its training
time is the same for each iteration). We see that
the average training time for each of the iterations
is less than the training time of the full model, be-
cause we use less training data in the first iterations,
and initialise the model from the previous one in
subsequent iterations. For individual iterations, we
observe up to 25% training time reduction. Overall,
we conclude that gradually adding features with
warm-starting is beneficial for production SLU, as
it helps improve model accuracy and reduces the
overall training time spent per release cycle.

5 Conclusion

We applied LGL to the tasks of intent classification
and slot filling in the context of SLU and studied
the impact of LGL on intent classification error
rate and semantic error rate. We conducted the ex-
periments using different class selection strategies
and showed that LGL improves intent classifica-
tion performance for SLU by -9.1% relative ICER,
without requiring any new training data or modified
model architecture. In addition, we adapted origi-
nal LGL setup to SLU production scenario when
new features are gradually added within fixed re-
lease cycle, and showed that it is able to improve
model accuracy by up to -7.3% relative SEMER
while reducing average training time by up to 25%
for individual iterations.

As future work, we would like to further explore
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LGL application to feature expansion problem, ap-
ply it to other domains and investigate the impact
of batch size on the model performance. In addi-
tion, we would track the impact of LGL training on
model’s generalization performance and computa-
tional cost over time.
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A Local To Global Learning

The main idea of Local to Global Learning (LGL)
algorithm used in this work is to gradually train the
neural network starting with a few output classes
and subsequently extending to more classes. In the
following, we provide a more detiled oevrview of
the method following Cheng et al. (2019).

The model training is performed in several iter-
ations. The model for each iteration is initialized
from the previous one. During each iteration, the
entire training set is used, however, the classes that
are not learned during that specific iteration are
masked. Thus, the model is learned on a fraction
of classes from the complete output space of the
training set, while the whole dataset is still exposed.
As compared to traditional model learning, the loss
function is not minimized across all classes simul-
taneously, but is minimized iteratively, each time
learning a new set of classes in addition to the al-
ready known classes. At each step, a set of new
classes is added to the training setup by unmasking
them in the dataset and the model is trained until
convergence. Mathematically, it can be expressed
as (we refer to (Cheng et al., 2019) for details):

w∗
k = argmin

w
L(w,XSk

, YSk
;w∗

k−1)

s.t.i∗ = f(w,XSC
k−1

, YSC
k−1

;w∗
k−1),

Sk = Sk−1 ∪ {i∗},

where L is the loss function and w∗ are the
model weight produced by minimizing L. The
dataset contains pairs of samples and class anno-
tations G = {X,Y }, where K = {1, 2, ...,K} is
a set of available output class labels. The classes
are grouped into N batches of equal size and af-
ter each training iteration, one batch i∗ is added.
Sk is the set of classes from K that is used in the
k-th step. XSk

, YSk
is the data, which labels are

in Sk and SC
k−1 is the set of classes not in Sk−1.

The selection strategy is represented by the func-
tion f , which defines how a new batch of classes is
selected from the untrained classes.

The set of classes at the current iterations Sk is
unmasked in the dataset during the training, while
the yet unavailable classes SC

k−1 are masked with
a placeholder label, but the corresponding data in-
stances XSC

k−1
are kept in the training data. Hence,

the full data set G is used for training at every
iteration. After the model is learned on the first
batch, its encoder is used to initialize the encoder
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for the next training step. Thereby, the final model
is learned iteratively through several training runs
with an increasing number of output classes. The
encoder part of the model is carried further with ev-
ery iteration and the output layers are re-initialized
each time to account for changing output space.
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Abstract

Pre-trained language models (PLMs) have dra-
matically improved performance for many nat-
ural language processing (NLP) tasks in do-
mains such as finance and healthcare. However,
the application of PLMs in the domain of com-
merce, especially marketing and advertising,
remains less studied. In this work, we adapt pre-
training methods to the domain of commerce,
by proposing CULG, a large-scale commercial
universal language generation model which is
pre-trained on a corpus drawn from 10 markets
across 7 languages. We propose 4 commercial
generation tasks and a two-stage training strat-
egy for pre-training, and demonstrate that the
proposed strategy yields performance improve-
ments on three generation tasks as compared
to single-stage pre-training. Extensive experi-
ments show that our model outperforms other
models by a large margin on commercial gen-
eration tasks.

1 Introduction

Pre-trained language models (PLMs) have achieved
impressive success in many NLP tasks across nat-
ural language understanding (NLU) and natural
language generation (NLG) (Devlin et al., 2019;
Yang et al., 2019; Liu et al., 2019; Lewis et al.,
2020; Brown et al., 2020; Raffel et al., 2020; He
et al., 2020). These successes are usually achieved
by pre-training models on large corpora in a task-
independent way, and fine-tuning them on a spe-
cific downstream task. Researchers have also de-
veloped PLMs for specific domains or multiple
languages by conducting either pre-training from
scratch (Huang et al., 2019; Liu et al., 2020; Xue
et al., 2021) or a second phase of pre-training on the
basis of existing checkpoints (Howard and Ruder,
2018; Lee et al., 2020; Gururangan et al., 2020).
However, PLMs in the domain of commerce, espe-
cially for marketing and advertising, remain less

∗Equal contribution

studied. On the one hand, adapting PLMs to the
advertising domain is challenging because existing
pre-training methods usually use open-domain cor-
pora containing largely well-structured text such as
books (Zhu et al., 2015), news (Liu et al., 2019),
stories (Trinh and Le, 2018), or web text (Radford
et al., 2019a) to learn text representations. How-
ever, the input text for selecting advertisements is
primarily web search queries, which are usually
not complete, grammatical sentences. On the other
hand, there is no publicly-available PLM in the
commercial domain.

This paper introduces Commercial Universal
Language Generation model (CULG), which sup-
ports multi-lingual, multi-market, and multi-task
ad generation. CULG adopts a transformer-based
(Vaswani et al., 2017) encoder–decoder generative
framework similar to ProphetNet (Qi et al., 2020),
which uses an n-stream self-attention mechanism
and supports future n-gram prediction. To adapt to
diverse markets, we use the multi-lingual version
of ProphetNet — ProphetNet-X (Qi et al., 2021) as
our foundation model, and conduct a second phase
of pre-training using a self-constructed large-scale
commercial corpus.

CULG is trained auto-regressively on four
sequence-to-sequence (seq2seq) generation tasks,
including: (1) Generate Keywords with the Same
intent as the query (GKS); (2) Generate Keywords
that are Relevant to a query (GKR); (3) Generate an
Ad Title based on a query (GAT); and (4) Generate
an Ad Description based on a query (GAD). The
motivation of these tasks is to infer the user’s inten-
tion based on the query as well as perform product
matching and recommendation. All queries used in
this research are real-life search queries that have
been submitted to the Bing1 search engine, and
the ground truth targets are created according to
either the records of user’s click behaviour or labels
from hired human annotators. We collected more

1https://www.bing.com
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than ten million queries from 10 markets in 7 lan-
guages, and split them into three classes according
to data quality. Given the user query, the gold class
is ads that were deemed as relevant to the query
by human judges, the silver class is made up of
ads clicked on by users, and the bronze class is all
ads that been selected by search engine to show
to users. Splitting the data into different markets,
tasks, and quality classes provides us with flexi-
bility to compare the model’s performance under
different training setups.

Given that the collected data varies in quality, we
split both the pre-training and fine-tuning into two
stages, using low-quality data in the first stage and
high-quality in the second stage. To demonstrate
the effectiveness of this approach, we compare it
with alternative combinations of pre-training and
fine-tuning. We evaluate CULG on three commer-
cial generation tasks. Experimental results show
that splitting pre-training and fine-tuning into two
stages not only outperforms the widely-used single-
stage pre-train and fine-tune schema, but is also
better than other combinations of pre-training and
fine-tuning. We further compare CULG with ex-
isting pre-trained multi-lingual models (Liu et al.,
2020; Qi et al., 2021) and show that it surpasses
other models on commercial generation tasks. Fi-
nally, we conduct transfer learning experiments
on different markets, languages, and tasks by fine-
tuning CULG on a market, language, and task that
has not been seen during pre-training. The results
demonstrate that CLUG also generalizes well to
unseen markets, languages, and tasks.

2 Approach

2.1 Model Architecture

CULG adopts the architecture of ProphetNet,
an encoder–decoder language generation model
with n-stream self-attention mechanism and fu-
ture n-gram prediction. Instead of optimizing one-
step-ahead prediction as with most sequence-to-
sequence models, future n-gram prediction aims to
prevent overfitting on strong local correlations by
simultaneously predicting the next n tokens.

The ProphetNet encoder uses stacked trans-
former layers with multi-head self-attention, and
the decoder uses stacked multi-head multi-stream
self-attention layers to enable n-gram prediction.
Given the input sequence x = (x1, x2, ..., xL) and
output sequence y = (y1, y2, ..., yM ), Prophet-
Net implements future n-gram prediction by re-

Code Language Code Country

De German Au Australia
En English Ca Canada
Es Spanish Ch Switzerland
Fr French De Germany
It Italian Es Spain
Nl Dutch Fr France
Sv Swedish Gb United Kingdom

It Italy
Nl Netherlands
Se Sweden

Table 1: Languages and countries contained in our cor-
pus. Throughout this paper, we refer to languages and
country names with their ISO codes.

placing the auto-regressive predicting dependency
relationship p(yt|y<t, x) with p(yt:t+n−1|y<t, x).
In detail, it first obtains the encoded sequence
representation Henc from stacked encoder lay-
ers, where Henc = Encoder(x1, x2, ..., xL).
Then the decoder predicts n future tokens simul-
taneously as p(yt|y<t, x), ..., p(yt+n−1|y<t,x) =
Decoder(y<t, Henc), where n probabilities are
generated at each time step and the probability
p(yt+i|y<t, x) is generated by the i-th predicting
stream. The future n-gram prediction objective can
be formalized as:

L =−
n−1∑

j=0

αj ·
(

M−j∑

t=1

log pθ(yt+j |y<t, x)

)

=− α0 ·
(

M∑

t=1

log pθ(yt|y<t, x)

)

︸ ︷︷ ︸
language modeling loss

−
n−1∑

j=1

αj ·
(

M−j∑

t=1

log pθ(yt+j |y<t, x)

)

︸ ︷︷ ︸
future n-gram loss

(1)

The details of ProphetNet can be found in Qi et al.
(2020).

2.2 Data Collection
The corpus was collected from 10 markets across
7 languages (Table 1), where a “market” refers
to queries issued from a country in a specific
language (and is represented as Language–
Country in the remainder of the paper), and
the corresponding ads and product information.
For each market, three types of data were collected:

Impressed Given a user query, a collection of ads
is chosen from the full ads corpus by the Bing
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Market GKS GKR GAT/GAD Total
Bronze Silver Gold Bronze Silver Gold Bronze Silver Gold

De–Ch 1,129K 140K 2K 15,288K 812K 91K 3,033K 332K 67K 20,898K
De–De 8,847K 2,096K 97K 135,835K 14,000K 413K 18,625K 4,122K 1,711K 185,751K
En–Au 1,992K 383K 75K 25,768K 2,078K 356K 2,820K 580K 1,437K 35,494K
En–Ca 3,412K 586K 58K 24,324K 2,117K 410K 3,081K 640K 619K 35,251K
En–Gb 8,803K 1,741K 137K 89,385K 7,819K 480K 12,416K 2,520K 2,084K 125,389K
Es–Es 1,387K 255K 15K 73,747K 3,792K 103K 11,858K 1,084K 71K 92,317K
Fr–Fr 5,114K 1,259K 105K 102,538K 11,000K 392K 13,239K 2,891K 1,493K 138,035K
It–It 831K 148K 2K 49,352K 2,596K 72K 8,664K 879K 51K 62,600K

Nl–Nl 1,389K 301K 2K 55,619K 3,704K 93K 9,268K 1,177K 77K 71,633K
Sv–Se 409K 88K 2K 11,732K 982K 81K 2,888K 431K 88K 16,703K
Total 33,318K 7,002K 498K 583,593K 48,414K 2,496K 85,897K 14,661K 7,702K 783,585K

Table 2: Statistics of source–target pairs in the CULG corpus partitioned by task, quality, and market.

Figure 1: An illustration of a user query, ad title, ad
description, and bidded keyword.

search engine and shown to the user. This decision
process is aimed at maximizing the combined util-
ity of users, advertisers, and publishers by taking
the query–ad relevance, bidding, and marketplace
policy into account. We collect the pairs of im-
pressed ads and user queries in 2020 based on the
system log, and treat them as bronze quality data.
Figure 1 provides an example user query, ad title,
ad description, and bidded keyword.
Clicked Among those ads impressed to users, some
attract the attention of users and are clicked on for
more details. We collect all these clicked ads from
the impressed set, and treat them as silver quality
data.
Labeled We developed detailed guidelines to mea-
sure the relevance between queries and keywords,
queries and ads (including the ad title, ad descrip-
tion, and displayed URL). We hired and trained a
team of judges to measure the quality of keywords
and ads, sampling data from the “impressed” data
above based on our annotation budget. Those in-
stances that are labeled as “Good” are treated as
gold quality data.

Table 2 presents the statistics of the CULG cor-
pus. From the data quality perspective, we can see
the bronze impressed data is much larger than the

silver clicked data, which is in turn larger than the
gold labeled data for each market and task. From
the perspective of different tasks, the task of GKR
contains more data than GKS and GAT/GAD (see
below for task details).

2.3 Tasks

We propose four generation tasks for CULG pre-
training. Detailed task descriptions are given below,
and examples are provided in Table 3.

Query to keywords with exactly the same in-
tent (GKS): Given a user query, generate a list of
keywords that have exactly the same intent as the
source query. Such a situation usually occurs when
advertisers have a clear targeted audience, judging
from the search queries.

Query to keywords that are relevant (GKR):
Given a user query, generate a list of keywords
that is relevant to the query but don’t necessarily
have exactly the same intent. This happens when
advertisers want to reach to a broader slice of users
that may be interested in their product.

Query to ad title (GAT): Given a user query, gener-
ate an ad title that is relevant to the query. For many
electronic business platforms, there are lots of prod-
ucts without ready-made ad titles and descriptions.
This task tends to automatically generate titles that
attract users.

Query to ad description (GAD): Similar to GAT,
generate an ad description that is relevant to a given
query. This task helps sellers reduce their copy-
writing workload. However, as the real product
parameters are neither collected nor embedded in
the model, we do not evaluate CULG on this task.
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Task Source Target

GKS
sandstone sandstones
kempton park races kempton park racing
debenhams ladies clothing debenhams ladies fashions

GKR
print out boarding pass boarding pass holder
perth australia city transport visiting perth australia
wood effect gas fire gas fire repairer prices

GAT
expedia uk Up to 80% off uk hotels - lowest hotel prices guaranteed
liverpool liverpool flights - fly to liverpool
just eat official site - just eat

GAD
expedia uk compare prices on 1000+ sites. the best way to save on your uk hotel!
liverpool compare prices on liverpool flights with the edreams official website
just eat even more of your favourite restaurants are now on just eat, and just a tap away

Table 3: Examples of the four CULG tasks from the En-Gb market.

2.4 Two-stage Pre-training and Fine-tuning

The model parameters of CULG are initialized
from ProphetNet-X, which is pre-trained on the
100Gb wiki-100 corpus and 500Gb of Common-
Crawl2 data. As a state-of-the-art pre-trained NLG
model, its NLU and NLG capabilities (including
open-domain multi-lingual generation) are roughly
comparable to other encoder–decoder models such
as BART (Lewis et al., 2020), GPT-3 (Brown et al.,
2020), and T5 (Raffel et al., 2020).

To adapt it to the domain of commerce, we con-
duct a second phase of pre-training on our com-
mercial corpus. Given that data varies in terms of
quality and is large in size, we propose splitting the
pre-training into two stages and training on data of
increasing quality. The same strategy is applied to
model fine-tuning. In detail, the proposed stages
are as follows:
Pre-train stage I All data including bronze, sil-
ver, and gold data from all tasks are used to train
the model. As most of the data (> 90%) used in
this stage is unlabeled, this stage of training can
be considered as unsupervised (in terms of data
labeling).
Pre-train stage II The gold data from all tasks is
used to train the model. This can be considered to
be supervised training, given that all of the gold
data has been hand-labeled.
Fine-tune stage I The generative model is fine-
tuned on task-specific bronze, silver, and gold data
from multiple markets. This stage helps the model
to capture the general features of different lan-
guages and markets.
Fine-tune stage II The model is fine-tuned on task-
and market-specific labeled data to generate high-
quality representations, and capture high-level lan-

2https://commoncrawl.org/

Method Pre-train Fine-tune
Stage I Stage II Stage I Stage II

1 ✓
2 ✓ ✓
3 ✓ ✓ ✓
4 ✓ ✓ ✓ ✓

Table 4: Illustration of settings of different methods.

guage and market features.
For pre-training, we argue that the unsupervised

stage helps the model to learn general text repre-
sentations, while the supervised stage improves the
quality of the learned latent representations using a
small amount of high-quality data. For fine-tuning,
general-purpose features can be learned from multi-
market and -lingual data during stage I, and specific
features can be learned during stage II.

2.5 Training Methods

To validate the effectiveness of the proposed pre-
training and fine-tuning strategies, we create four
methods using different combinations of the pro-
posed stages in our experiments (Table 4). Method-
1 involves stage II fine-tuning only without CULG
pre-training, which means only a small amount of
market-specific labeled data is used to fine-tune
the model. This is the most commom mode of
fine-tuning after pre-training on publicly available
checkpoints. Method-2 adds stage I fine-tuning
before method-1, so that multi-lingual and multi-
market data is used to force the model to learn
general information across markets first. This is
the best that can be achieved on publicly avail-
able checkpoints. Note that both method-1 and
method-2 use task-specific data. Method-3 and
method-4 add pre-training stages before method-1
and method-2, respectively.
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Task Market Method 1 Method 2 Method 3 Method 4

BLEU-3, 4, AVG BLEU-3, 4, AVG BLEU-3, 4, AVG BLEU-3, 4, AVG

GKS

De–Ch 6.18 0.00 12.15 21.91 9.32 32.74 21.28 9.10 31.41 24.40 10.98 34.53
De–De 27.38 22.22 35.58 33.73 28.98 40.98 32.12 27.90 39.59 34.94 30.21 42.08
En–Au 34.26 25.83 42.94 40.01 32.19 47.81 38.97 30.89 46.81 41.27 33.62 48.92
En–Gb 32.28 24.17 40.83 37.83 30.46 45.82 36.28 28.48 44.36 38.67 31.03 46.55
Es–Es 31.88 24.53 39.78 50.65 45.60 55.28 46.99 43.12 51.90 52.36 47.20 56.70
Fr–Fr 32.26 25.07 40.69 44.85 38.30 51.73 42.12 35.63 49.13 45.76 39.61 52.56
It–It 13.17 7.79 19.72 34.80 19.28 43.04 31.85 20.11 40.23 34.08 18.98 41.92

Nl–Nl 6.55 0.00 12.42 23.66 12.84 33.93 24.15 14.22 34.83 24.97 15.02 34.74
Sv–Se 6.17 0.00 11.44 22.25 11.55 32.23 21.98 10.39 32.33 22.94 12.15 32.87

GKR

De–Ch 25.18 18.56 32.20 29.17 24.66 36.78 28.98 25.58 37.02 29.43 25.19 37.23
De–De 20.90 16.05 27.53 25.07 20.11 32.05 23.46 18.00 30.43 25.02 20.08 32.09
En–Au 21.32 15.13 28.74 24.24 17.85 31.87 24.08 17.21 31.58 24.96 18.44 32.56
En–Gb 16.99 12.45 23.95 20.38 15.98 27.55 19.51 14.39 26.66 20.84 16.09 27.97
Es–Es 23.17 19.28 28.89 27.02 22.11 33.45 26.07 21.18 32.42 27.51 22.83 33.87
Fr–Fr 20.20 14.19 26.90 23.41 17.00 30.40 22.85 16.11 29.92 24.08 17.53 31.13
It–It 26.38 23.82 31.15 31.36 29.00 37.04 30.39 29.19 36.14 31.84 29.54 37.62

Nl–Nl 9.13 2.43 20.85 12.36 4.30 24.66 12.21 4.33 24.37 13.23 4.88 25.54
Sv–Se 20.59 17.34 28.85 25.14 20.99 33.48 26.34 21.96 34.00 25.76 19.53 33.55

GAT

De–Ch 6.20 4.02 9.18 8.05 5.86 11.04 7.30 5.10 10.30 8.34 6.14 11.31
De–De 9.05 6.50 12.02 11.92 9.48 15.06 10.92 8.41 14.10 12.62 10.16 15.75
En–Au 6.50 4.11 10.03 9.80 7.22 13.35 8.78 6.20 12.35 10.06 7.50 13.62
En–Gb 5.06 3.06 8.13 7.73 5.86 10.58 6.14 4.27 9.02 8.46 6.51 11.39
Es–Es 9.69 6.84 13.64 13.12 10.24 16.95 11.95 8.99 15.91 13.85 10.95 17.67
Fr–Fr 2.96 1.30 5.62 3.45 1.63 6.41 3.31 1.50 6.23 3.62 1.76 6.58
It–It 24.90 21.24 28.12 26.70 23.03 30.05 25.89 22.09 29.37 26.91 23.24 30.25

NL–NL 5.18 3.29 8.29 8.66 6.60 11.84 7.28 5.15 10.58 9.07 6.94 12.24
Sv–Se 4.28 2.40 7.64 7.27 5.36 10.47 6.39 4.48 9.62 7.76 5.72 10.98

Table 5: Main results on GKS,GKR and GAT tasks. BLEU-3, BLEU-4, and BLEU-AVG are reported where
“BLEU-AVG” means the average score of BLEU-1, 2, 3 and 4.

3 Experiments and results

Experimental setup For each market dataset,
we split it into training, validation, and test set
in proportions 80%:10%:10%. The training set
is used for CULG pre-training and task-specific
fine-tuning.

For pre-training, we fetch the pretrained
ProphetNet-X as the basis of CULG, which con-
tains 12 layers in the encoder and decoder respec-
tively, with 1024d hidden size and 4096d feed for-
ward size. The future token prediction length is
set to 2, and the max sequence length of the input
and output is set to 512. We train the model on
all data (stage I) for 1 epoch, and on labeled data
only (stage II) for 5 epochs. For training, we use
the Adam optimizer (Kingma and Ba, 2015) with
a learning rate of 10−6 and 10−5 and batch size of
1024. We use the sentencepiece tokenizer with the
XLM-R (Conneau et al., 2020) 250k vocabulary,
which support 100 languages.

CULG is pre-trained on 8×32Gb NVIDIA Tesla
V100 GPUs, at a total cost of around 1500 GPU
hours.

For fine-tuning, we use a constant learning rate
of 10−5 and dropout rate of 0.1 for all tasks. We
save checkpoints every 10000 steps, and choose
the checkpoint with the best performance on the
validation set.

3.1 Main results

Table 5 presents the main results on GKS, GKR,
and GAT. Several observations can be made. First,
method-2 consistently outperforms method-1, and
method-4 consistently outperforms method-3. We
suggest there are two reasons for this: (a) multi-
lingual and multi-market data helps the model to
learn general task features; and (b) during fine-
tuning, method-2 and method-4 use > 20 times the
amount of data of method-1 and method-3 respec-
tively, for most markets and tasks. Second, method-
3 beats method-1 for all tasks and markets, while
method-4 beats method-2 for most tasks and mar-
kets (with the exception of the GKS task in market
It–It). This demonstrates the effectiveness of the
pre-training. Third, method-1 and method-3 can be
treated as few-shot setups, as the amount of labeled
data is much less than the unlabeled data. We find
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Task M-1 M-2 M-3 M-4 mBART

GKS 35.58 40.98 39.59 42.08 33.97
GKR 27.53 32.05 30.43 32.09 24.29
GAT 12.02 15.06 14.10 15.75 13.00

Table 6: Performance comparison between CULG and
mBART on the De–De market, based on BLEU-AVG.
‘M-i” means method-i.

that method-3 outperforms method-1 by a large
margin, demonstrating that our pre-trained model
can greatly boost the performance in few-shot set-
tings. Finally, the overall performance on GAT is
worse than on GKS and GKR, which appears to be
because ad titles usually contain advertiser-specific
information, which is difficult to infer from a user
query.

3.2 Comparison to mBART

To compare CULG with models that have differ-
ent architectures and pre-training data, we choose
mBART (Liu et al., 2020), a state-of-the-art multi-
lingual encoder–decoder model. mBART is pre-
trained on a large-scale monolingual corpus con-
taining many languages, with a denosing objective
function. We download checkpoint mbart.cc25 and
fine-tune it on labeled task-specific data.

We compare CULG with mBART on the De–
De market (Table 6). We find that even method-
1 achieves better results than mBART on GKS
and GKR, and comparable results on GAT, which
demonstrates the superiority of our model versus
mBART. In addition, with ads data pre-training
or multi-lingual fine-tuning, each of method-2,
method-3 and method-4 exceed mBART by a
large margin, verifying the effectiveness of the pre-
training and fine-tuning strategies for commercial
tasks. For all tasks, method-4 achieves the best
performance.

3.3 Transferability

Next, we evaluate the transferability of CULG.
Specifically, we use data for a new market, new
language, and new task to fine-tune a CULG check-
point (method-3). For comparison, we choose the
publicly available ProphetNet-X checkpoint and
fine-tune it using the same data (method-1).

Market Transferability To test the transferabil-
ity of CULG model over markets, we exclude the
data from En–Ca during pre-training and use it for
fine-tuning. Table 7 shows the results on the three

Task M B-1 B-2 B-3 B-4 B-AVG

GKS M-1 57.59 39.13 28.04 21.60 36.59
M-3 60.76 43.94 33.20 26.67 41.14

GKR M-1 45.45 31.39 21.20 15.25 28.33
M-3 47.73 34.17 24.20 18.55 31.16

GAT M-1 11.14 6.61 4.81 3.84 6.60
M-3 15.74 10.12 7.75 6.43 10.01

Table 7: Evaluation of market transferability on the En–
Ca market. “M” and “B” represent method and BLEU,
respectively.

Method B-1 B-2 B-3 B-4 B-AVG

Method-1 14.37 8.06 4.80 2.99 7.56
Method-3 20.52 12.17 7.98 5.54 11.55

Table 8: Evaluation of language transferability on the
GAT task for the DA–DK market. “B” represents
BLEU.

Method B-1 B-2 B-3 B-4 B-AVG

Method-1 47.70 42.99 31.46 11.50 33.41
Method-3 50.49 45.17 33.58 13.24 35.62

Table 9: Evaluation of task transferability on the GBK
task for the De–De market. “B” represents BLEU.

different tasks. We observe a consistent and sub-
stantial improvement by CULG (method-3) versus
method-1, which suggests that our model performs
well over new markets (in a language that is cov-
ered in CULG pre-training).

Language Transferability Data in the En–Ca
market is potentially similar to that in En–Us, En–
Au, and En–Uk market because of sharing the same
language (and having many cultural similarities).
It is natural to ask whether our model can also be
applied to markets with a language that is unseen
in pre-training.

In this experiment, we use data from the Da–Dk
(Denmark) market to evaluate language transfer-
ability. Note that no Danish data is used during
CULG pre-training. At the time of writing this
paper, we did not have market data for GKS and
GKR, so we will focus exclusively on GAT in this
experiment. From the results in Table 8, we see
that CULG performs much better than ProphetNet-
X, suggesting that our model generalizes to new
languages that were not included in pre-training.

Task Transferability The generation model can
potentially be applied to many scenarios and down-
stream tasks. We propose four different tasks for
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CULG training but wider demand might be re-
quired as products evolve. To test whether CULG
can be generalized to a task it has not been trained
on, we propose another task, which is to Generate
the Bidding Keywords (GBK) for an advertiser
automatically given the ad description. Experimen-
tal results (Table 9) show that method-3 leads to
solid improvements on this task vs. method-1, even
though this task is not included in pre-training. This
demonstrates that CULG is able to leverage infor-
mation from other tasks for a new task, suggesting
greater scope for its applicability.

4 Related Work

Pre-training for Text Generation Pre-training has
been widely used in NLP tasks to learn language
representations (Devlin et al., 2019; Liu et al.,
2019; Lan et al., 2020; Clark et al., 2020; Yang
et al., 2019; Radford et al., 2019b). GPT (Rad-
ford et al., 2018) takes plain text as pre-training
data to predict the next token in a left-to-right fash-
ion. It performs well on story generation and cre-
ative writing. BART (Lewis et al., 2020) uses an
encoder–decoder structure to regenerate the origi-
nal text from a corrupted input using an arbitrary
noising function. The denoising training strategy
and encoder–decoder structure lead to impressive
results on generation tasks. MASS (Song et al.,
2019) pre-trains a seq2seq model by masking con-
tinuous spans and learn to recover them. T5 (Raffel
et al., 2020) investigates different pre-training ob-
jectives and model architectures, and pre-trains on
a large-scale corpus containing 750Gb of text data.
ProphetNet (Qi et al., 2020) introduces a novel self-
supervised objective named future n-gram predic-
tion, that explicitly encourages the model to plan
for future tokens and prevent overfitting on strong
local correlations. In this paper, we use the model
structure of ProphetNet, and the same n-gram ob-
jective function.
Multi-lingual Model in NLP Building multi-
lingual models is becoming more common across
NLP tasks. Support for multi-lingual text is either
implemented by aligning multi-lingual word em-
beddings in a universal space (Chen and Cardie,
2018; Lample et al., 2018) or by learning cross-
lingual models using a different corpus to exploit
shared representations across languages. Models
such as mBERT (and), mBART (Liu et al., 2020),
XLM-R (Conneau et al., 2020), mT5 (Xue et al.,
2021), and ProphetNet-X (Qi et al., 2021) are multi-

lingual variants of BERT, BART, RoBERTa, T5,
and ProphetNet, respectively.
Domain Adaptive Pre-training In this paper, we
adapt the pre-trained ProphetNet-X to a commer-
cial domain by continuing to pre-train. Similar
work has been done by researchers in other do-
mains. BioBERT (Lee et al., 2020) is obtained
by performing additional BERT pre-training on a
biomedical corpora, leading to improvements on a
variety of biomedical text mining tasks. Alsentzer
et al. (2019) continues pre-training BioBERT on
clinical data, and achieves performance gains on
three clinical NLP tasks. ULMFit (Howard and
Ruder, 2018) introduced task-specific fine-tuning,
with the core idea being to continue pre-training
language models on task/domain specific data.
Chakrabarty et al. (2019) used the approach of
ULMFit and continued training it on a Reddit cor-
pus, achieving state-of-the-art performance on four
claim detection datasets in doing so. Most re-
cently, Gururangan et al. (2020) continued train-
ing RoBERTa across 4 domains and 8 tasks, and
showed that both domain adaptive pre-training
and task adaptive pre-training lead to performance
gains.

5 Conclusion

In this paper, we propose CULG: a large-scale com-
mercial universal language generation model which
supports multi-lingual, multi-market, and multi-
task ad generation. As part of this, we propose 4 ad
generation tasks for CULG pre-training. We then
propose a two-stage pre-training and fine-tuning
strategy, and demonstrate the effectiveness of the
proposed strategy through extensive experiments.
We further compare CULG with other multi-lingual
generation models, and show the superiority of
CULG on commercial generation tasks. Finally, we
demonstrate the transferability of CULG in three
different settings.

6 Ethical Considerations

This work was conducted while the first author was
an intern at Microsoft Research Asia. All data was
sourced in strict adherence with the commercial
terms of service of the Bing search engine, and no
session history or personal data was used in this
research.
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Abstract

Unsupervised word alignments offer a
lightweight and interpretable method to
transfer labels from high- to low-resource
languages, as long as semantically related
words have the same label across languages.
But such an assumption is often not true in
industrial NLP pipelines, where multilingual
annotation guidelines are complex and deviate
from semantic consistency due to various fac-
tors (such as annotation difficulty, conflicting
ontology, upcoming feature launches etc.);
We address this difficulty by constraining the
alignment model to remain consistent with
both source and target annotation guidelines,
leveraging posterior regularization and labeled
examples. We illustrate the overall approach
using IBM 2 (fast_align) as a base model,
and report results on both internal and
external annotated datasets. We measure
consistent accuracy improvements on the
MultiATIS++ dataset over AWESoME, a
popular transformer-based alignment model, in
the label projection task (+2.7% at word-level
and +15% at sentence-level), and show how
even a small amount of target language
annotations helps substantially.

1 Introduction

The task of aligning words in parallel sentences (i.e
bitexts) originates from statistical machine transla-
tion (Brown et al., 1990), where semantic identifi-
cation was performed based on context similarity
in accordance to the well-known distributional hy-
pothesis. The most commonly used statistical align-
ers are built on top of the so-called IBM models
(Brown et al., 1993), a series of structured proba-
bilistic models that, while fully unsupervised, often
rely on additional assumptions (such as close-to-
diagonal alignment) to reach acceptable accuracies.
These approaches have since been superseded by
neural networks and pretrained embeddings. They
nonetheless enjoy a wide popularity across many

ouvre|Actio
n

l'|T
ype

appli|Type

open|Action

the|O

app|Type

[e1, e2, e3][

[

f1,

f2,

f3

a = <1,2,3>

source:
open|Action the|O app|Type

projected: 
ouvre|Action l'|O appli|Type

groundtruth: 
ouvre|Action l'|Type appli|Type  

?

Figure 1: Example of word alignment with notations from
English to French. While the identity map is semantically
very natural in this example, it conflicts with the ground-truth
label. The whole group l’appli is labelled as Type in French,
possibly to reduce friction with human annotators.

NLP domains owing to their execution speed, data-
efficiency and self-contained implementations.

Cheap multilingual word alignments are appeal-
ing as they provide a transparent and interpretable
way to transfer features from a source language to
a target language (see Fig.1). They have been used
in the past to transfer costly annotations such as
part-of-speech (Yarowsky and Ngai, 2001) or co-
reference information from high- to low-resource
languages (Postolache et al., 2006). However, the
reliability of such a strategy depends on the use
case at hand and we argue that it can lead to subtle
but systematic failures in downstream tasks. In our
industrial use case (that of a voice assistant), multi-
lingual named-entity annotation guidelines factor
in a great number of aspects (country launches,
available features, human-friendly rules for anno-
tators e.t.c) and end up surprisingly riddled with
inconsistencies across languages (see table 1). In
such cases, even a slight mismatch between se-
mantics and annotation guidelines will lead to sys-
tematic errors: annotation guidelines of the source
language "bleed" into the target language. This in
turn generates friction for NLP pipelines that rely
heavily on annotated resources, such as task ori-
ented dialog systems. In this work, we show how
to guide word alignments produced by structured
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models to conform to the annotation guidelines of
the target language, extending them so that they do
not solely rely on semantic relatedness. We use the
posterior regularization technique of Ganchev et al.
(2010), a general framework that allows integrating
information coming from a variety of features as op-
timization constraints. We illustrate our approach
using IBM 2 as the base alignment algorithm. To
model the label constraints, we construct n-gram
tables that count the frequency of labels assigned
to n-grams in the target language. These label n-
grams, constructed using the same training data,
are then used to bias the alignments so they comply
with the annotation scheme. We use an EM-like
iterative procedure to train the resulting model -
label transfer is done by assigning to targets words
the label of their aligned source words.

We evaluate our method on two annotated
datasets and show that it combines the strengths
of both approaches: the inferred alignments pro-
duce better labels than either the baseline align-
ers or the n-gram models alone. It also remains
fast, interpretable, self-contained and data-efficient,
which makes it easy to integrate into industrial NLP
pipelines. However, it has the same drawbacks that
IBM model 2 has (no fertility modelling - i.e cannot
handle a single source word generating multiple
words in the target language, N-1 source-target
mapping, danger of local optima during training).
We release our implementation as FastLabel1.

2 Related Work

Statistical word alignment models continue to
be widely used to transfer labels from high- to
low-resource languages owing to their speed, low
memory footprint and interpretability. Their most
famous exponents are the IBM models 1 to 4
(Brown et al., 1993; Och and Ney, 2003), a
Bayesian models hierarchy of increasing sophis-
tication. fast_align (Dyer et al., 2013) is a fast
reparameterization of IBM Model 2 that signifi-
cantly cuts down training and inference time. Eflo-
mal (Östling and Tiedemann, 2016) augments IBM
model 1 with priors on word order and fertility, and
uses Markov Chain Monte Carlo (MCMC) to do
inference. Much of the recent work depart from the
Bayesian modeling tradition by relying on contex-
tual embeddings to perform the alignment (Pour-
damghani et al. 2018, Alkhouli et al. 2018, Sabet
et al. 2021). AWESoME (Dou and Neubig, 2021)

1https://github.com/amazon-research/fast_label

uses multilingual BERT (Devlin et al., 2019) to
extract word alignments, and allows fine-tuning
the underlying BERT model on parallel corpora to
improve alignment quality. While very accurate,
they leverage embeddings from computationally
expensive neural networks, and as such, they are
not self-contained and the errors made by these
models are arguably less interpretable than the sim-
pler statistical models presented here.

Mann and McCallum (2007) introduced expecta-
tion regularization as a way to encourage unsuper-
vised model predictions to match an expectation
from an external prior. Chang et al. (2007) devel-
oped the constraint driven learning (CODL) frame-
work that is capable of allowing different levels of
constraint violation. Their formulation, however,
did not allow for tractable inference and the au-
thors used beam search to solve the optimization
problem. The posterior regularization framework
introduced by Ganchev et al. (2010) allows con-
straint violations while remaining tractable.

Applications of statistical word alignment to
label projection are numerous. Label projection
using word alignments is discussed in Yarowsky,
Ngai, and Wicentowski (2001), Hwa et al. (2005),
Östling (2016), Das and Petrov (2011) and Duong
et al. (2013). The last three models use the stan-
ford POS tagger (Toutanova et al., 2003) on a high
resource source-language and transfer the labels to
the target language.

3 Model Formulation

We start with the notations and closely follow
(Dyer et al., 2013) for clarity. The source (tar-
get) sentence is denoted f (e), of length n (m).
The aim is to infer, from bitexts, an alignment
aaa = ⟨a1, a2, · · · , am⟩ from source to target: each
ai refers to the position of the source sentence word
aligned to the ith word in the target sentence (see
Figure 1). We will assume that each target target
word is associated to at most one source word: this
N − 1 mapping limitation is not a concern in the
context of label projection. In the NER (Named
Entity Recognition) setup, both source and target
sentences may be annotated with NER labels, and
we write L the set of possible labels, and ℓei (resp.
ℓfj ) the label attached to ei (resp. fj) ; ℓe and ℓf
refer to the label sequences of the whole sentences
e and f .

The parameters of the popular IBM models are
usually inferred through maximum likelihood (ML)
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Dataset lang example

M
ul

tiA
T

IS
++

en atis_airfare show me round trip fares from denver to philadelphia O O B-round_trip I-round_trip O O
B-fromloc.city_name O B-toloc.city_name

fr atis_airfare Me montrer les tarifs aller-retour de Denver à Philadelphie O O O O B-round_trip O B-
fromloc.city_name O B-toloc.city_name O

pt atis_airfare Mostre tarifas de ida e volta de Denver para a Filadélfia O O O B-round_trip I-round_trip
I-round_trip O B-fromloc.city_name O O B-toloc.city_name

de atis_airfare Zeige mir Tarife für Hin- und Rück flüge von Denver nach Philadelphia O O O O B-round_trip
I-round_trip I-round_trip O O B-fromloc.city_name O B-toloc.city_name

es atis_airfare Muéstrame las tarifas de ida y vuelta desde Denver hasta Filadelfia O O O O B-round_trip
I-round_trip I-round_trip O B-fromloc.city_name O B-toloc.city_name

zh atis_airfare 显示从 丹佛 到 费城 的 往返 票价 O B-fromloc.city_name O B-toloc.city_name
O B-round_trip O

hi atis_airfare X��vr s� EPlAX�ESPyA k� Ele dotrPA EkrAe EdKAy�\ B-fromloc.city_name O B-
toloc.city_name O O B-round_trip O O

In
te

rn
al

en Timer set|o another|o timer|action for|o three|length minutes|length and|o thirty|length seconds|length
fr Timer règle|o un|o autre|o minuteur|action pour|o trois|length minutes|length et|length trente|length

secondes|length
en Weather what|o today’s|date temperature|detail
it Weather che|o temperatura|date c’|o è|o oggi|date
en Appliance turn|action off|action the|o bose|device light|device
pt Appliance desligue|action a|o luz|device bose|device

Table 1: Example training data. The text in teal are word-level labels, and the text in red indicate the overall intent of the sentence.
The examples from our internal dataset show some of the discrepancies present in annotation guidelines across languages - for
example, the English token-label pair "and|o" corresponds to "et|length" in French. We also observe inconsistencies arising due
to word fertility and tokenization choices
- "what" corresponds to "che c’ è" (i.e 3 different tokens) in Italian and the two words "turn off" corresponds to the single word

"desligue" in Portuguese.

θ∗ = argmaxθ L(θ) = argmaxθ P (e, f |θ). The
parametric family over which inference is per-
formed depends on the IBM models. In what fol-
lows, we illustrate our approach on IBM-2 (as used
in fast_align), which comes with a diagonal prior
and a set of lexical probabilities representing trans-
lations:

pFA(ei, ai|m,n) = δ(ai|i,m, n)× θ(ei|fai)

pFA(ei|m,n) =
n∑

j=0

pFA(ei, ai = j|m,n)

where δ(·) models the diagonal prior and the null
alignment probability (Dyer et al., 2013). Because
alignments are hidden variables, the ML optimiza-
tion can only be performed approximately, for ex-
ample with an Expectation Maximization (EM) it-
erative scheme. EM can be formulated as an ELBO
coordinate ascent (Neal and Hinton, 1998):

F (q, θ) = logL(θ)−DKL(q||pFA(·|e, f ,m, n))
E-step : q(t) = argmax

q
F (q, θt)

M-step : θ(t+1) = argmax
θ

F (qt, θ)

where q is a reference distribution and is used to in-
ject external knowledge into the optimization, and
maximization of the E-step is performed over an

arbitrary family of alignments probability distribu-
tion. For label projection however, we would like
to bias the ELBO optimization so as to favor align-
ments compatible with the target annotation guide-
lines, without losing information obtained from
the bitexts. The posterior regularization (Ganchev
et al., 2010) framework offers an elegant solution,
by noting that theE-step above can be easily solved
over a constrained set of distributionsQ, as long as
those constraints are defined in terms of moments
of q ∈ Q:

E-step (PR) : q(t) = argmax
q∈Q

F (q, θt)

Q = {q : Eq [ϕ(e, f ,m, n)] = b}

where ϕ is an arbitrary function. In the context of
label projection, we wish to match the projected
label distribution P (ℓe|e, f ,m, n) to a reference
distribution r(ℓe), that can be defined quite arbi-
trarily. Given an alignment a, target words re-
ceive the same label as their aligned source words
ℓei = ℓfai∀i ∈ [e]. We can therefore rewrite such
matching condition as:

P (ℓe|e, f ,m, n) =∑

a

P (ℓe|e, f ,a)P (a|e, f ,m, n) (1)

123



= Eq [1 (ℓe = ℓfa)] ≡ r(ℓe),

1 (ℓe = ℓfa) =

{
1, if ℓe = ℓfa
0, otherwise

(2)

The set of contraints, one per label configuration
per target sentence, is denoted C. In this case, the
E-step admits a dual formulation and the optimal
alignment distribution q∗ has a simple expression
in terms for the unconstrained pFA:

q∗(a) =
pFA(a|e, f)e−

∑
c∈C λ∗

cv
a
c

Z({λ∗c})
(3)

vac = 1 (ℓfa = ℓc)− r(ℓc) (4)

λ∗c = argmax
λc

[− log (Z({λ∗c}))]∀c ∈ C (5)

where λc, c ∈ C is a family of Lagrange multipliers
enforcing the constraints over label space. The
iterative algorithm closely mimics the classical EM
coordinate ascent, with the addition of solving the
Lagrange multipliers (see Appendix A).

The value of the Lagrange multipliers λ∗c are
computed through gradient ascent over Z({λ∗c}).
IBM model 2 enjoys the property that its alignment
probability pFA factors over the words of each tar-
get sentence. It is therefore convenient to split C
accordingly: to each word ei and each possible
ℓ ∈ L, are attached a Lagrange multiplier λeiℓ and
the cost veiℓ of labelling ei with ℓ. In such case,
Z({λ∗c}) further decomposes:

Z({λ∗c}) =
∏

e∈corp.

∏

ei∈s
Zei({λ∗c})

Zei({λ∗c}) =
n∑

j=1

pFA (ai = j|e, f) e−
∑

ℓ λ
ei
ℓ v

ei
ℓ

veiℓ = 1

(
ℓfai = ℓ

)
− r(ℓ)

and its derivative w.r.t λeiℓ :

∂Zei

∂λeiℓ
= −

n∑

j=1

pFA (ai = j|e, f) veiℓ e−
∑

ℓ λ
ei
ℓ v

ei
ℓ

The stationary points is reached when veiℓ = 0,
selecting alignments for which the transferred label
distribution matches r(ℓ).

4 Experiments

4.1 Baselines
Eflomal2 and AWESoME3 were run using the re-
spective authors’ publicly released code. The hy-
perparameter settings used to run these models

2https://github.com/robertostling/eflomal
3https://github.com/neulab/awesome-align

Lang Avg. len. Avg len. of En translation
MultiATIS++

English (en) 11.05 NA
French (fr) 11.72 11.05 (+6.37%)

Portuguese (pt) 11.96 11.05 (+8.17%)
German (de) 11.29 11.05 (+2.13%)
Spanish (es) 11.88 11.05 (+7.62%)
Chinese (zh) 10.95 11.05 (-1.05%)

Hindi (hi) 10.97 11.05 (-0.73%)
Internal dataset

Italian (it) 5.29 5.20 (+1.82%)
French (fr) 5.91 5.18 (+14.17%)

Portuguese (pt) 5.42 5.17 (+4.73%)

Table 2: Average sentence lengths (in terms of the number
of labelled tokens) for each language present in our datasets.
The third column indicates how much longer (or shorter) the
sentences in a particular language are compared to their En-
glish translations. Unlike MultiATIS++, the English sentences
paired with each of languages in our internal dataset are dif-
ferent (i.e the English sentences in the pair en-it are different
from those in en-fr), resulting in slightly different average
sentence lengths. The translations in both MultiATIS++ and
our internal dataset were done by humans.

are described in Appendix C. Since our work is
an extension of fast_align, we ported the original
fast_align4 code to Python and extended it to sup-
port posterior regularization. Just like the original
fast_align implementation, we did 5 iterations of
expectation-maximization to train the model. The
trained alignment model (i.e q∗ in equation 3) is
then evaluated on a held out set of bitexts. For each
aligned word pair, the label of the source word (usu-
ally from an English sentence) is transferred to the
aligned target word. All target words aligned to the
"null" token are given a label of "o" (for "other").
We then compare the transferred labels to the true
labels of the target sentence to calculate the accu-
racy. Though the label transfer happens at a word
level, we report accuracies at the sentence level as
well since perfectly annotated sentences are crucial
for our industrial use case. The n-gram classifiers
in the tables are simple frequency-based classifiers
trained on the target language - for a particular n-
gram in the test set, the classifier annotates the nth
word with the most frequent label assigned to that
n-gram in the training data. For n-grams that were
not present in the training data (even after backing-
off to unigrams), the classifier outputs the label "o"
(for "other"). These simple classifiers are essen-
tially the same models that are used to do posterior
regularization in our experiments - when used as
classifiers, they only output the most likely label
for a given n-gram while during regularization we
use their entire label distribution.

4https://github.com/clab/fast_align
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Figure 2: Distribution of word alignments between English-Hindi bitexts in the MultiATIS++ dataset. The left (resp. bottom)
axis represents the index of the source (resp. target) word within the source (resp. target) sentence. The left plot shows the
distribution of alignments using fast_align. The number inside individual cells represents the frequency of that alignment. The
right plot shows the distribution of alignments for the same Engish-Hindi bitexts using FastLabel. We can see from the plots
that fast_align has more alignments along the diagonal than FastLabel. Since English and Hindi generally follows different
word orders (eg: the Hindi sample present in table 1), the diagonal prior used by fast_align (i.e the assumption that words in
target sentence are aligned to the words in relatively the same position in the source sentence) can be problematic. The superior
performance of FastLabel (table 3) can be attributed to its ability to overcome fast_align’s diagonal prior.

Figure 3: Sentence-level label transfer accuracies between
English-German bitexts in MultiATIS++. The amount of Ger-
man data used to construct the n-gram labels was increased
linearly while AWESoMe, eflomal, fast_align, and the word-
alignment part of FastLabel were always trained with all avail-
able training data.

4.2 Datasets

We ran our experiments on two different datasets
- a publicly available corpus of annotated bitexts
called MultiATIS++ (Xu et al., 2020) and an inter-
nal corpus of annotated bitexts. MultiATIS++ is
a multilingual extension of the ATIS (Price, 1990)
dataset, which is a transcript of flight information
requests to automated airline travel inquiry sys-
tems and contains approximately 5000 samples.
The queries in ATIS were originally in English
and the MultiATIS++ dataset contains annotated

human translations of the English queries into six
other languages. Our internal dataset consists of
queries to a task-oriented dialogue system and
contains ten thousand pairs of annotated English-
Italian, English-French and English-Portuguese bi-
texts. The English sentences in the different lan-
guage pairs in our internal dataset are not the same
- this means that there is considerable variation in
the distribution of intents across different language
pairs in this dataset. The scheme for certain type of
queries vary across languages (see table 1) as well.

For the set of constraints, we compute a fre-
quency based n-gram model on the annotated
monolingual data: the probability of label ℓi de-
pends on the word ei to be labelled, its context
of length n − 1 and the intent of the sentence:
P (ℓi|e) = P (ℓi|ei, ei−1, · · · ei−n+1, intent). We
include the intent in the counts since labels may
strongly depend on it: for example, "play frozen"
will be different depending on whether the over-
all intent is "Music" (resulting in "play|action
frozen|album) or "Video" (resulting in "play|action
frozen|movie). We construct the n-grams based on
the same data that was used to train the word align-
ment model, and during inference apply the same
back-off strategy used by the n-gram classifiers
described in the previous section. If an n-gram
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Method it fr pt de es zh hi
MultiATIS++

baselines

fast_align N/A 48.75 (90.44) 40.14 (90.07) 63.821 (94.54) 52.54 (90.54) 43.04 (83.84) 32.31 (85.17)
eflomal N/A 67.17 (94.08) 63.56 (93.71) 76.43 (97.20) 66.10 (93.7) 56.58 (87.8) 73.36 (95.00)

AWESoME N/A 74.08 (94.94) 73.23 (95.68) 79.59 (97.83) 72.31 (94.95) 55.47 (89.20) 65.06 (94.69)
1-gram classifier N/A 27.88 (86.23) 25.51 (84.43) 29.36 (86.68) 29.05 (85.08) 34.38 (81.81) 33.33 (87.44)
2-gram classifier N/A 57.88 (93.35) 57.72 (92.79) 59.66 (93.91) 56.79 (92.1) 66.91 (90.56) 59.64 (94.14)
3- gram classifier N/A 66.92 (94.91) 67.78 (94.52) 68.21 (95.42) 67.54 (93.43) 67.28 (91.01) 72.80 (96.06)

ours
1-gram FastLabel N/A 75.81 (95.96) 69.88 (95.84) 84.97 (98.18) 68.92 (94.69) 73.09 (94.11) 76.85 (96.37)
2-gram FastLabel N/A 79.46 (97.10) 78.25 (97.20) 90.53 (98.90) 76.45 (96.39) 76.43 (95.13) 79.03 (97.11)
3-gram FastLabel N/A 79.27 (97.16) 78.99 (97.30) 91.09 (98.96) 76.83 (96.56) 75.88 (95.11) 80.34 (97.23)

Internal dataset

baselines

fast_align x (x’) y (y’) z (z’) N/A N/A N/A N/A
eflomal +13.32 (+2.25) +11.14 (-1.14) -0.98 (-0.7) N/A N/A N/A N/A

AWESoME +7.49 (+2.07) +1.4 (+0.02) +2.4 (+0.55) N/A N/A N/A N/A
1-gram classifier -78.97 (-23.20) -78.76 (-21.72) -81.05 (-22.92) N/A N/A N/A N/A
2-gram classifier -76.97 (-22.25) -76.44 (-20.68) -78.551 (-22.04) N/A N/A N/A N/A
3-gram Classifier -76.64 (-22.19) -75.98 (-20.58) -78.65 (-22.04) N/A N/A N/A N/A

ours
1-gram FastLabel +18.48 (+4.36) +13.62 (+2.89) +5.08 (+1.48) N/A N/A N/A N/A
2-gram FastLabel +19.98 (+4.77) +16.72 (+3.42) +8.61 (+2.13) N/A N/A N/A N/A
3-gram FastLabel +19.65 (+4.67) +16.10 (+3.42) +8.61 (+2.10) N/A N/A N/A N/A

Table 3: Percentage of perfectly annotated target sentences obtained as a result of label transfer between bitexts - the word level
label transfer accuracy is written inside parentheses. Experiments conducted on our internal dataset report accuracies relative to
fast_align.

was not observed in the training data, we leave
finding the alignment of the corresponding target
word unconstrained. Though we stick to simple
frequency-based n-gram models for the sake of
speed and interpretability, posterior regularization
can accommodate any model that can predict a
label distribution, including neural networks.

5 Results

Our results are reported in Table 3. Apart from
fast_align, we include eflomal, a more sophisti-
cated statistical alignment model, and AWESoME,
a strong model that leverages recent advances in
pre-trained language models, as additional base-
lines. On the MultiATIS++ dataset, FastLabel out-
performs AWESoME, our strongest baseline, by
around 2.7% at word-level label transfer accuracy
and gave around a 15% increase in the amount
of perfectly annotated target sentences (averaged
across all languages). On our internal dataset,
FastLabel resulted in an improvement of around
7% (compared to eflomal, which performed better
than AWESoME, averaged across all languages) in
the amount of perfectly annotated target sentences.
The simple n-gram classifiers perform reasonably
well on MultiATIS++. After a deeper inspection,
we find that most of the words in this dataset re-
ceive the label "O", and entities with richer labels
(such as city names) are usually present in both the
train and test sets, and makes MultiATIS++ easier
to annotate correctly. Our internal dataset is more
complex, comprising of 185 intents (eg: "Appli-

ance", "Music") and 211 different label types (i.e
"o" or "date" or "song") (for comparison, Multi-
ATIS++ has 23 intents and 122 label types). This
is reflected in the much poorer performance of the
n-gram classifiers on our internal dataset. Though
poor as independent annotators, the same n-gram
label distributions are beneficial to FastLabel when
used for posterior regularization, indicating that
our regularization framework is successful in incor-
porating the right amount of information from the
external prior.

We observe a large drop in performance for
fast_align when aligning language from different
families (such as English-Chinese bitexts), due to
the well-known limitations of the diagonal prior
assumption. Moreover, as observed in table 2,
Hindi and Chinese sentences are usually slightly
shorter than their English counterparts, while the
sentences from the other European languages tend
to be longer. For example, the Italian translation of
the phrase "personalize my echo" could be "person-
alizza il mio echo" - here the two tokens "my echo"
generate three tokens in Italian (high word fertility),
while a non-Indo-European language might have
the opposite problem with respect to English (low
word fertility). Despite these challenges, FastLabel
performs comparatively well on these languages
thanks to its ability to overcome the diagonal prior
of the underlying fast_align algorithm. Figure 2
illustrates the effect of posterior regularization on
word-alignments. All subplots show alignments
between English-Hindi bitexts in the MultiATIS++
dataset. The plot to the left (fast_align) clearly
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id source fast_align ours
1 track|o a|o wet|attribute diaper|item enregistre|o une|o couche|attribute cu-

lotte|attribute mouillée|item
enregistre|o une|o couche|item cu-
lotte|item mouillée|attribute

2 c.|source n.|source n.| source report|o le|o compte|source rendu|source de|o
c.|source n.|source n.|source

le|o compte|o rendu|o de|o c.|source
n.|source n.|source

3 show|visual me|o an|o octopus|item montre|visual moi|other un|o
poulpe|item

montre| visual moi|visual un|o
poulpe|item

Table 4: Three examples representative of the type of errors in label overcome by posterior regularization. All examples are
from the FastLabel evaluated on the English-French bitexts in our internal test dataset. 1) Alignments away from the diagonal -
the French word corresponding to "wet" ("mouillée") appear at the end of the sentence. 2) Fertility - "report" is translated into
French as "le compte rendu de". 3) Discrepancies in annotation guidelines - though "moi" should be semantically aligned to
"me" in the English sentence and hence given the label "o", our internal annotation scheme for French consistently annotates
"moi" as "visual" if it follows "montre".

shows a stronger alignment along the diagonal,
while this tendency to align along the diagonal is
weaker in the plot to the right (FastLabel). Table 4
contains some examples where fast_align made a
mistake in transferring the labels from the source
sentence, but FastLabel was correct.

How much annotated data is required for Fast-
Label to improve upon fast_align? Figure 3 reports
label transfer accuracy between English-German
bitexts in MultiATIS++ using varying amounts of
training data to construct the n-gram models. Using
only 20% of all available training data to construct
the n-gram models gives FastLabel a significant
boost over fast_align, demonstrating the applicabil-
ity of our approach in data-sparse regimes. With
growing training data, n-grams become better an-
notators (to a point where the 3-gram model out-
performs fast_align), but a performance gap with
FastLabel persists. Although the focus of our work
was on maximizing the label transfer accuracy, we
also note that posterior regularization resulted in a
more semantically accurate translation table (see
Appendix B) compared to fast_align.

5.1 Conclusion

We illustrated how to augment existing algorithms
(such as fast_align) with information about anno-
tation guidelines, through posterior regularization.
Lightweight, self-contained and data-efficient, our
approach retains the benefits of statistical align-
ers while leading to higher quality alignments. It
also mitigates semantic inconsistencies that can
appear in the annotation guidelines of large scale
industrial NLP systems. A natural extension of
this work is to use more sophisticated models than
n-grams to predict the label distributions. The task
of matching the distribution of source labels onto
some target through word alignments also bears
some similarities with optimal transport. We leave
such investigation to the future.
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A EM steps with posterior regularization

The iterative algorithm closely mimics the classical
EM coordinate ascent, with the addition of solving
the Lagrange multipliers:

1. (Start) Random initialization of the IBM 2
model parameters θ0.

2. Compute pFA as specified by the IBM 2
model, given θt.

3. Find the optimal Lagrange multipliers λ∗c and
compute the tilted distribution q∗.

4. Find the optimal parameters θt+1 using q∗ in
place of pFA.

5. Iterate from step 2 until convergence.

B Excerpt of the translation table for
English-French bitexts

In table 5, French words that are not semantic trans-
lations of the English source word are highlighted
in red. The "count" represents the number of bi-
texts where the English and French words appeared
in the source and target sentences respectively. We
observed that posterior regularization using labels
improved the quality of the translation table (and
consequently, alignments) as well.
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fast_align FastLabel count
English French English French

list courses list liste 222
theater au theater theater 22.0
please te please plaît 117.0
closed est closed fermé 5.0

app application app l’ 6.0
diaper culotte diaper couche 12.0
don’t ne don’t pas 11.0
march le march mars 32.0

funniest la funniest drôle 3.0
beauty la beauty belle 4.0
cinema au cinema cinéma 9.0
baby baby baby bébé 11.0
mode mode mode multilangues 4.0
frozen des frozen reine 5.0
snow des snow neige 3.0

oatmeal d’ oatmeal flocons 3.0
text un text message 3.0
hip hop hip hip 3.0

Table 5: All disagreements appearing more than thrice be-
tween the translation tables produced by fast_align and Fast-
Label on the English-French bitexts in our internal dataset.

C Hyperparameters

Eflomal was run using the "model3" argument so
that the final model makes use of IBM model 1,
Hidden Markov Models, and also models fertil-
ity. Both the forward and reverse alignments (i.e
they were not symmetrized) were used to make the
priors.

AWESoME was fine-tuned for 2 epochs in an
unsupervised fashion independently on the training
split of both MultiATIS++ and our internal data,
with the following hyperparameters:

hyperparameter value(s)
extraction softmax
training epochs 2
training objectives Masked Language Modelling

(MLM), Translation Language
Modelling (TLM), Self-training
objective (SO)

gradient accumulation
steps

4

learning rate 0.00002
maximum training steps 20000

D Compute

FastLabel, eflomal and fast_align were run on cpu
on a consumer-grade laptop. AWESoME was fine-
tuned for 2 epochs on a single Nvidia Tesla V100
GPU. Our python re-write of fast_align trains at
the rate of approximately 260 samples per second.
With posterior regularization using trigrams, the
training speed drops down to approximately 80 iter-
ations per second. This translates to a training time
of 15 seconds per iteration (MultiATIS++ dataset,

4300 training samples) with fast_align and almost 1
minute per training iteration for FastLabel (with tri-
grams). Though our rewrite of fast_align (and con-
sequently FastLabel) is faster to train compared to
recent models such as AWESoME, it is still slower
than the original implementation of fast_align and
eflomal (which are written in c) - this is currently
a limitation of our work and we intend to address
this in a future code release.
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Abstract

Pretrained Transformer based models finetuned
on domain specific corpora have changed the
landscape of NLP. However, training or fine-
tuning these models for individual tasks can be
time consuming and resource intensive. Thus, a
lot of current research is focused on using trans-
formers for multi-task learning (Raffel et al.,
2020) and how to group the tasks to help a
multi-task model to learn effective representa-
tions that can be shared across tasks (Standley
et al., 2020; Fifty et al., 2021). In this work,
we show that a single multi-tasking model can
match the performance of task specific mod-
els when the task specific models show similar
representations across all of their hidden layers
and their gradients are aligned, i.e. their gradi-
ents follow the same direction. We hypothesize
that the above observations explain the effec-
tiveness of multi-task learning. We validate
our observations on our internal radiologist-
annotated datasets on the cervical and lumbar
spine. Our method is simple and intuitive, and
can be used in a wide range of NLP problems.

1 Introduction

Since the seminal work by (Vaswani et al., 2017),
Transformers have become the main architecture
for almost all Natural Language Processing (NLP)
tasks. Self-supervised pretraining of massive lan-
guage models like BERT (Devlin et al., 2019) and
GPT (Brown et al., 2020) has allowed practition-
ers to use these large language models with lit-
tle or no finetuning to various downstream tasks.
Multi-task learning (MTL) in NLP has been a very
promising approach and has shown to lead to per-
formance gains even over task specific fine-tuned
models (Worsham and Kalita, 2020; Raffel et al.,
2020; Aribandi et al., 2021). However, apply-
ing these large pre-trained Transformer models to
downstream medical NLP tasks is quite difficult.
Medical NLP has its unique challenges ranging

from domain specific corpora, noisy annotation
labels and scarcity of high quality labeled data.
Despite these challenges, a number of researchers
and practitioners have successfully finetuned these
large language models for various medical NLP
tasks. However, there is not much literature that
uses multi-task learning in medical NLP to classify
and extract diagnoses from clinical text (Peng et al.,
2020; Crichton et al., 2017). Moreover, there is al-
most no work in predicting spine pathologies from
the radiologists’ notes (Azimi et al., 2020).

In this article, we are interested in extracting
information from radiologists’ notes on the cer-
vical and the lumbar spine. In a given note, the
radiologist discusses the specific, and often multi-
ple pathologies, present in the medical images and
grade their severity. Extracting relevant patholo-
gies from these reports can facilitate the creation
of structured databases that can be used for a num-
ber of downstream use-cases, such as cohort cre-
ation, quality assessment and outcome tracking.
Single-task learning for information extraction in
medical NLP has enjoyed much success in deep
learning (Kanakarajan et al., 2021).

However, an ultimate NLP system for a com-
plete understanding of the medical report must be
able to perform many diverse information extrac-
tion and classification tasks simultaneously and
efficiently. Such a system can be enabled by MTL,
where one model shares weights across multiple
tasks and makes multiple inferences in one forward
pass. Such networks can not only be trained with
limited resources, but are more scalable and deploy-
able when compared to several single-task models.
Moreover, the shared features within these MTL
networks can induce more robust regularization and
boost performance. Thus there is a lot of interest in
the academic and industry research communities to
understand when multi-task learning improves per-
formance over single-tasking models (Crawshaw,
2020), and how to group a diverse set of tasks to
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Figure 1: Figure showing how a report looks as it goes through our pipeline.

encourage the model to learn a representation that
can be shared across tasks (Standley et al., 2020;
Fifty et al., 2021; Bingel and Søgaard, 2017; Zamir
et al., 2020). Some of the aforementioned works,
most notably in (Shui et al., 2019), define a notion
of task similarity via the Wasserstein distance and
show that a small Wasserstein distance between
tasks aids in MTL.

This work is an extension of our earlier work (Se-
hanobish et al., 2022) where we used parameter
efficient MTL models to extract information from
cervical spine. In that work, we defined tasks as
a conditional distribution over the classes, and we
attributed our success of MTL to smaller Wasser-
stein distance between tasks. However, computing
Wasserstein distance is expensive and suffers from
the curse of dimensionality (Cuturi, 2013), which
requires the number of samples to be significantly
larger than the dimension of the representation (768
for many transformer models) in order for the dis-
tance to be accurately estimated. This prevents us
from being able to estimate Wasserstein distance
for some of our minority classes, which have about
200 examples. Even for majority classes where we
have about 5k samples, our work suffers from large
error rates. Thus, to alleviate the above drawbacks,
in this work, we sought to use methods that are
applicable to small data regimes that lie in high
dimensional space.

Inspired by the work of (Yu et al., 2020; Chen
et al., 2020) and (Kornblith et al., 2019), we hy-
pothesize if the single-task models show similar
representations across their hidden layers and the
task specific gradients are aligned (see Definition
1 in Section 4.2), the multi-task model can match
or outperform the task-specific, single-task models.
We validate this hypothesis on two multi-task set-
tings on our internal datasets: (a) Four of the most
common pathologies in the cervical spine - cen-

tral canal and foraminal stenosis, disc herniation
and cord compression, and (b) Three pathologies
in the lumbar spine - central canal stenosis, disc
herniation and nerve root impingement.

In this work, we (a) extend our novel pipeline to
extract and predict the severity of various patholo-
gies in the lumbar and cervical spine at each mo-
tion segment, (b) compute Central Kernel Align-
ment (CKA) and show similarity between the trans-
former layers trained for individual tasks on a given
dataset, (c) compute dot products between the gra-
dients of the task specific loss functions with re-
spect to various parameters and show that most of
the gradients flow along a similar trajectory and
(d) show how to leverage that information into a
simple MTL framework allowing us to achieve sig-
nificant model compression during deployment and
also speed up our inference without sacrificing the
accuracy of our predictions.

2 Datasets

We use an internal dataset consisting of radiolo-
gists’ MRI reports on the cervical and the lumbar
spine. Our dataset is heterogeneous and is diversely
sampled from a large number of different radiology
practices and medical institutions; the cervical MRI
data consists of 1578 reports from 97 different radi-
ology practices detailing various pathologies of the
cervical spine and our lumbar MRI data contains
2004 reports from 170 different practices.

We annotate the cervical reports with the 4 fol-
lowing pathologies: spinal stenosis, disc herniation,
cord compression, and neural foraminal stenosis,
and the lumbar reports with the 3 pathologies: disc
herniation, spinal stenosis, and nerve impingement.
Each of these pathologies is accompanied by an
indication of severity. In the cervical reports, the
three categories for the central canal stenosis are
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based on gradation; none/mild are not clinically
significant, moderate and severe definitions involve
cord compression or flattening. The moderate ver-
sus severe gradation refers to the varying degrees
of cord involvement. For disc herniation and cen-
tral canal stenosis, the categories are based on a
continuous spectrum and it is a standard practice
in radiology for any continuous spectrum to be
bucketed in mild, moderate and severe discrete
categories. Cord compression severity is binary:
compression/signal change versus none. This is
because both cord compression and signal change
can cause symptoms, and are therefore clinically
relevant. Foraminal stenosis is treated as a binary
task as well: severe versus non-severe, as severe
foraminal stenosis may indicate nerve impinge-
ment, which is clinically significant. Similar con-
siderations are taken into account when annotating
the lumbar reports. The splits and the details of
each category can be found in Table 1. The data dis-
tribution is highly imbalanced, and about 25% of
these reports are OCR-ed, which leads to additional
challenges stemming from bad OCR errors.

Dataset Pathology Training Label Distribution Test Label Distribution

Lumbar
Disc

None/Mild : 1885
Moderate : 1998
Severe : 456

None/Mild : 1068
Moderate :1588
Severe :332

Stenosis
None/Mild : 3787
Moderate : 350
Severe : 202

None/Mild : 2411
Moderate : 304
Severe : 273

Nerve
Normal : 3790
Abnormal : 549

Normal : 2376
Abnormal : 612

Cervical

Disc
None/Mild : 2731
Moderate : 2699
Severe : 797

None/Mild : 401
Moderate : 378
Severe : 101

Stenosis
None/Mild : 5488
Moderate : 561
Severe : 178

None/Mild : 793
Moderate : 68
Severe : 19

Cord Compression
Normal : 5702
Abnormal : 525

Normal : 806
Abnormal : 74

Neural Foraminal Stenosis
Normal : 5262
Abnormal : 965

Normal : 789
Abnormal : 91

Table 1: Table showing statistics of our datasets

For a given report, each task is to predict the
severity of a pathology for each motion segment -
the smallest physiological motion unit of the spinal
cord (Swartz et al., 2005). Breaking information
down at the motion segment level in this way en-
ables pathological findings to be correlated with
clinical exam findings, and can inform future treat-
ment interventions.

Every report is tagged by annotators with labels
for relevant pathologies and severities, along with
span information indicating which part(s) of the
report mentions each pathology. For example, in
a report for the lumbar spine, the sentence “L1-
L2: There is no disc herniation. No spinal canal

or foraminal narrowing" would be given normal
or 0 class for each of the 3 pathologies (central
canal stenosis, disc herniation and nerve root im-
pingement). Similarly in a cervical spine report,
the sentence “ C2-3: Normal; no disc herniation
or bulge. No central canal stenosis or neuroforami-
nal narrowing" would be given a normal or 0 class
for all the 4 pathologies. An example of a full
radiology report can be found in Appendix A.

3 Workflow

In this section, we will briefly describe our pipeline.
The reports are first de-identified according to
HIPAA regulations. Next, a Spacy (Honnibal et al.,
2020) parser is used to break the report into sen-
tences.

A BERT based NER model which we call the
report segmenter is then used to identify the mo-
tion segment(s) referenced in each sentence, and
all the sentences containing a particular motion
segment are concatenated together. This report seg-
menter has been shown to achieve an F1 score of
.9 on our internal datasets, and the same model is
common across both the lumbar and the cervical
datasets. More details about the NER model and
the hyperparameters used to train it can be found in
Appendix B and C. All pathologies are predicted
using the concatenated text for a particular motion
segment. Finally, the severities for each pathology
are modeled as multi-label classification problem,
and a pre-trained transformer is finetuned using the
text for each motion segment.

For more details about our pipeline and data
processing, please see Appendix B. Figure 1 breaks
down how a report looks as it is processed through
our spine pipeline.

4 Similarity of Representations between
Task Specific Models

In this section we will describe our methodology
to understand the similarity between the represen-
tations of various single task models. For all the
experiments in this section, we use the PubMed-
BERT (Gu et al., 2020) as the backbone.

4.1 Central Kernel Alignment

We use the linear Central Kernel Alignment (CKA),
introduced in (Kornblith et al., 2019). CKA is a
scalar similarity index that can be used to compare
representations within and across neural networks.
(Linear) CKA can be defined by the following:
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Figure 2: CKA between activation matrices between different finetuned single-task models. The top 2 rows are
single-task models trained to predict specific pathologies from cervical dataset and the bottom row for the lumbar
dataset. The y-axis is chosen to be between the min and the max values, i.e. in the interval (.86, 1.0)

Given N examples and two activation outputs on
these examples, R1 ∈ RN×d1 and R2 ∈ RN×d2 ,

CKA(R1, R2) =
||R⊤

1 R2||F
||R⊤

1 R1||F ||R⊤
2 R2||F

(1)

where || · ||F is the Frobenius norm.
It is widely believed that similar representa-

tions lead to similar performances on downstream
tasks (Nguyen et al., 2021). In this work, we com-
pare the representations learned by various single
tasking models. For two single task models trained
on a specific part of a spine, the CKA between
the matrix of activations for each layer of the cor-
responding models is computed. For illustration
purposes, we collect all the CKA values for various
activation matrices in a given layer and plot them
in a box plot, as shown in figure 2. We observe that
for various tasks on both cervical and lumbar spine,
all layers of the task specific models learn similar
representations.

Additional results on comparing models from
the tasks from the lumbar dataset and the cervical
dataset can be found in Appendix D.

However, the high value of CKA may also
be attributed to the following factors : (i) larger
and deeper networks converge to similar solu-
tions (Morcos et al., 2018) and (ii) CKA values
do not change drastically when models start from
pretrained weights and are only trained for a few
epochs (Mirzadeh et al., 2021).

Thus in addition to the above analysis of the
activations with the CKA, in the next subsection

we look at the gradient level information to un-
derstand the trajectory of the task specific learned
activations.

4.2 Gradient Alignment

There has been a lot of work in understanding the
task specific gradients in the context of MTL. Given
tasks T1, · · ·Tn (for example, they can be classifi-
cation tasks), one can define n loss functions LTj

for each task Tj . In our work, all loss functions
are cross-entropy losses. Then the task specific
gradients are defined to be ∇θjLTj where θj are
the parameters of the task specific model. More
specifically, it is shown in (Chen et al., 2018), that
MTL is competitive with single task learners when
the norms of the task specific gradients have similar
magnitudes. However in (Yu et al., 2020; Javaloy
and Valera, 2021), the authors show that the direc-
tion of the gradient flow is more important than
the magnitude for the success of MTL. More pre-
cisely, Theorem 1 in (Yu et al., 2020), shows that
the multitask objective converges to the optimum
of one of the tasks or a sub-optimal minima in the
presence of conflicting gradients. Furthermore, au-
thors in (Javaloy and Valera, 2021) use a synthetic
toy example to show the difficulties of optimiz-
ing a multi-task loss in the presence of conflicting
gradients.

Inspired by the above works, we define the fol-
lowing:

Definition 1 Two gradient vectors gi and gj are
aligned if gi · gj > 0, i.e. the vectors are pointing
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in the same direction.

To show that the gradients get more aligned as
models are trained, we store the gradients for all
the parameters for all the mini-batches after every
epoch. We then compute the dot products between
the corresponding gradients for two tasks. We ob-
serve that as the task specific models gets trained,
an overwhelming proportion of these gradients are
aligned (see Table 2). To illustrate our findings,
we take the proportion of these aligned parameters
in a given layer and plot them using a box plot in
Figure 3. Finally, we compute the proportion of
weights across all layers for which the gradients
are aligned which we call the Average Proportion
of Aligned Gradients (APAG).

APAG =
1

N layers

1

N heads

∑

layers

∑

heads

θ (gi · gj) (2)

where θ(x) is the Heaviside step function. This
is a scalar value that summarizes the box plot and
we show the progression of alignment of the gradi-
ents as training progress and the end of the training
(Table 2 and Table 6 in Appendix D respectively).
Note that, in the above formula, the token embed-
ding layer is included in the computation and it is
assumed to have 1 head.

Dataset Task Comparisons Epoch 1 Epoch 2 Epoch 3 Epoch 4

Cervical

Cord-Stenosis .46 .67 .75 .81

Cord-Disc .37 .52 .69 .74

Cord-Foraminal .49 .61 .77 .83

Disc-Stenosis .51 .62 .69 .78

Disc-Foraminal .47 .59 .65 .73

Foraminal-Stenosis .54 .66 .72 .79

Lumbar Disc-Stenosis .44 .53 .59 .68

Nerve-Stenosis .51 .57 .66 .73

Disc-Nerve .48 .55 .63 .71

Table 2: Results showing the Average Proportion of
Aligned Gradients between various task specific models
at various epochs.

To summarize: The task specific models not only
show similar representations but they arrive at these
representations by moving in a similar direction af-
ter starting from the pretrained weights. We would
also like to point that we observe similar behavior
when we run our experiments with the BERT (De-
vlin et al., 2019) and the Clinical BERT (Alsentzer
et al., 2019) models.

5 Results on Multi-Task Models

In this section, we give empirical evidence on the
success of MTL for our datasets. The results shown
in this section are from our test set.

For our classification task, the PubMedBERT
model is used as the backbone. This BERT model
is finetuned on the the cervical tasks resulting in
4 task-specific BERT sequence classifier models
which provides our baseline results. For the lumbar
dataset, the PubMedBERT model is finetuned on
the 3 classification tasks resulting in 3 task-specific
BERT sequence classifier models.

Now, instead of finetuning the task specific mod-
els for extracting various pathology information
from the cervical spine dataset, 4 classifier heads
(i.e. 4 linear layers) are added to a single PubMed-
BERT model to create an output layer of shape
[3, 3, 2, 2], where the first 3 outputs correspond to
the logits for the stenosis severity prediction, the
next 3 for the disc severity, the next 2 for the cord
severity and the final 2 logits for the foraminal
severity. For the lumbar dataset, 3 classifier heads
are added to the PubMedBERT model to create
an output layer of shape [3, 3, 2], where the first
3 outputs correspond to the logits for the stenosis
severity prediction, the next 3 for the disc severity,
and the final 2 logits for the nerve severity.

For the experiments, with both the datasets, a
dropout of .5 is added to the BERT vectors before
passing them to the classifier layers. Each of these
classifier heads is trained with a cross entropy loss
with the predicted logits and the ground truth tar-
gets. All the losses are added up which allows
the gradients to backpropagate through the whole
model and train these classifier heads jointly.

The results for our experiments are shown in
Table 3 for the lumbar dataset and Table 4 for the
cervical dataset.

Backbone Model Disc Stenosis Nerve

BERT
BASE

Baseline
(single tasker)

.78± .03 .79± .02 .8± .03
Multi-Tasking .77± .02 .78± .01 .79± .02

CLINICAL
BERT

Baseline
(single tasker)

.81± .03 .83± .02 .82± .03
Multi-Tasking .83± .02 .8± .04 .81± .02

MSR PubMedBERT
Baseline

(single tasker)
.82± .03 .83± .03 .81± .04

Multi-Tasking .84± .01 .84± .03 .86± .04

Table 3: Table showing the macro F1 scores over 5
trials of our Baseline and Multi-Tasking Models on the
Lumbar Dataset.

For fair comparisons, we also conduct experi-
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Figure 3: Box Plot showing the proportion of aligned gradients between various task specific models, after training.
The top 2 rows are single tasking models trained to predict specific pathologies from the cervical dataset and the
bottom row for the lumbar dataset. The y-axis is chosen to be between the min and the max values, i.e. in the
interval (.38, .725).

ments with the BERT base and the Clinical BERT
models as well. We notice that the PubMedBERT
produces slightly better results than both the Clin-
ical BERT and the BERT base. We believe this
is due to the fact that the vocabulary for PubMed-
BERT is tailored for clinical text, unlike that of
Clinical BERT, which uses the same vocabulary as
that of BERT.

Backbone Model Stenosis Disc Cord Foraminal

BERT
BASE

Baseline
(single tasker)

.62± .03 .64± .03 .70± .03 .79± .03
Multi-Tasking .62± .02 .65± .03 .72± .02 .78± .01

CLINICAL
BERT

Baseline
(single tasker)

.64± .05 .66± .02 .71± .02 .82± .01
Multi-Tasking .63± .02 .67± .01 .75± .01 .79± .03

MSR PubMedBERT
Baseline

(single tasker)
.66± .03 .68± .04 .73± .05 .84± .01

Multi-Tasking .67± .01 .69± .01 .72± .04 .83± .03

Table 4: Table showing the macro F1 scores over 5
trials of our Baseline and Multi-Tasking Models on the
Cervical Dataset.

The hyperparameters and other training and im-
plementation details can be found in Appendix C.

6 Deployment

We deploy our spine pipeline system on an AWS
p3.2x machine with a single NVIDIA V100 GPU.
Reports are passed through the pipeline daily and
first go through the report segmenter which tags

sentences belonging to our set of motion segments.
Post-processing is done per report to aggregate sen-
tences belonging to each motion segment group and
to filter out any reports that do not contain motion
segments. Each grouping of motion segments is
individually classified through our MTL model to
predict a severity class per pathology. Both the re-
port segmenter and the multi-tasking model are pro-
cessed in batch mode with latencies of 31ms/report
and 56ms/report, respectively. Compared to single
pathology models, we observe a 3x improvement in
latency per study when using the MTL pathology
model. The spine pipeline is routinely evaluated
in an offline setting for studies that do not produce
any motion segment groupings or fail to capture
any sentences for a given motion segment, per re-
port. Our current deployment only supports the
lumbar reports and we are in the process of extend-
ing our deployment to also support the cervical
pathologies.

7 Conclusion and Future Work

In this work, a simple multi-tasking model is pre-
sented that is competitive with task specific mod-
els. Instead of training and deploying task specific
models, only one model is trained and deployed.
This allows us to save significant costs during train-
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ing and faster inference during deployment while
achieving significant model compression, without
any loss in the quality of performance. Our work
opens the possibility of using multi-tasking models
to extract information over various different body
parts, allowing users to leverage large transformer
models using limited compute resources.

Our novel pipeline is one of the very few works
that attempts to extract pathologies and their sever-
ities from a heterogeneous source of radiologists’
notes on lumbar and cervical spine MRIs at the
level of motion segments. These findings suggest
that our approach may not only be more widely
generalizable and applicable, but also more clini-
cally actionable.

We believe our analysis with CKA and gradi-
ent alignment sheds more light on the success of
MTL. This insight has led to our process change
from single-task BERT based models to a more
cost-effective MTL system. Our analysis is widely
applicable for other datasets and tasks.

It is tempting to ask if one can use one multi-task
model for both the lumbar and the cervical datasets.
This is a work in progress and we have found strong
similarity between single task models in the two
datasets (most notably between the lumbar disc and
the cervical disc models and the lumbar stenosis
and the cervical stenosis models). However, un-
like in the above analysis, we see low CKA scores
between various other task specific models which
may make MTL difficult (see Appendix D). We
are in the process of using our analysis, along with
insights borrowed from (Standley et al., 2020; Yu
et al., 2020) to either group tasks from the two
datasets or align different task-specific gradients to
create an efficient learner.

The biggest drawback of our work is the limited
amount of data on which our observations are ver-
ified. We are actively addressing this issue as we
annotate more reports concerning various patholo-
gies in different body parts.

Ethical Considerations

Because of legal and institutional concerns arising
from the sensitivity of clinical data, it is difficult for
the NLP community to gain access to relevant data
except for MIMIC (Johnson et al., 2016). Despite
its large size (covering over 58k hospital admis-
sions), it is only representative of patients from a
particular clinical domain (the intensive care unit)
and geographic location (a single hospital in the

United States). Such a sample is not representative
of either larger population of patient admissions or
other geographical regions/hospital systems. We
have tried to address the second issue by collecting
data across multiple practices in the US. However,
it is impossible to predict whether our models will
generalize to the entire patient population with-
out actually evaluating on all the different radiol-
ogy practices. Thus we have to be extra careful
about out-of-distribution data since the actionable
insights we generate from our models can be poten-
tially faulty and can lead to severe consequences.

Finally, we recognize the need to minimize ethi-
cal risks of AI implementation which can include
threats to privacy and confidentiality, informed con-
sent, and patient autonomy. We strongly believe
that stakeholders should be encouraged to be flexi-
ble in incorporating AI technology, most likely as
a complementary tool and not a replacement for a
physician. Thus, we develop our workflows, anno-
tation guidelines and generate actionable insights
by working in conjunction with a varied group of
radiologists and medical professionals.
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A Example of our Dataset

Figure 4: An example of a report from our Lumbar
Dataset.

In this section, we will show some examples of
lumbar and cervical reports from our dataset.

Figure 5: An example of a report from our Cervical
Dataset.

B More Details about our Workflow

In this section, we give a more detailed description
of our novel workflow. Our main goal is to detect
pathologies at the motion segment level from radi-
ologists’ MRI reports. The motion segments in the
cervical reports that we are interested in are C2-C3,
C3-C4, C4-C5, C5-C6, C6-C7 and C7-T1 and the
motion segments of interest in the lumbar reports
are L1-L2, L2-L3, L3-L4, L4-L5 and L5-S1. We
first make sure that the reports are de-identified
and then use a Spacy (Honnibal et al., 2020) parser
to break the report into sentences. Then each sen-
tence is tagged by annotators and they are given
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Hyperparameter Type
Single Tasking Models

on Cervical Dataset
Multi-Tasking Models

on Cervical Dataset
Single Tasking Models

on Lumbar Dataset
Multi-Tasking Models

on Cervical Dataset
NER

Epochs 5 12 6 11 5
Batch Size 16 16 16 16 16
Sequence Length 512 512 512 512 256
Optimizer AdamW AdamW AdamW AdamW AdamW
Learning Rate 2e-5 3e-5 2e-5 3e-5 1e-5
Weight Decay 1e-4 1e-4 1e-4 1e-4 1e-3
Gradient Clip 2 5 2 5 2
Early Stopping Yes Yes Yes Yes Yes
Learning Rate Scheduler Linear Linear Linear Linear Linear

Table 5: Hyperparameters used for all our experiments

labels of various pathologies and their severities
if the sentence mentions that pathology. To de-
tect pathologies at a motion segment level, we use
our BERT based NER system to tag the locations
present in each sentence. Our BERT based NER
model is a binary classifier model (Location Tag vs
the Other Tag). It is is trained on both lumbar and
cervical MRI reports that can predict the location
tags in those reports. Our NER model achieves an
F1 score of .9.

We then use an appropriate body part specific
rule based system to group all sentences to the
correct motion segment. If a sentence does not
explicitly have a motion segment mentioned in it,
we use a rule based method to assign the sentence
to one of the above mentioned motion segments or
to a generic category ”No motion segments found".
Given the disparate source of our data and due to
typos and OCR errors, for example, L23, L2L3,
L@L3, L2_L3 all may refer to the motion segment
L2-L3 and thus our systems are mindful of this
diversity of the clinical notes. Finally to use our
BERT based models for pathology detection on
the level of motion segments for a given report,
we concatenate all sentences for a given motion
segment and use the [CLS] token for the segment
that is used for the downstream classification task.

Since we are interested in predictions at the mo-
tion segment level, we do not use the sentences that
are grouped under ”No motion segments found" to
train the classifier models, nor do we evaluate our
classifier models on those sentences.

C Hyperparameters and Other Training
Details

We create a validation set using 20% of the samples
of the training set where the samples are drawn via
stratified samples so the data distribution is main-
tained across splits. The hyperparameters used for

training the NER model and various classification
models can be found in Table 5.

PyTorch (Paszke et al., 2019) and the Hugging-
Face library (Wolf et al., 2020) is used to conduct
our experiments which are run on 1 NVIDIA V100
16GB GPU.

D Additional CKA Results and Gradient
Alignment Results

In this section, we present some additional results
on comparing representations between our various
models.

We present the average proportion of aligned
gradients (APAG) at the end of training in Table 6.
We also compute the cosine similarity between the
gradients. We then take the average of them for a
given layer, thus yielding a scalar value per layer.
This yields cosine similarity values which are over
90 % positive. For simplicity, we average those
numbers to produce a scalar value that measures
the cosine similarity between the gradients of two
models. Model level statistics can be found in
Table 6.

Dataset Task Comparisons Cosine Similarity
Average Proportion
of Aligned Gradients

Cervical

Cord-Stenosis .013 .89

Cord-Disc .005 .87

Cord-Foraminal .011 .91

Disc-Stenosis .012 .88

Disc-Foraminal .007 .87

Foraminal-Stenosis .005 .84

Lumbar Disc-Stenosis .008 .75

Nerve-Stenosis .01 .86

Disc-Nerve .002 .86

Table 6: Results showing the Cosine Similarity and
the Average Proportion of Aligned Gradients between
various task specific models after the end of training.

Given some similarities between certain label
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Figure 6: Box plot showing CKA scores between models trained on tasks on the lumbar and the cervical dataset.
The y-axis is chosen to be (0,.85). The figure shows the low CKA scores between the cord and the nerve models
and high scores between the stenosis models and the disc models.

spaces in the lumbar and the cervical dataset (partic-
ularly for the disc herniation and the central canal
stenosis labels), we believe that some task specific
models between tasks across datasets may show
similar representations. To validate this hypothesis,
we computed the CKA between lumbar stenosis
and the cervical stenosis models and the lumbar
disc and the cervical disc models. The natural
question is : what happens to the single tasking
models that are trained on label spaces that are se-
mantically different? Fig 6 shows low CKA scores
between the cord and the nerve models. This is an
active work in progress to be able to group simi-
lar tasks (Standley et al., 2020) to create a MTL
framework that works for both the cervical and the
lumbar spine. Another future direction is to use
realign gradients using the techniques in (Yu et al.,
2020). However to realign the gradients, one has
to save the entire computation graph after the back-
ward pass via loss.backward(retain_graph=True)
which becomes a bottleneck for large transformer
models. To mitigate this issue, one can use pa-
rameter efficient methods like adapters which we
have shown to work in these MTL settings in our
previous work (Sehanobish et al., 2022).

E Annotation Process

All data are annotated by our team of inhouse an-
notators with clinical expertise. All annotators are
trained for the given task and provided clear guide-
lines on the task and performance is measured pe-
riodically on a benchmark set and feedback is pro-
vided.
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Abstract

Large-scale conversational assistants such as
Cortana, Alexa, Google Assistant and Siri pro-
cess requests through a series of modules for
wake word detection, speech recognition, lan-
guage understanding and response generation.
An error in one of these modules can cascade
through the system. Given the large traffic
volumes in these assistants, it is infeasible to
manually analyze the data, identify requests
with processing errors and isolate the source
of error. We present a machine learning sys-
tem to address this challenge. First, we embed
the incoming request and context, such as sys-
tem response and subsequent turns, using pre-
trained transformer models. Then, we com-
bine these embeddings with encodings of ad-
ditional metadata features (such as confidence
scores from different modules in the online
system) using a "mixing-encoder" to output
the failure point predictions. Our system ob-
tains 92.2% of human performance on this task
while scaling to analyze the entire traffic in 8
different languages of a large-scale conversa-
tional assistant. We present detailed ablation
studies analyzing the impact of different mod-
eling choices.

1 Introduction

Conversational assistants have become increasingly
prevalent in every-day life. With them, users can
control appliances at home, get current weather in-
formation, or get help with recipes in the kitchen
through simple voice commands. A typical dialog
system processes user requests in multiple stages
(see Figure 1). First, a voice trigger (or wake word)
(Sigtia et al., 2018) model determines whether the
user is speaking to the assistant. Following the trig-
ger component, an Automatic Speech Recognition
(ASR) (He et al., 2019) module converts user audio
stream into a set of discrete text tokens. This text is
sent to the Natural Language Understanding (NLU)
component, which analyzes what the user request

means. The domain classifier (DC) categorizes the
user’s request into a set of pre-defined topics, the
intent classifier (IC) assigns an intent which rep-
resents what the user is trying to accomplish, and
the entity recognition and resolution component
(ERR) recognizes and resolves known entities in
the users request. The system generates the best
possible response (Result stage) using several sub-
systems that are specific to each dialog assistant
(e.g., dialog management, re-ranking, etc). Finally
the response is rendered into a human-like speech
using a Text-to-Speech (TTS) system.

Conversational AssistantUser

Wake word model

Natural Language
Understanding

Automatic Speech
Recognition Named Entity

Recognition & Resolution

Domain & Intent
Classification

Result Generator

Text-To-Speech

Figure 1: Component-level architecture of a typical
conversational assistant.

When such a system makes an error, the com-
plexity of the processing pipeline makes it ex-
tremely challenging to isolate the source of a defect.
An error in an upstream component (e.g. ASR) can
propagate through the system to the final response
to the user. In such cases it is likely that multiple
components starting from the first source of the er-
ror (referred to as "root" or "failure point" hereby)
produce erroneous outputs. However, it is critical
to identify this error to improve the overall system.
Given the large traffic volumes, manual analysis to
identify root causes for processing errors is infeasi-
ble.

In this work, we develop a machine learning
model that predicts which component of a conver-
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sational assistant caused the system to fail when
processing user requests, a Failure Point Isola-
tion (FPI) model. Our system helps to monitor
the performance of the system holistically and im-
prove the components of the dialog assistant that
result in defective user interactions. The FPI model
takes multiple inputs including the request text, sys-
tem response, and subsequent turns which together
help in capturing implicit feedback from the cus-
tomer. We leverage recent progress in pre-trained
Transformer-based language models to encode this
information. We then combine these with encod-
ings of metadata features such as confidence scores
from different components in the online system
using additional Transformer-based "mixing" lay-
ers to output the source of error or mark a request
as correctly processed. Our model is trained on
a small number of examples annotated with the
source of error and then applied on all traffic for
failure point isolation.

We present extensive experimental results to
characterize the performance of our model and the
impact of different modeling choices. Using only
encoding of the request text, we achieve an F1 score
of 24.2% for FPI on our test sets. This improves
to 40.3% by leveraging the full dialog context and
system response. We see a further improvement to
51.4% by including additional metadata features.
We also present ablation studies to characterize the
impact of different text encoders and architecture
choices for the mixing layer that further improve
F1 score to 53.3%. We show that this corresponds
to 92.2% of human performance on the FPI task
using a "golden" test set created by combining an-
notations from multiple highly-trained annotators.

2 Related Work

Several works have attempted evaluating dialog
systems using deterministic or machine learning-
based methods. The majority can be classified into
the following groups: word-overlap metrics, user
sentiment based approach, or component-specific
error attribution.

Word-overlap metrics models like BLUE (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004) are not
well-suited for evaluating real-world conversational
assistants. Liu et al. (2016) has demonstrated that
the word-overlap metrics do not correlate wit=[p
human judgement. As conversational assistants can
also perform real-world functions (e.g., turning on
lights), evaluation of such systems based on the tex-

tual response alone does not fully capture the set of
actions taken by the system. Finally, the determin-
istic metrics are not fine-grained enough to identify
which component of the system was responsible for
the defective interaction. Hence, word-overlap met-
rics have a limited ability to provide prescriptive
feedback to developers.

Schmitt et al. (2012) proposed evaluating dialog
systems based on the user perception and Inter-
action Quality (IQ). Here each dialog is assigned
a numerical score as evaluated by an annotator.
Schmitt and Ultes (2015); Bodigutla et al. (2020);
Gupta et al. (2021) developed models that used
features derived from the logs of the dialog sys-
tem to build predictive IQ models. Gupta et al.
(2021) demonstrated that transformer-based archi-
tectures without log-derived features can outper-
form previously-developed models. Lowe et al.
(2017) proposed a similar to IQ metric, ADEM,
and trained a predictive mode. Sinha et al. (2020)
developed a transformer-based model, MAUDE.
This model is trained using contrastive learning
and produces scores that correlates with human
judgment. The sentiment or quality-based metrics
allow for monitoring real-life dialog systems, how-
ever they do not provide actionable insight into the
performance of the system components.

Chada et al. (2021) and Sethi et al. (2021) have
built systems that attribute errors in the NLU com-
ponent of a conversational assistant. Chada et al.
(2021) focused on building transformer-based mod-
els that detect NLU intent and domain classifica-
tions errors. Sethi et al. (2021) detect NLU domain
and intent errors in the dialog system using confi-
dence scores produced by the NLU models. When
attributing NLU errors, they focus on root-causing
issues in the training data (e.g., low-resource intent,
mislabeling, etc). Though this feedback is action-
able, neither of these works attempt to root-cause
errors in other components of dialog systems.

These aforementioned approaches have limita-
tions when it comes to failure point isolation in
large-scale conversational assistants. Instead of fo-
cusing on a small portion of a dialog system, we
create an automated error attribution system that
can provide insights into the root causes of defec-
tive interactions at scale for all of the components
of a conversational assistant. Unlike approaches
that estimate user satisfaction and dialog quality
from the user’s perspective, our focus is on under-
standing whether the system delivered the response
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that it was designed to deliver and if not, why. In
case when the system was designed to perform the
action but failed to do so, our model provides clear
feedback that can help to improve system perfor-
mance in the future.

3 Methodology

In this section, we first describe our training and
test datasets, and discuss the challenges in con-
structing them (§ 3.1). Next, we describe the cre-
ation of our "golden" test dataset (§ 3.2). Then,
we describe the features that we use in our model
(§ 3.3). Finally, we present details of the network
architecture and model training used to output FPI
based on these input features (§ 3.4).

3.1 Training Dataset
To train the FPI model, we created a dataset con-
taining real-world data by extracting a mix of ran-
dom and targeted samples from a commercial large-
scale conversational assistant. Our dataset contains
approximately 11.5MM de-identified user requests
in 8 different languages. The training dataset was
split into train, validation, and dev using a 75/5/20
scheme such that user sessions do not overlap in
any split. All requests were manually annotated
using internal tools as correct or incorrect. Incor-
rect requests were further labeled with one of five
error types, corresponding to one of the stages of a
conversational assistants processing pipeline (see
Figure 1). These include:

1. False Wake (FW) errors that capture incor-
rect trigger system predictions

2. ASR errors that capture the incorrect tran-
scription of the user speech

3. NLU errors that contain domain classification
(DC) and intent classification errors (IC)

4. ERR errors that capture entity recognition and
resolution errors

5. Result errors made by the response genera-
tion component when the system took an in-
correct action even though all previous steps
succeeded

When there are several potential errors in a di-
alog, we only mark one of them as the root cause
of the system failure: the first failing stage in the
processing pipeline, ordered from Wake Word to
Result stages. Figure 2 shows some example turns
of what different errors can look like in the pro-
cessing pipeline. In the first turn, the ASR error

would be marked as a fatal error and the root cause
of the defective system response. In the second
turn, the ASR error would be marked as non-fatal
as subsequent components are able to recover from
the error and produce a correct system response.
In the last turn the system performed as designed,
however it could not fulfill user request.

3.2 "Golden" Test Dataset
Given the vast data volumes, failure point isolation
in a complex dialog system is a challenging task
even for humans. For example, ERR error analysis
requires inspecting entity data (such as music cata-
logs). Further, the definition of the failure point can
be ambiguous without subsequently rerunning and
correcting each component of a dialog system. As
a result, the error attribution labels can have poor
quality and consistency across different annotators.

To create a suitable test set for evaluating the
accuracy of our model, we leveraged a more sophis-
ticated "golden" annotation workflow. This more
labor- and time-intensive workflow does not rely on
a single annotator but on a combination of multiple
annotators, and an ensemble of machine learning
models to make the labeling decision. First, each
request gets labeled by the annotators and the en-
semble model in parallel. Whenever there is a dis-
agreement on the labels, the request is evaluated by
a highly trained annotator who makes the final de-
cision. We annotated approximately 58k sessions
through this workflow to create a "golden" test set
with higher annotation quality than our training set.
The "golden" dataset is not used for training out
model, however it is used to report F1 score of the
models we train in this work and compare model
performance to humans.

3.3 Feature Engineering
We train our FPI model on a multi-turn dataset,
which includes user request, system response
(TTS), and the interaction metadata. The interac-
tion metadata is parsed from the logs of the online
production system and includes the outputs of the
machine learning models executed at each stage
of the data processing pipeline and identifiers of
the systems that made the final prediction, in the
case of multiple models competing for response
generation.

We limit user dialog to previous, current, and
next user interactions. Using the context of the
user interaction, we are aiming to capture implicit
customer feedback that a production system might
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Open the garage door.
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Sorry, I couldn't find a door with the name
"garbage".
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Dialog Metadata


 ...

ASR: Open the garbage door.       

NLU
ERR

...Turn 1

Session

 ...

ASR: Open garage door.       

NLU
ERR

...

 ...

ASR
NLU
ERR

...

Open the garage door.

Agent

Opening the garage door now.

User

Turn 2

Make me a sandwich.

Sorry, I don't know how to do this.

User

Turn 3 Agent

Figure 2: Construction of FPI model features using pre-
vious, current and next turn to get features from the
whole dialog.

be lacking. Our feature set includes multiple cate-
gorical features (e.g., NLU intent predictions), nu-
merical features (e.g., confidence scores logged by
run-time models, or time difference between user
turns), and text data, in the form of user request
text and system response (TTS) collected from a
user session.

Due to a large number of features available in the
logs and the complexity of our end-to-end system,
we group the categorical and numerical features
into 5 major groups for ablation studies: Wake
Word (WW) features, ASR features, NLU features,
Result features. WW, ASR, and NLU features in-
clude the confidence scores produced by the compo-
nent models. Result features include the details of
which sub-system produced response and whether
requested action could be fulfilled by the system.
We tokenize the text data using the sentencepiece
tokenizer before inputting them to Transformer-
based encoders that we describe in the next section.

3.4 Model Architecture and Training

Executing our model on already processed user ses-
sions gives us two advantages. First, we gather a
holistic view into the execution of all asynchronous
components by constructing model features from
the system logs. Second, there are no latency
limitations, which means we can leverage large
transformer-based models (Vaswani et al., 2017).

The four main components of our model are: cat-
egorical feature embedding networks, a numerical
embedding network, a transformer-based language
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Figure 3: The architecture of the Failure Point Isola-
tion (FPI) model with multi-modal feature embedding
networks. M and N are counts of categorical and nu-
merical features respectively.

model, and mixing layers built on top of the em-
bedding networks to produce the final predictions.
We process all of the numerical features jointly
using a single embedding network (see Figure 3).
Each of the categorical features are embedded sep-
arately. The numerical and categorical features are
concatenated with the language model embeddings
and are passed to "mixing" layers. Textual features,
request text and system response, are processed
jointly by multi-lingual transformer-based models
(Wolf et al., 2020; Paszke et al., 2019). In order to
constrain model latency we use mT5 (Xue et al.,
2021) and XLM-R (Conneau et al., 2020) mod-
els in their smallest configuration with 170M and
270M parameters. The mixing layer consists of the
encoder layers and a final feedfoward block that
produces model predictions.

The FPI model is trained using a multi-stage
procedure. First, we fine-tune the language mod-
els alone on FPI labels without metadata features
(Stage 1). This step is necessary for domain-
specific adaptation of the models pre-trained on
generic datasets. Second, we fine-tune the meta-
data encoder jointly with textual features on the
FPI labels using our training dataset, but do not
update the language model during this stage (Stage
2 warm-up). Finally, we fine-tune the whole model
on the FPI dataset (Stage 2 fine-tuning). The details
of our training setup and computational budget are
reported in Appendix A.
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4 Results

In this section, we report the results of the exper-
iments with the FPI model. First, we investigate
the importance of system response and extended
context size (§ 4.1). Second, we illustrate impor-
tance of the features derived from logs (§ 4.2). We
demonstrate the effect of language model size in
(§ 4.3). We perform experiments with fine-tuning
language models on the task-specific dataset (§ 4.4)
and compare performance of the best performing
model to a standard annotator (§ 4.5). The models
reported in subsections § 4.1-4.3 were trained using
only stage 2 of the training procedure (§ 3.4) with
mean-pooling layers unless specified otherwise. F1
scores are reported from a single training run on
the "golden" dataset described in § 3.2.

4.1 Importance of using system response and
extended context

context TTS
F1 scores

FW ASR ERR NLU Result Correct Avg
current 7 7.8 21.6 1.1 3.1 7.2 87.8 21.4
current X 5.8 31.2 10.9 18.9 41.3 90.5 33.1

extended X 16.1 40.3 15.5 29.4 48.4 92.1 40.3

Table 1: F1 scores of models trained with different con-
text (current turn vs extended context) with request text
and TTS, as indicated by TTS column. "current" indi-
cates that the model was trained with the current turn,
"extended" indicates that the model was trained with
previous, current, and next turns.

Table 1 summarizes F1 results of the experiments
that quantify the effect of adding TTS and dia-
log context on model performance. Thus, adding
TTS to the user request improves macro average
F1 score from 21.4% to 33.1%. Further on, we
find that extending dialog context to previous and
next turn improves F1 score by another 7.2% abso-
lute to 40.3% . As indicated by consistent gains in
Result, ASR, and NLU classes, this set of experi-
ments confirms our hypothesis: extended context
captures implicit feedback (e.g., rephrasing) from
the customer.

4.2 Importance of features derived from the
logs of system components

Based on our experiments (Table 2), adding fea-
tures derived from the logs of the dialog assistant’s
online components improves ability to detect errors
in those components. For example, NLU, ASR,

features
component F1 scores

FW ASR ERR NLU Result Correct Avg
- 16.1 40.3 15.5 29.4 48.4 92.1 40.3

Result 16.7 42.5 22.9 28.9 48.7 91.7 41.9
NLU 14.4 45.2 22.7 33.7 50.1 92.9 43.2
ASR 17.8 49.4 23.8 30.8 46.4 93.1 43.5
WW 33.3 40.6 18.8 30.3 49.9 92.5 44.2
all 39.7 53.8 27.5 39.9 53.4 94.0 51.4

Table 2: F1 scores of the models trained with full dialog
(including TTS) on different sets of features (see § 3.3).

and WW F1 scores gain 4.3% , 10.1%, and 17.2%
absolute when respective feature sets are added
to the FPI model. Additionally, adding NLU fea-
tures leads to improving ASR and ERR scores, and
adding ASR features yields improvements in the
WW class.

The model trained with the full feature set (bot-
tom row of the Table 2) demonstrates the best
performance in this experiment set with a macro-
average F1 score of 51.4%. It benefits from the
implicit feedback provided by the dialog text and
features derived from logs of all of the system com-
ponents.

4.3 Performance with a larger language
models

features
component F1 scores

FW ASR ERR NLU Result Correct Avg
- 25.9 46.3 20.7 34.6 53.6 93.0 45.7

all 29.7 53.7 27.3 39.7 54.3 93.8 49.8

Table 3: Results of the feature ablation studies with
XLM-R model with 270M parameters.

Table 3 presents F1 scores of the FPI network
trained with the XLM-R language model (§ 3.4).
Based on the results of our experiments, using
bigger models improves F1 scores of the model
trained using dialog as the only features (first row
in Table 3) from 40.3% macro-average for a model
trained using mT5 to 45.7% for a model trained
with the XLM-R model. The advantage of using a
larger language models disappears when we lever-
age a full feature set. Thus, the XLM-R-based
FPI model demonstrates 49.8% macro-average
F1 score, which is comparable to the mT5-based
model trained with the same feature set (§ 4.2).
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4.4 Effect of fine-tuning language models on
task-specific data

layer
Pooling F1 scores

FW ASR ERR NLU Result Correct Avg
mean 38.8 52.6 27.2 38.5 52.7 93.8 50.1
max 40.9 55.1 30.4 42.5 57.8 94.1 53.5

Table 4: F1 scores of the FPI models trained with lan-
guage models fine-tuned on the task-specific data.

The results of training model with stage 1 (lan-
guage model fine-tuning) and stage 2 are reported
in the Table 4. In addition to using fine-tuned
language models, we have also varied the pool-
ing method in the "mixing layer" of our network
(see additional study in Appendix B). We observe
that the network trained with mean-pooling layer
did not gain improvements from multi-stage pro-
cess. However, the network trained with a max-
pooling layer demonstrates 53.5% macro average
F1 score, outperforming the model trained only
with the stage 2 (§ 4.2).

4.5 Label Quality Analysis

FW ASR ERR NLU Result Correct Avg
FFPI
1 40.9 55.1 30.4 42.5 57.8 94.1 53.5

FHuman
1 57.4 61.5 33.8 44.0 56.1 91.6 57.4

FFPI
1 / FHuman

1 , % 71.2 89.6 89.9 96.7 103.1 102.7 92.2

Table 5: F1 score comparison of the best FPI model
(FFPI

1 ) and standard annotator (FHuman
1 ).

In order to quantify human performance on FPI
task, we compared label produced by a single an-
notator (non-expert), to the final label corrected by
a highly trained annotator in our "golden" dataset
(see § 3.2). Our analysis shows (see Table 5) that
the task of isolating failure points is easier in the
following three categories: ASR (F1 score of 61.52
%), False Wake (F1 score of 57.4%) and Result (F1
score of 56%). Detecting NLU and ERR errors is
the most difficult task with 44% and 34% F1 scores
in those classes respectively. We use this analy-
sis to understand reasonable limits for our model
which is trained on labels from a single annotator
as opposed to the "golden" workflow.

The best FPI model, using the max pooling
layer and a fine-tuned language model, on aver-
age achieves 92.2% of non-expert human F1 score
on the FPI task (see Table 5). The weakest perfor-
mance is observed in False Wake detection with

71.2% of human F1. The model achieves approx-
imately 90% of human performance in ASR and
ERR classes, 96.7% in NLU, and outperform hu-
mans in detecting Result and Correct errors. We
believe that the model demonstrates strong perfor-
mance in Result and Correct classes, as result errors
could be captured by the dialog context, when re-
peating or restating user request often can lead to
the same or similar results for the same user.

5 Limitations

During our research we identified several limita-
tions in the FPI system. First, our training dataset
only allows a single failure point, however multi-
ple components of a dialog assistant can fail in a
real-world system. Hence, it would be useful to
extend FPI task for capturing all critical and non-
critical errors regardless of whether they resulted
in a defective user session. Second, our system
provides only a component-level failure point iso-
lation. Future systems could build on our work to
identify the sub-components of a dialog assistant
responsible for the failure. Next, it would be useful
to develop a framework which would allow joint
system-level error attribution and assessment of
interaction quality (IQ). Such an approach would
not only help developers understand system errors
but also cases which result in negative customer
interaction. We have not experimented with bigger
language models for our application, which might
demonstrate stronger performance than the models
used in this work.

6 Conclusion

We present an effective machine learning system
to detect and isolate failure points in a real-world
conversational assistant. Such assistants can have
a complex hierarchy of modules making error iso-
lation very challenging. By leveraging pre-trained
transformer models to process the request text and
contextual metadata features, our system obtains
92.2% of human performance. Given the large
volumes of traffic in real-world conversational as-
sistants, the manual process of obtaining human
annotations for error isolation is prohibitively time
consuming and expensive. While achieving human
parity, our system automates this process and scales
to a large volume of traffic. We conduct detailed
ablation studies of our system and illustrate the key
components that led to the highlighted gains.
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7 Ethical Considerations

The data used in this paper was collected in ac-
cordance with applicable policies, terms of use,
privacy notices, and customer privacy settings that
disclose to customers how their data may be used.
The annotators of the data were compensated for
their work consistent with applicable laws and reg-
ulations.
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A Training Parameters

We use AdamW (Loshchilov and Hutter, 2019) op-
timizer with a fixed learning rate of 5× 10−5 and
batch size of 1024 examples. We train the model
for 30 epochs or until we reach early stopping cri-
terion, 5 epochs sequential epochs that do not im-
prove validation loss function. A single training
run takes up to 90 hours on NVIDIA V100 GPU.

Our training setup is leveraging PyTorch (Paszke
et al., 2019), HuggingFace (Wolf et al., 2020), and
PyTorch Lightning (Falcon and eam, 2020). Those
libraries were used according to their intended use
and distributed under BSD or Apache licenses.

B Experiments with the pooling layer

layer
Pooling F1 scores

FW ASR ERR NLU Result Correct Avg
token 26.7 44.2 3.2 19.9 11.9 91.2 32.8
max 37.5 52.4 21.6 38.5 54.5 93.8 49.7
mean 39.7 53.8 27.5 39.9 53.4 94.0 51.4

Table 6: Performance of FPI models trained with differ-
ent configurations of the pooling layer. "token" value in
the Pooling layer column represent first-token pooling
layer, "max" represent max-pooling layer, and "mean"
represents mean pooling configuration.

Our findings indicate that the structure of the
pooling layer makes a significant impact on the
model performance. The commonly used first-
token embedding (Devlin et al., 2019) performed
the worst with the macro average F1 score of 32.8%.
The mean and max pooling layers demonstrated
better performance with F1 score of 51.4% and
49.7% respectively. All of the subsequent experi-
ments were conducted with max and mean pooling
layers.
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Abstract

Multi-task learning (MTL) aims to solve mul-
tiple tasks jointly by sharing a base representa-
tion among them. This can lead to more ef-
ficient learning and better generalization, as
compared to learning each task individually.
However, one issue that often arises in MTL
is the convergence speed between tasks varies
due to differences in task difficulty, so it can be
a challenge to simultaneously achieve the best
performance on all tasks with a single model
checkpoint. Various techniques have been pro-
posed to address discrepancies in task conver-
gence rate, including weighting the per-task
losses and modifying task gradients. In this
work, we propose a novel approach that avoids
the problem of requiring all tasks to converge
at the same rate, but rather allows for “asyn-
chronous” convergence among the tasks where
each task can converge on its own schedule.
As our main contribution, we monitor per-task
validation metrics and switch to a knowledge
distillation loss once a task has converged in-
stead of continuing to train on the true labels.
This prevents the model from overfitting on
converged tasks while it learns the remaining
tasks. We evaluate the proposed method in
two 5-task MTL setups consisting of internal e-
commerce datasets. The results show that our
method consistently outperforms existing loss
weighting and gradient balancing approaches,
achieving average improvements of 0.9% and
1.5% over the best performing baseline model
in the two setups, respectively.

1 Introduction

Over the past few years, large pretrained models
have achieved great success on a variety of tasks
in natural language processing (Devlin et al., 2019;
Yang et al., 2019; Raffel et al., 2020; Brown et al.,
2020; Lewis et al., 2020; Clark et al., 2020; He
et al., 2021). Most work in this area typically fol-
lows the pretraining-finetuning paradigm, in which

∗∗Work done while at Amazon.

the model is first pretrained on large text corpora
using a self-supervised language modeling objec-
tive and then finetuned using supervised data from
a target task. In particular, when evaluating on
a benchmark that contains multiple tasks such as
GLUE (Wang et al., 2018) and SuperGLUE (Wang
et al., 2019), a common method is to finetune a
separate model for each task in order to achieve
the best performance. Although such an approach
produces excellent results, it has several drawbacks,
including incurring the costs of repeated finetuning
efforts and precluding the possibility of knowledge
sharing among related tasks. In addition, when it
comes to deploying these models for real-world ap-
plications, a separate model is deployed for each in-
dividual task which can pose challenges for model
hosting and maintenance.

An alternative approach is multi-task learning
(MTL), which solves multiple tasks together by
sharing representations among them. This not only
offers benefits in computational and storage effi-
ciency, but also makes it possible to share knowl-
edge among related tasks and encourages the model
to learn more robust and generalizable representa-
tions (Ruder, 2017; Zhang and Yang, 2017; Craw-
shaw, 2020). However, one of the biggest chal-
lenges in MTL is to balance the convergence sched-
ule across tasks. Differences in task difficulty can
result in faster convergence on some tasks over oth-
ers. As a result, the naive approach which simply
adds together the losses of all tasks is typically
sub-optimal (Sener and Koltun, 2018; Liu et al.,
2019a), since the final model may overfit the tasks
that have converged early on during training, while
underfitting the others. To tackle this, a large body
of work has explored various loss and gradient bal-
ancing strategies (Kendall et al., 2018; Sener and
Koltun, 2018; Chen et al., 2018; Liu et al., 2019a;
Yu et al., 2020; Wang et al., 2021), in order to
enforce the same convergence speed across tasks.
Despite these efforts, the problem still remains un-
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solved. As we show in our experiments, existing
approaches can still fail to balance learning across
different tasks in practice.

In this work, we propose a different approach
for coordinating the learning across tasks in MTL.
Instead of artificially forcing all tasks to converge
at the same rate, we allow each task to converge
according to its own schedule. We call this asyn-
chronous convergence, as opposed to previous
methods which seek to achieve a synchronous con-
vergence schedule across tasks. After each task
converges, we avoid overfitting by switching to
a knowledge distillation loss for that task for the
remaining training steps. The intuition is that con-
tinuing to train using the true labels can lead to
overfitting. Instead, the knowledge distillation loss
encourages the model to maintain its output distri-
bution and thus its performance on the converged
tasks at the best level, while the model learns the
remaining tasks. We evaluate the proposed method
in two different 5-task MTL setups. Our results
show that existing loss and gradient balancing ap-
proaches fail to produce meaningful improvements
over the simple baseline which sums the losses
from all tasks or lead to more costly and less ef-
ficient training. In contrast, our method achieves
consistent improvements. In particular, when com-
paring the final checkpoint performance, our best
performing approach achieves an average improve-
ment of 0.9% over the best baseline model in the
first setup and 1.5% in the second setup.

2 Related Work

As already mentioned, one key challenge in MTL
is to balance the learning speed across tasks. Some
existing methods address this by applying static
weights to the losses of different tasks (Kendall
et al., 2015; Liao et al., 2016; Kokkinos, 2017),
where the weights are usually determined through
extensive hyper-parameter search. However, such
an approach tends to be sub-optimal (Sener and
Koltun, 2018). One line of research improves this
by designing algorithms to automatically determine
the weights and dynamically adjust them during
training (Guo et al., 2018; Kendall et al., 2018;
Liu et al., 2019a). Going beyond the loss weight-
ing approaches, there is also work that leverages
gradient information and proposes to manipulate
the magnitude and/or direction of the gradients
from different tasks in order to better coordinate
the learning among the tasks (Sener and Koltun,

2018; Chen et al., 2018; Yu et al., 2020; Wang et al.,
2021). Recently, Liu et al. (2021) shows improved
results by combining loss weighting and gradient
manipulation approaches. In all above methods, the
goal is to enforce roughly the same convergence
speed across tasks, so that the final model fits all
tasks well. However, we hypothesize that imposing
such an artificial constraint leads to optimization
challenges. Instead, we propose a simpler method
which allows for asynchronous convergence among
the tasks, where each task converges on its own
schedule. We focus on avoiding overfitting after a
task has converged, which is achieved by distilling
from the task’s best checkpoint for the remaining
training steps.

On the subject of maintaining the performance
of converged tasks, a related research area is contin-
ual learning (CL) (Parisi et al., 2018; Lange et al.,
2021). CL studies the problem of learning tasks
in a sequential manner with the goal of avoiding
catastrophic forgetting (Goodfellow et al., 2014) of
previous tasks while learning new tasks. Replay-
based CL approaches are most relevant to our work.
The idea is to periodically present the model with
examples from past tasks to avoid forgetting (Re-
buffi et al., 2017; de Masson d’Autume et al., 2019;
Sun et al., 2020a). In particular, Hou et al. (2018)
proposes to avoid forgetting by adding a distillation
loss formulated using a small subset of examples
from previous tasks. In our case, we experiment
with a similar setup where we sequentially add one
task at a time while using a distillation loss to pre-
serve performance on converged tasks. However,
because our focus is on MTL where we have access
to the data of all tasks throughout training, we do
not down-sample the data of converged tasks. Addi-
tionally, our use of the distillation loss is to not only
avoid catastrophic forgetting but also overfitting.

Finally, our work is also related to the field of
knowledge distillation (KD) (Hinton et al., 2015;
Gou et al., 2021), where the goal is to transfer the
knowledge of one network to another by training
the latter network to mimic the predictions of the
former network. It is widely used to distill the
knowledge of a large teacher model to a small stu-
dent model (Hinton et al., 2015; Kim and Rush,
2016; Urban et al., 2017) but has also been applied
in MTL (Liu et al., 2019b; Clark et al., 2019) and
CL (Hou et al., 2018; Chuang et al., 2020). In par-
ticular, Clark et al. (2019) train a multi-task model
by distilling from multiple single-task models and
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show this outperforms directly training a multi-task
model. The main difference between this approach
and our work is that we do not require separate
teacher models per-task, but rather use intermedi-
ate checkpoints as teachers as the model converges
on each task. Another related work by Wei et al.
(2019) also similarly uses intermediate checkpoints
for distillation. However, their focus is on training
a single machine translation model, whereas we
use the technique to train a multi-task model.

3 Proposal: Asynchronous Convergence
via Knowledge Distillation

Consider a MTL scenario where we have T tasks
and have Dt =

{(
x
(i)
t , y

(i)
t

)}Nt

i=1
as the training

set of task t, with t ∈ {1, . . . , T} and Nt being the
total number of training examples for task t. Let f
represent a neural network with parameters θ. In
standard supervised training, we would train the
network on task t by minimizing a loss LST

t (where
ST stands for supervised training) formulated as

LST
t (Dt; θ) =

Nt∑

i=1

`t

(
f
(
x
(i)
t ; θ

)
, y

(i)
t

)
, (1)

where f
(
x
(i)
t ; θ

)
denotes the prediction of the

model, e.g. probability distribution over all classes
for a classification task or predicted score for a
regression task, and `t denotes the corresponding
loss function, e.g. cross entropy for classification
or mean squared error for regression. As discussed,
the challenge of MTL lies in balancing the opti-
mization of the losses across different tasks. In
this work, we propose to simply minimize the sum
of all task losses, except that after the model has
converged on task t, we would change the task’s
loss from LST

t to a KD loss LKD
t formulated against

the best checkpoint of task t.
Specifically, let θ̂t denote the parameters of the

checkpoint when the model converges on task
t. We first use the checkpoint to run inference
on the task’s training set Dt to obtain D̂t ={(
x
(i)
t , ŷ

(i)
t

)}Nt

i=1
, where ŷ

(i)
t = f

(
x
(i)
t ; θ̂t

)
.

Then for the remaining training steps, the model
would be trained on task t using a KD loss LKD

t

formulated as

LKD
t

(
D̂t; θ

)
=

Nt∑

i=1

`t

(
f
(
x
(i)
t ; θ

)
, ŷ

(i)
t

)
. (2)

Essentially, after the model has converged on
task t, we no longer train on the true labels of the
task. Rather, we use the KD loss to encourage the
model to mimic the predictions from the checkpoint
where the best performance is achieved. As we
show in our experiments, this method effectively
maintains the model’s performance on converged
tasks without overfitting, while the model continues
to learn the remaining tasks. To summarize, we
propose to minimize the following loss

L =
T∑

t=1

Lt, where Lt =
{
LST
t ,

if task t has
not converged;

LKD
t , otherwise.

(3)
The question of determining when a task has

converged still remains. For this, we monitor the
validation performance of each task given some
patience nt. If the performance does not improve
for nt consecutive validation steps, we consider
the model to have converged on task t. However,
one issue with this approach is that, when the pa-
tience runs out, we would have already trained the
model for some extra steps, and the latest check-
point could already overfit the task. To resolve this,
we rewind back to the checkpoint when the best
validation performance is achieved, and use that
checkpoint as the best checkpoint θ̂t to formulate
LKD
t . We also rewind and resume training from that

checkpoint, effectively discarding the latest steps.
Using this method, we experiment with two dif-

ferent training settings. The first is called the joint
setting, which is similar to the conventional MTL
setup. The model is trained on all tasks together,
and we swap in the KD loss as the model converges
on different tasks. Training stops when all tasks
converge. The second setting is called the sequen-
tial setting and is inspired by the typical CL setup.
Here we start training on a single task and then add
one new task at a time after the previous task con-
verges. Following our proposal, we use the KD loss
for all converged tasks, while training the model
on the true labels of the new task. The process
continues until all tasks converge.

One additional hyper-parameter in the sequential
setting is the order in which to train the tasks. We
experiment with a few different orders, including
ordering from (1) the smallest to the largest task by
dataset size (Sequential (Small)), (2) the largest to
the smallest dataset size (Sequential (Large)), and
(3) the easiest to the hardest (Sequential (Easy)).
For lack of a better heuristic, Sequential (Easy)
uses the order in which the tasks converge in the
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Task Task Type Size (Train
/ Val / Test)

Duplicate Detection
(Dedup)

Binary clas-
sification

3M / 435K /
849K

Perceived Duplicates
I (PD-I)

Binary clas-
sification

107K / 8K /
29K

Perceived Duplicates
II (PD-II)

Binary clas-
sification

609K / 30K
/ 52K

Variations (Var) Binary clas-
sification

5M / 598K /
612K

Unit of Measurement
Identification (UoMI)

3-class clas-
sification

494K / - /
10K

Table 1: Datasets used in the Related 5-task setup.

Task Task Type Size (Train
/ Val / Test)

Relevant Attribute
Identification (RAI)

1359-class multi-
label classification

4M / 474K /
474K

Purchase Similarities
(SIMS)

Regression 3M / 391K /
390K

Tariff Classification
(TC)

93-class classifica-
tion

28K / - / 3K

Product Type Classifi-
cation (PTC)

709-class classifi-
cation

957K / - /
106K

Duplicate Detection
(Dedup)

Binary classifica-
tion

3M / 435K /
849K

Table 2: Datasets used in the Diverse 5-task setup.

joint setting as a proxy for task difficulty ranking.
There are potentially better strategies to determine
the task order or even strategies that can make the
performance invariant of task order. We leave such
investigations as future work.

4 Experiments

4.1 Data

We evaluate on proprietary datasets from an e-
commerce company. The datasets are in English
and include text attributes of product listings, such
as title and product description. We experiment
with two different 5-task MTL setups. The tasks in
the first setup are more similar to each other and
are all some form of classification task, while the
ones in the second setup are more diverse in terms
of application and task type. We evaluate on these
two benchmarks to test the effectiveness and ro-
bustness of our method in different MTL scenarios.
A summary of the tasks used in the two setups is
provided in Table 1 and 2, respectively.

The tasks in the first setup, referred to as the Re-
lated 5-task setup, include (1) Dedup, which clas-
sifies whether two product listings are duplicates
of each other, (2) PD-I, which classifies whether
two listings have subtle differences but may be per-

ceived as duplicates in search results, (3) PD-II,
which is the same as PD-I but considers a different
set of attributes for defining perceived duplicates,
(4) Var, which classifies whether two listings are
variations of each other along certain set of dimen-
sions (e.g. color, size, flavor, etc.), and (5) UoMI,
which classifies the unit of measurement of a list-
ing. Among the tasks, the first 4 are closely related,
in that they all focus on classifying some sort of
similarity between two listings.

The tasks in the second setup, called the Diverse
5-task setup, include (1) RAI, which classifies
whether a listing has any of the 1359 pre-defined
attributes, (2) SIMS, which predicts how similar
two products are in customers’ purchase decisions,
(3) TC, which classifies the tariff category of a list-
ing, (4) PTC, which classifies the product type of
a listing, and (5) Dedup, which classifies whether
two product listings are duplicates of each other.

Note that Dedup is used in both setups. Also,
UoMI, TC, and PTC do not have separate vali-
dation sets, and therefore, we monitor the perfor-
mance directly on their test sets during training.

4.2 Baselines
We compare our proposal against several baselines,
including the naive uniform loss weighting ap-
proach, static and dynamic loss weighting methods,
and a method which leverages gradient information.
Specifically, the baseline models include (1) Uni.
Weight: This is the uniform weighting baseline
where we simply optimize the sum of all task losses.
(2) Muppet: This is a static loss weighting method
proposed in Aghajanyan et al. (2021), which uses a
simple heuristic to compute a loss weight for each
task such that the losses will roughly be on the same
scale after applying the weights. (3) DWA: This
is the Dynamic Weight Averaging (DWA) method
proposed in Liu et al. (2019a), which automatically
and dynamically computes the loss weights of dif-
ferent tasks during training. The motivation is to
ensure roughly the same decreasing rate across all
task losses. (4) GradNorm: This is proposed in
Chen et al. (2018), which is a method to dynami-
cally adjust the loss weights such that the gradients
of different tasks have roughly the same magnitude.
See Appendix A for implementation details and
hyper-parameters.

4.3 Results
Table 3 shows the results in the Related 5-task setup.
Among the baseline approaches, Muppet and DWA
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Name Train
Steps Dedup PD-I PD-II Var UoMI Avg

Baselines
Uni.
Weight
(Final) 8200

+0.00 +0.00 +0.00 +0.00 +0.00 +0.00

Uni.
Weight
(Best)

+0.30 +1.00 +1.50 +1.00 +0.10 +0.78

Muppet 8200 +0.10 -0.10 +0.10 -0.20 -0.20 -0.06
DWA 8200 +0.10 -0.30 +0.10 -0.10 +0.00 -0.04
GradNorm 8200 -15.50 -15.50 -12.70 -4.80 -2.30 -10.16

This
Work
Joint 8200 +0.60 +1.10 +1.60 +0.90 -0.30 +0.78
Sequential
(Small)

9000 +0.00 -1.20 +1.30 +0.60 +0.10 +0.16

Sequential
(Large)

12000 +0.50 +1.30 +1.50 +0.90 +0.30 +0.90

Sequential
(Easy)

11000 +0.30 +0.90 +1.50 +0.90 +0.10 +0.74

Table 3: Results in the Related 5-task setup. We re-
port accuracy for UoMI and PRAUC for all other tasks.
For all models, we report the performance of the final
checkpoint, while for Uni. Weight, in addition to the
final performance (Uni. Weight (Final)), we also report
the performance using the respective best checkpoint
for each task (Uni. Weight (Best)). All results are re-
ported as changes over Uni. Weight (Final). The best
performance of each task is in bold, while the second
best is underlined.

produce similar results as those of the final check-
point of Uni. Weight, while GradNorm produces
much worse results than all other methods. The
reason that GradNorm underperforms is because
the model still underfits most tasks when training
finishes, which suggests that the method is less effi-
cient than others. Overall, there is a substantial gap
between the performance of the best checkpoint
of Uni. Weight and all other baseline methods,
suggesting that none of the methods are able to
effectively balance the learning across tasks.

In contrast, both our joint setting and sequential
setting are able to achieve the best or second best
results across tasks, which shows the effectiveness
of our methods. In particular, the joint setting is
able to match or surpass Uni. Weight (Best) on all
tasks, except for UoMI. Among the experiments
with the sequential setting, we can see that task
order does impact performance. The exact order-
ing of tasks in different experiments are shown in
Table 7 in Appendix B. Both ordering from the
largest to the smallest task and ordering from the
easiest to the hardest produce similar results overall,
and are comparable with the joint setting and Uni.
Weight (Best) in terms of average performance. On

Name Train
Steps RAI SIMS TC PTC Dedup Avg

Baselines
Uni.
Weight
(Final) 10600

+0.00 +0.00 +0.00 +0.00 +0.00 +0.00

Uni.
Weight
(Best)

+1.10 +0.10 +1.10 +1.00 +0.10 +0.68

Muppet 10600 -1.00 -0.10 +0.50 +0.70 +0.10 +0.04
DWA 10600 +0.80 +0.00 +0.30 +0.10 +0.00 +0.24
GradNorm 10600 -10.40 -2.10 -1.20 -1.00 -14.30 -5.80

This
Work
Joint 10600 +5.70 +0.00 +0.60 +1.10 -0.40 +1.40
Sequential
(Small)

16800 +5.70 +0.10 +0.90 +1.40 +0.50 +1.72

Sequential
(Large)

37200∗ +7.20 -0.20 +0.30 +0.80 -2.10 +1.20

Sequential
(Easy)

45800∗ +4.00 -0.20 +0.50 +1.10 -1.10 +0.86

Table 4: Results in the Diverse 5-task setup. We re-
port accuracy for RAI, TC, and PTC, and PRAUC for
Dedup. For SIMS, its labels have been normalized to
be between 0 and 1, and we report (1-RMSE)×100.
For all models, we report the performance of the final
checkpoint, while for Uni. Weight, in addition to the
final performance (Uni. Weight (Final)), we also report
the performance using the respective best checkpoint
for each task (Uni. Weight (Best)). All results are re-
ported as changes over Uni. Weight (Final). The best
performance of each task is in bold, while the second
best is underlined. ∗These experiments have a smaller
learning rate. See text for more details.

the other hand, ordering from the smallest to the
largest task produces worst results overall. One pos-
sible explanation is that it is easier for the model
to overfit the smaller tasks, which not only harms
the performance on the tasks themselves, but also
provides a sub-optimal initialization point for the
later tasks. Finally, comparing the total training
steps, we can see that the sequential setting gener-
ally takes longer to run, suggesting that the joint
setting is a more efficient training method.

In addition to the results in Table 3, we also
show the validation plots of different methods in
Figure 1 in Appendix C. We can see that all base-
line methods show signs of overfitting on some
tasks (except for GradNorm which underfits). In
contrast, the plots of both our joint setting and se-
quential setting do not show downward trend in any
task, suggesting that our method is indeed effec-
tive in maintaining the performance of converged
tasks at the best level while the model learns the
remaining tasks.

Table 4 shows the results in the Diverse 5-task
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setup. This time, the Uni. Weight baseline shows
much less overfitting, as can be seen from the vali-
dation plot in Figure 2a in Appendix C. Nonethe-
less, there is still a substantial gap between Uni.
Weight (Final) and Uni. Weight (Best) on RAI, TC,
and PTC. Muppet is able to almost close the gap
on PTC, but it produces worse result on RAI, while
DWA almost closes the gap on RAI, but does not
improve the other tasks. GradNorm still underfits
all the tasks given the same training budget, again
showing its lack of efficiency.

Compared to the baseline methods, our joint
setting achieves a substantial performance boost
on RAI, greatly outperforming even Uni. Weight
(Best). It also matches the performance of Uni.
Weight (Best) on PTC, and improves over Uni.
Weight (Final) on TC. However, the performance
on Dedup turns out to be worse. Meanwhile, Se-
quential (Small), i.e. our sequential setting that
goes from the smallest to the largest task, also
achieves the same substantial performance gain
on RAI, and additionally outperforms or matches
Uni. Weight (Best) across tasks. This again vali-
dates the effectiveness of our proposed technique
in producing better MTL models. For the other
two sequential setting experiments with different
task orderings, we encountered some issues with
training stability when running the experiments,
and had to lower the learning rate to 10−5 , com-
pared to 10−4 used in all other experiments. While
fixing the stability issue, this likely prevented the
optimizer from fully exploring the loss landscape,
which resulted in worse performance on SIMS and
Dedup in these two experiments. Nonetheless, they
still outperform Uni. Weight (Final) on the other
tasks, with Sequential (Large) in particular achiev-
ing the highest score on RAI. It is also interesting
to note that Sequential (Small) produces the worst
results in the Related 5-task setup among the three
orders, but actually produces the best results in the
Diverse 5-task setup. This could suggest that the
effect of task ordering depends on the tasks used,
and the optimal ordering strategy differs among
the two setups. Another reason why Sequential
(Small) outperforms in the Diverse 5-task setup
could again be due to the sub-optimal learning rate
which we had to use with the other two orders. In
the future, we will continue to investigate the ef-
fects of task ordering, as well as tackle the training
stability issue with smarter learning rate schedules.
Also, we can see that the sequential setting again

Name Train
Steps Dedup PD-I PD-II Var UoMI Avg

Exp. 1
Joint 8200 +0.60 +1.10 +1.60 +0.90 -0.30 +0.78
BAM
(M→M)

16400∗ +0.40 +1.80 +1.70 +1.00 +0.00 +0.98

Exp. 2
Sequential
(Small)

9000 +0.00 -1.20 +1.30 +0.60 +0.10 +0.16

Continual
MTL

10200 +0.00 -0.70 -0.20 +0.50 -0.60 -0.20

Table 5: Results of two additional experiments on
the Related 5-task setup. The first experiment com-
pares our joint setting with BAM (M→M) (Clark
et al., 2019), while the second experiment compares
our sequential setting with Continual MTL (Sun et al.,
2020b). All results are reported as changes over Uni.
Weight (Final). ∗Training steps of BAM (M→M) in-
clude the training of Uni. Weight. See text for more
details.

requires substantially more training steps than does
the joint setting. This can also potentially be al-
leviated through a better learning rate schedule.
Besides, we will also explore other techniques that
can further improve the efficiency of our method,
such as reducing the batch proportion of converged
tasks.

5 Additional Discussions

In this section, we provide more discussions on
the effects of the design choices in both our joint
setting and sequential setting. We illustrate the
effects through two additional experiments on the
Related 5-task setup.

In the first experiment, we compare our joint
setting against an alternative approach where we
take the respective best checkpoints for each task
from the Uni. Weight baseline, and distill them to-
gether into a single multi-task model. We call this
approach BAM (M→M) as it is the Multi→Multi
strategy proposed in Clark et al. (2019). Through
this experiment, we seek to compare our way of
continued training with a mixture of KD and super-
vision from true labels against pure KD training.
We note that our setting is more challenging as
the model needs to learn all tasks from scratch,
whereas BAM (M→M) directly transfers previ-
ously learned knowledge for each task to the model.
Also, we train BAM (M→M) for the same num-
ber of training steps as that of our joint setting.
However, since we need to obtain the best check-
point for each task from Uni. Weight, which is also
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trained for 8200 steps, the total training budget for
BAM (M→M) is actually twice as large. The re-
sults of this experiment are shown in Table 5 under
Exp. 1. We can see that BAM (M→M) has better
performance on four out of the five tasks. Nonethe-
less, our joint setting achieves comparable average
performance, despite the fact that our model needs
to learn all tasks from scratch and that it receives
only half of the training budget.

In the second experiment, we compare our se-
quential setting with the Continual MTL method
proposed in Sun et al. (2020b). It is similar to our
sequential setting in that it adds one new task at
a time. The main difference is that they always
use real labels for training, whereas we use KD to
avoid overfitting on converged tasks. Through this
experiment, we seek to understand the effects of
the KD loss in our sequential setting. Specifically,
we choose Sequential (Small) and train Continual
MTL using the same task ordering. The results are
shown under Exp. 2 in Table 5. We can see that
Continual MTL has better performance on PD-I,
but is much worse on PD-II and UoMI. Figure 3 in
Appendix C shows the validation plots. It is clear
that continual MTL suffers from overfitting on PD-
II and UoMI, while our sequential setting does not
show signs of overfitting. This again validates our
assumption that the KD loss is effective in avoiding
overfitting on converged tasks.

6 Conclusion

In this work, we propose a new approach to tackle
the challenge of task convergence in MTL. In con-
trast to conventional loss and gradient balancing
methods which attempt to enforce a synchronous
convergence schedule, we allow the tasks to con-
verge on asynchronous schedules and use a KD
loss to maintain the performance on converged
tasks while the model learns the remaining tasks.
We show that the proposed method consistently
outperforms existing loss and gradient balancing
approaches. For future work, we will explore strate-
gies to make model performance invariant of task
ordering in the sequential setting, or alternatively,
explore strategies to optimally determine task order-
ing. Additionally, we will investigate techniques
to improve the efficiency of our method, such as
dynamically adjusting the learning rate during train-
ing and the batch proportion of converged tasks.
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A Implementation Details and
Hyper-parameters

For all experiments, we use the same pretrained
model, which has a BERT-like architecture (Devlin
et al., 2019) and is pretrained using the masked
language modeling objective on an internal English
corpus consisting of online product listings. The
vocabulary is trained on the same corpus using Sen-
tencePiece (Kudo and Richardson, 2018) and has
32K tokens. The model has 38 transformer layers,
with each layer having 16 attention heads, 1024 hid-
den dimension, and 4098 intermediate feedforward
dimension. The total parameter count is roughly
500M. The model is trained using the LANS op-
timizer (Zheng et al., 2020) with a batch size of
8192 and a learning rate of 10−4. We had to use a
smaller learning rate in two experiments with our
sequential setting, which is discussed in Section 4.3.
For each batch, we sample heterogeneously from
all tasks, and the sampling distribution is roughly
based on the dataset sizes, with some manual ad-
justments to ensure the smaller tasks are not too
under-represented.

We validate every 200 training steps. For both
our joint setting and sequential setting, we use a
patience of 3 validation steps to determine whether
a task has converged, and training stops when all
tasks converge. For the baseline models, since
we lack an aggregated early stopping criterion, for
fair comparison, we train for the same number of
steps as it takes to train the model in our joint
setting. For Muppet, the loss weights for different
tasks are shown in Table 6. For DWA, we set the
temperature T to 2, which is recommended in Liu
et al. (2019a). For GradNorm, we experiment with
α ∈ {0.5, 1, 2} and choose the best performing
value based on validation performance, which turns
out to be 0.5 in the Related 5-task setup and 1 in
the Diverse 5-task setup.
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Task Dedup PD-I PD-II Var UoMI
Weight 3.3 3.3 3.3 3.3 2.1

Task RAI SIMS HS PTC Dedup
Weight 0.32 1 0.51 0.35 3.3

Table 6: Loss weights used in Muppet in both 5-task
setups.

For all models, we report the performance of the
final checkpoint on all tasks. For the Uni. Weight
baseline, we additionally report the performance
using the respective best checkpoint for each task,
which can be used as a reference for the model’s
best performance on each task without overfitting.

B Task Order in the Sequential Setting
Experiments

Task Order in the First 5-Task Setup
Sequential (Small) PD-I→ UoMI→ PD-II→ Dedup→ Var
Sequential (Large) Var→ Dedup→ PD-II→ UoMI→ PD-I
Sequential (Easy) Var→ PD-I→ PD-II→ UoMI→ Dedup

Task Order in the Second 5-Task Setup
Sequential (Small) TC→ PTC→ Dedup→ SIMS→ RAI
Sequential (Large) RAI→ SIMS→ Dedup→ PTC→ TC
Sequential (Easy) PTC→ SIMS→ TC→ Dedup→ RAI

Table 7: Task order in the experiments with the sequen-
tial setting in both 5-task setups. Sequential (Small)
orders the tasks from the smallest to the largest task by
dataset size; Sequential (Large) orders from the largest
to the smallest; Sequential (Easy) orders from the easi-
est to the hardest. For lack of a better heuristic, we use
the order in which the tasks converge in the joint setting
as a proxy for task difficulty ranking.

C Validation Plots

(a) Uni. Weight

(b) Muppet (c) DWA

(d) GradNorm (e) Joint

(f) Sequential (Large)

Figure 1: Validation plots of different methods in the
Related 5-task setup. For the sequential setting, we
only show the plot of Sequential (Large), as it has the
best overall performance among different task order-
ings. Best viewed in color.
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(a) Uni. Weight

(b) Muppet (c) DWA

(d) GradNorm (e) Joint

(f) Sequential (Small)

Figure 2: Validation plots of different methods in the
Diverse 5-task setup. The plot of SIMS is omitted be-
cause its values are on a much smaller scale. For the
sequential setting, we only show the plot of Sequential
(Small), as it has the best overall performance among
different task orderings. Best viewed in color.

(a) Sequential (Small) (b) Continual MTL

Figure 3: Validation plots of Experiment 2 on the Re-
lated 5-task setup. Best viewed in color.
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Abstract

Extreme multi-label classification (XMC) sys-
tems have been successfully applied in e-
commerce (Shen et al., 2020; Dahiya et al.,
2021) for retrieving products based on cus-
tomer behavior. Such systems require large
amounts of customer behavior data (e.g.
queries, clicks, purchases) for training. How-
ever, behavioral data is limited in low-traffic
e-commerce stores, impacting performance of
these systems. In this paper, we present a tech-
nique that augments behavioral training data
via query reformulation. We use the Aggre-
gated Label eXtreme Multi-label Classification
(AL-XMC) system (Shen et al., 2020) as an ex-
ample semantic matching model and show via
crowd-sourced human judgments that, when
the training data is augmented through query
reformulations, the quality of AL-XMC im-
proves over a baseline that does not use query
reformulation. We also show in online A/B
tests that our method significantly improves
business metrics for the AL-XMC model.

1 Introduction

E-commerce search engines are primarily keyword-
based information retrieval (IR) systems com-
prising two main operations–matching and rank-
ing (Manning et al., 2008). Lexical and/or se-
mantic matching algorithms generate a recall-
focused matchset which is then ranked based on
the match quality of the document (product) to
the query (Joachims et al., 2007). Lexical match-
ing algorithms such as Okapi-BM25 (Robertson
and Walker, 1994; Robertson and Zaragoza, 2009)
score a query-product pair as a weighted sum of
overlapping keywords. These approaches, used
in many retrieval tasks (Lee et al., 2019; Boytsov
and Nyberg, 2020), do not capture customer behav-
ior signals (purchase, stream, etc) and thus do not
capture customer preferences.

Semantic matching learns representations of
queries and products based on customer behavior

Figure 1: Overview of our approach. We induce query
reformulation pairs from behavioral training data to fine-
tune a reformulation model (T5). We then augment the
original behavioral data with reformulated queries to
train an AL-XMC semantic model.

and hence captures the products that customers
prefer. Semantic matching can be implemented
using dual encoders (Nigam et al., 2019; Huang
et al., 2013), that separately build query and prod-
uct representations, then combine the two in a fi-
nal shared space to determine the similarity of the
pair. It is also implemented using extreme multi-
label classification (XMC) systems. In particular,
Aggregated Label eXtreme Multi-label Classifica-
tion (AL-XMC) (Shen et al., 2020) partitions the
label (product) space by clustering labels into hier-
archically granular clusters in a b-ary tree structure.
Irrespective of the approach, semantic matching
requires a large amount of behavioral data to train.
But in newly launched sites or for new products,
this behavioral data is not abundant.

In this paper, we propose a method to augment
the data available to train semantic models in low-
resource e-commerce stores. We use item-to-item
collaborative filtering to identify queries that show
strong behavioral associations. Such query pairs
elicit a similar behavioral response from customers
and so represent the same purchase intent. We
use these query pairs to fine-tune the text-to-text-
transfer-transformer (T5) language model (Raffel
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et al., 2020) to generate query paraphrases, which
we then use to augment the data available to train
the semantic model.

We test our method on an AL-XMC semantic
model, though it can be easily used to augment
training data for any semantic model. We show, by
offline crowd-sourced human judgments as well as
online A/B tests, that our data augmentation tech-
nique generates reliable training data that improves
the performance of the AL-XMC semantic model.

2 Approach

A pipeline diagram of our system is shown in Fig-
ure 1. The main goal of this work is to increase
good quality query-product pairs with which to
train an AL-XMC model; we do this by generat-
ing alternative queries from known queries using
a fine-tuned T5 model. To fine-tune the T5 model,
we identify purchase-intent-preserving query pairs
from historical customer data. In Section 3 we de-
scribe our approach to constructing the data used
to fine-tune the T5 model.

3 Constructing query reformulations

We regard customer interaction data as tuples of the
form ⟨q, t, p⟩, each consisting of a query q, interac-
tion type t (eg: search, purchase, etc.) and product
p. It is generally the case that newer stores do not
have sufficient interaction data to train robust se-
mantic models. To increase the data available to
train semantic models, we can either increase the
number of queries associated with the product, the
number of products associated with the queries, or
both. In a typical e-commerce site the number of
products is usually fixed. It is not usually possible
or desirable to artificially augment this set. Instead
we fine-tune a language model to generate query re-
formulations and associate the reformulated queries
to products using the same interaction type t as the
original query. The reformulated queries increase
the variance of the tokens, including those from
rare queries, in accordance with their distribution
in the target store. In order for this to happen, the
reformulated queries need to encompass the same
purchase intent as the original queries.

For a language model to create high-fidelity re-
formulations, we need an adequate corpus of intent-
preserving query paraphrase pairs. However, gen-
erating such a corpus is not trivial. Queries vary
widely in specificity, from highly generic (gifts
for teens) to highly specific (HP 63XL). Also, a

(a) Similarities of aquarium filter brush

(b) Similarities of heart name tag for dog

Figure 2: Top 6 similarities of two example queries,
sorted by PMI. While all the top matches to aquarium
filter brush appear to refer to the same product as the
key, many of the top matches to heart name tag for dog
refer to products that are not good matches.

product can satisfy multiple shopping intents. For
example, the same product can be purchased for
kids laptop and cheap laptop. In this section, we
describe our methodology to generate high fidelity
query reformulations.

3.1 Identifying related queries using
Collaborative Filtering

To generate fine-tuning data for a query reformu-
lation model, we need to identify query pairs that
have the same purchase intent. We adapt item-to-
item collaborative filtering (Linden et al., 2003) to
generate query-to-query similarities. In this formu-
lation, we interpret common product interactions
of queries as query co-occurrence. For our case,
we say two queries co-occur iff they lead to the
purchase of the same product. Given this inter-
pretation, we can then use different measures like
pointwise mutual information (PMI) to quantify de-
pendence between queries. Figures 2a and 2b show
the top 6 similar queries (or similarities) associated
with seed queries aquarium filter brush and heart
name tag for dog, respectively. As we can see from
these figures, the similarities are generally related
to the seeds. However, as seen in Figure 2b, the
similarities, while related, do not preserve purchase
intent in all cases.

3.2 Clustering the query graph
Since our purpose is to identify queries that have
the same purchase intent, for every seed query, we
filter out any similarities with a query specificity
that is not within 10% of the specificity of the seed.
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Figure 3: Queries and similarities associated with prod-
uct Lily’s 8-Inch Japanese 440C Pet Dog Chunker
Shears. This sub-graph shows three clusters that can be
visually identified.

We define specificity, sQ(q), as the inverse normal-
ized click entropy (H(q)) of clicks for a query, q.

H(q) = −
∑

p∈c(q)
P (p|q) logP (p|q)

sQ(q) = 1− H(q)

maxq′∈QH(q′)

where P (p|q) is the probability that a customer will
click on product p after issuing query q and c(q) is
the set of all products clicked by users after issuing
q. A very specific query (e.g.: k-cup coffee pods 72
count) will have lowH(q) and thus high specificity
sQ(q) while broad queries (e.g.: party dress) will
have high H(q) and low sQ(q).

Even after specificity filtering, similarities can
still show associations that do not preserve query
intent (Figure 2b). To further reduce noise, we
identify clusters in the query similarities graph. We
form this graph by considering every query to be
a vertex, and an edge to connect vertices if there
is a similarity relation between them. The whole
graph, though extremely sparse (< 0.0001% of the
edges of a fully connected graph), can still con-
tain tens of millions of vertices and hundreds of
millions of edges for some e-stores. Since our
objective is to identify queries that lead to the pur-
chase of similar products, we break the similarities
graph into product sub-graphs for each product p
as Gp = (Vp, Ep) where Vp = (VQp ∪ VNp) is
the set of vertices formed as follows: VQp is the
set of queries associated with (i.e. that lead to the
purchase of) p, and VNp is the set of similarities
of VQp . An edge connecting (vi, vj) is in Ep iff

vi, vj ∈ Vp and there exists a similarity relation be-
tween them. By processing each product sub-graph
independently, we can parallelize the clustering
problem and operate only on small sub-graphs.

Figure 3 shows the sub-graph of the product
Lily’s 8-Inch Japanese 440C Pet Dog Chunker
Shears. The graph naturally separates the queries
into multiple sets: thinning shears, grooming
shears, and professional grooming scissors, each
marked in different colors in the figure.

We cluster each similarities subgraph to identify
sets of queries that show high connectivity within
the cluster and low connectivity outside it. The
aim of clustering is to find groups of behaviorally
related queries that satisfy the same customer intent.
The subgraph edges already tell us that two queries
are related, in that they lead to the purchase of
the same product more frequently than would be
expected by chance alone. By clustering we can
identify groups of mutually related queries. If two
queries are behaviorally related to a similar set of
queries we can consider them to be related as well.

Graph clustering, though, is an ambiguous prob-
lem, with no universal definition of a cluster. De-
pending on the algorithm used, we can detect one,
two, or three clusters in the graph in Figure 4.

Edge clustering (Ahn et al., 2010) combines fea-
tures of soft clustering, where clusters can share the
same members, with hierarchical clustering, where
clusters are nested into dendrograms that represent
progressive subdivision of a single cluster into a set
of singletons. We next describe an edge clustering
algorithm that is hierarchical but does not prohibit
vertex sharing between clusters.

3.3 Seeding query clusters

Hierarchical clustering recursively merges clusters
according to some merge criterion, beginning with
each vertex in its own cluster. This imposes a re-
striction that clusters not share vertices. To avoid
this, we let some vertices’ base clusters consist
of themselves and their neighbors (i.e. their sim-
ilarities). To determine which initial clusters are
singleton vertices and which contain vertices and
neighbors, we use the Clustering Coefficient (C3),
which measures the cliquishness of the neighbor-
hood of a vertex in a graph (Lind et al., 2005).
C3(i) is defined as the fraction of the number of
triangles observed in the graph out of the total num-
ber of possible triangles which may appear. For
a vertex i with a degree di, the total number of
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Figure 4: Different ways to cluster a graph

possible triangles is just the number of pairs of
neighbors, i.e. di(di − 1)/2. Then C3 is given by:

C3(i) =
2Ti

di(di − 1)
(1)

where Ti is the number of observed triangles inci-
dent on vertex i.

If a vertex has a high (> 0.33) C3 coefficient,
we are assured that the neighborhood has a high
internal degree (a large number of edges between
vertices in the neighborhood), and so we include its
neighbors in its initial cluster. Vertices not meeting
this criteria are added as singleton initial clusters.

3.4 Merging query clusters
We then merge clusters hierarchically, based on
the size of the vertex intersection between clusters.
Starting with the seed clusters (either neighbor-
hoods or singleton vertices), in each round, pairs of
clusters are chosen in order by intersection size. A
round terminates when for some cluster pair ci, cj
to be merged, |ci ∩ cj | < θ × min(|ci|, |cj |) for
some predefined hyperparameter θ,1 where |ci| is
the number of vertices in cluster ci.2

3.5 Pruning query clusters
Since we include entire neighborhoods as seed clus-
ters, we may also end up including rogue edges that
are tenuously connected to the clusters. After the
final merge, we prune the vertices that have an
internal-degree to external-degree ratio less than
a threshold.3 This removes noise and bolsters the
community structure (high intra-cluster connectiv-
ity and low inter-cluster connectivity).

Since query graphs are behavioral, it may not be
possible to get semantically distinct clusters. We

1We use θ = 0.4.
2We can interpret the round termination condition as a

modified Jaccard similarity, where our condition,
|ci∩cj |

min(|ci|,|cj |) < θ, is more amenable to clusters of dissimilar

sizes than |ci∩cj |
|ci∪cj | , the Jaccard coefficient.

3We use 0.5.

observe that overly large clusters (|c| > 10) include
queries with multiple (albeit related) purchase in-
tents. For example, in Figure 5, though mostly
semantically grouped, we see a mix of dog hal-
loween costumes and dog sweaters in one cluster.
We thus only consider clusters with fewer than 10
vertices.

Figure 5: Due to the behavioral nature of the graph,
some queries with different intents get grouped together.
In this example, ‘dog elsa costume’ and ‘dog dress
warm’ are grouped together, yet represent different in-
tents.

4 Experiments

From a low resource store we collect 2.4m in-
stances of behavioral association between queries
and products. We select behaviors over a threshold
level of activity (e.g. clicks and purchases), com-
prising 0.83m pairs, and use that to train a baseline
AL-XMC model; we call this data local. To apply
query reformulation (QR), we first fine-tune a pre-
trained T5-Base model for a sequence-to-sequence
prediction task that uses query pairs from the clus-
ters we generated in Section 3.4 We fine-tune for
two epochs using batches of 32 intent-preserving
query pairs and gradient accumulation with a fac-
tor of 16, for an effective batch size of 512. We

4We again impose the restriction that the specificity of the
target query be within 10% of that of the source query.
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size accuracy
130k 79.67%
460k 86.67%
4m 90.33%
40m 93.00%

Table 1: Impact of data size on fine-tuned T5 reformula-
tion’s intent preservation, showing that accuracy gener-
ally correlates with data size. The 130k and 460k data
points use only reformulated local data, while the 4m
and 40m data points use data from other high-resource
stores. Our QR experiments use the local-only 460k-
tuned T5 model.

optimize with Adam, with a learning rate of 3e− 4.
We fine-tune using 8 NVIDIA V100 GPUs; each
epoch takes around 24 hours to run.

We use the fine-tuned T5 model to reformulate
the query for each of the 2.4m collected query-
product-behavior tuples, and associate the reformu-
lation with the product and behavior, as if it was
additional data. We can then re-select tuples with
behavior over the same threshold level of activity
used to form the local data; now, however, more
tuples are above threshold and some new tuples
have been introduced. Altogether, this procedure
dramatically increases the size of the AL-XMC
training corpus, to 16.14m training tuples.

In addition to the local baseline and local+QR re-
formulation approaches, we compare our data aug-
mentation method to integrative knowledge trans-
fer (IKT) (Pan et al., 2008; Zhuo et al., 2008) from
a higher-resource store. To do this, we identify
queries in the high-resource store that show strong
interaction with a product that is available in both
stores. We add those query-product associations to
the training set in the target store. Such an approach
is of course only possible in a mature ecosystem
where previously-established high-resource stores
exist.

5 Evaluation

To intrinsically evaluate the impact of fine-tuning
data size on reformulation intent preservation, we
randomly select 300 QR tuples and determine to
what degree intent is preserved during reformula-
tion, using a variety of data conditions to fine-tune
T5. We count a reformulation as accurate if it has
the same manually judged purchase intent as the
input query and a search engine returns a similar
set of products for both queries. Table 1 shows
that for the reformulation fine-tuned on the 460k

pairs obtained as described in Section 3, accuracy
is about 87%. To put this in context, Table 1 also
shows results for T5 reformulation when fine-tuned
on a 130k subset of that data, as well as on larger
query reformulation fine-tuning data sets obtained
by including query pairs from other high-resource
stores. The trend indicates that intent preservation
is generally a function of the amount of data used
to fine-tune the T5 model. In the rest of this work
we use a T5 reformulation model fine-tuned on the
460k pairs obtained as described in Section 3, since
the availability of high-resource store data is not
guaranteed.

To extrinsically evaluate, we consider the effec-
tiveness of the AL-XMC models when built under
different data augmentation conditions. We con-
sider both offline and online evaluation paradigms.

5.1 Offline evaluation

Typically, evaluations are done by computing pre-
cision and recall metrics using customer purchases
as ground truth. Low-resource stores however, do
not have sufficient purchase data and suffer from
significant display bias—if a relevant product isn’t
shown to a customer, they cannot purchase it, result-
ing in an artificial drop in precision of a new (not
deployed) model. Thus, we train crowd-sourced
judges using the Toloka platform5 to evaluate if the
products predicted by the AL-XMC model for a
particular query are indicative of the query text. We
use 1,000 randomly sampled query-product pairs
to evaluate the models. Table 2 gives the product
accuracy improvement and coverage (average num-
ber of products generated per query) for AL-XMC
models. AL-XMC models trained using any data-
augmentation (local+∗) significantly outperform
the model trained using only local data, both in
terms of product accuracy (p-value in a one-sided
t-test is < 0.01 for all three results) and coverage.
Our QR data augmentation scheme outperforms
IKT (local+IKT18) when the size of data augmenta-
tion is similar. Using multiple high-resource stores
and hand-tuning the parameters for IKT, we can
increase the training data by almost 3x to a total
size of 47.58m. However, even with this massive
data increase (local+IKT48), IKT only achieves a
product accuracy comparable to our augmentation
scheme. If no high-resource store is available, IKT
is not even an option. Query reformulation, on
the other hand, only requires information from the

5https://toloka.yandex.com/
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Training Product accuracy Avg number of Num training
data improvement products/query pairs
local N/A 16.85 0.83m
local+IKT18 13.58% 22.27 18.11m
local+IKT48 19.85% 25.94 47.58m
local+QR (ours) 19.57% 21.08 16.14m

Table 2: Data augmentation method comparison. Product accuracy (proportion of relevant products) improvement
measures percent increase from local baseline. Product accuracy numbers use offline crowd sourced evaluations.
p-value is < 0.01 for all three data augmentation cases in a one-sided t-test.

Training data Improvement P(Treatment(SCR)> Improvement P(Treatment(CRR)>
in SCR Control(SCR)) in CRR Control(CRR))

local+QR 0.26% 0.82 -0.30% 0.15

Table 3: Online A/B test where control is the local model. For Search Click Rate (SCR), positive effect is better, for
Customer Reformulation Rate (CRR) negative effect is better.

low-resource store and a language model like T5.

5.2 Online evaluation

For the analysis of a single A/B test, it is common
to compute a p-value from the t-statistic. However,
in modern industrial settings, a large number of ran-
domized experiments are run every day. In this set-
ting, using only the Null Hypothesis test essentially
ignores the information from the whole population
of experiments. Stein’s paradox (Stein, 1956) states
that when estimating multiple parameters, there ex-
ist combined estimators more accurate on average
than any method that handles the parameters sep-
arately. In the case of A/B tests, this means that
the true effect of any one experiment can benefit
by including the information from prior tests. Also,
while the Null Hypothesis test is proper for testing
whether the true effect is below or above zero, it is
inconvenient to determine the true effect with re-
spect to a loss/utility function. For our evaluations,
we use an empirical Bayesian approach for anal-
ysis of large-scale experiments proposed by Guo
et al. (2020), that uses the Normal-Normal model
to determine the posterior probability of a positive
return on a loss metric. Adding a risk buffer, we
consider our effect positive if the posterior proba-
bility of a positive return, i.e., the treatment metric
being greater than the control metric, is > 0.66.

We ran a 14 day A/B test on a popular e-
commerce site in a low-resource English-speaking
store, using the AL-XMC model trained with pur-
chase data augmented with query reformulations as
Treatment and the purchase data alone as Control,
and observed a significant improvement in business

metrics—Search Click Rate (SCR, the proportion
of all searches that have at least one click) and Cus-
tomer Reformulation Rate (CRR, the proportion
of all searches where the customer had to reissue
the query with different wording). A reduction in
the CRR implies that the search returned relevant
products in the first query. Table 3 shows a signif-
icant increase in SCR and a significant reduction
(probability of positive effect < 0.33) in CRR.

6 Discussion

We compare the generated queries to those trans-
ferred by IKT48 and find that only 20k of the re-
formulated queries were not present in the IKT48
set. This indicates that the T5 model is able to gen-
erate high fidelity queries that customers are likely
to use. In addition, data augmentation with query
reformulations is able to achieve the same results
as that with IKT48 with only about a third of the
data. Thus, the reformulated queries are able to
capture the relevant information of the target locale.
Although IKT48 contains nearly the same infor-
mation as QR, it is also noisier in the sense that
it transfers queries that are relevant in the source
(high-resource) store but may not be relevant in the
target low-resource store. This noise necessitates
several times more data to achieve the same per-
formance. Model training with the larger IKT data
set takes approximately 4 times as long as training
with the query reformulations dataset.

7 Related Work

Data augmentation in the e-commerce space has
dealt with reformulating queries in several ways.
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Kuzi et al. (2016) expand user queries using se-
mantically similar terms according to a learned em-
bedding space, while Wang et al. (2021) use query
annotations to identify words to expand queries.
Both methods rely on a large amount of natural
query reformulation by users to train their models,
which we avoid. Zhang et al. (2015) and Wang
and Yang (2015) propose synonym or paraphrase
replacement reformulation approaches. The noisi-
ness of these approaches, some of which expect sig-
nificant context, are a bad fit for the product query
use case. Other works that leverage data enhance-
ment via model-based generation include Mao et al.
(2021), who augment queries in black-box question
answering tasks, Sennrich et al. (2016), who gener-
ate bilingual parallel data via backtranslation, and
Fadaee et al. (2017) who, similar to us, though in a
machine translation context, reformulate training
data via language model-based generation, in this
case focusing on rare word replacement.

8 Conclusion

In this paper, we have presented a method to aug-
ment training data for semantic models in low-
resource e-commerce stores. Our method is generic
enough to be applied as training data augmentation
for any model and does not require transfer from
high-resource store data. We have shown that aug-
menting training data using query reformulations
improves upon a baseline store-specific AL-XMC
semantic matching model in both offline evalua-
tions as well as online business metrics. Our meth-
ods increase the training data of a test low-traffic
store from 0.83m to 16.14m, resulting in a quality
improvement of 19.57% over the baseline model.
We also see a significant boost to business metrics
in online A/B tests. Next we will explore similar
data augmentation techniques for generating mul-
tilingual query reformulations, using the mT5 pre-
trained model (Xue et al., 2021). In addition to low
traffic stores, this technique may even be applied
to yet-to-be-launched locales where training data
is missing completely, by forming pseudo-queries
from product descriptions.

9 Ethics Statement

We have performed our research so far only for the
English language. Though we believe that similar
results can be obtained for non-English languages
we have yet to demonstrate this. We only use query
and product interaction data for our work. Any

identifiable user information is completely stripped
before we can access the data. As our method is
ultimately used to retrieve a set of products in an
e-commerce store, incorrect predictions will not
cause harm to the user besides an unsatisfactory
experience.
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Abstract

Letter-like communications (such as email) are
a major means of customer relationship man-
agement within customer-facing organizations.
These communications are initiated on a chan-
nel by requests from customers and then re-
sponded to by the organization on the same
channel. For decades, the job has almost en-
tirely been conducted by human agents who
attempt to provide the most appropriate reac-
tion to the request. Rules have been made to
standardize the overall customer service pro-
cess and make sure the customers receive pro-
fessional responses. Recent progress in natural
language processing has made it possible to
automate response generation. However, the di-
versity and open nature of customer queries
and the lack of structured knowledge bases
make this task even more challenging than typ-
ical task-oriented language generation tasks.
Keeping those obstacles in mind, we propose a
deep-learning based response letter generation
framework that attempts to retrieve knowledge
from historical responses and utilize it to gener-
ate an appropriate reply. Our model uses data
augmentation to address the insufficiency of
query-response pairs and employs a ranking
mechanism to choose the best response from
multiple potential options. We show that our
technique outperforms the baselines by signif-
icant margins while producing consistent and
informative responses.

1 Introduction

In modern business operations, customer care ser-
vices are essential to support customers needing
product information, making complaints, and in
general, positively addressing their expectations.
This support service plays a vital role in ensur-
ing a good customer experience and is a key fac-
tor in developing goodwill. While non-specific,
general knowledge about a product can now be
conveniently retrieved through a web search, the
exchange of specific information naturally entails

a conversation between the customer and an agent
who represents the organization. Traditionally,
this task has been carried out by a trained human
through chat or email exchanges. However, do-
ing this manually at scale takes an enormous hu-
man effort. The process is time-consuming, labor-
intensive and error-prone given the massive volume
and diversity of customer queries.

Automation of the response generation process
can go a long way toward solving this problem.
Unfortunately, the rule-based systems that are in
existence today struggle to capture the linguistic
complexity of typical communications.

Recently, the advent of transformer-based pre-
trained language models such as BERT (Devlin
et al., 2019), GPT-2 (Radford et al., 2019), T5 (Raf-
fel et al., 2020) has brought about substantial
progress in understanding and generating fluent
text. Nevertheless, task-oriented dialog (TOD), a
process that aims to assist a user to complete a
certain task through response generation, is yet
to be mastered due to the challenges in produc-
ing text that is informative and relevant to the
prompt (Zhang et al., 2019; Ko et al., 2019). The
task is especially difficult because of the scarcity
of annotated datasets needed to train a supervised
model.

Furthermore, creating an effective customer feed-
back system has additional challenges. In the ex-
isting and very popular TOD datasets (Rastogi
et al., 2020; Wu, 2019), user utterances are usu-
ally fact-finding queries annotated with slot la-
bels (e.g. Query: ‘Find a park near area51’, Slot-
Values: {destination: ‘park’, close_to: ‘area51’}).
A TOD framework (Young, 2000) first identifies
the slots and then uses the slot-value pairs to re-
trieve facts from a knowledge base to reply. Un-
fortunately, these frameworks do not realistically
address customer-care automation tasks where nei-
ther is the user prompt labeled with slot tags nor
is there a knowledge base with relevant facts. Fur-

168



thermore, a user prompt may not be limited to an
inquiry about facts but may also include a com-
plaint, suggestion, compliment, request, etc.

In this work, we factor in these challenges and
present a response generation framework that au-
tomatically produces and ranks response letters
addressing customers’ queries or feedback, with a
minimally annotated dataset. The contribution of
this work is in two areas:

• We propose a retrieve and refine (Weston et al.,
2018) based response generation model that is
robust, efficient, and generalizable. A retrieval
model fetches required knowledge from pre-
vious customer-agent letter exchanges and a
generator refines the retrieved information to
produce a coherent response tailored to the
current context. By using historical knowl-
edge retrieval, the model not only circum-
vents the requirement for an explicit knowl-
edge base or slot-labeled dataset but can also
augment and extend such datasets to enable a
more diverse generation. In other words, we
offer a practical solution.

• A Maximum Mutual Information (MMI) (Li
et al., 2016; Zhang et al., 2018) driven ap-
proach to rank responses according to their
relevance to the query. We also show that the
model’s loss function itself can indicate the
MMI and save us the time and effort of devel-
oping yet another "backward" model (Zhang
et al., 2020).

Our response generation framework is to be
deployed in production as a part of an evolving
pipeline for automating the customer service pro-
cess. It will initially serve as a suggestion system
to collect feedback from real human agents and
is then expected to progress to enabling increased
levels of automation.

2 Dataset

We use two proprietary datasets from the restau-
rant and adhesive tape industry, named DineCare
(DC) and TapeTech (TT), consisting of 8448 and
14938 unique email exchanges between customers
and agents respectively. Each exchange contains
a case id, product and reason codes of the service,
the customer query letter, and the human agent’s
response letter. Examples are included in Table 3.
Both product codes and reason codes are alphanu-
meric strings defined by the corresponding business

DineCare

Items Train Validation Test All

Samples 5491 1267 1690 8448

Unique Product Code 257 99 138 308

Unique Reason Code 245 168 185 274

Mean Query Token 54 56 55 55

Mean Response Token 48 47 46 47

TapeTech

Items Train Validation Test All

Samples 8962 2988 2988 14938

Unique Product Code 656 393 371 851

Unique Reason Code 273 211 219 293

Mean Query Token 49 51 50 49

Mean Response Token 74 76 75 75

Table 1: The statistics for the data samples of the
DineCare and TapeTech dataset.

and may lack textual description. The reason code
stands for the type of customer query; therefore we
observe similar responses across queries having the
same reason code.

Data Preparation We mask specific personally
identifiable or proprietary information elements
such as names, email addresses, phone numbers,
prices, franchise names, and dates in our dataset
with their corresponding generic tokens ("X-email",
"X-phone" etc.). This serves two purposes. Firstly,
this anonymization protects the privacy of the cus-
tomers and the organization. Secondly, it forces
the model to learn from and generate generic tags
while avoiding noise in the form of irrelevant de-
tails such as specific names and values.

The average token count of queries in DineCare
and TapeTech dataset are 55 and 49 respectively.
For responses, the mean token counts of the corre-
sponding datasets are 47 and 75. In both cases of
query and response, these values are higher than
that of a typical live chat. In terms of the type of the
customer letters, 52% of DC letters are complaints,
33% are inquiries and the rest are of miscellaneous
categories. Furthermore, they involve a diverse set
of products (308 in DineCare, 851 in TapeTech)
and reasons (274 in DineCare, 293 in TapeTech).

Each dataset is randomly divided into training
(≈60%), validation (≈20%) and test (≈20%) sets.
A summary of the dataset is presented in Table 1.
Although the product and reason codes have a
long-tailed distribution, samples involving them
are present proportionally in each split. However,
a fraction (2.5% in DineCare, 3.6% in TapeTech)
of the test set contains product or reason codes that
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are absent in the training set. We retained them be-
cause their use helps us to understand the model’s
resilience in the event of unknown scenarios.

3 Framework

In this section, we first describe a potential base-
line approach for response generation and then the
retrieval-guided response generation framework.

3.1 Neural Response Generation

We utilize a pre-trained causal language model,
GPT-2 (Radford et al., 2019), to train our baseline
response generation model. We approach our goal
of producing a response for a customer query as a
conditional text generation task and hence adopt
the pre-trained GPT-2 model to tune the parame-
ters. Given a customer query letter with a token
sequence: q = (x1, x2, ..., xm) where xi ∈ V for
vocabulary V , product code: d ∈ D and reason
code: s ∈ S, the objective of our model is to gen-
erate response token sequence: r = (y1, y2, ..., yn)
from the same vocabulary, i.e. yi ∈ V . To this
end, we first formulate the conditional probability
of the response token sequence by factorizing the
distribution using the chain rule:

p(r|q, d, s) =
n∏

i=1

p(yi|y1:i−1, q, d, s) (1)

Equation 2 gives us the negative log-likelihood
L(E) that we want to minimize over a dataset E
with parameters θ.

L(E) = −
|E|∑

j=1

log pθ(yi|y1:i−1, q, d, s) (2)

3.2 History Guided Generation

The GPT-2 baseline model (above) lacks access
to factual information while responding to a query.
Therefore, it tends to make up a safe or hallucinated
reply. For instance, in response to a customer’s
question regarding a restaurant’s service availabil-
ity, the baseline model is seen to generate “don’t
know” or “open” although the dataset indicates its
closure. To address this issue, a Retrieve and Refine
(RetRef) (Weston et al., 2018) mechanism is em-
ployed. The idea is to retrieve valid responses for
similar queries used in the recent past and utilize
those responses in addition to the query to generate
a refined and coherent response.

We split the whole task into three steps: 1.
Knowledge Retrieval, 2. Response Generation and
3. Response Ranking. The framework is depicted
in Figure 1 and detailed in the following subsec-
tions.

3.2.1 Knowledge Retrieval
Given a current customer query (qc), knowledge
can be extracted from agents’ past responses (rp)
to similar past queries (qp). To this end, we first
select past conversations having the same reason
code as the current one. This intuitively works
as candidate generation and reduces our search
space for potential knowledge. Then we assign
a candidate score, c = sim(qc, qp) + bleu(qc, qp)
to these past query-response pairs where bleu is
BLEU-1 score between the corresponding queries
and sim(qc, qp) = cos (Eqc , Eqp), is cosine simi-
larity between the embedding of the current and of
the past query respectively. The embeddings are
obtained using sentence-transformer (Reimers and
Gurevych, 2019) and can be pre-computed to make
the retrieval fast. While training, the similarity be-
tween the corresponding responses, sim(rc, rp) is
also added with a weight, γ < 1 to ensure that
the model finds a relation between them to trans-
fer knowledge (note that this response similarity is
not used during testing as the reference response
is unknown then). For training we choose (all)
responses from candidate pairs that have c > τ ,
where τ is a hyperparameter. Additional poten-
tial candidate responses were used to augment the
training instances. We explain their use in the next
section.

3.2.2 Response Generation
We use the same GPT-2 baseline model for
retrieval-based training and generation. However,
for the input to this model, a retrieved response
is appended to the beginning of the current query
(separated by a special token) as shown in the top-
right corner of Figure 1. The objective is to teach
the model to generate the reference response uti-
lizing the retrieved knowledge in addition to the
query.

Since only one retrieved response is used at a
time, having more than one above the threshold
(c > τ ) allows us to create more training instances
with the same query-reference response pair (see
Figure 1). In the absence of suitable retrievals,
the reference itself is used as a retrieved response
to make the model mirror the fetched response.
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GPT-2

Train

Decode
Generate

How do I delete credit
cards from my account
profile?


Query (qp) Response CandScore

Q1 R1 0.7

Q2 R2 0.8

Q3 R3 0.4

Historical Candidates

Current Query (qc)

Ret. Response(R2) Product Code Reason Code Current Query Ref. Response

Product Code

Online Ordering

Reason Code

Account Deletion

If you reset your password to your
online ordering account, that
should remove any credit card
information you have saved.


Retrieved Response (rp) To remove your saved payments,
reset your password on your
account. Once you login with the
new password, any stored card
information you had previously
should no longer be visible.

Hypothesis #1

Agent Customer Agent

Token Embedding

Positional Embedding

Segment Embedding

Hypothesis
(h)
#1

#2

#3

RankScore

0.93

0.67

0.34

Ret. Response(R1) Product Code Reason Code Current Query Ref. Response

Train

Ret. Response(rp) Product Code Reason Code Current Query (qc) Hypothesis (h)

Loss

sim(h,qc)

+ 


sim(qc,qp) * sim(h,rp)

-


loss(h,qc)

Figure 1: The proposed retrieval based response generation framework.

This technique works like teacher forcing and is
intended to avoid ignoring retrievals (as reported in
Roller et al. (2021)). In the event of such a scenario
during testing, we resort to the baseline model for
a generation. We term this mix-model approach
hybrid generation.

Moving on to prompt formation, it has three
segments: the retrieved responses from the agent,
the current query from the customer followed by
the reference response from the agent. Even though
the source request and response components are
separated by a special token, a model does not have
an idea of the author of a token. To address this, we
add a segment embedding to the token embedding.
The way positional embedding helps the model
understand the relative position of the tokens, a
segment embedding of the corresponding author
is similarly reported to add more meaning to the
model (Wolf et al., 2020).

3.3 Response Ranking
Even with the state-of-the-art decoding mecha-
nisms, neural text generation is known to suffer
from blandness or inconsistency (Zhang et al.,
2019; Ko et al., 2019). Hence, we generate multiple
responses using different sampling methods (e.g.
top-k, nucleus, etc.) and employ a ranking mech-
anism to measure the context-awareness of gener-
ated responses (by evaluating them as hypotheses
of the source query).

Such a hypothesis would indicate stronger cor-
respondence when its probability of producing the
query i.e. p(query|hypothesis) is higher. To mea-
sure this probability, following the work of Di-
aloGPT (Zhang et al., 2020), we trained an inverse
model that considers the reference response as the
input and the customer letter as the output. The
loss of the model for a pair of queries and hypothe-
ses was used to estimate the p(query|hypothesis)
score. The intuition is that a trivial and safe re-
sponse is likely to appear frequently in different

contexts and would usually contain less specific
words, causing the inverse model to struggle to
retrieve the source query from it, thus resulting
in a higher loss. However, comparing the origi-
nal model loss (loss(h, qc)) with the inverse model
loss for each query(qc)-hypothesis(h) pair, we in-
terestingly found a very high correlation between
them. It indicates that we can avoid training an
additional inverse model and perform the ranking
process using forward loss only.

The final rank score of a hypothesis is computed
using the following formula:

rh = sim(h, qc)− loss(h, qc)
+ sim(qc, qp) ∗ sim(h, rp) (3)

where sim(h, qc) indicates similarity between
query and hypothesis and sim(qc, qp) ∗ sim(h, rp)
takes into account the correspondence between re-
trieved response(rp) and hypothesis(h) weighted
by the query similarity(sim(qc, qp)). The rationale
behind the last product is: a generation that retains
knowledge from a good retrieval is likely to offer a
better response. Consequently, a higher rank score
is expected to indicate better hypothesis quality.

4 Experiment Details

We used a small GPT-2 model of 124M parame-
ters provided by Huggingface (Wolf et al., 2020).
Grid search was used to tune the hyper-parameters
to the following set of optimal values: {Weight
Decay: 0.1, Warm-up steps: 1E2, Gradient Accu-
mulation Steps: 16, Learning rate: 5E-4, Dropout
rate: 0.1, Epoch: 5, optimizer: Adam, γ = 0.4,
τ = 0.6}. The training took around 1 hour for the
DC dataset and 2.5 hours for the TT dataset on an
NVIDIA Tesla V100-SXM2-16GB (GPU device).
After training, 4 responses were generated for each
query using 4 decoding combinations: 1. (top-k
with temperature), 2. (top-p with temperature),
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DineCare TapeTech

Method S B N M R C S B N M R C

Baseline 0.59 0.36 4.33 0.25 0.39 2.22 0.84 0.56 6.51 0.38 0.66 3.59

Retrieve Only 0.63 0.34 4.27 0.24 0.38 2.11 0.84 0.53 6.45 0.36 0.64 3.47

RetRef 0.64 0.39 4.57 0.27 0.43 2.50 0.85 0.58 6.75 0.39 0.67 3.82

RetRef+Rank 0.68±0.02 0.40±0.01 4.72±0.06 0.30±0.02 0.47±0.03 2.83±0.07 0.86±0.01 0.61±0.03 6.96±0.11 0.41±0.01 0.69±0.02 4.00±0.14

Hybrid 0.62 0.39 4.51 0.27 0.42 2.43 0.84 0.56 6.61 0.38 0.65 3.58

Hybrid+Rank 0.67 0.40 4.62 0.30 0.46 2.73 0.85 0.59 6.79 0.40 0.67 3.72

Table 2: Test set results of the proposed response generation model on DineCare and TapeTech dataset. Baseline
(§3.1) refers to fine-tuned GPT-2 model without knowledge retrieval. Automatic scoring metrics are: Average-
SentenceSimilarity (S), BLEU-4 (B), NIST (N), METEOR (M), ROUGE-L (R) and CIDEr (C). Our best model’s
(RetRef+Rank) scores are averaged over 5 runs and have low standard deviation.

3. (top-k,top-p) and 4. (top-k,top-p with tempera-
ture) where k=20, p=0.8 and temperature=0.7. For
preprocessing and evaluation, we use NLTK and
nlg-eval (Sharma et al., 2017).

5 Evaluation

5.1 Retrieval Performance

A higher similarity between retrieved and reference
response indicates a better retrieval. Our analysis
finds that for 46% of 8382 queries, our retrieval
model fetches at least one reference-like (similarity
> 0.9) historical response within the top-10 can-
didates of each retrieval. Within top-5 and top-1
candidates, a retrieval with the above similarity is
found in 38% and 21% cases respectively. Our man-
ual evaluation on randomly sampled retrievals finds
49% of the retrieved responses suitable for genera-
tion and 20% as somewhat relevant. In the case of
retrieval speed, with the pre-computed embeddings
of 8448 records, it takes around 70 milliseconds
using the aforementioned hardware (in §4) to fetch
top-10 candidates of a query from the entire set.

5.2 Generation Quality

The automatic evaluation of all the methods is con-
ducted on the held-out test set with the optimal
hyper-parameter setting. The scores are listed in
Table 2. Once again, note that the baseline model
(§3.1) is a fine-tuned GPT-2 without retrieval and
does not employ response ranking. For Retrieve
Only method we consider only the fetched histori-
cal response (without refinement) as a hypothesis.
For baseline, RetRef, and Hybrid method, we con-
sider single hypothesis per query that is produced
using the 4th decoding setup (top-k,top-p with tem-
perature) because its corpus-level score is better
than other combinations. In ranking enforced ver-

sions of RetRef and Hybrid, for each query, we
generate multiple responses using the aforemen-
tioned four decoding combinations (§4) and pick
one with the highest rank score as the hypothesis
for evaluation.

To assess our model, we utilize commonly used
metrics such as BLEU (Papineni et al., 2002),
NIST (Doddington, 2002), METEOR (Lavie
and Agarwal, 2007), ROUGE-L (Lin, 2004),
CIDEr (Vedantam et al., 2015) and Average Sen-
tence Similarity. The last metric is our measure
of semantic similarity between reference response
and hypothesis. For this measure, we use sentence-
BERT (Reimers and Gurevych, 2019), a trained
Siamese BERT-network to encode a reference and
a hypothesis, and then calculate the cosine similar-
ity of the resulting embeddings. The final similarity
score is the mean value over the test set.

For both the datasets, our proposed retrieval-
based response generation model (RetRef+Rank)
outperforms all other baselines in all the metrics.
Specifically, for DineCare, it achieves an improve-
ment over the finetuned GPT-2 baseline model by
15.3% in similarity, 11.1% in BLEU-4, 9% in NIST,
20% in METEOR, 20.5% in Rouge-L and 27.5% in
CIDEr. The performance increase with TapeTech
dataset are 2.4%, 8.9%, 6.9%, 7.9%, 4.5% and
11.4% for the same order of metrics. Knowledge
retrieval plays a key role in this rise. On the other
hand, without refinement, Retrieve only approach
yields the worst scores. Hybrid version can switch
between the baseline and RetRef based on the avail-
ability of suitable retrieved responses. It was evalu-
ated by including such test cases, and outperformed
the baseline model by a significant margin across
all metrics and datasets.

To measure the extent to which our model incor-
porates a retrieved knowledge in the generation, we
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Label Source Text

DC#1
Inquiry

Metadata Product Code: SERVICE RELATED, Reason Code: GC - PROMO - I

Input I just signed up for X-org this morning and have not received my coupon for free pancakes yet. When will I receive it?

Reference After signing up, it may take up to 24 hours to receive your initial offer.

Our model The day you sign up to create an account, you will be receiving your first email within 24 hours.

DC#2
Suggestion

Metadata Product Code: SERVICE RELATED, Reason Code: OLO - SUGGESTION

Input I love your bourbon street foods. ... when ordering online it does not give much options to customize. ... Please try and correct this.

Reference We are glad that you suggested these changes to our site! This feedback has been shared with our X-org Online Ordering team.

Our model We love hearing from our passionate fans about ways to improve our online ordering. Comments like yours are made available to
our Digital Operations team for consideration in future releases. Thank you for your suggestion.

DC#3
Complaint

Metadata Product Code: SERVICE RELATED, Reason Code: GCARD - ORDER - C

Input I ordered the X-money gift card today but the 2 X-money bonus cards are not on the invoice or included.

Reference We are sorry you did not receive your 2 bonus cards. To make up for this,
we will be sending you a X-money digital gift card that you will receive in a separate e-mail.

Our model We are sorry to hear you did not receive your bonus card. We will be sending you
a X-money digital gift card that you will use on your next visit. You should receive it in a separate e-mail.

TT#4
Inquiry

Metadata Product Code: 31714, Reason Code: USAPPLIC

Input I am looking for a duct tape to repair my pontoon boat cover. What tape would you suggest and where can I purchase it from?

Reference For your application, we would recommend our T-Rex Waterproof Tape. It is available at X-url; here is the link: X-url.

Our model T-Rex Waterproofing Tape would probably be best. You may also find it online on X-url, X-url.

TT#5
Inquiry

Metadata Product Code: L134-P5, Reason Code: GNINGRED

Input Can you tell me if your Smooth Top Easy Liner Brand Shelf Liner - Grey Damask contains PVC?

Reference The smooth top easy liner is made of PVC coated polyester. Thank you for your inquiry.

Our model Our shelf liner is made of PVC coated polyester. Thank you for your inquiry.

Table 3: Sample response generation using our RetRef+Rank model

leverage previous work (Weston et al., 2018). Ta-
ble 4 reports the word-overlap between generated
and retrieved responses. For baseline method, over-
lap is computed between generated and reference
response. The results show that our RetRef+Rank
model retained >70% words from retrieval in 51%
and 57% of the test generation of DineCare and
TapeTech dataset respectively. This is a clear im-
provement over the baseline and the basic RetRef
model which shows such overlap less frequently.

Human Evaluation Three experts in the field
manually assessed the relevance and informative-
ness of small-scale, randomly selected hypothe-
ses. Relevance measures if a generated response
is based on the corresponding product and reason
whereas informativeness checks for its information
consistency with respect to the reference response
(Both scored out of 5). The result shows that re-
sponses produced by our RetRef+Rank model yield
roughly 9% higher relevance (4.05 for DineCare,
4.49 for TapeTech) and 12% better informativeness
(3.75 for DineCare, 4.24 for TapeTech) score than
the baseline model, and for both the datasets.

5.3 Ablation Study
Apart from the inclusion of retrieved knowledge,
two other notable contributors to the performance
of the framework are data augmentation and re-

DineCare TapeTech

Method <30% 30-70% >70% <30% 30-70% >70%

Baseline 48% 12% 40% 23% 27% 50%

Retref 42% 12% 46% 21% 25% 54%

RetRef+Rank 34% 15% 51% 17% 26% 57%

Table 4: Word overlap between retrieved and generated
response.

sponse ranking. Our experiments reveal that the
creation of more training instances with multiple
candidate responses increases the automatic score
by 12% in BLEU-4, 6% in CIDEr, and roughly
2% in other metrics. The role of ranking is also
evident from the significant raise of RetRef+Rank
and Hybrid+Rank model score from their base ver-
sion as shown in Table 2. This can be attributed
to the ranker’s policy to penalize irrelevant genera-
tion while favoring the one that integrates quality
retrieval.

5.4 Generation Examples and Discussion

Table 3 shows a few randomly selected generations
from both datasets. It suggests that our model’s
responses are aligned with the type of the customer
letter. For instance, letters of type inquiry (DC#1,
TT#4, TT#5), suggestion (DC#2), and complaint
(DC#3) are responded to accordingly with infor-
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mation, appreciation, and clarification. Secondly,
having historical knowledge, our model is not only
capable of producing an informed response but
also refines that according to the query (DC#1). A
few limitations of our model include its inability
to verify time-sensitive historical information and
handling multiple questions in the same letter. Ad-
ditionally, any automated offer of a coupon (As
shown in DC#3) or other follow-up commitment
may put the company at risk. To resolve these is-
sues, a risk or confidence measuring system can
be introduced based on which human inspection
may be sought before a response is dispatched. We
leave this as future work.

6 Related Work

Research in machine-generated response systems
originated at least four decades ago. At the end of
the last century, Young (2000) introduced a con-
cept of utterance recognizer and response generator
for task-oriented dialog (TOD) systems. The past
few years have witnessed several response genera-
tion models, particularly using neural approaches
to conversational AI. Recently, combining the idea
of GPT (Radford et al., 2018) and transfer-learning
based training scheme, Wolf et al. (2020) produced
improved dialog systems. Similarly, Zhang et al.
(2020) presented DialoGPT, a tunable large-scale
conversational response generation model based on
GPT-2 (Radford et al., 2019). For TOD system,
Kale and Rastogi (2020) and Du et al. (2020) pro-
posed schema and template guided generation re-
spectively which use slot-value tagged knowledge
representations as input. Lately, several works (We-
ston et al., 2018; Roller et al., 2021; Kim et al.,
2020; Lewis et al., 2020) have put forward a re-
trieve and refine approach to combine plain-text
knowledge in conversational response generation.
These works have inspired us to adopt similar gen-
eration ideas for our task.

7 Conclusion

The study proposes a neural response generation
framework to reduce human labor in a real-world
customer care setting, where a structured knowl-
edge base is scarce. Our framework extracts knowl-
edge from historical records of conversations to
generate an informative response. Our evaluation
shows the efficacy of the ranking system and pro-
vides evidence for the operational applicability of
the framework. We plan to extend the framework

with a response validation module for further im-
provement.
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Abstract

Medical coding (MC) is an essential pre-
requisite for reliable data retrieval and report-
ing. Given a free-text reported term (RT) such
as “pain of right thigh to the knee”, the task
is to identify the matching lowest-level term
(LLT) –in this case “unilateral leg pain”– from
a very large and continuously growing reposi-
tory of standardized medical terms. However,
automating this task is challenging due to a
large number of LLT codes (as of writing over
80 000), limited availability of training data for
long tail/emerging classes, and the general high
accuracy demands of the medical domain. With
this paper, we introduce the MC task, discuss
its challenges, and present a novel approach
called XTARS that combines traditional BERT-
based classification with a recent zero/few-shot
learning approach (TARS). We present exten-
sive experiments that show that our combined
approach outperforms strong baselines, espe-
cially in the few-shot regime. The approach
is developed and deployed at Bayer, live since
November 2021. As we believe our approach
potentially promising beyond MC, and to en-
sure reproducibility, we release the code to the
research community.

1 Introduction

Medical coding (MC) is the process of classifying
textual descriptions of medical events into stan-
dardized alphanumerical terms and codes. An ex-
ample textual description is “pain of right thigh
to the knee” that would need to be classified as
an instance of “unilateral leg pain” in the Med-
DRA (MSSO, Retrieved Jun 24, 2021) ontology
(see Table 1 for more examples).

MC allows the consistent documentation of med-
ical records, enabling the analysis of clinical trials,

for example facilitating safety data retrieval or de-
tection of adverse drug reactions. Medical codes
are also used by health plan, medical billing, and
health care providers to make decisions for exam-
ple about prior authorization requests and claims,
impacting how much a patient will pay for medical
care in some countries. At Bayer, around 55 000
terms per month need to be manually coded via a
“four-eye concept” (proposing/accepting) by highly
specialized medical coders, a costly process we
seek to (partially) automate.
Problem Statement. However, automating MC
faces several challenges: First, the number of tar-
get classes is very large and continuously growing,
with over 80 000 as of writing. Second, available
training data is limited and imbalanced, with few
training examples in particular available for long
tail and emerging classes. Third, language is non-
canonical and domain-specific, with frequent mis-
spellings, non-standard abbreviations, irrelevant
text, and specialized vocabulary. Forth, as is stan-
dard in the medical domain, very high accuracy
requirements apply (see Section 2).

Conceptually, this task may be phrased in two
ways: (1) as a standard large-scale multiclass classi-
fication task that takes as input a reported term and
outputs a distribution over all classes (Chalkidis
et al., 2020), or (2) as a matching task that takes
as input both a reported term and a candidate class
label and makes a binary prediction whether the
class matches the term. The latter allows the model
to leverage additional information conveyed by
the natural language class labels (i.e. allowing the
model to learn that the semantics of the class de-
scription “unilateral leg pain” and the text “pain
of right thigh to the knee” overlap) and has thus
been shown work well in few-shot learning set-
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Reported term (RT) Lowest level term (LLT) name Preferred term (PT) name
on and off lethargy lethargy lethargy
scattered indeterminate subcentime-
ter pulmonary nodules

lung nodule pulmonary mass

ckd-unknown etiology chronic kidney disease chronic kidney disease
elective left fem-pop bypass graft femoropopliteal artery bypass peripheral artery bypass
osteomyelitis of the left metatarsal osteomyelitis of the foot osteomyelitis
right foot second toe gangrene gangrene toe gangrene
worsenin renal function renal function aggravated renal impairment
oliguric acute kidney injury/ckd acute oliguric renal failure acute kidney injury
urinary tract infection [enterobacter
cloacae]

urinary tract infection bacterial urinary tract infection bacterial

skin defect [no split] skin disorder skin disorder
haemangioma th12 spinal haemangioma haemangioma of bone
pain of right thigh to the knee unilateral leg pain pain in extremity

Table 1: Sample medical coding data. Reported terms (RT) are short, free-form medical event descriptions that need
to be classified into the most suitable lowest level term (LLT), from a total of over 80 000 standardized LLTs. Each
LLT belongs to a preferred term (PT), i.e. a less granular category of classes. For instance “cdk-unknown etiology”
should be normalized to “chronic kidney disease”.

tings (Halder et al., 2020). It suffers however from
scalability issues that prevent practical application
to large-scale classification problems.
Contributions. With this paper, we present a novel
approach that addresses the above challenges by
integrating a classic BERT-based classification ap-
proach (Devlin et al., 2019) into a recently pro-
posed few-shot classification approach (Halder
et al., 2020). The main idea is to leverage a stan-
dard classifier to predict a set of candidate labels
which are then separately evaluated by the few-shot
learner. We argue that this architecture allows both
components to leverage their respective strengths.
To summarize, our contributions are as follows:

• We present and discuss the MC task, and dis-
cuss its challenges in particular with regards
to industry application.

• We present a novel and straightforward ap-
proach called XTARS(eXtreme Task-Aware
Representation of Sentences) to address this
task by combining strengths of large-scale
classification and few-shot learning.

• We conduct an extensive experimental evalu-
ation that shows that our proposed approach
outperforms very strong baselines. We also
evaluate ensemble learning setups and discus
results in different confidence brackets.

• Since we believe this approach to be useful
beyond the task of MC, and to ensure repro-

ducibility, we make available our implementa-
tion to the research community.1

The presented approach is deployed since
November 2021 at Bayer and is used to generate
coding proposals for all clinical trial studies run-
ning at the time of writing.

2 Task and Data Sources

The MC input is the textual description of a medi-
cal event, known as reported term (RT). The goal
of MC is to associate a given RT to the most appro-
priate term from a given ontology.

2.1 MedDRA as target ontology
We leverage the MedDRA (MSSO, Retrieved
Jun 24, 2021) ontology, which is organized in a
multi-level hierarchy with coarse- and fine-grained
classes. The more fine-grained level of the hierar-
chy is the lowest level term (LLT), of which approx-
imately 80 000 distinct classes exist as of writing.
A more coarse-grained level is the preferred term
(PT), of which approximately 26 000 currently ex-
ist in MedDRA. Table 1 shows a number of ex-
amples for RTs and their corresponding MedDRA
LLT and PT names.

MedDRA undergoes frequent releases that in-
clude changes to the number of classes or their
definitions. As we are required to always use the
most current version of MedDRA, our approach
needs to be robust with regards to such changes.

1https://github.com/Bayer-Group/
xtars-naacl2022
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Data # of samples # of classes samples from classes with ≤10
samples (%, label cardinality)

samples from classes with ≤5
samples (%, label cardinality)

All 293 645 26 893 21.0% 4.96 12.2% 2.81
Train+Val 285 070 26 692 21.1% 4.95 12.3% 2.81
Test (all) 8 575 4 436 18.0% 5.06 10.0% 2.80

Test (top-80%) 6 860 3 495 12.7% 5.84 5.5% 3.11
Test (btm-50%) 4 287 3 126 29.5% 4.71 18.0% 2.72
Test (btm-25%) 1 715 1 455 39.1% 4.05 28.0% 2.55

Table 2: Summary statistics of the medical coding dataset comprising coded and autocoded data, and company
synonyms. Augmented data is excluded. Uncertainty from one PubMedBERT model is used for test set splits.

2.2 Training data
We use a number of proprietary data sources to
train and evaluate our proposed approach. The first
is coded data, which are RTs manually linked to
LLTs by human experts. The second is autocoded
data where a simple rule-based system automat-
ically linked those RTs which either are or con-
tain an LLT verbatim. The system has high preci-
sion but low recall, with the majority of samples
(∼55%) out of autocoder scope, and passed to hu-
mans for manual coding. In addition, we use a
dataset of company synonyms consisting of pairs of
medical text descriptions and corresponding LLT.
These synonyms are created and maintained by the
company MC department. These synonyms define
concepts that are more specific than LLTs.
Final training dataset (Table 2). We collect data
from these sources for all Bayer active clinical tri-
als as of October 2021. Data processing and aug-
mentation steps are outlined in the Appendix. The
final dataset is split into training, validation and
test splits.

Summary statistics are presented in Table 2. We
observe that in the entire training data set, only
26 893 classes are observed, meaning that a signifi-
cant portion of MedDRA LLT codes have no train-
ing data at all. We further note a significant data im-
balance: among the observed classes, 21 187 (78%)
have less than 10 samples, with roughly 21% of all
samples coming from those classes. We split the
test data into three distinct splits that have different
uncertainty, as quantified by the predictive entropy
(see Section 4.1). Top-80% indicates the 80% more
certain data from the test set while btm-50% and
btm-25% contain the least certain 50% and 25% of
the test set respectively.

3 Method

We frame the MC task as multiclass classification,
where each LLT name is treated as a distinct class.

Since each LLT belongs to exactly one PT, the PT
is then obtained directly from MedDRA. We there-
fore disregard the label hierarchy in MedDRA, as
this results in a simpler model to train and deploy,
and it makes the model less dependent on topologi-
cal changes of the underlying MedDRA ontology2.
Method overview. As outlined in Section 1, our
approach builds on and combines two existing ap-
proaches: (1) a default large-scale multiclass pre-
diction approach based on BERT, and (2) a few-
shot classification approach. In this section, we first
discuss these two baseline approaches and their ad-
vantages and drawbacks (Sections 3.1 and 3.2). We
then present our XTARS approach in Section 3.3.

3.1 Baseline 1: Multiclass Classification with
BERT Ensembles

Our first baseline follows the standard multiclass
classification approach based on BERT (Devlin
et al., 2019): we add a single softmax classifier
as “prediction head” over the text embedding re-
trieved from the CLS-token of a pre-trained BERT
model. The language model and prediction head
are jointly fine-tuned using standard parameters
(see Appendix for details) to output a distribution of
prediction scores for all classes given a single input
text. Such approaches have been applied to large-
scale multi-label text classification for biomedical
data, showing results comparable to more complex
and bespoke approaches (Chalkidis et al., 2020).
Deep ensembles. However, deploying a single
model is not advisable for a production setting due
to the underspecification problem (D’Amour et al.,
2020). Models that perform equally well on their
training domain can produce widely different re-
sults in their deployment domain, especially under
dataset shift. This can result in instabilities when

2Moreover, Chalkidis et al. (2020) showed that using label
hierarchy information in large-scale multilabel classification
is on-par or even inferior to transfer learning approaches.
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models are deployed in a real-world setting. This is
particularly problematic for MC, where consistency
is an essential requirement.

To mitigate the underspecification problem we
use deep ensembles (Lakshminarayanan et al.,
2017). The main idea is to train different mod-
els which only differ by a random perturbation
(usually the random seed) and then average across
these models to increase prediction stability, and
possibly performance. As a further advantage, deep
ensembles have also shown to produce reliable un-
certainty estimates (Lakshminarayanan et al., 2017;
Fort et al., 2020), on par with Bayesian deep learn-
ing approaches (Gal and Ghahramani, 2016).

3.2 Baseline 2: TARS Few-Shot Classification

Traditional machine learning algorithms do not
have access to the natural language definition of the
label, but rather to a discrete representation known
as encoding (e.g., one-hot encoding). This repre-
sentation does not preserve any semantic informa-
tion present in the natural language definition. As a
result, the model can learn the class meaning only
indirectly, via the samples associated to a given
label during learning.

In the few-shot setting, the lack of label semantic
is a clear drawback. Inspired by natural language
inference, Task-Aware Representation of Sentences
(TARS, Halder et al. (2020)) include label seman-
tic by concatenating the input text (e.g., RT) with
labels (e.g., LLT name), and then predicting True
if the label is the correct one, and False otherwise
(negative classes or samples). They showed that
TARS reaches strong results in few-shot and zero-
shot settings, but only evaluated on data sets with
comparatively small label sets.
Limitations with regards to medical coding. For
MC, TARS is confronted with severe scalability
issues due to the very large number of classes in
MedDRA: During prediction, a distinct forward
pass through the model needs to be made to sep-
arately evaluate each label candidate. This proce-
dure requires K predictions, where K is the num-
ber of possible labels. When K is very large (e.g.,
K ∼ 80 000 for MC with MedDRA), calculating
predictions becomes computationally prohibitive.

In addition, the large-scale classification sce-
nario complicates the training procedure. TARS
employs a hard-negative sampling technique to
sample a set of neg plausible negatives for each
labeled data point, sampling with a probability pro-

portional to the cosine similarity between the cor-
rect label and the given label. Since the similarity
is used as drawing probability for negative labels,
in large-scale classification (as in MC), the model
will often see negative labels that are “too easy”.
This hinders learning with ultra-fine-grained labels.

3.3 Proposed Approach: XTARS

We introduce changes to the TARS algorithm that
improve on negative sampling for training, and
address the complexity issues during predictions.
Our approach leverages a default BERT multiclass
classification model (see Section 3.1) that must first
be separately trained for MC.
Sampling hard negatives in large label sets. To
address the above-mentioned issue on sampling dif-
ficult negatives in very large label sets, we propose
two sampling techniques that we use jointly. The
first leverages predictions from the trained BERT
classification model. We use its top-5 predictions
(or top-4 if the correct class is in the top-5) as neg-
ative samples, as these are hard from the point of
view of a fully trained standard model.

The second modifies TARS’ cosine similarity-
based sampling using top-k and softmax rescaling:
After computing label similarities, we extract only
the top-k similar classes (out of all K classes) to
the correct label, and set all others to zero. We
choose k to be three times the number of nega-
tive samples to be drawn. Finally, we rescale the
top-k similarities via temperature-scaled softmax
with temperature T . Low (high) T will result in
more peaked (broad) distribution. This procedure
improves the quality of negative samples (Table 3,
cf. TARS (neg=10) and xTARS (neg=10)), and it is
faster (sampling probability vector of k instead of
K dimensions, with k � K) .
Limiting candidate labels during prediction. We
address the scalability issues in prediction by first
predicting a multiclass distribution with a default
BERT model (or deep ensemble). We select the
n top-scoring predictions to be used as label can-
didates for TARS. Through experimentation, we
found a good value of n to be 5. This leads to
a four-order of magnitude reduction in computa-
tional cost (5 vs 80 000) with only a small decrease
in accuracy. The obvious drawback is that XTARS
cannot predict correctly if the correct label is not
in the top-5 BERT candidates; however, the num-
ber of candidates can be increased so that a target
cumulative accuracy is reached.
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Model
LLT Accuracy [%] PT accuracy [%]

All top-80% btm-50% btm-25% All top-80% btm-50% btm-25%
PubMedBERT (PMB) (single) 74.90.5 83.90.3 57.30.9 42.11.4 88.90.2 95.80.1 79.80.3 66.50.6

BioBERT (BB) (single) 74.90.3 83.70.2 56.90.7 42.61.3 88.80.2 95.80.2 79.70.3 66.20.5

sciBERT (SB) (single) 74.90.1 83.50.1 57.10.5 43.80.7 88.90.1 95.80.1 79.80.2 66.70.4

TARS (neg=2 cos) 64.91.2 70.31.4 52.20.9 44.60.6 85.50.4 90.70.5 78.30.1 68.60.3

TARS (neg=10 cos) 62.60.8 67.80.9 50.80.4 43.80.7 85.10.1 90.30.1 78.00.3 68.70.2

XTARS (neg=10 cos) 64.90.9 70.41.1 51.90.8 44.50.5 86.10.4 91.40.4 78.70.4 69.30.3

XTARS (neg=top-5) 76.20.4 83.50.6 61.70.4 51.20.4 89.00.1 94.70.2 81.00.1 70.50.2

XTARS (neg=top-5+5 cos) 77.30.2 84.30.2 63.10.1 52.40.4 89.70.05 95.30.05 82.10.1 71.60.3

XTARS (neg=top-5+10 cos) 76.90.7 84.00.7 62.90.5 52.20.6 89.80.3 95.20.3 82.30.3 72.30.1

XTARS (neg=top-5+5 cos; T=1) 77.50.3 84.40.3 63.50.2 53.50.2 90.00.05 95.40.1 82.50.1 72.40.1

PMB (3 models) 77.8 85.7 61.2 49.2 90.6 96.7 82.6 71.2
BB (3 models) 77.9 85.2 61.5 51.0 90.7 96.5 83.0 72.0
SB (3 models) 77.9 85.3 61.5 50.8 90.5 96.3 82.5 70.9
PMB+SB+BB (3×3) 79.7 86.2 64.4 55.4 91.7 96.7 84.6 74.9
XTARS (PMB+SB+BB, 3×3) 80.4 86.4 64.7 56.1 91.6 96.8 84.8 75.5
PMB+SB+BB (3×5) 80.1 86.3 64.9 56.8 92.0 96.8 85.1 76.2

Table 3: Results on the test set. BERT (TARS and XTARS) models are fine-tuned with five (three) different random
seeds: average accuracy and standard deviation are reported. Unless otherwise specified, XTARS and TARS are
fine-tuned from PubMedBERT. If not specified, T = 0.01. m cos indicates that m negative samples are drawn via
the cosine similarity procedure (Sec. 3.3); top-5 means that the top-5 (or top-4, if the correct class is in the top-5)
BERT predictions are used as negative samples. XTARS ensemble is performed with XTARS (neg=top-5+5 cos;
T = 1). In bold the highest accuracy for a fixed number of models (i.e. 1, 3, 9).

4 Evaluation

We evaluate our proposed XTARS approach
against strong BERT and TARS baselines, both
in single-model and ensemble-model setups com-
mon to industrial application. Our evaluation tests
all approaches in the large-scale multiclass classi-
fication scenario of MC, and evaluates the impact
of our proposed negative sampling techniques. We
also specifically evaluate performance for certain
(top-80%) and uncertain samples (btm-50% and
btm-25%). The uncertain splits aim at evaluating
performance in the few-shot regime (Table 2)3.

4.1 Experimental setup

Language models and ensembles. We se-
lect the top-scoring pre-trained language models
for biomedical tasks from the BLURB leader-
board (Gu et al., 2020), namely bioBERT (Lee
et al., 2019), PubMedBERT (Gu et al., 2020), and
sciBERT (Beltagy et al., 2019). For each training
run, we train multiple models which differ only in
the random seed initialization, and then perform
model ensembling via averaging their classification
probabilities (see Appendix for more details).

3We split by uncertainty instead of class frequency because
the uncertainty estimation is also available at prediction time,
i.e. during industrial deployment of the model.

Estimation of uncertainty. To obtain principled
uncertainty estimates, we utilize the concept of pre-
dictive entropy which captures the average amount
of information contained in the predictive distri-
bution (Gal and Ghahramani, 2016). The larger
(smaller) the predictive entropy, the more uncertain
(certain) the prediction is. The maximum of the
predictive entropy is attained when all prediction
probabilities are equal, while it is zero when one
probability is equal to one and all the rest are zero.

4.2 Experimental results
Results for both LLT and PT are shown in Table
3. As expected, accuracy is higher across all ex-
periments for PT than for LLT, and lower for less
certain predictions. In more detail, we make the
following observations:
Strong single-model performance for XTARS.
The top 10 rows in Table 3 list the results for
single (e.g. non-ensemble) models. We note that
all three BERT models (PubMedBERT, BioBERT,
sciBERT) score roughly on-par. TARS underper-
forms BERT when all samples are considered, es-
pecially for LLT; gains are marginal even for very
uncertain samples (btm-25%). Inclusion of more
negative samples (Table 3, cf. TARS (neg=10 cos)
vs TARS (neg=2 cos)) does not improve results.

Our XTARS models on the other hand for
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the most part significantly outperform all single-
model baselines, reaching an LLT accuracy of 77.5
(↑3.6pp from the best single-model BERT) and a
PT accuracy of 90 (↑1.1pp).
Impact of different negative sampling tech-
niques. Further analyzing these results, we find
that XTARS top-k and softmax rescaling sampling
improves performance over TARS (Table 3, cf.
TARS (neg=10) and XTARS (neg=10)), but only
slightly. In contrast, inclusion of negative sam-
ples from the trained BERT classification model
strongly improves performance (↑11.3pp in LLT
accuracy), making XTARS outperform all BERT
models in the single-model setting. This indicates
that hard negatives are needed to learn effectively
with large label sets. Combining these two sam-
pling strategies further improves performance.
Impact of model uncertainty. XTARS improves
BERT performance overall, with stronger improve-
ments for uncertain samples (↑9.7pp for btm-25%),
which is the few-shot regime (Table 2). It also re-
duces the standard deviation for uncertain samples,
suggesting an increased stability on random seed
initialization w.r.t. BERT and TARS models in the
few-shot regime.
Ensemble results. Ensembling results in perfor-
mance gains for all models, with stronger gains
observed for BERT over XTARS. Model ensem-
bling improve accuracy overall, including uncertain
samples. Ensembling models from the same and
different language model are both beneficial. Gains
flatten with more models (cf. 3�9 vs 9�15).

5 Discussion and practical deployment

Our experimental evaluation shows that XTARS
strongly outperforms all other approaches in the
single-model setting, and even slightly outperforms
other approaches in the ensemble setting.

For model deployment, however, other practical
considerations need to be taken into account than
just overall accuracy. One drawback of XTARS
is that it requires a fully trained multiclass clas-
sification BERT model before the model can be
trained. As our setup is a continuously running
system, and both MedDRA and our training data
are constantly expanded, we implemented an au-
tomated system for retraining models in regular
intervals. Here, we decided on the BERT ensem-
ble setup (3× 5) because of its high accuracy and
relatively low complexity.
Human verification in running system. After

deployment, we perform back-testing to estimate
real-world performance: predictions are compared
with the label given by the human coder. For a total
of 2 452 predictions from the live system, we found
a LLT accuracy of 90.9% with 80.3% coverage.

From an industry perspective, this accuracy sig-
nificantly improves coding efficiency. Human
coders are presented with a system proposal which
they can simply accept in many cases, leaving only
a small portion of data points in which coders need
to manually search for the best matching LLT code.
For the top-80% most certain samples, nearly all
models meet the regulatory requirements of 95%
PT accuracy for MC.

6 Related work

Large-scale text classification. The literature fo-
cuses on assigning multiple medical codes to the
unstructured portion of electronic health records
(patient notes or narratives) (Baumel et al., 2018;
Mullenbach et al., 2018; Rios and Kavuluru, 2018;
Shi et al., 2017; Xie and Xing, 2018; Kim and
Ganapathi, 2021). In our case, however, only text
snippets relevant to the coding process (i.e. RT)
are gathered during the clinical trial data collection
process. Each text snippet must be assigned to a
single code.

Zero/few-shot learning. Few-shot learning in NLP
has been performed mostly via meta-learning (Finn
et al., 2017). Meta-learning has been applied for ex-
ample in machine translation (Gu et al., 2018), sen-
timent analysis (Yu et al., 2018), and dialog intent
classification (Geng et al., 2019). However, these
approaches cannot perform zero-shot predictions.
Yin et al. (2019) propose to treat zero/few-shot
text classification as a textual entailment problem.
The input text acts as premise, and labels are used
as hypotheses. Halder et al. (2020) adopt a sim-
ilar idea. Literature on zero/few-shot learning in
large-scale text classification for biomedical data
is scarce (Chalkidis et al., 2020; Song et al., 2020).

Deployed systems for medical coding. Magi-
Coder is a rule-based system (Zorzi et al., 2017;
Combi et al., 2019) to obtain medical codes from
pharmacovigilance reports that scans the input text
for terms matching the ontology, and votes the best
match. They achieved an average precision (recall)
of 69% (70%) on an adverse drug reaction dataset
scraped from social media (Yang et al., 2012).
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7 Conclusions

In this paper, we introduced the MC task and dis-
cussed its challenges. We outlined a MC sys-
tem based on biomedical transformers deployed
in a production environment, and showed that en-
sembling improves performance. We introduced
XTARS, a zero/few-show learning approach, suit-
able for classification tasks with very large label
sets and long-tailed distribution of labels in data
points. The main limitation of XTARS is that it
requires a (well-performing) BERT model, thus in-
creasing model complexity. We report promising
results for XTARS in MC, and release our code
to the research community for application to other
tasks.
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A Appendix

A.1 Data processing and augmentation
The proposed algorithm maps reported terms (RTs)
to lower level terms (LLT) in the MedDRA on-
tology (see main text). This mapping is already
available for the coded and autocoded data, and
thus these data sources can be readily used.
Data augmentation. The dataset presents a large
amount of rare classes: more than 66% of the LLT
classes appear less than five times in the data. To
mitigate this problem, for each sample belonging to
rare LLTs, we perform data augmentation by gen-
erating two simulated samples (one word split and
one random character change, see Fig. 1). We de-
fine LLTs as rare if they have less than ten samples.
Data augmentation is performed with the nlpaug
package (Ma, 2019).
Data from MedDRA and its augmentation. For
the MedDRA ontology, we interpret each LLT as
RT. For each LLT in the ontology, we generate
three RTs: the LLT verbatim, plus two simulated
misspelled entries (one word split and one charac-
ter change), as depicted in Fig. 1. As label, we use
the original LLT. This procedure of adding all pos-
sible MedDRA LLT via simulated samples enables
the algorithm to make predictions encompassing
all possible LLTs, including the ones never encoun-
tered in the real (autocoded + coded) data.
Company synonyms. Each company synonym is
interpreted as RT, and the pair RT/LLT is added to
the dataset. We do not augment synonyms because
they are very similar to the corresponding LLT, and
the LLTs are already augmented directly from the
ontology.
Data preprocessing. Data preprocessing is mini-
mal: everything is lowercased and only unique RTs
are kept; if multiple RT/LLT pairs are present, the
most recent pair is kept.
Split into training, validation, and test set. The
last step is to split the data into training, validation,
and test set. The most recent 5% of coded data is
used as test set. From the remaining coded data,
a randomly sampled 10% of the coded data (ex-
cluding data augmentation) is used as validation

data. The training data comprises all autocoded
data, all RT originating from the ontology, the com-
pany synonyms, and the remaining coded data (∼
85%), plus augmented data. Finally, we remove
from the training data the augmented samples if
their original sample is included in the validation
data. This is done to avoid target leakage due to
data augmentation, and enforce the independence
of the validation data.

Figure 1: From raw data sources to training, validation,
and test data via data processing and data augmentation
(BERT models).

Figure 2: From raw data sources to training, validation,
and test data via data processing and data augmentation
(TARS and XTARS models). Data coming from the
ontology is omitted for computational reasons.

For the XTARS experiments, we train only on
coded, autocoded, and synonyms (including aug-
mented data). We omit the ontology data for com-
putational reasons. Still, the XTARS model can in
principle predict for all LLTs in MedDRA (includ-
ing LLTs not included in the training set) because
the underlying BERT model is able to propose all
LLTs from MedDRA, and the XTARS model is
able to make zero-shot predictions. As validation
set, we only take 200 samples (instead of the full
validation set) because in the current implemen-
tation, all possible classes are passed to XTARS
for validation during training, resulting in a com-
putational cost of ∼ 80 000 prediction for each
validation sample. At prediction time, however,
only the top-5 candidate classes from the BERT
models are passed to XTARS, as outlined in the
main text.
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A.2 Biomedical language models
From the BLURB leaderboard (Gu et al., 2020),
we take the best performing language models for
biomedical tasks (as of July 2021):

• bioBERT(Lee et al., 2019) is a BERT model
trained on a biomedical corpus via a mixed
domain pre-training strategy. The starting
point is a standard BERT model pretrained on
general corpus such as Wikipedia and Book-
Corpus. From that, the pretraining process
is continued using biomedical text, namely
PubMed abstracts (PubMed) and PubMedCen-
tral (PMC) full text articles. We use BioBERT
v.1.1.

• PubMedBERT(Gu et al., 2020) is a BERT
model which - in constrast with bioBERT -
is pretrained exclusively on biomedical text;
specifically, it does not use the BERT weights
as initialization, and it builds the vocabulary
from scratch based on the biomedical text.
The training corpus is also PubMed and PMC.
A larger batch size w.r.t. bioBERT (8,192 vs
192) is used in the pretraining process.

• sciBERT(Beltagy et al., 2019) is a BERT
model which is also pretrained from scratch.
Differently from PubMedBERT (and
bioBERT), sciBERT is trained on a corpus
comprising both computer science (18%)
and biomedical papers (82%) from Semantic
Scholar (Ammar et al., 2018).

A.3 Details on model training
A.3.1 BERT models
Training is performed on the training set (see Fig.
1) for 20 epochs with Adam optimizer with a learn-
ing rate of 1e-4 and batch size of 512. Learning
rates of 1e-5 and 5e-5 were also evaluated, but yield
a lower performance. The same hyper-parameters
are used for each language model. Training a sin-
gle model takes approximately 7 h on 4 Tesla V100
GPUs. We select the model with the highest ac-
curacy on the validation (holdout) data, and we
evaluate the model on the test data.

A.3.2 TARS and XTARS models
Training is performed on the training set (see Fig.
2) for 5 epochs with Adam optimizer with a learn-
ing rate of 5e-5 and batch size of 32. Learning
rates of 1e-5, 3e-5, 7e-5, and 8e-5 were also eval-
uated, but yield a lower performance. The same

hyper-parameters are used for each language model.
Training a single model takes approximately 28 h
on 1 Tesla V100 GPUs. We select the model with
the highest accuracy on a subset of 200 samples of
validation (holdout) data due to computational cost.
We evaluate the model on the test data.

A.4 Results on the test set, split by class
frequency

Results split by class frequency are presented in
Table A1.

A.5 Machine learning solution architecture

Figure 3: Cloud architecture of the deployed medical
coding system outlined in the main text.

Designing and implementing machine learning
systems is challenging since they exhibit a different
behavior than traditional software systems (Scul-
ley et al., 2015). The cloud architecture of the
medical coding (MC) system outlined in the main
text (termed Holmes) is organized in separate yet
interconnected layers.

Serving layer. It is responsible for receiving RTs
from the MC platform, forwarding them to Holmes,
and returning the respective predictions.

Ingestion layer. Via the ingestion layer, the MC
platform sends all available data needed for model
training to Holmes.

Storage layer. In the storage layer we save all
data, solutions, and model versions that are re-
ceived or created by Holmes. It can be considered
as the hard-drive of Holmes.

Transformation layer. It handles all steps re-
quired to make the data received from the MC plat-
form ready for model training. It implements all
pre-processing steps, including data augmentation
and split into training, validation, and test data.
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Model
LLT Accuracy [%]

All k=0 k=1 k=2 k=3 k=5 k=10 k>=100
PubMedBERT (PMB) (single) 74.90.5 31.01.8 44.50.8 57.11.3 60.31.8 68.51.7 65.61.2 84.00.7

BioBERT (BB) (single) 74.90.1 29.21.9 41.81.5 53.51.5 60.02.6 65.92.6 62.51.1 84.40.4

sciBERT (SB) (single) 74.90.3 27.81.7 42.52.5 58.41.3 57.52.2 66.41.1 60.32.4 84.60.8

TARS (neg=2 cos) 64.91.2 44.01.2 52.31.9 58.21.2 56.11.3 55.01.9 58.51.7 69.83.0

TARS (neg=10 cos) 62.60.8 39.80.4 47.41.0 53.84.6 56.33.9 52.81.7 52.72.8 66.41.3

XTARS (neg=10 cos) 64.90.9 42.22.3 51.01.2 56.40.7 56.72.5 55.61.2 56.03.5 71.41.6

XTARS (neg=top-5) 76.20.4 37.01.1 48.71.0 57.71.2 64.62.2 67.81.7 63.62.2 83.90.7

XTARS (neg=top-5+5 cos) 77.30.2 37.90.2 47.43.1 59.32.0 67.42.0 68.92.5 63.61.7 84.80.3

XTARS (neg=top-5+10 cos) 76.90.7 38.51.1 48.80.4 59.30.5 66.10.8 68.81.1 63.31.1 84.60.9

XTARS (neg=top-5+5 cos; T=1) 77.50.3 37.30.9 48.10.2 59.70.9 64.81.1 67.82.4 65.60.7 84.90.3

PMB (3 models) 77.8 33.0 46.0 60.4 63.4 70.9 68.9 86.6
BB (3 models) 77.9 33.0 47.9 64.3 65.8 69.2 65.6 87.0
SB (3 models) 77.9 30.8 43.7 57.1 65.2 69.8 64.7 87.1
PMB+SB+BB (3×3) 79.7 34.8 49.8 63.2 63.4 73.8 70.6 88.2
XTARS (PMB+SB+BB, 3×3) 80.4 48.9 52.6 64.8 68.3 71.5 68.9 86.9
PMB+SB+BB (3×5) 80.1 36.2 48.8 64.8 67.1 73.8 68.9 88.5

Table A1: LLT accuracy on the test set. For details on the models, please see Table 3 in the main text. k refers to
the number of training samples, excluding augmented data. In this setting, BERT models can perform zero-shot
(k=0) predictions because the training set contains augmented samples from the ontology for all categories (see Sec.
A.1), even when no real samples are present in the training data (i.e. k=0).

Training layer. It performs model training with
data transformed by the transformation layer, and
saves the trained models to the storage layer.

Configuration layer. The entire architecture is
defined, configured, and created by the configura-
tion layer via infrastructure as code. This allows to
install the entire infrastructure via simple scripts.

Monitoring layer. It observes the system and
raises alerts if unusual behavior is detected, e.g.
requests from unknown IP addresses.

Orchestration layer. It schedules all tasks such
as model training or data processing in the right
order.

A.6 Graphical user interface of the medical
coding platform
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Figure 4: Screenshot of the medical coding platform where the coding solutions proposed by the algorithm described
in the main text are shown to medical coders for acceptance or rejection.
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Abstract

During their pre-flight briefings, aircraft pilots
must analyze a long list of NOTAMs (NO-
tice To AirMen) indicating potential hazards
along the flight route, sometimes up to 100
pages for long-haul flights. NOTAM free-text
fields typically have a very special phrasing,
with lots of acronyms and domain-specific vo-
cabulary, which makes it differ significantly
from standard English. In this paper, we pre-
train language models derived from BERT on
circa 1 million unlabeled NOTAMs and reuse
the learnt representations on three downstream
tasks valuable for pilots: criticality prediction,
named entity recognition and translation into a
structured language called Airlang. This self-
supervised approach, where smaller amounts
of labeled data are enough for task-specific fine-
tuning, is well suited in the aeronautical con-
text since expert annotations are expensive and
time-consuming. We present evaluation scores
across the tasks showing a high potential for an
operational usability of such models (by pilots,
airlines or service providers), which is a first to
the best of our knowledge.

1 Introduction

Each upcoming flight requires a preparation phase
for the crew. During this phase, the pilots check all
the elements concerning the flight, being the mete-
orological conditions, fuel supply, or safety related
notifications. Pilots receive these notifications from
the aviation authorities under the form of small text
messages, called NOtice To AirMen (NOTAM).
It represents a large number of messages to read
and process before the flight, sometimes up to 100
pages for long-haul flights, which translates to a
long analysis time. The messages are mostly, but
not only, written in the English language. How-
ever, the phrasing being very special, with a lot of
acronyms, technical words and without the usual
grammar and syntax rules, the language differs
from standard English.

In this paper, we aim to apply the latest advances
in Natural Language Processing (NLP) to the aero-
nautical field leading to more autonomy and less
overhead for the pilots. In particular, the use of lan-
guage models like BERT enables leveraging lots of
unlabeled data for pretraining and fine-tuning on
downstream tasks with limited amounts of labeled
data. Our main contribution is to present a knowl-
edge extraction pipeline adapted to the aeronautical
context. We introduce a language model trained
from scratch on a large amount of raw NOTAMs,
followed by three downstream tasks: criticality pre-
diction, named entity recognition and translation
into a structured language called Airlang.

This paper is organised as followed: in Section 2,
the NOTAMs are detailed both on the operational
and the linguistic side, the problem is defined in
Section 3 with a focus on the three downstream
tasks. In Section 4, after a brief reminder of the
state of the art, we present our approaches and the
results of our experiments.

2 NOTAMs in aeronautical context

A NOTAM is a message filled by aviation author-
ities to alert pilots about potential hazards along
a flight route or at a location that could affect the
flight. The message can inform about temporary
disruptions (from a few hours to one year maxi-
mum) on aeronautical infrastructures (for example,
closure or limited usage of runway or taxiway in a
given airport), about inoperable radio navigational
aids, military exercises with resulting airspace re-
strictions, temporary erections of obstacles near
airfields (e.g. cranes), passage of flocks of birds
through airspace, etc. An example of a NOTAM
message is shown in Figure 1; more details about
the fields can be found in Appendix A.

2.1 Operational point of view

During the pre-flight briefing phase, a pilot has to
read all NOTAMs relevant for the flight in order to
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Figure 1: NOTAM example with its different Q, A, B, C and E fields

guarantee safety.
Reading these NOTAMs is a mandatory task for

the pilot but can be long and challenging. First,
those short messages are quite cryptic, all written in
capitals, with many confusing abbreviations. Sec-
ond, the number of emitted NOTAMs is growing
over time with for example 2 million in 2018 (circa
5500 per day). Some of them are crucial for the
flight, but the vast majority are of low importance,
which makes the analysis difficult.

NLP techniques can be very helpful in that aero-
nautical context, typically to rank NOTAMs by
criticality and highlight important information in
them (like runway and taxiway identifiers). For
example, NOTAMs about runway or flight area clo-
sure are often more relevant than the ones repeated
every day by small airports about strong wind in
the area.

TWY E(BTN H AND Z)-RESTRICTED DUE TO

CONST RMK/NOT AVBL FOR ACFT WITH MORE

THAN 65M

TWY HOTEL CLSD 283M FROM INTERSECTION

WITH TWY GOLF

Figure 2: Example of NOTAMs (E field)

2.2 Linguistic point of view
NOTAMs are composed of multiple fields, some of
which contain structured information that is easy
to parse with a fixed grammar. In this work we
focus on the "E field", which usually contains the
most detailed information in an unstructured free-
text form. NOTAMs (E field) are quite short text
messages and are not written in standard English
but rather in a domain-specific language, mainly
composed of abbreviations and acronyms from the
aeronautical world; an official list of acronyms is
maintained by ICAO (International Civil Aircraft
Organization).

A strong expertise is required to decode and un-
derstand those messages; if, overall, English is the
main used language, some authorities use their lo-
cal language. Two examples of NOTAM content

(E field) are shown on figure 2.
The NOTAM language is designed to be concise

in order to transmit information in the most efficient
way. In order for this language to be understood
and written by everyone from the aeronautical
world, some guidelines exist and it is strongly en-
couraged to use the official list of acronyms. Such
patterns like ""RWY XX/YY CLSD"" (which means
that the runway "XX/YY" is closed) appear quite
often in the NOTAM corpus but despite the offi-
cial recommendations, people authoring NOTAMs
regularly deviate from them, can make spelling
mistakes, etc. The resulting NOTAM language
thus presents the same challenges as any natural
language and cannot be robustly analyzed with a
rule-based system.

3 Problem definition

3.1 Criticality prediction

During the preparation of the flight, the pilot and
co-pilot must take note of all these documents in-
troduced above. However, as mentioned before,
NOTAMs can be very numerous and may not all
be relevant for the flight in question. With the crit-
icality estimation, we aim to highlight the most
important messages for the flight, to help the pilot
optimize the preparation phase.

3.2 Named entity recognition

As mentioned in Section 2, highlighting the most
important and relevant entities can help the pilot
digest the NOTAMs and focus on the most insight-
ful parts. This is a typical NLP task called Named
Entity Recognition (NER).

One crucial information the pilot needs to know
is about the closure of airways (runway or taxi-
way)1. Sometimes, the closure of an airway is
specified with :

• a geographical condition : for example, only
a given part of the airway is closed

1A runway is where the aircraft lands/takes-off, whereas a
taxiway is a road connecting runways to terminals and hangars
in an airport
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• a temporal condition : the airway is closed
certain days of the week or at certain time
schedules of the day

• an aircraft condition : for example, an airway
can be closed only to aircraft whose wingspan
is larger than a given size

• an operational condition : for example, an air-
way can be closed only for take-off or landing

Similarly, exceptions and reasons can be added
to further specify the NOTAM.

3.3 Translation

Pilots and co-pilots are often supported by digital
apps provided on the so-called electronic flight bag
(EFB), a mobile tablet docked to the aircraft, replac-
ing the physical flight bag that used to contain all
flight documents in the past. Beyond giving digital
access to the required documents, some of these
apps now propose to visualize contextual flight in-
formation (e.g. extracted from NOTAMs) in a more
digestible format for the pilot, such as maps with
visual cues. Such apps typically rely on structured
machine-parsable languages like Airlang, synthe-
sizing the most important pieces of information
from NOTAMs. Today, the translation from raw
NOTAMs to Airlang is generally done manually
by multiple humans (in charge of the translation
itself or its verification). In this paper, we are inves-
tigating the possibility to automate this translation
using modern sequence-to-sequence language mod-
els. The goal is to accelerate this translation task,
potentially reducing the manual effort to the verifi-
cation part only.

4 Experiments and results

4.1 NOTAM language model pretraining

Significant advances in the NLP field have been
made in the recent years thanks to powerful Trans-
former architectures (Vaswani et al., 2017) and self-
supervised pretraining, as introduced by the BERT
paper (Devlin et al., 2019) and continued in various
derivative work like RoBERTa (Liu et al., 2019) or
DeBERTa (He et al., 2020). Due to its characteris-
tics, the NOTAM language can benefit from such
state-of-the-art language models.

Following popular practices on BERT models
and its variants, the idea is to pretrain a language
model on many raw NOTAMs with a dedicated
tokenizer (we cannot reuse models available online

since there is almost no overlap with standard En-
glish), and then fine-tune it for each downstream
task introduced in section 3. See Appendix B for
architecture details.

We experimented with a few language model
variants (RoBERTa and DeBERTa v2, both with
6 layers), each being trained on a dataset of 1.2
million unlabeled NOTAMs, from which the E field
(the free text part) was extracted. No other pre-
processing was performed on the data.

The RoBERTa models were trained on a cor-
pus tokenized using BPE (Sennrich et al., 2016),
whereas the DeBERTa ones were trained using Sen-
tencePiece (Kudo and Richardson, 2018) tokeniza-
tion; both tokenization models has a vocabulary
size of 52000.

The language models were trained using the
Huggingface transformers library 2, using a
masked language model objective, during 3 epochs.

4.2 Criticality prediction

The objective is to assign a score to each free-text
part of a NOTAM (part E), from 1 = lowest prior-
ity to 5 = highest priority. In terms of NLP task,
this fine-tuning consists in a sequence-level pre-
diction (classification or regression). We train a
regression head that takes as input the output of the
classification [CLS] token after passing through
the pretrained language model. This pooled em-
bedding reflects the context of the full text as it
contains information about all the other tokens of
the considered sequence. The classification head is
mainly a linear layer.

We choose to cast this task as a regression rather
than a classification in order to take into account
the ranking of the scores. Indeed, classifying a
message to 2 or 5 rather than 1 should not give
the same loss value. Therefore, the output of our
additional head is of size 1.

The dataset comes from ICAO and is composed
of circa 35000 NOTAMs annotated by experts. One
of its characteristics is its heterogeneity between
the labels : more than 10% of the dataset contains
duplicated messages to which different scores have
been attributed, sometimes even 1 and 5 for the
same NOTAM. This reflects a divergence of views
that can come from the pilot’s perception or the
context of the flight. Moreover, as you can see in
Figure 3, NOTAMs with the lowest importance are

2https://github.com/huggingface/
transformers
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Figure 3: Distribution of the scores in the training set

much more represented than the others.
The dataset is split in 80%-20% between training

and testing. By training on this dataset and consid-
ering the prediction scores rounded to the nearest
integer, we reach a Mean Absolute Error (MAE)
of 1.08 in the best case: DeBERTa v2 with hidden
size of 768. However, we notice a strong bias to-
wards middle criticality scores with low recalls on
the extremes.

To mitigate this point, we can alternatively use
a multi-class F1-score as evaluation metric for the
best model selection. To tackle the imbalance and
heterogeneity problem, we pre-process the dataset
by keeping for each NOTAM its most frequently
attributed score, followed by an oversampling in
order to have the same number of messages for
each score in the training set. With these changes,
the recall of the lowest and highest criticality NO-
TAMs are significantly improved (by absolute 28%
and 16% respectively). This shows the ability to
support the pilot in detecting important NOTAMs,
even if it is technically impossible to get perfect
predictions on this dataset because of the frequent
disagreements between the annotators themselves.

A perspective of improvement would be to cali-
brate the model with inputs coming from the pilots
and human factors team. We may expect that the
impact of predicting a low priority when it is ac-
tually a high priority message would be larger on
the flight’s safety than the contrary. An asymmetric
loss could then be used during training to reflect
these specificities.

4.3 Named entity recognition

NER is the second downstream task studied in this
work; it is a classical token classification task that
can be implemented by adding, on top of each to-

Train Dev Test
#NOTAMs 196 50 62

runway 231 56 71
taxiway 385 82 97
closure 187 42 57

condition 211 51 42
exception 25 7 9

reason 81 21 26

Table 1: NER dataset description

ken’s embedding, a linear layer and a softmax to
derive the most probable entity tag. The pretrained
language model is fine-tuned within this architec-
ture on an annotated dataset.

An extension of this approach was explored by
adding a Conditional Random Field (CRF) on top
of the linear layer as detailed in (Souza et al., 2019).
The biLSTM-CRF (Lample et al., 2016) used to
be the state-of-the-art approach before the emer-
gence of BERT-based models; in a sequence la-
beling task, CRF maximizes the probability of the
whole sequence of decisions, so it can better take
context into account instead of making independent
predictions.

The dataset consists in a set of 308 NOTAMs
that were annotated with the different entities in the
IOB format (Ramshaw and Marcus, 1995). In this
study, the following list of entities are considered:
runway, taxiway, closure, condition, exception and
reason. The dataset is rather small but annotation
is quite costly since it requires aeronautical exper-
tise. The dataset was respectively split into training,
development and test sets as detailed in Table 1.

Three different kinds of models were trained.
The baseline model is a layered biLSTM model (Ju
et al., 2018); it was already explored in the context
of NOTAMs in previous work (Arnold et al., 2019).
The layered aspect is interesting to tackle NOTAM
entities, which can be nested as shown in Figure 4.
Indeed, inside the closure clause, there can be men-
tions of other entities like runway, taxiway but also
of condition, exception or reason.

The other approaches presented in this paper are
based on the RoBERTa language model (trained
from scratch on NOTAM data), fine-tuned on the
NER dataset in two variants: without and with a
CRF layer. As entities are nested, a first simple
approach consists in training a separate model for
each kind of entity; as runway, taxiway cannot be
nested in each other, they are covered by one model.
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Figure 4: Example of nested entities

Every other entity (closure, condition, exception or
reason) is covered by its own model.

The results (obtained with the conlleval script 3

with the different models are summed up in Ta-
ble 2. Using the RoBERTa fine-tuned model with-
out CRF seems to significantly degrade the results
globally compared to the biLSTM-CRF baseline
on all entities, except for runway where the F1-
score is improved. The degradation is even more
significant for "long-span" entities like closure and
reason. However, the CRF layer seems to boost
the F1-scores for all the entities; results are signif-
icantly improved compared to the initial baseline.
In this context, where entities can have a long span,
the CRF layer seems to play a crucial role in this
sequence labeling task. Finally, entities like run-
way and taxiway reach very high F1-scores; they
are the easiest to catch (because often preceded by
keywords like "RWY" and "TWY"). The results
on other entities are globally lower; they are more
difficult to recognize because they have a longer
span and are often less represented in the corpus.

As described previously, the RoBERTa fine-
tuned models seem to provide good results globally
on all the entities but each entity needs its own
model due to the nested aspect. This approach is
not very efficient both in terms of memory and com-
puting time. This motivated us to explore multi-
task learning (Caruana, 1997; Collobert and We-
ston, 2008); the idea is to start with the pretrained
RoBERTa model but this time with one dedicated
classification head for each entity type. By simulta-
neously training on all the entities, each task could
hopefully benefit from each other. Results are pre-
sented in Table 2. The multitask model that handles
all the entities at once keep good F1-scores on en-
tities like runway, taxiway and closure, for which
we have more examples in the training set, whereas

3https://github.com/sighsmile/
conlleval/blob/master/conlleval.py

the results are a bit degraded on entities like con-
dition and reason. The results for exception are
to be considered carefully because there are too
few examples in the training and test sets. This
motivated us to train a multitask model only on
the runway, taxiway, closure and condition enti-
ties for which we had at least 200 occurrences in
the training set. F1-scores are further improved on
runway, taxiway and closure entities. Multitask
learning enables recognizing nested entities with
a single model, as long as a minimal amount of
data is present for each entity type (otherwise, less
represented entities tend to penalize the training
overall).

4.4 Translation

The last downstream task of interest is the auto-
matic translation from the raw NOTAM text to
the Airlang structured language, the latter being
parsable by a fixed grammar (see example in Fig-
ure 5). This sequence-to-sequence task requires
an encoder-decoder model like the original Trans-
former architecture (Vaswani et al., 2017). For the
encoder, we reuse the pretrained model introduced
in Section 4.1. For the decoder, we use a simi-
lar model (RoBERTa) but initialized from scratch
without pretraining because we do not have ac-
cess to huge amounts of unlabeled Airlang data,
as opposed to raw NOTAMs. We then fine-tune
the whole encoder-decoder model end-to-end on
a dataset of circa 20000 NOTAM-Airlang pairs
(translated by human professionals).

NOTAM: YMMM E1166/20 17JUN0100-17JUN0300

STIRLING AIRSPACE R192ABC ACT (RA2) DUE

MILITARY FLYING SFC / FL300

Airlang: TIMEDEF DURATION = 17 Jun 2020

1:00 TO 17 Jun 2020 3:00; AREADEF

"YM:192A" FL001 TO FL300 ACTIVE

DURATION; AREADEF "YM:192B" FL001 TO

FL300 ACTIVE DURATION; AREADEF "YM:192C"

FL001 TO FL300 ACTIVE DURATION;

Figure 5: Example of NOTAM translated to Airlang

Although the output sequence is not constrained
by any special mechanism, after training we ob-
serve that most generated Airlang translations are
valid with regard to the grammar underpinning this
structured language. As opposed to classical trans-
lation tasks where BLEU or ROUGE scores are
often used to allow for some flexibility, here the
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Layered
biLSTM CRF RoBERTa RoBERTa

CRF
Multitask

model

Multitask
model w/o

exception/reason
Entity Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

runway 95.8 95.8 95.8 97.3 100.0 98.6 98.6 100 99.3 98.6 100.0 99.3 98.6 100.0 99.3
taxiway 97.7 87.6 92.4 92.6 89.7 91.1 94.9 94.9 94.9 95.8 93.8 94.8 96.9 95.9 96.4
closure 70.5 78.2 74.1 59.4 74.6 66.1 87.0 72.7 79.2 80.8 76.4 78.5 81.8 81.8 81.8

condition 55.9 46.3 50.7 30.7 56.1 39.7 63.2 58.5 60.8 67.9 46.3 55.1 61.6 58.5 60.1
exception 100.0 33.3 50.0 100.0 22.2 36.4 100.0 33.3 50.0 100.0 22.2 36.4

reason 87.0 76.9 81.6 73.9 65.4 69.4 91.7 84.6 88.0 91.3 80.8 85.7

Table 2: NER results in terms of Precision, Recall and F1-score

model performance is evaluated (on a test set of
circa 5000 NOTAM-Airlang pairs) with a much
more conservative metric because of the safety-
critical context and the fact that the target language
is structured: we consider the percentage of "per-
fect translations", i.e. the ones matching exactly
the ground truth in a case-sensitive way. However
we noticed a few tiny variations in this ground
truth that are parsed equivalently down the line (op-
tional presence of a white space in certain places,
some words that are both valid whether they are
capitalized or not, equivalent ways of expressing
flight levels like "FL001 TO FLxxx" and "FLxxx
AND BELOW"...). So we propose to post-process
both the model output and ground truth with simple
hard-coded rules to normalize their form, leading
to adjusted performance scores which better reflect
the actual quality of the translation (see Table 3 for
results without/with post-processing using different
encoder models).

We note that our system (using the best transla-
tion model) is able to produce 84.5% correct trans-
lations, which can significantly reduce manual ef-
forts from operational teams providing such ser-
vices to airlines. To further support these teams by
giving a confidence score on these translations, we
use gradient boosting (Chen and Guestrin, 2016)
to train a classifier in charge of detecting good/bad
translations based on various seemingly relevant
features (length of the NOTAM, number of oc-
currences for certain elements like days/months,
etc.). As seen in Figure 6, this classifier obtains
a AUC score (Area Under Curve) of 0.90, show-
ing a strong ability to distinguish good/bad transla-
tions (the business can adapt the threshold to select
any point on the curve according to their preferred
trade-off between probability of detection vs false
alarms).

Encoder
model

Hidden
size

No post-
process

With post-
process

RoBERTa 768 74.3% 83.6%
RoBERTa 1536 78.1% 84.5%

DeBERTa v2 768 78.0% 83.1%
DeBERTa v2 1536 77.3% 82.3%

Table 3: Perfect NOTAM to Airlang translation scores

Figure 6: Translation classifier AUC score

5 Conclusion and perspectives

In this work, we presented the use of modern self-
supervised language models (derived from BERT)
to extract knowledge from NOTAM aeronautical
messages. We showed that a single deep learn-
ing model pretrained on circa 1 million unlabelled
NOTAMs can be efficiently reused on downstream
tasks with dedicated fine-tuning. NOTAM criti-
cality prediction can support pilots during their
pre-flight briefing by highlighting the most impor-
tant messages. Furthermore, named entity recogni-
tion can be applied to extract relevant parts of NO-
TAMs (e.g. closed runways/taxiways, specific con-
ditions/exceptions...). Finally, automatic transla-
tion to a domain-specific structured language (Air-
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lang) used by pilot apps during flight, can support
operational teams providing services to airlines.
The evaluation scores on these tasks show a high
potential for an operational usability of such mod-
els (by pilots, airlines or service providers), which
is a first to the best of our knowledge.

In the future, alternative NLP methods such as
summarization for NOTAMs could be explored
to continue reducing pilots’ workload. While the
use of deep learning networks (and pretrained lan-
guage models) enabled increasing accuracy in a
lot of NLP downstream tasks, they are known to
be overconfident in their predictions. It is an issue
in the aviation context given its safety-critical na-
ture, where trust in systems’ predictions is key. In
that respect, uncertainty quantification methods -
such as conformal predictions (Vovk V. and Shafer,
2005)(Angelopoulos and Bates, 2021) - could give
a reliable measure of confidence in model’s out-
puts. The robustness of the model could also be
assessed through adversarial attacks, as in (Mor-
ris et al., 2020). Finally, formal methods could be
used for verification and could pave the way to the
certification of such deep learning models, required
for any use on board.

Ethical considerations

In any safety-critical context like aeronautics, there
is an inherent risk associated with the use of auto-
matic methods supporting human operators. This
is why our proposed techniques are limited to a
responsible use on ground, at least until the un-
derlying models can be certified for in-flight use
thanks to rigorous methods from the Trusted Artifi-
cial Intelligence research field. In any case, such
systems are only meant to support human analysis
and decision making by decreasing workload, not
to replace them.

The NOTAMs collected worldwide and used in
this study are public data (accessible via numerous
official platforms online). The datasets used for
named entity recognition and translation are pro-
prietary and built internally by expert annotators as
part of their work (with the permission to be used
in our work). The ICAO dataset used for criticality
prediction is public and enables research use.

The Huggingface Transformers framework sup-
porting model training in our study is open sourced
under the permissive Apache 2.0 license. Every
model training mentioned in this paper (RoBERTa
and DeBERTa v2 ones) took less than 12 GPU

hours for pretraining and for each of the three down-
stream tasks. The hyperparameters used by these
models in our experiments are the default ones
from the Transformers library (faithful to the origi-
nal papers), except when explicitly mentioned (e.g.
varying the hidden size).

References
Anastasios N. Angelopoulos and Stephen Bates. 2021.

A gentle introduction to conformal prediction and
distribution-free uncertainty quantification.

Alexandre Arnold, Gérard Dupont, Catherine Kobus,
François Lancelot, and Pooja Narayan. 2019. Inter-
prétation et visualisation contextuelle de NOTAMs
(messages aux navigants aériens) (). In Actes de
la Conférence sur le Traitement Automatique des
Langues Naturelles (TALN) PFIA 2019. Volume IV :
Démonstrations, pages 639–643, Toulouse, France.
ATALA.

Rich Caruana. 1997. Multitask learning. Machine
Learning, 28(1):41–75.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pages 785–
794.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Proceed-
ings of the 25th International Conference on Machine
Learning, ICML ’08, page 160–167, New York, NY,
USA. Association for Computing Machinery.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Meizhi Ju, Makoto Miwa, and Sophia Ananiadou. 2018.
A neural layered model for nested named entity recog-
nition. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 1446–1459,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

194



Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. TextAttack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in NLP. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 119–126, Online. Association for Computa-
tional Linguistics.

Lance Ramshaw and Mitch Marcus. 1995. Text chunk-
ing using transformation-based learning. In Third
Workshop on Very Large Corpora.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Fábio Souza, Rodrigo Nogueira, and Roberto Lotufo.
2019. Portuguese named entity recognition using
bert-crf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Gammerman A. Vovk V. and G. Shafer. 2005. Algorith-
mic Learning in a Random World. Springer.

A Appendix: NOTAM details (ICAO
format)

A NOTAM message is structured into 5 or 6 differ-
ent fields, namely:

• Q field is the Qualifier line; it contains a se-
ries of classification tags that the operator is
supposed to fill while authoring the NOTAM

• A field is the ICAO indicator of the aerodrome
or the FIR (Flight Information Region)

• B field corresponds to the date/time when this
NOTAM becomes effective

• C field corresponds to the date/time when the
NOTAM ceases to be effective

• D field (optional) can specify a miscellaneous
diurnal time for the NOTAM if the hours of
effect are less than 24 hours a day

• E field contains the NOTAM text message (the
free text part), the part of interest for our study
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B Appendix: Model architectures for the
three downstream tasks
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Abstract

A key challenge in the creation and refinement
of virtual assistants is the ability to mine un-
labeled utterance data to discover common in-
tents. We develop an approach to this prob-
lem that combines large-scale pre-training and
multi-task learning to derive a semantic em-
bedding that can be leveraged to identify clus-
ters of utterances that correspond to unhandled
intents. An utterance encoder is first trained
with a language modeling objective and subse-
quently adapted to predict intent labels from
a large collection of cross-domain enterprise
virtual assistant data using a multi-task cosine
softmax loss. Experimental evaluation shows
significant advantages for this multi-step pre-
training approach, with large gains in down-
stream clustering accuracy on new applications
compared to standard sentence embedding ap-
proaches. The approach has been incorporated
into an interactive discovery tool that enables
visualization and exploration of intents by sys-
tem analysts and builders.

1 Introduction

To build an enterprise virtual assistant capable of
providing effective interaction with customers, in-
tent detection – automatically detecting the cus-
tomer’s intent based on their input – is an indispens-
able component. Large-scale pre-trained language
models have shown promising abilities in few-shot
classification, and high accuracy intent detection
can now be obtained with limited amounts of la-
beled data (Devlin et al., 2019; Henderson et al.,
2020; Vulic et al., 2021). However, there are still
situations where no labeled data is available. This
situation is commonly encountered when design-
ing a dialogue system for a brand new application.
In this case, we would like to identify common
intents from any available unlabeled data in the
domain, such as call transcripts or chat logs. Also,
for deployed applications, intent discovery can be

∗Work completed at Interactions LLC

applied to ‘no-match’ data; that is, utterances that
the current system does not handle.

At first glance, the problem of intent discovery
from unlabeled data appears similar to text cluster-
ing, which is well-studied in the literature. One nat-
ural approach for clustering is to use Transformer-
based sentence embedding methods (Devlin et al.,
2019; Reimers and Gurevych, 2019) to represent
each utterance as a fixed-length vector, and then ap-
ply standard clustering methods such as K-means
to extract intent clusters (Wu and Xiong, 2020;
Aharoni and Goldberg, 2020). However, these mod-
els are mostly pre-trained on generic data such as
Wikipedia or Natural Language Inference (NLI)
datasets, which are quite different from typical en-
terprise customer service data. Hence there is a
domain mismatch between the pre-trained model
and the downstream application task.

In our experience, enterprise virtual assistant
data has several key characteristics. First, utter-
ances are mostly short, containing only a few words.
Additionally, they contain some level of noise from
Automatic Speech Recognition (ASR) transcrip-
tions. Moreover, the data distribution is affected by
the customer service communication channel. For
example, there are many calls asking to speak to
a live agent in order to bypass the system. Finally,
the semantics differ at some points from ordinary
language, because of business logic and design
constraints. For example, the two utterances “my
screen is broken” and “power button not respond-
ing” may be treated as containing the same seman-
tic intent of “TECH-SUPPORT”, while in common
datasets (e.g., NLI), they would likely be consid-
ered different.

For these reasons, directly applying a generically
pre-trained Transformer encoder (such as BERT
(Devlin et al., 2019), or even an adapted model like
Sentence-BERT (Reimers and Gurevych, 2019))
may not be optimal for the intent discovery prob-
lem. However, in our data lake we have accumu-
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lated large amounts of utterance data from a large
number of applications across multiple business
verticals, all with intent labels either from produc-
tion understanding models or human annotators.
We, therefore, hypothesized that continuing pre-
training on our existing virtual assistant data, to
obtain a domain-specific utterance encoder, could
be beneficial for downstream intent discovery tasks.

We propose a three-step solution (Figure 1)
to the intent discovery problem: 1) Generic
Transformer Pre-training, 2) Domain-adaptive Pre-
training, 3) Downstream Embedding and Cluster-
ing.

This approach is related to the don’t-stop-
pretraining paradigm proposed in (Gururangan
et al., 2020), in which a generic Language Model
(LM) is adapted to the target domain (or task)
through domain (or task) adaptive pre-training.
However, a key difference is that we leverage super-
vised data for the domain-adaptive pre-training in
the second step; on the contrary, they only leverage
unlabeled data for the continued pre-training. Re-
cently Vulic et al. (2021) proposed ConvFIT where
supervised contrastive learning is performed after
generic LM pre-training. ConvFIT uses a small
amount of labeled data from the same task in the
adaptive pre-training step, which can be viewed as
supervised task-adaptive pre-training for few-shot
learning. In contrast, we use a collection of labeled
data across a large number of customer service use
cases in the second step, which can be viewed as
supervised domain-adaptive pre-training for down-
stream clustering tasks. Notice that no access to the
downstream data is needed for our domain-adaptive
pre-training step, which makes our model reusable
for new and unseen applications and use cases.

2 The Three-step Approach

2.1 Step 1: Generic Transformer Pre-training

Transformer-based pre-training such as BERT (De-
vlin et al., 2019) and GPT and its variants (Rad-
ford et al., 2018, 2019; Brown et al., 2020) have
changed the landscape of natural language process-
ing. Through self-supervised pre-training on large
amounts of public data, Transformers can learn
many language regularities, from syntax to seman-
tics to even commonsense knowledge (Manning
et al., 2020; Tenney et al., 2019). These pre-trained
models then serve as excellent starting points for
downstream tasks through model fine-tuning. In-
stead of adopting a publicly available pre-trained

model, we pre-trained our own Transformer-based
language model from public dialogue data, includ-
ing three years of Reddit (Al-Rfou et al., 2016;
Henderson et al., 2019), online forums, as well as
customer reviews and Wikipedia. We use a masked
language model (MLM) training loss and train an
8-layer model with eight attention heads and rel-
ative positional encoding (Shaw et al., 2018) on
full conversations (Pressel et al., 2022), where each
turn is demarcated with a special end-of-utterance
token. We also place the layer norm at the front of
each sub-layer in the Transformer to simplify train-
ing and improve performance (Nguyen and Salazar,
2019; Xiong et al., 2020; Wang et al., 2019). We
found that, despite its smaller size, our model often
outperforms much larger previously created mod-
els on many downstream dialogue related tasks,
including intent detection, slot-filling, belief state
tracking, probing, and few-shot learning. We use
this in-house pre-trained model as our starting point
for the intent discovery task, and leverage the mead-
baseline (Pressel et al., 2018) package for the im-
plementation.

2.2 Step 2: Domain-adaptive Pre-training

The premise of the domain-adaptive pre-training
step is that the model can learn from a broad spec-
trum of existing use cases covering different busi-
ness verticals so that the adapted encoder is applica-
ble to new previously unseen use cases. To achieve
this goal, we drew a balanced amount of (utterance,
intent) sample pairs from each of 20 applications
in our enterprise virtual assistant database thereby
ensuring that applications with larger data volume
do not dominate the pre-training data. The appli-
cations cover a broad range of verticals including
insurance, telecommunications, consumer electron-
ics, financial, retail, travel, and utilities.

Additionally, we note that many of the applica-
tion models were designed independently, yielding
differences in the naming conventions for intent
labels across applications, even for intents with
the same semantic meaning. For example, the
technical-support intent could be named “TECH-
SUPPORT” in one application but “TECHNICAL-
SERVICE” in another. Consequently, we could not
simply merge data from different applications and
pre-train one single model. To deal with this prob-
lem, we employed a multi-task approach to pre-
training where the Transformer encoder is shared
between different applications, but the intent clas-
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sifier is specific for each application. This ensures
that varying labels across applications do not com-
pete with each other in the softmax loss.

If we directly use a linear classifier with standard
softmax loss for each task, the embeddings (i.e.,
feature inputs) to the softmax loss will be trained
to yield linear discrimination, but may not pre-
serve the distance metrics which are critical for our
downstream clustering task. To preserve distance-
metrics in the geometry, we replace the standard
softmax with cosine softmax, where the logit score
inside softmax is computed via the cosine similarity
between the embeddings and the classifier weights.
The resulting approach has a novel multi-task co-
sine softmax loss for domain-adaptive pre-training
to accommodate the nature of our enterprise virtual
assistant data and the downstream clustering task.
This is the key contribution of this paper. We will
present more details in Section 3.

2.3 Step 3: Downstream Embedding and
Clustering

After the model is pre-trained and adapted to our en-
terprise virtual assistant domain, we can apply it to
any new application for intent discovery. We apply
the encoder to each utterance from the new applica-
tion to obtain ℓ2 normalized utterance embeddings,
and run K-means clustering on the embeddings to
extract intent clusters.

Step 1: Generic 
Transformer 
Pretraining

 Masked Language 
Model Loss

Public Data

Step 2: 
Domain-adaptive 
Transformer 
Pretraining

Step 3:  Downstream 
Embedding and 
Clustering
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Figure 1: The Three-step Approach

3 Model Description

We describe here the model formulation for Step
2 of our intent discovery pipeline. We collected
pre-training data from M = 20 applications in our
data lake, and for each application m we sample
n(m) (utterance, intent) pairs (x

(m)
i , y

(m)
i ), (i =

1, 2, · · · , n(m)). Here x(m)
i is a raw utterance from

ASR transcription, y(m)
i ∈ {1, 2, · · · , C(m)} is the

intent label for that utterance, the total number of
intents C(m) for application m is about 1000, and
the number of samples n(m) for application m is
around one million.

Our multi-application intent classifier is a multi-
task learning model where the utterance encoder
is shared across applications but the classifier
is built separately for each application. Mathe-
matically the model can be formulated by mini-
mizing the following loss function L(X,Y ) =∑M

m=1

∑n(m)

i=1 ℓ(m)
(
h(x

(m)
i ), y

(m)
i

)
where h is

the utterance encoder which is shared across ap-
plications and initialized from the generic pre-
training on public data in Step 1. It consists of the
pre-trained Transformer layers followed by mean-
pooling to yield a fixed-length representation of
the utterance, and a Multilayer Perceptron (MLP)
to project it to a desired embedding space. Dur-
ing pre-training we randomly sample a mini-batch
of utterances from the pre-training data, pass it
through the same Transformer encoder h, and then
use different classifier heads for different utterances
depending on which applications they come from.
This multi-task learning approach has been used
successfully in the literature to learn sentence em-
beddings (Liu et al., 2019; Wei et al., 2021). How-
ever, our approach differs in its use of the cosine
softmax loss in ℓ(m) with a distance-metric pre-
serving property as explained below. A standard
softmax loss computes the cross-entropy between
the intent prediction distribution and the label as
follows:

ℓ(m)
(
h(x

(m)
i ), y

(m)
i

)
= −

C(m)∑

c=1

1(c = y
(m)
i )×

log
exp

(
h(x

(m)
i )⊤θ(m)

c

)

∑C(m)

c′=1 exp
(
h(x

(m)
i )⊤θ(m)

c′

)
(1)

where θ(m)
c is the classifier vector for intent c in ap-

plication m. However, as discussed in Section 2.2,
this loss is not a good option for our downstream
intent discovery task. For example, two nearby
utterances in the embedding space could belong
to different intent classes, if they lie on different
sides of the linear boundary. To remedy this, we re-
place the above standard softmax loss with a cosine
softmax loss as follows
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ℓ(m)
(
h(x

(m)
i ), y

(m)
i

)
= −

C(m)∑

c=1

1(c = y
(m)
i )×

log
exp

(
h̄(x

(m)
i )⊤θ̄

(m)
c /τ

)

∑C(m)

c′=1 exp
(
h̄(x

(m)
i )⊤θ̄

(m)

c′ /τ
)

(2)

Here h̄(x
(m)
i ) = h(x

(m)
i )/∥h(x(m)

i )∥ and
θ̄
(m)
c = θ

(m)
c /∥θ(m)

c ∥ are normalized unit vectors
which will be used as the final embeddings for
the utterances and intents, and τ is a pre-defined
temperature parameter. Since the cosine similar-
ity is related to the distance metric via v⊤

1 v2 =
−∥v1 − v2∥2/2 + 1 for ℓ2 normalized vectors, the
cosine softmax pushes the embeddings of the ut-
terances and the corresponding intents to be close
to each other, which will yield the distance-metric
preserving property we desire. Appendix A.3 ’s
figure visually represents the difference between
standard softmax and cosine softmax.

This is the novel multi-task cosine softmax loss
we propose in this paper. Notice that both the
utterance encoder h and the unnormalized intent
embeddings θ are learned in this domain-adaptive
pre-training process, where the Transformer is ini-
tialized from generic pre-training in Step 1 and
the intent embeddings are initialized randomly as
a look-up table. After this Step 2, the adapted ut-
terance encoder, which summarizes all enterprise
virtual assistant data characteristics and business
logics from multiple existing applications, can then
be applied to downstream intent discovery tasks
for new applications in Step 3. We also mention
alternative modeling approaches in Appendix A.1.

4 Experiments

4.1 Experimental Methodology
To monitor the quality of the domain-adaptive pre-
training in Step 2, we randomly select 4% from the
supervised pre-training data as a validation set and
predict the intent following the multi-task cosine
softmax loss proposed in Section 3,

ỹ
(m)
i = argmax

c∈{1,2,··· ,C(m)}
log

exp
(
h̄(x

(m)
i )⊤θ̄

(m)
c /τ

)

∑C(m)

c′=1 exp
(
h̄(x

(m)
i )⊤θ̄

(m)

c′ /τ
)

= argmin
c∈{1,2,··· ,C(m)}

∥h̄(x(m)
i )− θ̄

(m)
c ∥2

(3)

which is essentially performing a nearest neighbor
intent search in the embedding space. We compare
the true intent label y(m)

i with the above predicted
intent ỹ(m) to compute the pre-training accuracy for

Step 2. The domain-adapted Transformer model
achieved an accuracy of 91.5% on this validation
set, which demonstrates the consistency of the true
intent labels and the high quality of the adapted
Transformer model.

However, the ultimate goal of our model is not
to test the intent classification accuracy for our ex-
isting applications but to perform intent discovery
on a new application. It is not possible to directly
apply equation (3) for intent discovery, as we do
not have the intent embeddings θ̄(m) for the new
application. A natural approach for this problem
is to embed all utterances from a new application t
using the pre-trained application-independent en-
coder h̄(x

(t)
i ) and apply a clustering algorithm.

Then, we simultaneously identify the centroids as
the discovered intent embeddings and the cluster
indices as intent predictions. This is the Step 3 in
our intent discovery pipeline. For simplicity and
a fair comparison with other methods, we use the
K-means algorithm to perform clustering on the
new application’s data,

(ỹ
(t)
i , θ̃

(t)
) = arg min

ci∈{1,2,··· ,K},θ̄(t)

n(t)∑

i=1

∥h̄(x(t)
i )− θ̄

(t)
ci ∥

2 (4)

From equation (4), we can see that we are es-
sentially using an enterprise virtual assistant do-
main adapted utterance encoder for this clustering
problem. We will evaluate the performance of the
proposed intent discovery pipeline objectively and
subjectively.

4.2 Objective Evaluation
For objective evaluation of the proposed method,
we collected four additional existing applications
from different business verticals and treated each
of them as a “new” candidate application for intent
discovery. Notice that these four applications are
different from the 20 existing applications used in
our Step 2 pre-training. Thus, we ensure that this
“new” application simulation process is valid and
the evaluation is fair. The details of the four ap-
plications are provided in Table 2 in the appendix.
The intent distribution for each of the four appli-
cations is imbalanced, and about 50% samples of
each application contains the top five intents of the
application.

Evaluating clustering results is a challenging
task, as there might be different (but all valid) ways
to partition the data (Färber et al., 2010). In our ob-
jective evaluation we choose the production intent
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label as the ground truth label, as this is the real
business model we deployed for the application,
and it is consistent with our enterprise virtual assis-
tant pre-training process in Step 2. Inevitably there
will be noise in the production intent labels. How-
ever, according to our offline human evaluation, the
noise level is reasonably low.

For testing application t, we collect samples
(x

(t)
i , y

(t)
i ) from our data lake, and only leverage

the utterance part x(t)
i for intent discovery in Step

3 via equation (4). We then evaluate the intent dis-
covery performance through the standard cluster-
ing evaluation metrics (Wagner and Wagner, 2007;
Xu et al., 2017), which take the ground truth in-
tent labels y(t)i and the clustering indices ỹ(t)i from
equation (4) as inputs, and output evaluation scores
(the higher the better) to measure the clustering
quality. We use the following clustering evalua-
tion metrics: ACC (Accuracy with label set align-
ment), ARI (Rand Index Adjusted for chance),
NMI (Normalized Mutual Information), and AMI
(Adjusted Mutual Information). ACC is defined as
ACC = maxg

∑n(t)

i=1 1{y
(t)
i = g(ỹ

(t)
i )}/n(t) where

g ranges over all possible one-to-one mappings be-
tween cluster indices and ground truth labels. In
practice, we use the Hungarian algorithm (Kuhn,
1955) to identify the optimal mapping that pro-
duces the best accuracy score. The definition of
ARI, NMI and AMI together with training details
are available in Appendix A.4 and A.5.

We evaluate the following intent discovery ap-
proaches using the above evaluation metrics.

1. Step 1 + Step 2 + Step 3. This is the intent
discovery procedure we propose in this paper.
See Figure 1 for the full pipeline.

2. Step 1 + Step 2 (Standard) + Step 3. This
approach is similar to Step 1 + Step 2 + Step
3; however, in Step 2 we use the standard soft-
max loss in equation (1) instead of the cosine
softmax loss in equation (2). Consequently,
we do not have the ℓ2 normalization for Step
3 in Figure 1.

3. Step 2 + Step 3. In this baseline approach,
we skip the generic Transformer pre-training
in Step 1 and randomly initialize the Trans-
former weights to start the enterprise virtual
assistant domain adaptive pre-training in Step
2.

4. Step 1 + Step 3. In this baseline approach,

we only use the utterance encoder pre-trained
on generic data for intent discovery, and no
enterprise virtual assistant domain adaptation
in Step 2 is applied. As a result, we do not
have the projection layer and ℓ2 normalization
for Step 3 in Figure 1.

5. SBERT + Step 3. In this baseline ap-
proach, we directly borrow a publicly avail-
able sentence encoder Sentence-BERT model
(Reimers and Gurevych, 2019) to replace the
h̄(x

(t)
i ) encoder in (4).

6. DEC. In this baseline approach, we re-
implemented the Deep Embedded Clustering
(DEC) algorithm (Xie et al., 2016). Here,
the utterance encoder is pre-trained on test-
ing data alone, and it is fine-tuned during the
clustering process (Hadifar et al., 2019).

Since we do not know the true number of clusters
in advance, we presented ACC result with different
K values in Figure 2. The results for ARI, NMI,
and AMI with different K values are presented in
Appendix A.7. From the results, we can make the
following observations:

1. The models with domain-adaptive pre-
training perform much better than all
other methods without domain-adaptive
pre-training (including the state-of-the-art
Sentence-BERT model) across different test-
ing datasets. The performance improvement
can be as high as 20% absolute in clustering
accuracy. This performance clearly shows the
benefit of domain-adaptive pre-training for
downstream clustering tasks.

2. Step 1 + Step 2 (Standard) + Step 3 performs
much worse than Step 1 + Step 2 + Step 3 in
downstream clustering accuracy, according to
Figure 2. This performance gap is expected
as pre-training with the standard softmax loss
in Step 2 does not induce the distance-metric
preserving property, which is important for
distance-based clustering such as K-means in
downstream tasks.

3. In most cases, Step 2 + Step 3 performs simi-
larly as Step 1 + Step 2 + Step 3, which means
that the generic pre-training in Step 1 is not
helping much for the downstream clustering
task. The reason might be that we already
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Figure 2: ACC of intent discovery for four applications
withK = [4, 8, 16, 32, 64, 128, 256]. Resolution of sub-
figures is automatically adjusted to show differences in
the curves, which causes y-axis’ scale to be different.

have a large amount of enterprise virtual as-
sistant domain pre-training data in Step 2. As
a result, the Transformer initialization from
the generic pre-training will not have a lot of
impact on the domain-adaptive pre-training
result. Nevertheless, we still see that in some
instances (e.g., ACC curves for Application 4

in Figure 2 ), Step 2 + Step 3 experienced per-
formance drop compared with Step 1 + Step
2 + Step 3, indicating that the generic pre-
training in Step 1 improves the robustness of
the model across different domains.

4. In our error analysis, we observe that Step
1 + Step 2 + Step 3 tends to keep semanti-
cally similar utterances (e.g., “pay my bill”
and “make a payment”) into one cluster; how-
ever, other methods tend to split semantically
similar utterances into multiple clusters. This
leads to degradation in performance in other
methods. In addition to that, our applications
contain Spanish data with low frequency. In-
terestingly, on Step 1 + Step 2 + Step 3 results,
we find that the cluster centroid where Span-
ish speakers want to speak to a live agent (e.g.,
“o hablar con un representante”) and the clus-
ter centroid where English speakers want to
speak to a live agent (e.g., “i need to talk to a
representative”) are proximal. Such proximity
is not well pronounced in other methods.

In summary, the proposed intent discovery
pipeline with domain-adaptive pre-training outper-
forms other methods by a large margin. Hence,
by continuing pre-training the Transformer on in-
domain enterprise virtual assistant data from multi-
ple existing applications, we can effectively distill
the knowledge of enterprise virtual assistant data
characteristics and business logic into the Trans-
former encoder, which provides high-quality ut-
terance embeddings and excellent intent discovery
results on unseen applications.

4.3 Intent Discovery Portal

For new applications and for unexpected inputs to
a deployed application, we generally do not have
labels that can be used for objective evaluation. In
order to extract value from the results of semantic
embedding on new data we built out an interac-
tive intent discovery portal that enables visualiza-
tion, interactive inspection of intent clusters, and
subjective evaluation. Figure 3 shows the intent
discovery user interface. The left panel contains
an un-directed graph in which semantic closeness
among clusters is represented by graph links in a
minimum spanning tree. The graph is interactive
and when the user selects a node in the graph, the
middle panel shows a list of examples of members
of the cluster along with an interactive phrase cloud.
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The right panel supports replay of audio (if avail-
able) and presents a list of related examples and
intents from a large database of existing application
data. More details on the intent discovery portal
are available in Appendix A.2 and A.6.

Figure 3: Intent Discovery Portal View.

5 Conclusion

This paper proposed a practical three-step solu-
tion to the challenge of intent discovery for vir-
tual assistants. From our experiments, we found
that a domain-adaptive pre-training step is essen-
tial for achieving good downstream clustering per-
formance. Through supervised pre-training, en-
terprise virtual assistant data characteristics and
associated business logic are all distilled into the re-
sulting utterance encoder. This three-step approach
can be viewed as an extension of the don’t-stop-
pretraining paradigm (Gururangan et al., 2020) to
the downstream clustering tasks. We also found
that state-of-the-art generic sentence encoders may
not yield the best sentence representations to spe-
cific industrial applications such as enterprise vir-
tual assistants. A consequence of this domain-
adaptive pre-training is that the resulting sentence
encoder is no longer generic, hence cannot nec-
essarily be applied to data beyond the domain of
enterprise virtual assistants. However, the same
methodology could be applied to any enterprise
database, so that people can pre-train domain-
specific sentence encoders to match their own
needs.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360.

203



Amir Hadifar, Lucas Sterckx, Thomas Demeester, and
Chris Develder. 2019. A self-training approach
for short text clustering. In Proceedings of the
4th Workshop on Representation Learning for NLP
(RepL4NLP-2019), pages 194–199.

Matthew Henderson, Paweł Budzianowski, Iñigo
Casanueva, Sam Coope, Daniel Gerz, Girish Kumar,
Nikola Mrksic, Georgios P. Spithourakis, Pei hao Su,
Ivan Vulic, and Tsung-Hsien Wen. 2019. A reposi-
tory of conversational datasets. In Proceedings of the
First Workshop on NLP for Conversational AI, pages
1–10.

Matthew Henderson, Iñigo Casanueva, Nikola Mrkvsi’c,
Pei hao Su, Tsung-Hsien, and Ivan Vulic. 2020. Con-
vert: Efficient and accurate conversational representa-
tions from transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing: Findings, pages 2161–2174.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. In Advances in Neural
Information Processing Systems, volume 33, pages
18661–18673.

Harold W Kuhn. 1955. The hungarian method for the
assignment problem. Naval research logistics quar-
terly, 2(1-2):83–97.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks
for natural language understanding. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4487–4496.

Christopher D Manning, Kevin Clark, John Hewitt, Ur-
vashi Khandelwal, and Omer Levy. 2020. Emer-
gent linguistic structure in artificial neural networks
trained by self-supervision. Proceedings of the Na-
tional Academy of Sciences, 117(48):30046–30054.

Toan Q. Nguyen and Julian Salazar. 2019. Transformers
without tears: Improving the normalization of self-
attention. arXiv preprint arXiv:1910.05895.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems,
volume 32, pages 8024–8035.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine

learning in python. the Journal of machine Learning
research, 12:2825–2830.

Daniel Pressel, Sagnik Ray Choudhury, Brian Lester,
Yanjie Zhao, and Matt Barta. 2018. Baseline: A
library for rapid modeling, experimentation and de-
velopment of deep learning algorithms targeting nlp.
In Proceedings of Workshop for NLP Open Source
Software (NLP-OSS), pages 34–40.

Daniel Pressel, Wenshuo Liu, Michael Johnston, and
Minhua Chen. 2022. Lightweight transformers for
conversational ai. In Proceedings of the 2022 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: Industry Papers, page 1.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. arXiv preprint
arXiv:2103.00020.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilyas Sutskever. 2018. Improving language under-
standing by generative pre-training. OpenAI Blog,
page 1.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, page 1.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3982–3992.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464–468.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. Bert
rediscovers the classical nlp pipeline. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4593–4601.

Ivan Vulic, Pei hao Su, Sam Coope, Daniel Gerz, Paweł
Budzianowski, Iñigo Casanueva, Nikola Mrkvsi’c,
and Tsung-Hsien Wen. 2021. Convfit: Conversa-
tional fine-tuning of pretrained language models. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
1151–1168.

Silke Wagner and Dorothea Wagner. 2007. Compar-
ing clusterings: an overview. Universität Karlsruhe,
Fakultät für Informatik Karlsruhe.

204



Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F Wong, and Lidia S Chao.
2019. Learning deep transformer models for ma-
chine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1810–1822.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Chien-Sheng Wu and Caiming Xiong. 2020. Probing
task-oriented dialogue representation from language
models. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5036–5051.

Junyuan Xie, Ross Girshick, and Ali Farhadi. 2016.
Unsupervised deep embedding for clustering analy-
sis. In International conference on machine learning,
pages 478–487. PMLR.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tieyan Liu. 2020. On layer
normalization in the transformer architecture. In In-
ternational Conference on Machine Learning, pages
10524–10533. PMLR.

Jiaming Xu, Bo Xu, Peng Wang, Suncong Zheng, Guan-
hua Tian, and Jun Zhao. 2017. Self-taught convolu-
tional neural networks for short text clustering. Neu-
ral Networks, 88:22–31.

A Appendix

A.1 Alternative Models
The cosine softmax loss in (2) is reminiscent of
the cosine-similarity based loss used in contrastive
learning (Chen et al., 2020; Radford et al., 2021).
For example, in OpenAI CLIP (Radford et al.,
2021) two modalities (text and image) are aligned
in the latent space via a dual-encoder model and a
cosine-similarity based loss. The cosine softmax
loss we use in equation (2) is also aligning two
modalities (utterance and intent). However, since
the set of all possible intents for an application is
finite and known in advance, we do not need to use
the in-batch negative sampling approach as in the
contrastive learning loss. Instead we contrast with
all possible intents in the denominator of equation
(2).

Another alternative approach is supervised con-
trastive learning (Khosla et al., 2020; Vulic et al.,
2021), where the contrastive learning is done using
just the utterance modality. In this approach, the
positive utterance pair is obtained by sampling ut-
terances with the same intents, while the negative

utterance pair is obtained by sampling utterances
with different intents. Then the supervised con-
trastive loss will impose the constrain that embed-
dings for the positive pair should live nearby and
the embeddings for the negative pair should live
further apart.

We note that both the multi-model contrastive
learning and the supervised contrastive learning are
valid modeling approaches for our domain-adaptive
pre-training. However, we focus on the cosine
softmax loss in equation (2) in this paper due to its
simplicity and its straightforward nature, and leave
the comparison to the above alternative models in
our future work.

Another approach is to use the standard soft-
max (equation (1)) in Step 2, and then use spectral
clustering in Step 3. There are a few issues in
this approach. Firstly, the embedding geometry
learned with standard softmax is not friendly to
downstream clustering tasks. Secondly, there is
no guarantee that the spectral embedding step in
spectral clustering can infer the right semantic ge-
ometry, as no supervised pre-training data is used
in Step 3. Lastly, spectral clustering is quite com-
putationally expensive and could not scale to large
downstream datasets. Empirically we also observe
that this approach is inferior to our proposed ap-
proach. In contrast, our proposed approach shifts
the heavy-lifting geometric manifold learning task
to the cosine softmax (equation (2)) in Step 2, so
that K-means is enough for the downstream clus-
tering task.

A.2 Intent Unification and Vector Search

A by-product of the above domain-adaptive pre-
training is a mechanism for intent unification across
multiple applications. Suppose intent c in applica-
tion m and intent c′ in application m′ are seman-
tically similar but named differently. Since the
utterances (which are callers’ realizations of the
intents) associated with these two intents are simi-
lar, and they share the same utterance encoder, the
embeddings for these utterances will live nearby.
This again will drive the intent embeddings for the
above two intents close together, according to the
multi-task cosine softmax loss function. As a result,
after the pre-training, semantically similar intents
across applications will live close-by in the embed-
ding space. Hence by simply exploring the intent
embedding space through K-means clustering, we
could unify intents across applications by grouping
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semantically related intents together.
Another by-product is vector search for utter-

ances. Since we have learned an utterance encoder
specific for the enterprise virtual assistant domain
in the Step 2 pre-training, we can embed any new
utterance and convert it into a fixed-length vector.
Since we already have utterance embeddings and
intent embeddings for our pre-training data from
the existing applications, for each new utterance
or discovered cluster centroid, we can obtain the
nearest utterances and intents from the pre-training
data via K-nearest neighbor search. These nearest
neighbors can be used to help to augment the query
utterances or name the discovered intent clusters,
which can greatly improve the interpretability of
our intent discovery results. A potential risk of
this vector search is that private information from
our existing applications could be revealed to a
new user of our system. Hence, careful consid-
erations are needed when we activate this vector
search feature, and all sensitive information should
be redacted from the utterance pool used for this
K-nearest neighbor search.

A.3 Standard Softmax vs. Cosine Softmax

Figure 4: Standard softmax and cosine softmax induce
different geometries in the embedding space

A.4 Definition of Clustering Evaluation
Metrics

Here are some descriptions for the clustering eval-
uation metrics. More formal definitions could be
found in (Wagner and Wagner, 2007).
ARI: In the Rand Index, we consider all pairs of
samples and see how often pairs are grouped con-
sistently under the clustering results and the ground
truth labels. In Adjusted Rand Index (ARI), this
consistency frequency is adjusted by a base model
to correct the impact of consistency by chance.
NMI: The Mutual Information directly measures
the correspondence between the clusters and the
ground truth classes via a probability measure of

Hyperparameter Description Value
Pooling Mean pooling layer output before projection (Figure 1) 512
Projection Projection layer output before cosine softmax (Figure 1) 256
Epochs Training epochs 3
Softmax Type of softmax used in loss function (Figure 1) cosine
Dropout Layer dropout 0.1
Cosine Temperature (τ ) Cosine softmax temperature (Equation 3) 0.125
Optimizer Training optimizer AdamW
Learning Rate Learning rate for optimizer 1.e-5
Weight Decay Weight decay for optimizer 1.0e-3
Clip Gradient clip 1.0
Batch Size Training batch size 360
Input Length Maximum input length 64
Layers Transformer layers 8
Multi-head attention Number of head in the attention module 8

Table 1: Step 2 Hyperparameters

Name Business Samples Intents Average words
Application 1 Collections 707907 82 5
Application 2 Power Utility 616145 432 4
Application 3 Insurance 1000000 1830 4
Application 4 Photography 921440 2521 5

Table 2: Testing Applications for Step 3

common samples between them. This measure is
normalized by entropy of the partitions to yield the
Normalized Mutual Information (NMI).
AMI: The above Normalized Mutual Information
is further adjusted to account for chance and size
of the clusters, to yield this Adjusted Mutual Infor-
mation (AMI) measure.

A.5 Training Details

In this section we provide training details for each
Step in the pipeline (Figure 1). For Step 1, we
trained using Apache Licensed TensorFlow (Abadi
et al., 2016) on a single v3 Tensor Processing Unit
(TPU). For best performance on TPUs, we use
bucketing based on full conversation lengths, scal-
ing the number of samples for each bucket length
so that the number of tokens is constant per batch.
We use AdamW with a peak learning rate of 4e-4,
a weight decay of 1e-3, and a linear warmup of
10,000 steps followed by cosine decay. For Step
2, hyperparameters are listed in Table 1, and we
built our model using open source BSD-licensed
PyTorch library (Paszke et al., 2019). Our model
has 49 million parameters. The pre-training in
Step 2 were conducted on two NVIDIA GeForce
1080Ti GPUs, and it took about 30 hours to fin-
ish. For Step 3, we used the open source BSD-
licensed scikit-learn library (Pedregosa et al., 2011)
for K-means clustering with default hyperparam-
eters. More specifically, we used “k-means++”
initialization with multiple runs to make the re-
sults more robust. The intent discovery results for
downstream applications in Table 2 are reported
in Figure 2, Figure 7, Figure 8, and Figure 9 with
K = [4, 8, 16, 32, 64, 128, 256].
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A.6 Additional Details on Intent Discovery
Portal

Figure 5 provides a more detailed view of the graph
representation of the automatic intent discovery re-
sults from the intent discovery portal. The nodes
are automatically labelled with keywords from each
cluster determined using TF-IDF, e.g., ‘make bill
payment pay’ for a cluster associated with bill pay-
ment. Figure 6 shows an alternative view of the
cluster data as a bar chart capturing the relative
size of clusters in the data. The different views are
interconnected, and the user can select an intent in
one and see where it is in the alternate view.

Figure 5: Detail view of the portal zoomed on few nodes
in the un-directed graph.

Figure 6: Cluster-size Bar Chart View.

A.7 More Objective Evaluation (ARI, NMI,
and AMI) on Testing Applications

Figure 7, Figure 8, and Figure 9 provide ARI, NMI
and AMI results on our testing applications.
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Figure 7: ARI of intent discovery for four applications
with K = [4, 8, 16, 32, 64, 128, 256].
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Figure 8: NMI of intent discovery for four applications
with K = [4, 8, 16, 32, 64, 128, 256].
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Figure 9: AMI of intent discovery for four applications
with K = [4, 8, 16, 32, 64, 128, 256].

208



Proceedings of NAACL-HLT 2022: Industry Track Papers, pages 209 - 220
July 10-15, 2022 ©2022 Association for Computational Linguistics

ReFinED: An Efficient Zero-shot-capable Approach to End-to-End Entity
Linking

Tom Ayoola, Shubhi Tyagi, Joseph Fisher, Christos Christodoulopoulos, Andrea Pierleoni
Amazon Alexa AI
Cambridge, UK

{tayoola, tshubhi, fshjos, chrchrs, apierleo}@amazon.com

Abstract

We introduce ReFinED, an efficient end-to-end
entity linking model which uses fine-grained
entity types and entity descriptions to perform
linking. The model performs mention detec-
tion, fine-grained entity typing, and entity dis-
ambiguation for all mentions within a docu-
ment in a single forward pass, making it more
than 60 times faster than competitive existing
approaches. ReFinED also surpasses state-of-
the-art performance on standard entity linking
datasets by an average of 3.7 F1. The model
is capable of generalising to large-scale knowl-
edge bases such as Wikidata (which has 15
times more entities than Wikipedia) and of zero-
shot entity linking. The combination of speed,
accuracy and scale makes ReFinED an effec-
tive and cost-efficient system for extracting en-
tities from web-scale datasets, for which the
model has been successfully deployed. Our
code and pre-trained models are available at
https://github.com/alexa/ReFinED.

1 Introduction
Entity linking (EL) is the task of recognising men-
tions of entities in unstructured text documents
and linking them to the corresponding entities in
a Knowledge Base (KB), such as Wikidata. EL is
commonly a first stage in systems for question an-
swering (Wang et al., 2021), automated KB popula-
tion (Hoffmann et al., 2011), and relation extraction
(Baldini Soares et al., 2019).

Currently, EL systems use deep learning meth-
ods to learn representations for entities and men-
tions (Ganea and Hofmann, 2017; Le and Titov,
2018). Initial techniques learned representations
from text alone, which relied on entities appearing
in similar contexts in the training data and meant
models were only able to link mentions to entities
that appeared in the training data. This is problem-
atic both as KBs are continuously growing, and as
it is infeasible to build an EL dataset containing all
entities in a large KB (such as Wikidata with over

90 million entities). The largest public EL dataset
is Wikipedia (using internal hyperlinks as labels),
which covers just 3% of the entities in Wikidata.

Recent models addressed this problem by pro-
ducing entity representations from a subset of KB
information, e.g., entity descriptions (Wu et al.,
2020; Logeswaran et al., 2019) or fine-grained en-
tity types (Onoe and Durrett, 2020; Raiman and
Raiman, 2018), allowing linking to entities not
present in the training data or added to the KB after
training; termed “zero-shot” in the EL literature.1

However, existing zero-shot-capable EL ap-
proaches are an order of magnitude more computa-
tionally expensive than non-zero-shot models (van
Hulst et al., 2020) as they either require numerous
entity types (Onoe and Durrett, 2020), multiple
forward passes of a large-scale model to encode
mentions and descriptions (Wu et al., 2020), or re-
generation of the input text autoregressively (Cao
et al., 2020). This makes large-scale processing ex-
pensive and thus makes it difficult to benefit from
many advantages of zero-shot EL, e.g. the ability
to keep up-to-date with new or updated KBs.

In this paper, we propose an efficient end-to-
end zero-shot-capable EL model, ReFinED2, which
uses fine-grained entity types and entity descrip-
tions to perform entity linking or entity disambigua-
tion (ED; where entity mentions are given). We
show that combining information from entity types
and descriptions in a simple transformer-based en-
coder yields performance which is stronger than
more complex architectures, surpassing state-of-
the-art (SOTA) on 4 ED datasets and 5 EL datasets,
and improving overall EL performance by 3.7 F1
points on average across 8 datasets. Importantly,
ReFinED performs mention detection, fine-grained
entity typing, and entity disambiguation for all men-

1Note the difference to “zero-shot” in the language-model
literature, which refers to using no training data for the task.

2ReFinED stands for Representation and Fine-grained typ-
ing for Entity Disambiguation.
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tions within a document in a single forward pass,
making it comparable in terms of inference speed to
non-zero-shot models. It is 6 times faster than the
most efficient zero-shot-capable baseline (which
has 9 F1 points lower performance), and more than
60 times faster than more accurate systems (which
come within 3 F1 points of ReFinED’s average ED
performance).

As opposed to previous EL models which pri-
marily use Wikipedia as the target KB, ReFinED
targets Wikidata, which enables it to link to 15
times more entities. This is because prior work
uses information (e.g. titles, categories, first sen-
tences) from Wikipedia to perform linking. It is
unclear whether prior work could be expanded to
Wikidata without a drop in performance because
entity descriptions are less informative and there
are fewer types per entity (Weikum et al., 2021).

The combination of high accuracy, scalability
(with respect to KB size) and fast inference speed
makes ReFinED a strong choice for a “web-scale”3

EL system, in which cost scales approximately lin-
early with inference speed. We have successfully
deployed ReFinED to production in a real-world
application and share the lessons learned in Section
6.

Our contributions are as follows:

1. We build a simple and efficient zero-shot capa-
ble end-to-end EL model using entity descrip-
tions and entity typing, which outperforms
previous approaches on standard-EL datasets
by 3.7 F1 points on average.

2. We demonstrate our model is more than 6
times faster than existing low-accuracy zero-
shot capable systems, and 60 times faster than
higher-accuracy systems, whilst also being
capable of disambiguating against Wikidata-
scale entity sets. The combination of accuracy,
speed and scale makes the model suitable for
web-scale information extraction.

3. We release our code and models.

2 Related work
Single architecture for entity linking EL con-
sists of two main tasks, mention detection (MD)
and ED. MD involves recognising mentions of en-
tities in text, and ED assigns a KB entity to each
mention. We follow (Kolitsas et al., 2018) in train-
ing a joint model for MD and ED.

3We refer to corpora with more than 1 billion documents
as “web-scale”.

Entity disambiguation with fine-grained entity
typing In Onoe and Durrett (2020) and Raiman
and Raiman (2018) ED is formulated as an entity
typing problem. A fine-grained entity typing model
is trained on a distantly-supervised dataset consist-
ing of over 10k types derived from Wikipedia cate-
gories (e.g. movies released in a specific year). The
entity typing model is then used to link entities. We
extend their approach to Wikidata, by using a sub-
set of Wikidata triples for providing types instead
of Wikipedia categories.

Entity disambiguation with entity descriptions
Several recent works have used entity descriptions
for ED (Wu et al., 2020; Logeswaran et al., 2019).
Typically, descriptions are sourced from Wikipedia
by joining the entity’s title with the first sentence
of the Wikipedia article. Entities are ranked by con-
catenating mention context and entity description,
then passing each mention-entity pair to a cross-
encoder. Wu et al. (2020) shows a cross-encoder
outperforms a bi-encoder, with the latter missing
many fine-grained interactions between context and
description. In our work, we find that a bi-encoder
is sufficient to achieve SOTA performance when
combined with fine-grained entity typing, and gen-
eralise the approach from Wikipedia (6M entities)
to Wikidata (90M entities).4

3 Proposed method

3.1 Task Formulation

Given a KB5 with a set of entities E =
{e1, e2, . . . , e|E|}, let X = [x1, x2, . . . , x|X|] be
a sequence of tokens in the document, and M =
{m1,m2, ...m|M |} be a set of entity mentions. The
goal of ED is to create a functionM : M → E
which assigns each mention the correct entity label.
In EL, both the mention spans and entity labels
need to be predicted. We only consider mentions
with a valid gold entity in the KB during evaluation.

3.2 Overview

We propose an end-to-end EL model which is
jointly optimised for mention detection, fine-
grained entity typing, and entity disambiguation for
all mentions within a document in a single forward
pass. In this section, we describe the components
of our model, depicted in Figure 1.

4We replace Wikipedia titles with Wikidata labels, and
Wikipedia sentences with Wikidata entity descriptions.

5We assume entities in the KB have a textual description
and a collection of facts.
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Figure 1: Our model architecture shown for a document with two mentions, England and FIFA World Cup. The
model performs mention detection, entity typing, and entity disambiguation for all mentions in a single pass.

3.3 Context representation

We encode the tokens xi in the input text docu-
ment using a Transformer model. We use the con-
textualised token embeddings from the final layer,
denoted as hi for the token xi.6

3.4 Mention detection

Entity linking requires entity mentions to be pre-
dicted. We encode mentions using the BIO tagging
format (Ramshaw and Marcus, 1995) with 3 labels
which indicate whether a token is at the beginning,
inside of, or outside of a mention. We train a lin-
ear layer to perform token classification from the
contextualised token embeddings hi using cross-
entropy loss Lm with respect to the gold token
labels.

3.5 Mention representation

A fixed-length embedding mi for each mention mi

is obtained by average pooling the contextualised
tokens embeddings of the mention. All mentions
M in a document X are encoded in a single for-
ward pass, which improves efficiency relative to
previous work that require a forward-pass for each
mention (Wu et al., 2020; Orr et al., 2021).

3.6 Entity typing score ϕ

Given a fixed set of types t ∈ T from a KB, where
t is a relation-object pair (r, o) (e.g. (instance of,
song)), we predict an independent probability for
each type t for each mention by applying a linear
layer f1 followed by a sigmoid activation to the
mention embedding mi. To score mention-entity
pairs using predicted types, we calculate the Eu-
clidean distance (L2 norm) between predicted types

6We use bold letters for vectors throughout our paper, and
treat mi and mi as different terms.

and the candidate entity’s types cj binary vector7:

ϕ(ej ,mi) = ∥σ(f1(mi))− cj∥2 (1)

We follow Onoe and Durrett (2020) by training
the entity typing module on distantly-supervised
type labels from the gold entity using binary cross-
entropy loss Lt. See Appendix A for details on the
choice of types T .

3.7 Entity description score ψ

We use a bi-encoder architecture similar to the
work of Wu et al. (2020) but modified to encode
all mentions mi in a document simultaneously (as
explained in Section 3.5). We represent KB entities
as:

[CLS] label [SEP] description [SEP]
where label and description are the tokens of the
entity label and entity description in the KB. We
use a separate Transformer model (trained jointly
with our mention transformer) to encode the rep-
resentation of KB entities ej into fixed dimension
vectors (description embeddings) dj by taking final
layer embedding for the [CLS] token. We apply
linear layers f2 and f3 to the mention embeddings
mi and entity description embeddings dj respec-
tively to project them to a shared vector space. We
calculate the dot product between the two projected
embeddings to compute the entity scores:

ψ(ej ,mi) = f2(mi) · f3(dj) (2)

We train this module using cross-entropy loss Ld,
with respect to gold entity label.

3.8 Combined score ω

We compute a combined score ω by applying a
linear layer (with output dimension 1) f4 on top

7We use 1 to indicate the presence of an entity type and 0
the absence of an entity type for our binary vector. Note that a
single entity can have multiple entity types.
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of the concatenation of entity typing score, entity
description score, and a global entity prior P̂ (e|m).
The global entity prior is obtained from a corpus
(Hoffart et al., 2011) or a popularity metric (Diefen-
bach and Thalhammer, 2018). We include P̂ (e|m)
to improve results for cases where context is lim-
ited (e.g. short question text). In addition, we add
a special candidate for the NIL entity with an un-
normalised score of 0, which indicates none of the
candidate entities are correct.

ω(ej ,mi) = f4(ψ(ej,mi);ϕ(ej,mi); P̂ (ej|mi))
(3)

We train this module using cross-entropy loss Lc
with respect to the gold entity label.

3.9 Optimisation and inference

We optimise the model using a weighted sum of the
module-specific losses with fixed weights, which
are tunable hyperparameters. At training time, we
use the provided mention spans instead of the pre-
dicted mention spans and train mention detection
alongside the other tasks:

L = λ1Lm + λ2Lt + λ3Ld + λ4Lc (4)

For EL inference, we use the predicted mention
spans and take the KB entity (or NIL) with the
highest combined score. For ED inference, we use
the provided gold mention spans.

3.10 Zero-shot ED

Our proposed method is able to link to zero-shot
(unseen during training) entities because it scores
entities based on types and descriptions. New enti-
ties can be introduced by updating entity lookups.

4 Experiments

4.1 Entity disambiguation

Non-zero-shot ED We evaluate our model on
the ED task using the same experimental setting
as previous work (Ganea and Hofmann, 2017; Le
and Titov, 2018; Cao et al., 2020). We pretrain
on Wikipedia, then use the AIDA-CoNLL dataset
(Hoffart et al., 2011) to fine-tune and evaluate.
We measure out-of-domain performance on the
datasets MSNBC (Cucerzan, 2007), AQUAINT
(Milne and Witten, 2008), ACE2004 (Ratinov et al.,
2011), WNED-CWEB (CWEB) (Gabrilovich et al.,
2013) and WNED-WIKI (WIKI) (Guo and Bar-
bosa, 2018). We report InKB micro-F1 (Röder
et al., 2018). We also evaluate on AIDA-CoNLL
using the candidate list generated by Pershina et al.

(2015), known as PPRforNED, for the sake of com-
parison with previous SOTA results.

Zero-shot ED To compare our method to previ-
ous work, we measure zero-shot ED performance
using the WikiLinksNED Unseen Mentions dataset
(Eshel et al., 2017; Onoe and Durrett, 2020). The
dataset contains a diverse set of ambiguous entities
spanning multiple domains. We train our model on
the provided training data and evaluate accuracy on
the test set for seen and unseen (zero-shot) entities.

4.2 Entity linking

Non-zero-shot EL Following previous work
(Kolitsas et al., 2018; Cao et al., 2020), we use the
GERBIL platform (Röder et al., 2018) to evaluate
EL. We evaluate InKB micro-F1 with strong match-
ing (predictions must match exactly the gold men-
tion boundaries). Similarly to the non-zero-shot
ED experiment, we pretrain on Wikipedia, then
use the AIDA-CoNLL dataset for fine-tuning and
evaluation. For out-of-domain performance evalua-
tion we use MSNBC (Cucerzan, 2007), OKE-2015,
OKE-2016 (Nuzzolese et al., 2015), N3-Reuters-
128 (R128), N3-RSS-500 (Röder et al., 2014), Der-
czynski (Derczynski et al., 2015), KORE50 (Hof-
fart et al., 2012).

4.3 Inference speed

We compare the computational efficiency of our
model to three high-performing EL systems (Wu
et al., 2020; Cao et al., 2020; Orr et al., 2021) for
which code is available. We benchmark both modes
of BLINK (Wu et al., 2020); the bi-encoder (en-
codes mention and entities independently) and the
more accurate cross-encoder (encodes mention and
entities jointly).8 We measure the time to perform
end-to-end EL inference on the AIDA-CoNLL test
dataset using a single V100 GPU. The dataset con-
sists of 231 documents and 4464 mentions.

4.4 Training details

Candidate generation We follow Le and Titov
(2018) by selecting the top-30 candidate entities
using entity priors.9 For training, we only keep 5
candidates, 1 gold candidate, 2 candidates with the
highest p̂(ej |mi) and 2 random candidates. When
the gold entity is not in the candidate list during
training, we use NIL as the correct label.

8We use a max context length of 128 tokens and pre-
computed entity embeddings for the bi-encoder. For the cross-
encoder, we use max context length of 32 tokens.

9Derived from Wikipedia hyperlink count statistics,
YAGO, a large Web corpus and Wikidata aliases.
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Method AIDA MSNBC* AQUAINT* ACE2004* CWEB* WIKI* Avg.

Yang et al. (2018) 93.0 92.6 89.9 88.5 81.8 79.2 87.5
Yang et al. (2019) 93.7 93.8 88.3 90.1 75.6 78.8 86.7
Fang et al. (2019) 94.3 92.8 87.5 91.2 78.5 82.8 87.9
Wu et al. (2020)† 86.7 90.3 88.9 88.7 82.6 86.1 87.2
Cao et al. (2020) 93.3 94.3 89.9 90.1 77.3 87.4 88.7
Orr et al. (2021)∗∗ 80.9 80.5 74.2 83.6 70.2 76.2 77.6

ReFinED (Wikipedia) 87.5 94.4 91.8 91.6 77.8 88.7 88.6
ReFinED (fine-tuned) 93.9 94.1 90.8 90.8 79.4 87.4 89.4

Ablations w/o entity priors (Wikipedia) 86.3 93.7 86.0 92.8 76.0 88.3 87.2
w/o entity types (Wikipedia) 82.2 92.6 91.1 90.1 76.5 87.0 86.6
w/o descriptions (Wikipedia) 85.7 93.9 89.5 91.2 76.1 84.3 86.8
w/o pretraining (fine-tuned) 88.2 92.3 86.8 90.6 75.1 74.5 84.6

Table 1: ED InKB micro F1 scores on in-domain and out-of-domain test sets. The best value in bold and second best
is underlined. †Normalised accuracy is reported. *Out-of-domain datasets. ∗∗Result obtained using code released
by authors.

Wikipedia pretraining We use Wikidata as our
KB (i.e. for entity types and descriptions). To
make comparisons reliable, we restrict to the set of
entities in English Wikipedia (total of 6.2M). We
build a training dataset from the 2021-02-01 dump
of Wikipedia and Wikidata and use hyperlinks as
entity labels. To increase entity label coverage,
we add weak labels to mentions of the article en-
tity (Orr et al., 2021; Broscheit, 2019; Cao et al.,
2020).10 The dataset consists of approximately
100M mention-entity pairs. We use entity labels to
generate entity type labels, as in Onoe and Durrett
(2020). In addition, we follow Févry et al. (2020)
by adding mention labels to unlinked mentions us-
ing a named entity recogniser to provide additional
mention detection signal.

Model details We divide the documents into
chunks of 300 tokens and subsample 40 mentions
per chunk during pretraining. The model is trained
for 2 epochs on Wikipedia and the transformers are
initialised with RoBERTa (Liu et al., 2019) base
weights. The description transformer has 2 layers.
BERT-style masking (Devlin et al., 2019) is applied
to mentions during pretraining. During fine-tuning
and evaluation, we increase the sequence length to
512 and set the maximum candidate entities to 30.

5 Results

5.1 Entity disambiguation

Non-zero-shot ED We report InKB micro-F1
(with and without fine-tuning on AIDA) and com-
pare it with SOTA ED models in Table 1. Our
model performs strongly across all datasets, sur-
passing the previous average F1 across the 6

10We add weak labels by using simple heuristics such as
matching mentions to the page’s title.

datasets by 0.7 F1 points. We observe the model
achieves SOTA performance on 4 out of the 6
datasets without fine-tuning, suggesting it is able
to learn patterns from Wikipedia that transfer well
to other domains. Nonetheless, fine-tuning on the
AIDA-CoNLL dataset leads to a substantial im-
provement (+6.4 F1 points) which can be attributed
to the model learning peculiarities of the dataset
(e.g. cricket score tables).

The ablations in Table 1 show entity types and
entity descriptions are complementary (+2.0 F1
points when combined). This is explained by in-
creased robustness to partially missing entity in-
formation (e.g. KB entities without descriptions)
and different knowledge being expressed. Entity
priors are useful but contribute less than other com-
ponents of our combined score (Section 3.8). With-
out priors, F1 falls by 5.0 points on AQUAINT
and increases by 1.2 points on ACE2004, which
is expected as AQUAINT contains a high propor-
tion of popular entities, and ACE2004 more rare
entities. Pretraining has the largest impact on ED
performance, particularly on datasets such as WIKI
(+12.0 F1) derived from encyclopedia text.

Method AIDA

Onoe and Durrett (2020) 85.9
Raiman and Raiman (2018) 94.9
Orr et al. (2021) 96.8

ReFinED (Wikipedia) 89.1
ReFinED (fine-tuned) 97.1

Table 2: ED accuracy on AIDA-CoNLL using
PPRForNED candidates.

Table 2 shows accuracy on the AIDA-CoNLL
dataset when we use PPRforNED candidates. Re-
FinED outperforms purely entity typing approaches
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Method AIDA MSNBC* DER* K50* R128* R500* OKE15* OKE16* Avg.

Hoffart et al. (2011) 72.8 65.1 32.6 55.4 46.4 42.4 63.1 0.0 47.2
Kolitsas et al. (2018) 82.4 72.4 34.1 35.2 50.3 38.2 61.9 52.7 53.4
van Hulst et al. (2020) 80.5 72.4 41.1 50.7 49.9 35.0 63.1 58.3 56.4
Cao et al. (2020) 83.7 73.7 54.1 60.7 46.7 40.3 56.0 50.0 58.2

ReFinED (Wikipedia) 77.8 70.0 49.0 65.9 52.6 40.1 65.0 59.5 60.0
ReFinED (fine-tuned) 84.0 71.8 50.7 64.7 58.1 42.0 64.4 59.1 61.9

Table 3: EL InKB micro F1 scores on in-domain and out-of-domain test sets reported by Gerbil. The best value in
bold and second best is underlined. *Out-of-domain datasets.

(Raiman and Raiman, 2018; Onoe and Durrett,
2020) by a margin of +2.2% accuracy, due to the
addition of entity descriptions.

Zero-shot ED In Table 4, we report ED accuracy
on the WikiLinksNED Unseen Mentions test set
for seen and unseen entities. Our model outper-
forms the baseline by 3.0 F1, with, surprisingly,
6.6% higher accuracy for unseen than for seen en-
tities. We find this is partly due to higher top 30
candidate recall for the unseen entity subset (95.0%
compared to 91.1% for the seen entity subset) and
also because our mention masking strategy reduces
the reliance of entities appearing in the training
data with similar surface forms. Moreover, Re-
FinED uses entity types and descriptions to link
entities instead of relying on entity memorisation,
which means the number of training examples for
a given entity will not necessarily correlate with
performance. The number of similar entities in the
training dataset and the ambiguity of the test ex-
amples (Provatorova et al., 2021) will likely have
more significant influence on performance.

Method Seen Unseen Total

Cao et al. (2020) 64.3 63.2 63.5

ReFinED 61.6 68.2 66.5

Table 4: ED accuracy on WikiLinksNED Unseen Men-
tions test.

5.2 Entity linking

EL results are shown in Table 3. ReFinED outper-
forms other models on all but 3 datasets, often by
a considerable F1 point margin (e.g. 7.8 on N3-
Reuters-128 and 4.0 on KORE50) and improves
the average across all 8 datasets by 3.7 F1 points.
EL improves as ED and mention detection can gen-
eralise to different datasets due to the model being
pretrained on Wikipedia hyperlinks as opposed to

only AIDA-CoNLL. We also report results on the
ISTEX and WebQSP datasets in Appendix C.

5.3 Inference speed

Table 5 shows the time taken to run inference on the
AIDA-CoNLL test dataset, alongside the average
ED performance. ReFinED is 6 times faster than
the BLINK (Wu et al., 2020) bi-encoder, which also
has an average F1 which is 9 points lower. Com-
pared to the higher accuracy systems, ReFinED is
60 times faster than the BLINK cross-encoder, and
140 times faster than the autoregressive approach
of Cao et al. (2020). This is because ReFinED uses
a single forward pass to jointly encode all mentions
and candidate KB entities in the document (512
token chunk), and hence requires ≈ 231 forward
passes for the full dataset. The bi-encoder model
requires≈ 4464 forward passes as mentions are en-
coded individually, and the cross-encoder baseline
requires ≈ 90k forward passes as each mention is
encoded with each candidate. The autoregressive
approach suffers from high computational cost due
to the deep decoder, which generates a single token
at a time. Also, all baselines require a separate
model for MD whereas ReFinED performs end-
to-end EL using a single model, which improves
efficiency and simplifies model deployment.

Method Time taken (s) Avg. ED F1

Cao et al. (2020) 2100 88.7
Wu et al. (2020) bi-encoder 93 80.4
Wu et al. (2020) cross-encoder 917 87.2
Orr et al. (2021) 438 77.6

ReFinED 15 89.4

Table 5: Time taken in seconds for EL inference on
AIDA-CoNLL test dataset.

6 Deployment Details
We have successfully deployed the ReFinED EL
model in a real-world application, the aim of which
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is to populate a KB by extracting facts from un-
structured text found on web pages with high pre-
cision. The application requires running ReFinED
on a billion web pages (in which we link 25 billion
mentions) multiple times per year. The scale of
this deployment highlighted a number of learning
points.

Firstly, the entity linking model must be com-
putationally efficient. The inference speed of Re-
FinED allows the processing of the billion web
pages in 27k machine hours (2 days using 500 in-
stances), on machines with a single T4 GPU. Given
availability of cloud compute, the cost of process-
ing the same documents with the models evaluated
in Section 5.3 would scale approximately linearly
with their inference speeds. That is, the BLINK
bi-encoder would require 3000 instances for 2 days,
or 500 instances for 12 days, implying a roughly
6-fold increase in cost.

Secondly, the scale of the number of pages also
brings with it diversity of domains, meaning the
model benefits from linking to a large catalogue
of entities (over 90 million) - including zero-shot
entities.

Thirdly, we observed that deploying an end-to-
end self-contained EL model is easier to horizon-
tally scale and has a lower operational cost than
deploying multiple systems for each subcomponent
(such as candidate generation).

Finally, in real-world data, unlike in ED datasets,
there are a large number of cases where the correct
entity does not exist in the KB. This meant that
we had to train the model on examples where the
correct entity was not in the candidate list to reduce
overprediction.

7 Conclusion

We propose a scalable end-to-end EL model which
uses entity types and entity descriptions to per-
form linking. Our model achieves SOTA results
for both ED (+0.7 F1 points on average across 6
datasets) and EL (+3.7 F1 points on average across
8 datasets) while being 60 times faster than com-
paratively accurate baselines. We demonstrate our
approach scales well to a KB (Wikidata) 15 times
larger than Wikipedia while maintaining compet-
itive performance. The combination of accuracy,
speed and scale means the system is capable of
being deployed to extract entities from web-scale
datasets with higher accuracy and an order of mag-
nitude lower cost than existing approaches.
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A Entity Type Selection

Our entity types are formed from Wikidata relation-
object pairs and relation-object pairs inferred from
the Wikidata subclass hierarchy (for example, (in-
stance of, organisation) can be inferred from (in-
stance of, business)). We only consider types with
the following relations: instance of, occupation,
country, sport. We select types by iteratively adding
types that separate (assuming an oracle type classi-
fier) the gold entity from negative candidates for the
most examples in our Wikipedia training dataset.

Type information stored in KBs often varies in
granularity between entities (e.g. some capital city
entities have the type capital city and others only
city), adversely affecting training signal. To miti-
gate this, we use the class hierarchy to add parent
types to entities. This injects class hierarchy infor-
mation into the model, enabling type granularity to
depend on context.

B Training Details

We use the Hugging Face implementation of
RoBERTa (Wolf et al., 2019) and optimise our
model using Adam (Kingma and Ba, 2015) with a
linear learning rate schedule. We ignore the loss
from mentions where the gold entity is not in the
candidate set. The named-entity recogniser, used
to preprocess our Wikipedia training dataset, is a
RoBERTa token classification model trained on the
AIDA-CoNLL dataset mention boundaries. We
add weak entity labels for mentions that match the
page’s title (or surname for Wikipedia pages about
people). We present our main hyperparameters in
Table 6. Due to the high computational cost of
training the model, we did not conduct an exten-
sive hyperparameter search. Training on Wikipedia
took approximately 48 hours on a single machine
with 4 V100 GPUs. The model has approximately
154M parameters (123 million in the roberta-base
architecture, and 31M for the additional description
encoder and output layers).

C Additional results

Wikidata ED experimental setup To measure
ED performance on non-Wikipedia entities, we ex-
pand our entity set to Wikidata (which has over
90M entities) and evaluate our model on the IS-
TEX test dataset (Delpeuch, 2020). We add labels
and aliases from Wikidata for candidate generation
and remove entity priors from our entity scoring
(Section 3.8).

Hyperparameter Value

learning rate 3e-5
batch size 64
max sequence length 300
dropout 0.05
description embeddings dim. 300
# training steps 1M
# candidates 30
# entity types 1400
mention transformer init. roberta-base
# mention encoder layers 12
description transformer init. roberta-base
# description encoder layers 2
# description tokens 32
λ1, λ2, λ3, λ4 (0.01, 1, 0.01, 1)
mention mask prob. 0.7

Table 6: Our model hyperparameters

Wikidata ED results We evaluate ED perfor-
mance on the ISTEX dataset (which targets Wiki-
data). Our model outperforms Delpeuch (2020)
(92.1 vs 87.0 micro F1) which uses hand-crafted
features specifically designed for linking Wikidata
entities. This shows that our approach scales to
Wikidata and generalises well when there is in-
creased mention ambiguity. Our model performs
0.5 F1 points below the SOTA Mulang’ et al. (2020)
(92.6 vs 92.1 micro F1) which is likely due to dif-
fering candidate entity generation methods.

Entity Linking performance on questions We
report results on the WebQSP dataset in Table 7,
which shows EL performance on questions. Our
model has similar performance to ELQ, which is
SOTA on WebQSP and is optimised for questions.
Our model is faster than all baselines which can
be attributed to using an end-to-end EL model, re-
stricting ED predictions to the predicted mentions
only, and using a smaller model (compared to ELQ
which uses BERT-large (Devlin et al., 2019)).

Method WebQSP #Q/s

TAGME (Ferragina and Scaiella, 2012) 36.1 2.39
BLINK (Wu et al., 2020) (Wikipedia) 80.8 0.80
ELQ (Li et al., 2020) (Wikipedia) 83.9 1.56
ELQ (Li et al., 2020) (fine-tuned) 89.0 1.56

ReFinED (Wikipedia) 84.1 2.78
ReFinED (fine-tuned) 89.1 2.78

Table 7: Entity linking weak matching InKB micro F1
scores on WebQSP EL dataset (Li et al., 2020). #Q/s is
number of questions per second for a single CPU.
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D Dataset statistics
We present the topic, number of documents and
number of mentions for each dataset used for eval-
uation. The datasets used cover a variety of sources
including wikipedia text, news articles, web text
and tweets. Note that the performance of the model
outside these domains may be significantly differ-
ent.

Note also that all datasets used are for English
only, allowing comparison to previous work. Our
method is extendable to any language for which
there is an language-specific version of Wikipedia
on which the model could be trained. However, we
cannot guarantee the accuracy of the model across
these languages without further experimentation.

Topic Num docs Num Mentions
AIDA news 231 4464
MSNBC news 20 656
AQUAINT news 50 743
ACE2004 news 57 259
CWEB web 320 11154
WIKI Wikipedia 320 6821
WikilinksNED web 10000 10000

Table 8: Dataset statistics for entity disambiguation
datasets

Topic Num docs Num Mentions
AIDA news 231 4464
MSNBC news 20 656
DER tweets 182 242
K50 mixed 50 145
R128 news 128 638
R500 news 500 530
OKE15 Wikipedia 199 1017
OKE16 Wikipedia 254 1402

Table 9: Dataset statistics for entity linking datasets

220



Proceedings of NAACL-HLT 2022: Industry Track Papers, pages 221 - 229
July 10-15, 2022 ©2022 Association for Computational Linguistics

Lightweight Transformers for Conversational AI

Daniel Pressel
Interactions, LLC

dpressel@interactions.com

Wenshuo Liu
Twitter∗

wenshuol@twitter.com

Michael Johnston
Alexa AI, Amazon∗

mjohnstn@amazon.com

Minhua Chen
Interactions, LLC

mchen@interactions.com

Abstract

To understand how training on conversational
language impacts performance of pre-trained
models on downstream dialogue tasks, we build
compact Transformer-based Language Models
from scratch on several large corpora of conver-
sational data. We compare the performance and
characteristics of these models against BERT
and other strong baselines on dialogue prob-
ing tasks. Commercial dialogue systems typ-
ically require a small footprint and fast exe-
cution time, but recent trends are in the other
direction, with an ever-increasing number of
parameters, resulting in difficulties in model
deployment. We focus instead on training fast,
lightweight models that excel at natural lan-
guage understanding (NLU) and can replace ex-
isting lower-capacity conversational AI models
with similar size and speed. In the process, we
develop a simple but unique curriculum-based
approach that moves from general-purpose to
dialogue-targeted both in terms of data and ob-
jective. Our resultant models have around 1/3
the number of parameters of BERT-base and
produce better representations for a wide ar-
ray of intent detection datasets using linear and
Mutual-Information probing techniques. Addi-
tionally, the models can be easily fine-tuned on
a single consumer GPU card and deployed in
near real-time production environments.

1 Introduction

The development of the Transformer (Vaswani
et al., 2017) – a multi-headed attention architec-
ture with high capacity – caused a breakthrough in
the pre-training of contextualized representations
for text (Radford et al., 2018; Devlin et al., 2019).
This architecture can internalize large amounts of
information from massive datasets, yielding power-
ful encoders that can be fine-tuned for various NLP
tasks. The generative pre-training (GPT) model
(Radford et al., 2018) used a standard language

∗* Work done while the authors were at Interactions

modeling objective, learning to predict the next
word in a sequence, and demonstrated the ability
of Transformers to learn long distance dependen-
cies – a limitation of previous architectures. BERT
(Devlin et al., 2019) later introduced a Masked
Language Model (MLM) objective, where a por-
tion of the text is masked out or perturbed, and the
model learns to reconstruct those portions, yielding
bi-directional representations.

Various datasets have been explored for pre-
training including the Toronto BookCorpus (Zhu
et al., 2015) and Wikipedia. More recently, much
larger datasets have been used including Common
Crawl datasets for RoBERTa (Liu et al., 2019b),
T5 (Raffel et al., 2020) and others. Larger datasets
facilitate more parameters (Kaplan et al., 2020; Raf-
fel et al., 2020) and with so much available data,
many recent models range from tens to hundreds
of billions of parameters. These large language
models (LLMs) exhibit remarkable capabilities for
many tasks, but they are massive, difficult to con-
trol, and expensive to deploy. 1

LLMs have yielded improvements over their pre-
decessors, with little architectural modification, pri-
marily by using larger datasets, more capacity, and
training longer with more compute. The trend in
the literature seems clear – use a denoising or lan-
guage model objective and train on larger datasets
with longer contexts and more capacity to improve
NLP performance.

The main approach seems to be "more is better"
without much qualification to the type of textual
content that is applied. There have been some at-
tempts to qualify the corpora used for pre-training
(Mitchell et al., 2019), but attempting to limit what
goes into training becomes increasingly difficult as
the datasets get larger. For this work, we attempt to
target conversational AI, taking into account both

1While denoising auto-encoders such as T5 and BERT are
not considered proper LMs, they are often lumped under that
nomenclature, which we retain for consistency.
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model and dataset.
It seems reasonable to assume that some care-

fully curated data, like Wikipedia, should be
broadly useful as it presents related concepts in
close proximity with reliable structure. But for
our purposes, it also seems desirable to have a
large amount of data that is conversational, though
its unclear how this data should be structured and
how it should be balanced with non-conversational
sources. Knowing that task-oriented dialogue sys-
tems often have a need to understand domain-
specific concepts and proper names, it also seems
reasonable to assume that sources such as consumer
reviews of products and services might be helpful.

In this work, we attempt to build practical, com-
pact models that excel for conversational AI, es-
pecially NLU. We set out to build on data sources
that will be particularly useful for dialogue systems,
and try to incorporate common-sense architectural
modifications that should improve performance on
dialogue. We focus our effort on MLM models
as most NLU tasks benefit from bi-directionality
(Devlin et al., 2019). We also investigate a curricu-
lum that teaches the model a grounded foundation
first in generic language, followed by increasingly
complex masking over conversational data.

2 Related Work

2.1 Models targeting Dialogue

Several Transformer models have been developed
specifically to target dialogue, including ConveRT
(Henderson et al., 2020), and later ToD-BERT (Wu
et al., 2020). The former was trained from scratch
on 3 years of Reddit data (Henderson et al., 2019)
using a dual-encoder with a contrastive loss func-
tion to predict the second utterance in a paired
dialogue turn. ToD-BERT similarly used a con-
trastive loss head (in conjunction with an MLM
head) to predict the next turn of dialogue (again in
a dialogue pair). Unlike ConveRT, ToD-BERT was
adapted to a very small corpus of only task-oriented
dialogue from a pre-trained BERT checkpoint. Di-
aloGPT (Zhang et al., 2020) is a GPT2-adapted
(Radford et al., 2019) model using a corpus of con-
versational data. Unlike our work, they are specifi-
cally targeting response generation.

Some dialogue-targeted models have attempted
to solve end-to-end task-oriented dialogue with
pre-trained Transformers, including SimpleToD
(Hosseini-Asl et al., 2020), a model that learns the
entire process of NLU, state internalization, NLG

and API calls using only a prefix-LM. This model
is particularly strong on MultiWoz (Budzianowski
et al., 2018), a common task-oriented dialogue
benchmark, but the design is ill-suited for real-
world system deployment – API calls and NLG
are integrated directly into the LM, making the
model difficult to adapt, control, and maintain over
time. We focus instead on targeting the understand-
ing portion of a dialogue system. As a result, our
models can be easily incorporated into modular
dialogue management systems.

2.2 Compact models

Distillation (Hinton et al., 2015) is a common tech-
nique for creating compact Transformers (Sanh
et al., 2019; Jiao et al., 2020). In basic distillation,
a larger model (the “teacher") predicts the labels
on a dataset and its outputs are treated as the target
distribution using the Kullback-Leibler (KL) Di-
vergence against the predictions of a smaller “stu-
dent" model. During training, the student learns
to make similar predictions to the teacher (Beyer
et al., 2021).

While we could attempt to train a very large
Transformer from scratch and distill to a smaller
one in the hopes of improved performance, this
would be resource-inefficient. Alternatively, we
could adapt an existing off-the-shelf pre-trained
model and distill it down, but we are concerned
that both the prior pre-training and distillation
events could create biases on our models that would
limit our ability to understand the impacts of data
choices. We decided instead to training compact
models from scratch without distillation.

3 Model Description

Our model is an encoder-only Transformer, similar
to BERT or RoBERTa, trained primarily on full-
context conversational input. Unlike most previous
MLMs, our model is trained with relative atten-
tion (Shaw et al., 2018). In this approach, relative
positional representations are not conditioned on
the global position of the token but instead use a
local relative offset embedding at every layer as
part of the self-attention computation, which we
hypothesize makes them more suitable for dialogue
applications where the global offset in a conversa-
tion is not meaningful. Additionally, we perform
layer normalization before each sub-layer and we
also after the last Transformer encoder layer (Chen
et al., 2018).
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We also experiment with a curriculum for our
MLM where the initial masking follows BERT but,
later in training, switches to masked turn modeling
(MTM), where we mask entire turns, token-by-
token.

We train eight-layer models with eight atten-
tion heads, and a hidden size of 512. We use
Byte Pair Encoding (BPE) (Sennrich et al., 2016)
with a vocab containing 30,000 lower-case tokens.
We also include special tokens including “[CLS]"
and “[MASK]" (borrowed from BERT), “<EOS>"
for end-of-sentence and “<EOU>" for end-of-
utterance. We use fastBPE 2 to train, sampling
2 million posts from Reddit as the BPE corpus.

4 Datasets

In our investigation of sources of data for pre-
training targeting conversational AI, we identified
several potential source types. We bucket these into
three basic categories:

• foundational: general purpose data sources,
expected to provide a broad basis for pre-
training

• online reviews and customer data: domain-
informative data from single users, drawn pri-
marily from online reviews

• conversational: data taken from bulletin
boards and online forums capturing interac-
tions between multiple users

We hypothesized that, used together, each data
source may provide complementary information
that could improve model performance and robust-
ness for a range of dialogue tasks.

4.1 Foundational Data Sources

Dialogue systems, particularly task-oriented ones,
are often required to recognize entities, their rela-
tions to one another, and to user intent. Wikipedia
seems like an especially useful dataset as it makes
explicit the relationship between many objects in
the world. Words like “Camaro", a type of vehi-
cle manufactured by “Chevrolet", itself a company
owned by “General Motors", will all be mentioned
in close proximity along with other types of vehi-
cles, and possibly competitors. Thus we get access
to a large number of proper-noun concepts and their
relationships in the universe. A data source lacking

2https://github.com/glample/fastBPE

encyclopedic knowledge would be unlikely to be
present these primary relationships explicitly (or
so thoroughly) across so many domains. Still there
are several potential problems with a corpus like
Wikipedia. First, the data is written formally in a
manner that would rarely be encountered in actual
conversations between humans. Second, queries to
DBpedia to find concepts in Wikipedia show that
certain domains may have quite different coverage
from other domains, possibly resulting in incon-
sistent performance or coverage on a downstream
target domain. Third (and this is a problem for
any online corpus), the knowledge represented is
a snapshot in time. New concepts are introduced
often, and old ones may become irrelevant to daily
life.

The authors of T5 created a new, large dataset
from Common Crawl with broad coverage, which
they refer to as “C4" (Raffel et al., 2020). The con-
tent of this corpus was subsequently analyzed and
documented in (Dodge et al., 2021). Their analysis
reveals that the largest sources of data within the
cleaned C4 corpus are patents, Wikipedia and news
sites. Based on this knowledge, a model trained
on C4 would also be expected to have good cov-
erage of concepts and their relations and strong
downstream performance on problems with formal
language and syntactic structure.

4.2 Online Reviews and Customer Data
We considered online reviews as a potential source
of data to acquire world-knowledge useful for tar-
geting specific domains, particularly considering
entities and their relationships. For instance, for a
food service application, restaurant review sites
might provide some background knowledge of
food items, their component parts, and in-domain
co-reference knowledge. For hospitality applica-
tions, we may want to include information telling
us about the properties of hotels, bed and break-
fasts and resorts, and how they relate to concepts
such as location, cleanliness and desirability for
consumers.

4.3 Conversational Data Sources
We wished to target pre-training sources consider-
ing size and similarity to the content of our target
data, including formality and structure of the lex-
ical content. For this work, we decided to focus
on English data sources only, as most of the previ-
ously available collected corpora and downstream
datasets are in English.
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We hypothesized that online forums, where users
are looking for guidance regarding a product or
service, would be closely related to typical task-
oriented dialogue problems, and of generally high
value. Also, as threads on forums can be updated
over years, the lengths of forum conversations
can be quite long, which may allow our models
to learn rich long-distance relationships. How-
ever, even with a large number of forums, the total
amount of data collected is fairly small in compar-
ison to other online data sources. We also consid-
ered lower-quality sources of conversational data
which, though dissimilar from task-oriented dia-
logue, might capture common discourse aspects
over a large number of full conversations. We con-
sidered Twitter threads as a possible source, but the
conversations tend to be very short and unfocused,
and are not easy to capture using the streaming API.
On the other hand, recent work has been published
on Reddit as a data source (Al-Rfou et al., 2016;
Henderson et al., 2019), and the scripts for obtain-
ing this data were previously released (Henderson
et al., 2019) and are reproducible with minimal cost.
The corpus is quite large, and full conversations are
available.

We note that, for all of our conversational data
sources, author handles may be mentioned by other
users, but no metadata regarding authors, locations
nor any other profile information is included in the
text corpus. All data collection was limited to the
visible textual content of a post.

As we are particularly interested in task-oriented
dialogue, we also looked into large available
Wizard-of-Oz (WoZ) collected data, but found a
limited selection to be available.

For all conversational data sources, we pass en-
tire conversations into the pre-training and we use
an end-of-turn marker (<EOU>) to mark new
posts within a thread. In most cases its not possible
(or probably even useful) to further disentangle the
authors.

4.4 Combinations of data

Conversational data sources seem the most directly
related to our dialogue pre-training goals. If we
only considered that data, we could always provide
conversational turn demarcation, and provide full
conversations for each sample. We could also focus
on objectives that specifically target dialogue data.
However, with the non-dialogue data sources, this
is not possible. As a result, its not clear how to com-

bine the approaches effectively, or what mixture
of the data we should use to support downstream
applications.

We were interested in isolating the contributions
of the different types of data. We trained two sets
of models with slightly different datasets (version
1 and version 2). The version 1 model was trained
and used internally for several months before we
began work on the version 2 approach.

4.4.1 Version 1: RWD Corpus
For our first pre-training experiments, we used the
full Reddit corpus from (Henderson et al., 2019),
as well as 2.5 million online threads from pub-
licly available forums, 8.2 million online reviews
for restaurants and hotels, and a small amount of
task-oriented dialogue (about 160,000 conversa-
tions). We determined from early experiments that
Wikipedia complemented the Reddit dataset, pro-
viding better downstream fine-tuning results, so we
also incorporated all of English Wikipedia. We
call the resultant corpus “Reddit-Wiki-Dialogues"
(RWD).

Table 1 shows a list of the datasets contained in
RWD and their sizes.

4.4.2 Version 2: RF Corpus
We were interested in further isolating the impact
of models trained only on conversations. While in
version 1, models were trained on RWD, which is
comprised of various types of data, for version 2 we
attempt to better isolate the impact of conversation
data only.

We introduce a conversation-only dataset con-
taining Reddit and online forums, which we refer
to as “Reddit-Forums" (RF). It does not include
online reviews nor Wikipedia, nor does it use any
task-oriented dialogue data.

We hypothesized that a model trained only
on conversations, which are subjective in nature,
might benefit from an initial pre-training with more
coverage of broad concepts, so we also explore
training in a curriculum that starts with a single
epoch of C4 pre-training and continues on the RF
corpus.

For version 2, we observed that forum data often
contains quotes from previous posters, which are
usually expressed in a markdown format like BB-
Code 3. For these quotes, which often juxtapose
the post itself, we create additional tokens marking

3https://www.bbcode.org/reference.php
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Label Size Content
Reddit 173GB 700M conversations

Wikipedia 20GB 2.7B tokens
Forums 14GB 2.5M threads

Yelp 3.9GB 6.6MB reviews
TripAdvisor 1.5GB 1.6M reviews
MetalWoz 19MB 37k conversations

DSTC7 (ubuntu) 54MB 105k conversations
DSTC8 18MB 15k conversations

Table 1: RWD Corpus

the beginning and end and rely on the attention
mechanism of the Transformer in the same manner
we do for end-of-sentence and end-of-turn markers.
For version 2, to somewhat offset the loss of the
review data and the task-oriented dialogue corpus,
we collected another approx. 800k conversations
from additional forum sources (yielding a total of
approx 3.3M threads).

5 Training Details

We train each model using mead-baseline (Pressel
et al., 2018) on a single v3 Tensor Processing Unit
(TPU). 4. To best utilize TPUs, we use bucketing
based on full conversation lengths, scaling the num-
ber of samples for each bucket length so that the
number of tokens is constant per batch. We use
AdamW with a peak learning rate of 4e-4, a weight
decay of 1e-3, and a linear warm-up of 10,000 steps
followed by cosine decay over training to zero.

For version 1, we use a maximum context win-
dow of length 256, training for 1 million steps with
context windows between 64 and 256 tokens.

For version 2, targeting the RF conversation-
only corpus, we use a longer maximum context
window of length 1024. For comparison purposes,
in version 2, we train separate models using C4
only, C4 followed by RF, and RF only.

From early experiments, we determined that the
MTM objective was too difficult to learn from
scratch, so for MTM models, we train the first
80% following the masking algorithm for BERT,
and we switch to MTM masking for the last 20%.

6 Experiments

We use the SentEval (Conneau and Kiela, 2018)
approach to perform linear probing on a several

4Each run takes 2-3 days, but curriculum branches are run
from previous checkpoints, minimizing the total training time

intent detection datasets, including few-shot sce-
narios. We also perform Mutual Information-based
clustering probing experiments.

6.1 Linear Probing Intent Detection

To assess the quality of our representations, we use
the linear probing methods from SentEval applied
to intent detection, and compare against BERT-
base, ToD-BERT and SentenceBERT (Reimers and
Gurevych, 2019) (an adaptation of BERT on Natu-
ral Language Inference data shown to improve em-
bedding quality) 5. Our analysis includes several
commonly used datasets – Clinc150 (OOS) (Lar-
son et al., 2019), PolyAI Banking77 (Casanueva
et al., 2020), and the Heriot-Watt University dataset
(Liu et al., 2019a). In addition to the original ver-
sions, we use 10-example and 30-example versions
for each dataset to attempt understand the few-shot
capabilities of our models. We also compare three
internally-created intent detection datasets target-
ing automotive customer service, pizza customer
service, and pizza ordering (shown in Table 2).

From our linear probing experiments, we find
compelling evidence that our representations have
internalized more useful information for dialogue,
yielding better general-purpose representations.
Both aspects of our training curriculum for RF
models improve the overall results. The best model
overall starts with C4 and continues pre-training
on a conversational dataset (RF) using our MTM
objective at the end of training. However, while
pre-training with C4 does typically improve our
MTM, the RF-only MTM model is still stronger
than the version 1 model which contains all three
data source types. All of our conversationally pre-
trained models exhibit much better performance
than the baselines. Interestingly, we observe that

5Each of these baselines has 12 heads, 12 layers, and 768
hidden units
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our 8-layer, C4-only baseline is similar in perfor-
mance to BERT and ToD-BERT. This might be due
to the much larger size of the training set compared
to BERT. Overall, our results clearly demonstrate
the importance of conversational pre-training. We
find very little difference in the performance of
the basic MLM models using RWD versus C4+RF
alone, but once coupled with the new MTM objec-
tive, the RF corpus shows a clear advantage over
RWD for linear probing.

6.2 Mutual Information-based Clustering
Intent Detection

In Mutual Information-based Clustering, utterances
are clustered using K-means algorithm for various
values of K. Then, the Adjusted Mutual Informa-
tion (ANMI) score is computed between the pre-
dicted clustering and intent-based clusterings for
the different settings of K (Wu and Xiong, 2020).
In that work, the authors show the strength of ToD-
BERT, primarily based on strong probing results
using the MultiWoz dataset.

We apply the same method and compare against
BERT, ToD-BERT and SentenceBERT across In-
tent Detection datasets. While BERT is a strong
baseline for supervised downstream tasks, using
Mutual Information-based Clustering, we find that
ToD-BERT is significantly better than Sentence-
BERT which, in turn, produces consistently better
representations than BERT. However, despite their
much smaller size, our MTM models outperform
the others by a large margin, including the MLM-
only models trained on the same dataset (Figures 1,
2, 3).

For two of the datasets, the C4+RF models are
the best, but for the HWU dataset, the RF-only
model is better.

7 Deployment

To support deployment into our Intelligent Virtual
Assistant (IVA) environment, we compared fine-
tuning of our version 1 models against our pro-
duction models, which operate on ASR N-best hy-
potheses and predict multiple outputs, represent-
ing intents and entities. For all fine-tuning, we
trained on a single NVIDIA GTX1080ti and mea-
sured the joint accuracy on a real-world customer
care application. We found the new models to be
competitive, especially in few-shot environments.
Using distillation to a single model from an ensem-

Figure 1: Banking77 Dataset ANMI

Figure 2: OOS Dataset ANMI
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ID BERT SBERT ToD-BERT RWD48 C4 C4+RF MTM RF MTM C4+RF
AutoCS 60.54 53.79 58.98 63.45 61.06 65.52 66.25 66.36
PizzaCS 55.06 51.45 54.43 60.22 54.34 57.05 58.23 59.13

PizzaOrder 81.44 80.64 80.82 83.39 80.91 82.68 81.97 82.06
OOS10 72.24 80.82 79.51 84.47 77.29 84.56 85.76 88.16
OOS30 85.49 87.44 85.51 91.27 85.93 91.27 90.53 91.98
OOS 90.89 91.98 90.31 94.56 89.84 93.93 93.13 94.93
HWU 86.25 85.41 83.18 87.08 82.43 86.80 86.71 89.03

HWU10 68.31 70.54 68.96 72.58 65.61 73.42 75.74 76.39
HWU30 78.44 79.00 77.51 81.13 76.39 82.53 82.06 83.36

Bank 83.80 87.86 84.19 87.99 84.9 87.76 90.42 90.49
Bank10 56.14 70.71 65.42 70.42 66.82 71.56 77.27 78.44
Bank30 74.84 81.82 76.92 82.37 77.86 82.21 85.00 85.84

Avg 74.45 76.79 75.48 79.91 75.28 79.94 81.09 82.18

Table 2: Comparison of Model Accuracy by Probing Intent Detection Datasets

Figure 3: HWU Dataset ANMI

ble of fine-tuned MLM-based models trained on
only one week of data (about 100k samples), we
were able to match the performance of a production
model trained on two months of data (about 650k
samples). In many cases, it was also possible to
truncate our models during fine-tuning, removing
the top 4 layers without significant deterioration
of performance. Table 3 shows the joint accuracy
and speed results of our ONNX-converted mod-
els trained on a production dataset of 1.1 million
noisy training samples. We observe that, even after
truncating our pre-trained models to only 2 layers,
they still perform better than the production system,
allowing us to trade off speed and accuracy.

Model sec/sample Testing Acc
Production 0.0003s 83.67%

MLM 2-Layers 0.0018s 83.82%
MLM 4-layers 0.0033s 83.94%

Table 3: IVA Dataset Speed vs. Accuracy

8 Conclusion

Using a combination of online user conversations
and sensible design choices, we are able to provide
models that are compact, efficient and perform well
for conversational AI. We find that conversational-
only pre-training compares favorably to more tradi-
tional online data sources, but that combining the
two in a curriculum can be advantageous in many
cases. Additionally we find that masking whole
turns later in training is also particularly helpful for
learning good dialogue representations.

In future work, we will compare alternative ar-
chitectures an a larger number of dialogue-oriented
tasks. We are also interested in how model capac-
ity affects downstream performance, particularly
for few-shot learning. We also wish to explore the
trade-offs between LM pre-training in the conver-
sational domain versus equivalent adaptation using
a contrastive loss function as used in (Vulić et al.,
2021), and to further isolate the impacts of individ-
ual data sources and lexical content.
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Ivan Vulić, Pei-Hao Su, Samuel Coope, Daniela
Gerz, Paweł Budzianowski, Iñigo Casanueva, Nikola
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Abstract

NER has been traditionally formulated as a se-
quence labeling task. However, there has been
recent trend in posing NER as a machine read-
ing comprehension task (Wang et al., 2020;
Mengge et al., 2020), where entity name (or
other information) is considered as a question,
text as the context and entity value in text as
answer snippet. These works consider MRC
based on a single question (entity) at a time. We
propose posing NER as a multi-question MRC
task, where multiple questions (one question
per entity) are considered at the same time for
a single text. We propose a novel BERT-based
multi-question MRC (NER-MQMRC) archi-
tecture for this formulation. NER-MQMRC
architecture considers all entities as input to
BERT for learning token embeddings with self-
attention and leverages BERT-based entity rep-
resentation for further improving these token
embeddings for NER task. Evaluation on three
NER datasets show that our proposed archi-
tecture leads to average 2.5 times faster train-
ing and 2.3 times faster inference as compared
to NER-SQMRC framework based models by
considering all entities together in a single pass.
Further, we show that our model performance
does not degrade compared to single-question
based MRC (NER-SQMRC) (Devlin et al.,
2019) leading to F1 gain of +0.41%, +0.32%
and +0.27% for AE-Pub, Ecommerce5PT and
Twitter datasets respectively. We propose this
architecture primarily to solve large scale e-
commerce attribute (or entity) extraction from
unstructured text of a magnitude of 50k+ at-
tributes to be extracted on a scalable produc-
tion environment with high performance and
optimised training and inference runtimes.

1 Introduction

Named Entity Recognition (NER) is the task of
locating and classifying entities mentioned in un-
structured text into predefined categories such as

∗work done as part of Retail Business Services, Amazon
†work done as part of India Machine Learning, Amazon

names of people, organizations and locations. It
is a crucial component of many applications, such
as web search, relation extraction (Yu et al., 2019)
and e-commerce attribute extraction (Zheng et al.,
2018; Mehta et al., 2021). Traditionally, NER has
been posed as a sequence labeling task (Ma and
Hovy, 2016; Zheng et al., 2018; Devlin et al., 2019)
where each token is assigned a single tag class. We
term these sequence labeling approaches as NER-
SL. Recently, there has been interest in posing NER
as a machine reading comprehension task (Wang
et al., 2020; Mengge et al., 2020; Xu et al., 2019).
Specifically, NER is posed as a question answer-
ing problem, where text is considered context, en-
tity name (or some variant) is considered question
and entity value mentioned in text is considered
as answer snippet. We term these approaches as
Single Question Machine Reading Comprehension
(NER-SQMRC) as they involve asking a single
question (or entity) at a time. We argue that both
NER-SL and NER-SQMRC have their merits and
demerits, e.g. NER-SQMRC incorporates entity
name for better representation and can be easily
extended to new entities without re-training and
NER-SL requires single scoring pass for extract-
ing all entities from a given text. We pose NER
as a multi-question MRC problem, where multiple
questions (one question per entity) are asked at the
same time and propose a novel architecture (NER-
MQMRC) for this formulation. We summarize the
merits and demerits of these three formulations in
Table 1 considering below factors:

• Entity scaling: Ability to scale for new enti-
ties without retraining.

• Multi-entity scoring: Ability to extract all
entities from a given text in a single forward
pass.

• Faster runtime: Extracting multiple entities
together in a single pass leads to faster train-
ing and inference as compared to considering
single entity in a pass.
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• Using entity information: Leveraging entity
information (such as entity name) for learning
better representations.

Property NER-SL NER-SQMRC NER-MQMRC

Entity scaling ✗ ✔ ✔

Multi-entity Scoring ✔ ✗ ✔

Faster runtime ✔ ✗ ✔

Entity information ✗ ✔ ✔

Table 1: Comparing different attribute extraction ap-
proaches based on various factors.

As summarized in Table 1, our proposed NER-
MQMRC architecture combines the best of NER-
SL and NER-SQMRC. NER-MQMRC considers
extraction of multiple entities based on multiple
questions on same text, and is novel in three ways -
1) Token representations are learnt to incorporate
information of all the entities, unlike using sin-
gle entity as in (Wang et al., 2020; Mengge et al.,
2020). 2) We introduce leveraging BERT-based
entity representations for further improving token
representations for NER task. 3) Our architecture
leads to faster training and inference. E.g. scor-
ing of five entities can be done using a single for-
ward pass with our NER-MQMRC as compared
to five passes required earlier with NER-SQMRC
based models (Devlin et al., 2019; Wang et al.,
2020; Mengge et al., 2020). Experiments on three
NER datasets establish the effectiveness of NER-
MQMRC architecture. NER-MQMRC achieves
2.5x faster training and 2.3x faster inference as
compared to single question based MRC (NER-
SQMRC) framework based models by consider-
ing multiple entities together in training and infer-
ence. Further, we show performance boost over
SOTA NER-SQMRC (Devlin et al., 2019), obtain-
ing +0.41%, +0.32% and +0.27% F1 improvements
for AE-Pub, Ecommerce5PT and Twitter datasets
respectively. Rest of the paper is organized as fol-
lows. We describe our proposed NER-MQMRC
architecture in Section 2. We discuss our exper-
imental setup in Section 3 followed by results in
Section 4. We discuss the industry impact of our
work in Section 5 and summarize the paper in Sec-
tion 6.

2 NER as a Multi-Question MRC task

2.1 Problem definition and dataset
construction

Given an input sequence X = {x1, x2, ..., xn},
where n denotes the length of the sequence,

the objective in NER task is to find and label
tokens in X that represent entity y ∈ Y ,
where Y is a predefined list of all possible
entities (e.g., BRAND, COLOR, etc). Under the
NER-SQMRC framework, the model is given a
question qi asking about ith entity and the model
has to extract a text span xstarti,endi from X
which are tokens corresponding to the ith entity.
For NER-MQMRC framework, the model is
given a list of k questions Q = {q1, q2, ..., qk}
and the model has to extract the text spans
{(xstart1,end1), (xstart2,end2), ..., (xstartk,endk)}
from X corresponding to each of the k entities.
We use BERT for Question Answering (Devlin
et al., 2019) as our NER-SQMRC baseline
implementation (refer Appendix A.1).

Figure 1: Data Input format for NER-SQMRC and NER-
MQMRC model architectures.

Figure 1 shows data input format for both NER-
SQMRC and NER-MQMRC. Similar to conven-
tional Question Answering, training data for NER-
SQMRC consists of (text, single-entity-question,
entity spans from text) triplets. For a dataset with k
entities, training data consists of k samples for each
text, each sample having question for one entity.
However, for NER-MQMRC, training data consists
of a single sample for each text, having k questions
(one question per entity). Hence, NER-SQMRC
formulation requires dealing with larger size train-
ing data (k times more samples) with same informa-
tion as compared to NER-SL and NER-MQMRC.
Similarly, during inference, NER-SQMRC requires
performing k evaluations for the same text to get
text span for each entity, whereas NER-MQMRC
requires only a single evaluation for all entities.

2.2 Model Details

Figure 2 shows our proposed NER-MQMRC archi-
tecture. We build NER-MQMRC on top of BERT
architecture (Devlin et al., 2019) by customizing
BERT input and modifying the output layer as de-
scribed in this section.
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2.2.1 NER-MQMRC input
BERT has been trained to take a pair of sentences
separated by a special token [SEP] as input, and use
EA and EB segment embeddings respectively for
tokens of each sentence. For NER-MQMRC, we
concatenate the input text and questions of all enti-
ties separated by [SEP] (refer Figure 1). Questions
of each entity are further separated by a special
token [ENT], which we add to the BERT vocab-
ulary. We use EA segment embeddings for input
text and EB segment embeddings for all question
tokens. Output embedding learned corresponding
to each [ENT] token is considered as embedding
representation for the entity adjacent to that [ENT]
token.

Figure 2: NER-MQMRC model architecture.

2.2.2 Entity specific representation and span
selection

As discussed, the ith [ENT] token output embed-
ding (enti) represents the ith entity in the ques-
tion. We hypothesize that using enti to attend
to the context token’s output embeddings, T =

{t1, t2, ..., tn}, will help the model find the answer
span for entity i. We use entity embeddings to
transform the common context representations (T )
to entity specific token representations. We con-
sider extraction of each entity as a separate task and
use element-wise product of token and entity em-
beddings to obtain entity specific representations
for each token (refer Figure 2). More formally, we
perform an element-wise product of token embed-
dings T with enti to get ith entity specific token
representations Pi = {pi1, pi2, ..., pin}.

These entity specific representations are then fed
into a separate token-level dense layer, Wbio, to
get the BIO format label prediction for each token
w.r.t. the entity as shown in equation 1, where
tj represents embedding for jth token and enti
represents embedding for ith entity. Examples with
no entity mention are modelled by setting the label
for [CLS] token as B tag for that entity. For each
token and entity pair, loss is calculated using cross
entropy loss (Lce) between predicted and actual
label. For each sample, total loss, Ltotal (refer
equation 2), is average (with equal weightage) of
loss for all k entities and n tokens pairs.

labelj = argmax(softmax(Wbio(tj ⊙ enti)))
(1)

Ltotal =
1

k · n
k∑

i=1

n∑

j=1

Lce
i,j (2)

2.3 Discussion

Our proposed formulation is generic and can be
used with other pre-trained architectures (such as
XLNET, RoBERTa) instead of BERT for feature ex-
traction. In recent years, there has been incremental
advancements to the MRC framework such as the
use of knowledge distillation loss as a regularizer
and no-answer loss (Wang et al., 2020) to achieve
better performance than (Devlin et al., 2019); NER-
MQMRC framework can also easily integrate such
ideas to get better performance and we keep this to
be explored as a future work since in this paper we
want to show the effectiveness of NER-MQMRC
framework over NER-SQMRC framework with
similar setup for both the frameworks. We use
BIO label prediction to allow multiple value pre-
dictions for an entity from the text, though we also
experimented with single (start, end) span index
prediction as output labels similar to (Wang et al.,
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Train Data Test Data
Dataset SQMRC MQMRC Reduction(%) SQMRC MQMRC Reduction(%)

Ecommerce5PT 981,076 290,698 70.37 32,062 4,967 84.51
AE-Pub 88,460 39,888 54.91 22,005 17,393 20.96
Twitter 11,997 3,999 66.67 9,768 3,256 66.67

Table 2: Reduction in dataset size due to single-entity
to multi-entity question transformation.

2020) but has the limitation of predicting only a
single answer span.

3 Experimental Setup

3.1 Datasets

Experiments were performed on three NER
datasets described below.
AE-Pub (Xu et al., 2019) is a dataset for E-
commerce attribute extraction collected from
AliExpress Sports & Entertainment category. This
dataset is designed to pose E-commerce attribute
extraction as a question answering problem and
contains over 110k triplets (text, attribute, value)
and 2.7k unique attributes. Even though the number
of attributes is large, any given text in the dataset
has no more than 13 attributes. Train and test
dataset is created in an automated manner using
distant supervision.
Ecommerce5PT is a 33 attributes (size, material,
color, etc.) dataset extracted from five different
product types from Amazon catalogue. The train
data is constructed in a similar way as AE-Pub
using distant supervision. The train data quality is
improved using automated gazetteer and matching
heuristics (refer Appendix A.2). Unlike AE-pub,
test data is constructed with manual audit, thus
leading to better quality test data.
Twitter (Zhang et al., 2018) is an English NER
dataset based on tweets. We use the setup similar
to (Mengge et al., 2020), using textual information
queries (refer Appendix A.5) and making entity
detection on PER, LOC and ORG.

3.1.1 Datasets transformation
As discussed earlier, NER-MQMRC leads to re-
duced train and test data size as compared to NER-
SQMRC (Table 2). We observe a median of 3,
2 and 3 entities per question in training data of
Ecommerce5PT, AE-Pub and Twitter datasets re-
spectively, leading to similar data reduction for
NER-MQMRC training. Appendix A.4 elabo-
rates on the distribution of entities per question
for NER-MQMRC for each of these datasets. For
fair comparison, one should use all entities of a

sample while evaluating NER-SL, NER-SQMRC
and NER-MQMRC approaches. We use this setup
for Ecommerce5PT and Twitter datasets. However,
AE-Pub dataset contains only few entities of each
sample. We follow setup used in (Xu et al., 2019)
for AE-Pub evaluation.

3.2 Experiments

In this section we detail the various experiments to
evaluate our proposed solution, NER-MQMRC, on
aspects such as operational performance (training
and inference runtime), NER task, limited data set-
ting (few shot) and NER-MQMRC model specific
analysis.
Training and Inference Runtime: We compare
how much time does NER-SQMRC and NER-
MQMRC take to do one pass over the complete
train data (1 epoch) as well as for inference on com-
plete test data. For a fair comparison, the models
are run on the same machine and under the same
conditions.
Named Entity Recognition: We evaluate models
for the task of extracting entities from a given text.
For NER-SL models (Mehta et al., 2021; Ma and
Hovy, 2016), input is a text in which tokens are to
be tagged with entity BIO labels (B-PER, I-LOC,
etc.). For NER-SQMRC models (Devlin et al.,
2019; Wang et al., 2020; Xu et al., 2019), input
is a text and a corresponding single entity ques-
tion, whereas, for our proposed NER-MQMRC
models, input is a text and a multi-entity question
(section 2.1). The output for each model (NER-SL,
NER-SQMRC and NER-MQMRC) are BIO labels
for each token in the text. We use micro average
precision (P), recall (R) and F1 as evaluation met-
rics and use Exact Match criteria (Rajpurkar et al.,
2016) to compute the scores.
Few-shot Learning: We analyze the performance
as the number of data samples seen during train-
ing are reduced. We perform this analysis using
Ecommerce5PT dataset and compare with Multi-
task NER architecture (Mehta et al., 2021).
Context-Entity Interaction: Element-wise prod-
uct operation is applied over entity embedding and
token output embeddings to get entity specific to-
ken embeddings. As the operation performed is
important to filter information, in this experiment
we explore the effects of using different operations
other than using element-wise product.
Impact of entity ordering: We evaluate the impact
on model performance due to the order in which en-
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Ecommerce5PT
methods P(%) R(%) F1(%)

Multi-task NER (Mehta et al., 2021)
(single model)

91.62 62.47 74.29

Multi-task NER (Mehta et al., 2021)
(5 model ensemble)∗

88.90 77.20 82.60

BERT-Tagger (Devlin et al., 2019) 88.43 77.51 82.61
NER-SQMRC (Devlin et al., 2019) 87.92 81.18 84.42
NER-MQMRC 87.52 82.14 84.74

AE-Pub
methods P(%) R(%) F1(%)

SUOpenTag (Xu et al., 2019) 79.85 70.57 74.92
AVEQA (Wang et al., 2020) 86.11 83.94 85.01
NER-SQMRC (Devlin et al., 2019) 85.08 83.19 84.13
NER-MQMRC 86.18 82.97 84.54

Twitter
methods P(%) R(%) F1(%)

BiLSTM-CRF (Ma and Hovy, 2016) - - 65.32
CoFEE-MRC (Mengge et al., 2020) 75.89 71.93 73.86
NER-SQMRC (Devlin et al., 2019) 80.37 76.90 78.59
NER-MQMRC 77.79 79.96 78.86

∗ Five individual models were trained and eval-
uated, one for each product type
AVEQA (Wang et al., 2020) uses no-answer
and distillation loss as regularizers

Table 3: Performance comparison on various NER
datasets.

tities are mentioned in a question as NER-MQMRC
is formulated as a multi-entity question.

4 Results

4.1 Operational Performance – training and
inference runtime

Figure 3 shows the relative training and inference
time of NER-MQMRC and NER-SQMRC on all
three datasets. We observe that NER-MQMRC
leads to an average 2.5 times faster training and
2.3 times faster inference due to performing single
forward pass for all entities, as compared to NER-
SQMRC which requires a separate forward pass
for each entity. The runtime improvement depends
on how many entities are grouped together in the
dataset for each text. NER-MQMRC inference
runtime on AE-Pub is only 5% faster than NER-
SQMRC as only 20.96% reduction happened in
test dataset size after data transformation (Table 2).

4.2 NER Task Performance

Table 3 shows comparison of our proposed model
with baselines on multiple NER datasets. Based
on evaluation on three NER datasets, our proposed

Figure 3: Comparison of operational metrics.

model outperforms NER-SQMRC (Devlin et al.,
2019) achieving F1 gain of +0.41%, +0.32% and
+0.27% for AE-Pub, Ecommerce5PT and Twit-
ter datasets respectively. A single NER-MQMRC
model outperforms ensemble of five Multi-task
NER models (one for each product type) by +2.14%
F1 and helps in avoiding model proliferation by
having a single model instead of a different model
for each product type for Ecommerce5PT dataset.
NER-MQMRC outperforms BERT-Tagger (Devlin
et al., 2019) by +2.13% which uses BERT for
NER as a tagging task (NER-SL). For AE-Pub,
NER-MQMRC has 0.47% lower F1 compared to
AVEQA (Wang et al., 2020), which is due to the
additional No-answer and Distillation loss compo-
nents in AVEQA. Note that NER-MQMRC is agile
and such modules can be easily integrated to it as
well.

Figure 4: Performance with less training data on Ecom-
merce5PT.

4.3 Evaluation in limited data setting –
Few-shot Learning

Figure 4 shows the performance of NER-MQMRC
with lesser data availability during training. NER-
MQMRC is able to perform better than Multi-Task
NER model trained on complete Ecommerce5PT
data (290k samples) with as low as 2.5k samples

234



Operation Name Formula P(%) R(%) F1(%)

layer_sum Pi =W1(T ) +W2(enti) 79.07 11.46 20.02
difference Pi = T − enti 85.99 20.70 33.36
layer_product_relu Pi = relu(W1(T )) ∗ relu(W2(enti)) 74.80 79.57 77.11
layer_product_tanh Pi = tanh(W1(T )) ∗ tanh(W2(enti)) 76.68 78.49 77.58
max Pi = max(T, enti) 76.87 80.79 78.78
element-wise product Pi = T ∗ enti 77.79 79.96 78.86
layer_product Pi =W1(T ) ∗W2(enti) 78.87 79.66 79.26

W1, W2 are linear weight matrices
T is the context vector of shape (n, dim) where n is the context length
enti is the entity vector of shape (dim, ) for the ith entity
Pi is the ith entity specific context vector of shape (n, dim)
∗,+,− and max are element-wise product, sum, difference and max operations respectively

Table 4: Effect of different operations to attend context vectors using entity vector.

during training. NER-MQMRC is able to perform
even with few samples for training because of the
natural language understanding a pre-trained BERT
model possesses. The performance further in-
creases with increase in dataset size. For Multi-task
NER model we observed the F1 further dropped
from 74.29% to 54.49% when trained with 40k
data samples.

4.4 NER-MQMRC Specific Experiments

4.4.1 Context Entity Interaction Operations

We experimented with a list of different operations
to get better entity specific context embeddings on
Twitter dataset. As shown in Table 4, layer_product
operation performed the best with 79.26% F1. Op-
erations such as element-wise sum and difference
performed poorly in generating good quality entity
specific context embeddings because they did not
amplify the context vector features by large mag-
nitudes which helps the classification layer better
differentiate whereas product operation amplified
the feature magnitudes.

4.4.2 Effects of entity ordering in a question

We observe that keeping the same ordering of en-
tities in a question while training, leads to deterio-
ration in F1 if the entities are then shuffled during
inference (-12.33% on average). This is likely due
to model giving more weightage to relative entity
position while learning the entity representations
and not focusing on the entity name (or entity ques-
tion). Shuffling the order of entities during training
alleviates this issue and leads to robust results for
any order of entities during evaluation.

5 Industry Impact

Cost saving: Our production pipeline uses AWS
p2.8xlarge compute instance for model training
which costs $7.2/hour. Training a single NER-
SQMRC model takes 17 hours whereas our pro-
posed NER-MQMRC model takes 7 hours which
saves $72 per model training i.e. reducing the
model training cost by an average of 58.82%. Train-
ing multiple such models leads to large cost savings
for production systems.
Faster model runtime: Due to the faster train-
ing and inference capabilities of NER-MQMRC,
our production systems are deployed faster and are
able to serve 2.3 times more inference requests per
minute improving the model throughput.
Model proliferation reduction: The NER-SL
based production systems need to deploy multi-
ple models as they are not able to perform at scale
with the increase in the number of attributes in the
e-commerce catalogue due to the increase in output
label space. NER-MQMRC alleviates this issue as
the output label space remains constant (3 for BIO
labels) and a single model can be trained for 50k+
number of attributes.
Better performance: From our experiments we
show that NER-MQMRC performs better than
NER-SL and NER-SQMRC framework models.

6 Conclusion

In this paper, we formulated NER as a multi ques-
tion MRC task (NER-MQMRC). Experimental
evaluation on three NER datasets shows that our
proposed NER-MQMRC model handles multiple
entities together and leads to faster training and
inference as compared to single question MRC for-
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mulation and improves performance over SOTA
NER-SQMRC model (Devlin et al., 2019), estab-
lishing the effectiveness of our proposed model.
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A Appendix

A.1 NER as Single Question MRC

Figure 5 shows our baseline NER-SQMRC archi-
tecture. We use BERT for Question Answering (De-
vlin et al., 2019) as our NER-SQMRC baseline
implementation. The model is given a question qi
asking about ith entity and the model has to extract
a text span xstarti,endi from X which are tokens
corresponding to the ith entity. The question com-
ponent of the input in NER-SQMRC comprises
of a single entity of interest to be extracted. The
context token embeddings derived from the for-
ward pass of the BERT model are then used to
extract the text span corresponding to the entity
from the context. For a text with five entities the
NER-SQMRC model will need to perform five for-
ward pass through the model to extract the text
spans for each of the five entities.

Figure 5: NER-SQMRC model architecture.

A.2 Ecommerce5PT training data generation

Catalogue attribute values can be noisy (e.g. hav-
ing junk value or missing value) and leads to noisy
training annotations with distant supervision. In
this section we explain the strategies employed
to create better quality training data for Ecom-
merce5PT dataset.

A.2.1 Automated Gazetteer
Using gazetteers in distant supervision can improve
the quality of training annotations (especially for
attributes which have limited set of valid values).
As part of the data tagging step, the catalogue back-
end values for an attribute are read to create the
gazetteer values using the most frequently occur-
ing attribute values. Elbow method is used to de-
termine the threshold for selecting values for the
gazetteer. The training data is then created lever-
aging the backend attribute values and gazetteer
values in distant supervision.

A.2.2 Other Heuristics
The backend catalogue value sometimes contains a
different variation of the attribute value than what is
present in the context. For example, context is "US
Polo t-shirt for Men" whereas the backend value for
the attribute target-audience is "Man". Such cases
will not be tagged using exact match in distant
supervision. Custom heuristics such as pluralizing
the text (Men, Mens, Men’s, etc.), removing or
adding "s", lower casing the text and normalizing
attributes such as converting "XXXXL" to "4XL"
for size attribute are added to improve the training
data quality.

A.3 Implementation Details
In this section we discuss the dataset creation and
model training hyper-parameters details to replicate
our results.

During training, we explicitly add no answers
for entities that do not have a span in a given text to
make the model learn to predict [CLS] if no valid
answer is present for an entity. We do not make any
additions to AE-Pub since it already has no answers
added for certain entities. For Ecommerce5PT we
add 60% no answers at random and for Twitter and
CoNLL we add all no answers for each entity that
is not present in that text.

For our implementation of NER-SQMRC and
NER-MQMRC, we use the transformers library
(Wolf et al., 2019). We use variants of pre-trained
BERT model for all our experiments. We use base-
cased variant for Twitter and base-uncased variant
for AE-Pub and Ecommerce5PT, keeping our eval-
uation fairly comparable to existing literature. We
use the output layer of single (start, end) span index
for AE-Pub dataset similar to (Wang et al., 2020)
instead of BIO label. Furthermore, we don’t do
any dataset specific preprocessing or specific hy-
perparameter tuning. We use batch size of 32, and
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a learning rate of 1e-5. We train our models for 20
epochs, choosing the best epoch based on results
on the dev set. We make use of AWS compute
(ml.p3.8xlarge) instances to run our experiments.

A.4 Entities per question
Figure 6 shows the distribution of number of en-
tities in a question for different datasets. It can
be seen from the figure the number of entities
in a question greater than 1 are frequent in these
datasets which is inefficient for SQMRC type mod-
els since they require one forward pass per entity
for the same text. We found that Ecommerce5PT
and AE-Pub datasets have as many as 12 and 13
attributes for a single text respectively. For Twitter
we add all the entities in the question as the dataset
has only 3 attributes.

Figure 6: Distribution of number of entities per question
in train splits of NER datasets.

Entity Label Query

PER People, persons, including fictional
ORG Companies, agencies, institutions, organizations
LOC Places, countries, continents, mountain ranges, water bodies

Table 5: Queries used to replace entity label in a ques-
tion for Twitter.

A.5 Queries
BERT model has natural language understanding
capabilities due to large corpus pre-training. This
knowledge can be levaraged in MRC to ask better
questions. We use a entity description as question
instead of entity name in the question so that bet-
ter representations can be learned by the model.
For Twitter we use the language queries in Table 5.
For Twitter dataset, only PER, ORG and LOC en-
tity label queries are used because we follow the

dataset creation guidelines as stated in (Mengge
et al., 2020) where OTHERS entity label is ignored.
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Abstract

Users often leave feedback on a myriad of as-
pects of a product which, if leveraged success-
fully, can help yield useful insights that can
lead to further improvements down the line.
Detecting actionable insights can be challeng-
ing owing to large amounts of data as well as
the absence of labels in real-world scenarios. In
this work, we present an aggregation and graph-
based ranking strategy for unsupervised detec-
tion of these insights from real-world, noisy,
user-generated feedback. Our proposed ap-
proach significantly outperforms strong base-
lines on two real-world user feedback datasets
and one academic dataset.

1 Introduction

Collecting vast amounts of user feedback on prod-
ucts and services is a common practice these days
for a multitude of companies. This can prove to
be a rich resource for product owners to improve
the quality of their product offerings, correct fail-
ures and gauge the general performance of their
product from both implicit and explicit signals that
might be present in the feedback. However, in most
cases, including the one we address in this work,
the feedback is unstructured and voluminous, and
can therefore remain underutilized for the most
part. In our particular use-case, we receive thou-
sands of textual feedback daily on average 1, and it
is time-consuming and laborious for product own-
ers to manually extract actionable insights from
them.

Users leave feedback on a variety of aspects they
experience in the course of using the product (Table
1). These consist of functionalities they find useful
(calculate total size), issues they encounter when
attempting to perform an action (scroll sideways),
requests around enabling certain features (sort by

1We take our responsibility to protect customer content
extremely seriously. For this research, we followed Amazon’s
Customer Content policy guidelines.

User Feedback Examples
loved the new calculate total size!

Please let me sort by Date Modified
Why can‘t I scroll sideways on my mac

specifically in the new console?

Table 1: Feedback examples from real-world (internal)
datasets that illustrate user issues and feature requests
when performing an action (underlined).

Date Modified), and so on. In this work, our goal
is to capture short informative phrases, or themes
which reflect actionable insights in the feedback.
In capturing these actionable insights, we wish to
focus on desired actions that users want to be able
to carry out (e.g. scroll sideways).

Owing to the influx of this data in large amounts,
and the cost of annotations, it often remains unla-
beled. Therefore, in this work, we present an un-
supervised framework to detect actionable insights
from such data. In order to capture these insights
from an aggregated view of the data, we propose
the following two-step approach: a) aggregating
similar feedback such that each cluster represents
coherent insights; b) detecting themes from clus-
ters that are pertinent to actionable insights. For
instance, in Figure 1, the red cluster consists of
feedback expressing users’ need to be able to down-
load several files at one time, for which a possible
theme could be download files. As seen in these
examples, the desired themes may consist of non-
contiguous tokens appearing in text and typically
contain a verb mentioning the action. Prior work
(see Section 2) uses keyphrase extraction which ex-
tracts contiguous words within a noun phrase and
thus, cannot capture the kind of actionable insights
we find in our data. We utilize unsupervised clus-
tering algorithms for the aggregation step, and a
graph-based ranking strategy for the theme detec-
tion step.
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Figure 1: Our pipeline is illustrated above. User feed-
back documents are first grouped into various clusters.
Here, two clusters (blue and red), each representing
different insights are shown. For each cluster, we au-
tomatically identify a “theme” (right part of the figure)
that concisely captures the desired actions expressed
in the cluster, e.g. download files for the red cluster;
view graphs for the blue cluster. <MASK> tokens are
inserted to maintain anonymity when displaying the ex-
amples above.

Contributions of the paper:
• We propose a novel approach of identifying ac-

tionable user insights in an unsupervised manner.
We do so by framing the problem as a clustering
and cluster theme detection problem.

• Our approach is unique in the utilization of graph-
based ranking in the identification of cluster
themes, especially focused on capturing actions
that users want to perform.

• We find our method to significantly outperform
baselines on two real-world datasets and one aca-
demic dataset.

2 Related Work

There is limited work that focuses on uncovering
insights from real-world user feedback data. Most
of the work involves labeled academic datasets,
requiring approaches that involve some form of su-
pervision. For instance, Lin et al. (2012) involves a
weakly supervised joint sentiment-topic model that
detects sentiment and topic simultaneously from
text, applied to two labeled academic datasets. Ap-
proaches that are unsupervised (Qiu et al., 2021;
Liu et al., 2010) are largely based on Latent Dirich-
let Allocation (LDA) (Blei et al., 2003), which
yields distribution of unigrams as topics. Although
Qiu et al. (2021) adopt an unsupervised strategy, it
has not been explored on user feedback data. These
approaches are not directly applicable to our prob-
lem setting since we require short phrases focusing

on the performance of an action by the user.
Approaches such as TextRank (Kazemi et al.,

2020), SingleRank (Wan and Xiao, 2008), Ex-
pandRank (Wan and Xiao, 2008), TopicRank
(Bougouin et al., 2013), TopicalPageRank (Sterckx
et al., 2015), PositionRank (Florescu and Caragea,
2017), Bi-LSTM-CRF Sequence Labeling (Alzaidy
et al., 2019), FACE (Chau et al., 2020), and Mul-
tipartiteRank (Boudin, 2018) have been applied
to the task of key phrase extraction from docu-
ments as opposed to theme detection from clusters.
For cluster-labeling, there has been work around
using keyword extraction from clusters, utilizing
WordNet synsets to expand the keywords, followed
by a selection procedure to assign the final label
(Poostchi and Piccardi, 2018; Chang and McKe-
own, 2019). None of these approaches focus on
the extraction of short actionable phrases, a.k.a.
themes, as is our use case. In most of these ap-
proaches, candidate key phrases are assumed to
appear in contiguous positions in a document and
are concatenated to form phrases. As described
earlier (Figure 1), it is unrealistic to make such
assumptions on real-world user feedback data and
our proposed approach considers non-contiguous
candidate phrases as well.

3 Data

Split # of samples # of samples
per intent

Train 15K 100
Dev 3K 20
Test 4.5K 30

Table 2: CLINC150 Data Statistics

In this work, we use two internal unlabeled
datasets containing user feedback in English on two
product offerings. The feedback collection pipeline
has opt-in and opt-out mechanisms in place to al-
low the user to decide whether their data can be
used for further analysis. User-specific information
has been removed from these datasets for privacy
and confidentiality reasons. These datasets vary
in content based on the specific product they con-
tain feedback about, and in the number of feedback
documents contained in each. We refer to them as
Prod1 and Prod2. Prod1 received orders of mag-
nitude more feedback than Prod2. For exploration
purposes we sampled about 10K documents for
Prod1 and 1.5K documents for Prod2. In addition,
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Intent
Label Document

find
phone

i need your help finding my lost
phone

book
hotel

i‘m inquiring about the availability
of a room that fits 10 people from
monday to tuesday in manhattan

schedule
mainte-
nance

please find someone who specializes
in cars, my check engine light has

turned on

Table 3: Examples with various intent labels from
CLINC150 Dataset. Note that labels are utilized
merely for evaluation purposes.

we conduct evaluations and report results on an
intent classification dataset - CLINC150 (CC 3.0)
(Larson et al., 2019; Zhang et al., 2020) that con-
tains English utterances labeled with one of 150
intents, thereby containing document-level labels.
The data contains utterances from 10 domains, e.g.
Banking, Travel, Kitchen & Dining etc. Table 3
contains utterance examples. The intent labels in
this data (e.g. find phone, book hotel, schedule
maintenance, etc.) are similar in form to the clus-
ter themes we aim to discover from our product
feedback data, which makes it a good candidate for
evaluating our approach. We obtain proxy ground-
truth labels (details in Section 5.3) from the data to
evaluate and report metrics on this dataset. Note
that the labels were used for the sole purpose of
evaluation and not training, since the real-world
use case is in an unsupervised setting. We use the
same train/dev/test splits provided with this dataset,
statistics of which are reported in Table 2.

4 Methodology

In this section, we describe our proposed approach
for extracting themes that help in discovering in-
sights from user-generated text (outlined in Figure
2). In order to discover coherent emerging insights
from the vast amounts of user-generated data, we
first aggregate semantically similar feedback using
clustering algorithms, and extract a representative
set of documents per cluster. This is described in
Section 4.1. Thereafter, themes for these clusters
are generated as detailed in Section 4.2. The entire
pipeline is unsupervised.

Figure 2: Outline of proposed approach.

4.1 Document Aggregation & Representative
Set Selection

Documents are embedded using Sentence-BERT
(SBERT) (Reimers and Gurevych, 2019), which we
find to capture semantic similarity well even for our
internal datasets. k-means (MacQueen et al., 1967)
is selected as our clustering approach of choice. Ad-
ditionally, we explore the use of DNN-based clus-
tering approaches such as Deep Embedded Clus-
tering (DEC) (Xie et al., 2016) which has been
shown to outperform k-means for a few academic
text classification datasets (e.g. REUTERS (Lewis
et al., 2004)). When applied to our real-world user-
generated text, we find DEC to perform well on
the larger dataset, Prod1 but not on the smaller
dataset Prod2 (Table 4), while k-means performs
well across both datasets. Thus, for the remainder
of the paper, we report results using k-means as the
clustering strategy.

Based on the hypothesis that the centroid of a
cluster is representative of the overall cluster itself,
we rank documents based on their proximity to the
centroid for each cluster. 10 documents closest
to the centroid per cluster are subsequently con-
sidered for cluster label detection. We chose 10
documents as it provided a good balance between
having good representative members of the cluster
while also ensuring that we have very few noisy
cluster members, if any. Henceforth, we refer to
these as the representative set of a cluster.

4.2 Unsupervised Cluster Theme
Identification

Here, we describe the procedure for cluster theme
identification. As previously mentioned, our
themes could consist of non-contiguous tokens. We
begin by extracting candidate themes using a depen-
dency parsing approach, followed by a graph-based
ranking strategy to assign a theme per cluster.
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Figure 3: Example of dependency parsing output on
CLINC150 utterance.

4.2.1 Cluster Theme Candidate Extraction
• Noun Phrase Extraction: Nouns, Proper Nouns

and Noun Phrases are extracted from the repre-
sentative set per cluster. All pronouns that oc-
cur in the beginning/end of noun phrases are re-
moved, e.g. my check engine light converted to
check engine light. This is done to capture more
generic noun phrases. Those that occur > 2 times
throughout the ranked set are retained.

• Dependency Parsing: We run a Dependency
Parser and extract all verbs for which any of the
above selected set of nouns and noun phrases are
a nominal subject or object. For instance in Fig.
3, tire pressure is an object for verb tell.

• Candidate Theme Extraction: Phrases of the
form <VERB, NOUN> are thus constructed. For
cases where the Noun is part of a previously se-
lected noun phrase, we expand the phrases to
<VERB, NP>. These act as candidate themes for
a given cluster.

4.2.2 Graph-based Ranking for Theme
Identification

Graph-based ranking algorithms are often em-
ployed in approaches for unsupervised document
summarization to measure the importance of a sen-
tence for inclusion in a summary (Erkan and Radev,
2004; Zheng and Lapata, 2019). We apply a similar
approach for cluster theme detection. Inspired by
these approaches, we construct a graph per cluster,
where the nodes consist of the candidate themes
and the edge weights capture the semantic similar-
ity between pairs of themes, obtained using cosine
similarity between SBERT embeddings of corre-
sponding themes. We then use a graph-based rank-
ing strategy, PageRank (Brin and Page, 1998) and
assign the phrase with the highest rank as the clus-
ter theme.

5 Experiments

In this Section, we describe the experimental de-
tails of the pipeline, and provide details on the
baselines we compare with.

5.1 Data Processing

Since user-generated text tends to be noisy in na-
ture, we preprocess our internal datasets before-
hand. This includes converting to lowercase, re-
moving URLs, special characters, and removing
text consisting only of digits. For CLINC150,
the only pre-processing performed is to replace
underscores in the intent labels with spaces, i.e.
book_hotel converted to book hotel, since the gen-
erated themes are of a similar form.

5.2 Baselines

We use two baselines to compare with, which are
described below.

Poostchi and Piccardi (P&P) This work pro-
poses an approach for cluster labeling by leverag-
ing word embeddings and the synonymy and hyper-
nymy relations in the WordNet (Miller, 1995) lexi-
cal ontology. Similar to Chang and McKeown who
adapt this method for their clusters, we perform the
following steps for each of our clusters. We extract
keywords using RAKE (Rose et al., 2010) from
the representative set per cluster, to ensure a fair
comparison with our methodology. Hypernyms of
the component words (restricted to Nouns) of these
keywords are obtained, expanded by synonyms
(via synsets, WordNet’s synonym sets). We use
CentHyp - the best strategy as per Poostchi and Pic-
cardi, to assign the final cluster label. This selects
hypernyms that are most central w.r.t. the centroid
of the cluster. SBERT embeddings are used for
this purpose, to ensure a fair comparison with our
approach. Since we could not find offical code for
this work, we used our own implementation.

Random baseline We also compare with a ran-
dom baseline in which the cluster theme is selected
at random from the generated set of cluster themes
using our proposed approach (Section 4.2.1).

Dataset Mean Accuracy Score (Human
Eval)

k-means DEC
Prod1 90.0 80.0
Prod2 65.0 45.0

Table 4: k-means and DEC clustering algorithms com-
pared on the internal datasets. Annotators provide a
score of 0 or 1 to the clusters, based on whether they
agree with the quality. Average accuracy per annotator
is computed. Scores reported in this table are an average
of the annotator scores.
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5.3 Evaluation Strategies & Metrics Reported
CLINC150 For this dataset, we leverage the
document-level intent labels to generate a proxy
groundtruth label per cluster. The same represen-
tative set (as in Section 4.1) is selected per cluster
and the cluster theme is determined by a majority
vote over the intent labels of these documents. For
the rare case where there is no clear majority, we
consider the label of the centroid to be the clus-
ter label. We compute METEOR (Denkowski and
Lavie, 2014) and BERTScore (Zhang et al., 2019)
metrics w.r.t. the model outputs and proxy labels
for our baselines as well as the proposed approach.

Data Method METEOR BERTScore

Dev

P&P 21.30
±0.69

0.8892
±0.0033

Random 21.12
±0.27

0.8921
±0.0021

Ours 25.79
±0.55

0.8962
±0.0023

Test

P&P 20.94
±1.37

0.8912
±0.0034

Random 19.59
±1.47

0.8955
±0.0023

Ours 25.31
±0.69

0.9026
±0.0018

Table 5: Mean and standard deviation for METEOR
and BERTScores reported for the proposed approach
(Ours) against baselines, P&P (Poostchi and Piccardi)
and Random on CLINC150, for 3 runs.

Internal Datasets Since Prod1 and Prod2 do not
contain labels either on the document or cluster
level, we utilize human annotations to evaluate the
efficacy of our methodology w.r.t. the baselines.
We employ 2 internal annotators who are presented
with the cluster themes generated on both datasets,
and the representative set of documents per cluster
that the themes were detected from. An annotator
votes 1 if they completely agree with the cluster
theme, 0 if they completely disagree. The final
scores are an average of the scores of both annota-
tors. IAA (Cohen’s kappa) score is 0.72.

5.4 Modeling Details
We use Stanford Stanza (Qi et al., 2020) for POS
tagging and dependency parsing, and scikit-learn’s
(Pedregosa et al., 2011) k-means implementation
for clustering. Using input number of clusters to
be the same as the number of intent labels k = 150

Dataset Method Human
Evaluation Score

Prod1

P&P 32.89
Random 29.70

Ours 72.60

Prod2

P&P 16.67
Random 8.00

Ours 40.00

Table 6: Performance of the proposed approach (Ours)
against baselines, P&P (Poostchi and Piccardi) and Ran-
dom on our internal datasets.

yields the best results for CLINC150. For our in-
ternal datasets, k = 150 for Prod1 and k = 25 for
Prod2 are used. For PageRank, we use networkx’s
(Hagberg et al., 2008) package, with maximum
number of iterations set to 100. CPU-based com-
puting instances are used for both baselines and our
methodology.

(Proxy)
Cluster
Theme

Baseline
(P&P)

Prediction

Our
Prediction

pay bill electric bill pay bill

calendar check
check

calendar
meeting
schedule

today
schedule
meeting

insurance
change

insurance
policy

update
insurance

policy

shopping list
shopping

list buy milk

change accent change change voice

Table 7: Comparing cluster theme predictions from P&P
(Poostchi and Piccardi) & our approach on CLINC150
test set. Themes in bold are those that are qualitatively
most similar to the proxy cluster theme.

6 Results

Model performance on CLINC150 Table 5 il-
lustrates the performance of the baseline models
and our proposed approach on the dev and test
splits of the CLINC150 dataset, over 3 experimen-
tal runs.

Dev set: Statistical significance tests conducted
show that on the dev set, our methodology signifi-
cantly outperforms random baseline on METEOR
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Representative set of documents per cluster P&P Ours
- The new monitoring tab is very poor. It doesn’t show enough data

and you can’t click on graphs to get detailed views.
detailed view view graphs

- I cannot see the monitoring of 2 <MASK> <MASK> side by side.
Unreliable reporting of metrics, graphs are sometime unavailable.

- i can’t even select two <MASK> and view their monitoring graphs
at the same time.

- Need to see the <MASK> alarms setup per <MASK> like before
instead of loosing this functionality in a new <MASK>.

alarms shows alarms
- I miss the alarm status ""button"" that shows all alarms connected

to <MASK> <MASK>
- On the new <MASK> dashboard all alarms connected to <MASK>

<MASK> do not show as it does in the old console. On the old
console you get a direct view if any of your <MASK> has any issues
while we on the new get that there are no alarms for the <MASK>.

Table 8: Comparing cluster themes from the baseline P&P method (Poostchi and Piccardi, 2018) vs ours. The
documents are in ascending order of proximity to centroid. Text in bold highlights themes that best capture the
action being performed by a user.

score by 4.67 points on average (p-value 0.0004).
On mean BERTScore, we outperform the random
baseline by 0.0041 points (p-value 0.1449). Com-
pared with (Poostchi and Piccardi, 2018), we find
our methodology to yield a significantly better per-
formance on METEOR score - an increase of 4.49
points (p-value 0.003). Further, we outperform
Poostchi and Piccardi (2018) on BERTScore by
0.007 points (p-value 0.148).

Test set: We significantly outperform both base-
lines - random and Poostchi and Piccardi (2018),
by 5.72 points (p-value 0.0076) and 4.37 points
(p-value 0.0159) respectively, on METEOR score.
Performance gains obtained using our method over
both baselines for BERTScore are also statistically
significant - an increase of 0.0071 points (p-value
0.0293) w.r.t. random baseline and that of 0.0114
points (p-value 0.0132) w.r.t. Poostchi and Piccardi
(2018).

Model performance on Internal datasets Table
6 demonstrates the significant boost in performance
our proposed approach provides over the baselines,
as measure by human evaluation scores. We find
our approach to outperform both baselines by a
large margin for both datasets. On Prod1, we im-
prove upon the random baseline by 42.9 points
and upon Poostchi and Piccardi (2018) by 39.71
points. For Prod2, we obtain an improvement of 32
points w.r.t. the random baseline and 23.33 points
as compared to Poostchi and Piccardi (2018).

Error Analysis In Tables 7 and 8, we present
examples comparing the cluster theme predictions
from Poostchi and Piccardi (2018) with ours on
the CLINC150 test set, and our internal datasets,
respectively. Our method is able to yield more
descriptive phrases as cluster themes, that help cap-
ture the action being performed. In comparison,
the baseline captures shorter and less descriptive
phrases. For instance, our method generates themes
such as pay bill and update insurance policy on
clusters from the CLINC150 test set, where the
corresponding baseline themes are electric bill and
insurance policy, respectively. Similarly, for a clus-
ter from the internal dataset (Prod1), the theme
assigned by our proposed approach is show alarms,
whereas the theme detected by the baseline method
is alarms.

7 Conclusion & Future Work

This work addresses the problem of discovering
actionable insights from unlabeled real-world user
feedback data, in an unsupervised fashion. Data is
clustered into groups containing coherent insights,
followed by theme detection per cluster using a
graph-based ranking approach. Experiments con-
ducted on two real-world user feedback datasets
as well as an academic dataset show our proposed
approach to significantly outperform baselines by
a large margin. In the future, we would expand the
scope of our work to datasets with other characteris-
tics and distributions (e.g. review datasets) to study
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the applicability of our approach to those use-cases.
Further, we would explore the use of generative
models to obtain abstractive themes from data.
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Abstract

Automatically associating social media posts
with topics is an important prerequisite for ef-
fective search and recommendation on many
social media platforms. However, topic clas-
sification of such posts is quite challenging
because of (a) a large topic space (b) short
text with weak topical cues and (c) multiple
topic associations per post. In contrast to most
prior work which only focuses on post clas-
sification into a small number of topics (10-
20), we consider the task of large-scale topic
classification in the context of Twitter where
the topic space is 10 times larger with poten-
tially multiple topic associations per Tweet. We
address the challenges above by proposing a
novel neural model, CTM that (a) supports a
large topic space of 300 topics and (b) takes
a holistic approach to tweet content modeling
– leveraging multi-modal content, author con-
text, and deeper semantic cues in the Tweet.
Our method offers an effective way to classify
Tweets into topics at scale by yielding superior
performance to other approaches (a relative lift
of 20% in median average precision score) and
has been successfully deployed in production
at Twitter.

1 Introduction

On many social media platforms like Twitter, users
find posts that they are interested in through two
mechanisms: (a) search and (b) recommendation.
Both mechanisms typically use the topics associ-
ated with posts to identify potential candidates that
are displayed to the user. Therefore, automatically
associating a post with topics is important for ef-
fective search and recommendation. Furthermore,
due to the diverse nature of social media content,
for such topic association to be useful in practice,
it is important to (a) support classification into a
large number of topics (potentially hundreds or
thousands of topics) and (b) allow for a post to
have multiple topics or no topic at all.

Traditionally, there has been a long line of work
on classifying documents (like news articles, movie
reviews etc.) into topics (Borko and Bernick, 1963;
Balabanovic and Shoham, 1995; Joachims, 1998;
Tsutsumi et al., 2007; Yang et al., 2014; Adhikari
et al., 2019). Additionally, there have been attempts
to leverage known label hierarchy to perform hier-
archical classification of documents. Most of these
approaches learn a model per node of the hierar-
chy with potentially some form of hierarchy-based
regularization in-order to assign labels to a docu-
ment at each level in the label taxonomy (Koller
and Sahami, 1997; Gopal and Yang, 2013; Rojas
et al., 2020). With the rise of social media plat-
forms, researchers noted that classification of so-
cial media content poses several unique challenges
(Chang et al., 2015). First, such posts can be very
short and noisy with very weak cues provided by
the linguistic context (Baldwin et al., 2013). Sec-
ond, content may be multi-modal with associated
images, videos, and hyperlinks. Approaches for
classifying documents tend to ignore this multi-
modal nature (Chang et al., 2015). Several works
do explore classification of social media posts (like
Tweets) (Lee et al., 2011; Genc et al., 2011; Tao
et al., 2012; Stavrianou et al., 2014; Selvaperu-
mal and Suruliandi, 2014; Cordobés et al., 2014;
Kataria and Agarwal, 2015; Chang et al., 2015; Li
et al., 2016b,c,d; Ive et al., 2018; Kang et al., 2019;
Gonzalez et al., 2021). However, all of these works
suffer from one or more limitations: (a) support
only a few topics (an order of 10 topics) (b) model
only the text, ignore multi-modal content, deeper
semantic-cues and (c) do not support multiple la-
bels per post.

In this paper, we address all of the above limita-
tions in the context of Tweet classification. We pro-
pose CTM (Concept Topic Model), a Tweet topic
classification model that (a) supports classification
into 300 topics (10 times larger than prior work)
(b) incorporates rich content like media, hyperlinks,
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author features, entity features thus moving beyond
shallow Tweet text features and (c) supports multi-
ple topics to be associated per Tweet. Our method
offers an effective way to classify Tweets into top-
ics at scale and is superior in performance to other
approaches yielding a significant relative lift of
20% in median average precision score. CTM has
been successfully deployed at Twitter where on-
line A/B experiments have also shown increased
engagement and improved customer experience.

2 Related Work

Early works on Tweet classification used bag-of-
words features constructed from Tweet text and
classifiers like Rocchio classifiers, logistic regres-
sion, and support-vector machines (Lee et al.,
2011; Genc et al., 2011; Tao et al., 2012; Stavri-
anou et al., 2014; Selvaperumal and Suruliandi,
2014). Follow-up work investigated using increas-
ingly rich features for topic classification including
graph-based features of term-co-occurrence graphs,
hyperlink information, and distributed representa-
tions derived from deep learning models (Cordobés
et al., 2014; Kataria and Agarwal, 2015; Li et al.,
2016a,b,c,d; Ive et al., 2018; Kang et al., 2019;
Gonzalez et al., 2021).

However, one notes at-least one of the following
limitations in all of the above works: (a) focus on
a very small number of topics (5− 20) (b) do not
support multiple topic labels per Tweet (c) do not
consider or discuss how to model content beyond
the raw Tweet text (d) do not capture label con-
straints. A sole exception to some of the above
limitations is the work of Yang et al. (2014) which
performs large-scale Tweet topic classification fo-
cusing on 300 topic labels in a real-time setting
using only n-gram based features derived from the
Tweet text, but ignores other cues. We revisit their
large-scale setting after a decade and propose a
vastly improved model for large-scale Tweet topic
classification modeling Tweets holistically.

3 Data

Similar to Yang et al. (2014), we consider a set of
300 popular Twitter Topics 1. While Yang et al.
(2014) construct data by only using weak labels
obtained from a rule-based system using keyword
matches, we employ both high precision human-
labeled annotations and weakly-labeled data from

1We focus on only English Tweets. See the Appendix for
the full list of topics considered.

a rule-based system using keyword matches 2 to
construct the following datasets:

• Human Labeled Data (HCOMP Dataset):
We closely follow the procedure outlined by
Yang et al. (2014) which first samples Tweets
based on topic priors to obtain Tweets that are
weakly relevant to a topic, and then seeks label
confirmation from trained human annotators.
Specifically, we consider Tweets originating
from users that are known to tweet mostly
about a given topic (for example: Tweets au-
thored by CNN are almost certainly about the
“News” topic). We collect 100K such Tweets
with at-least 200 Tweets per topic. We then
sought label confirmation from trained human
annotators with each Tweet-topic pair being
independently rated by 3 annotators and use a
majority vote to determine the final labels (see
Appendix for details). Finally, we create train-
ing, validation, and test splits of this dataset
disjoint at both the Tweet and the user level.3

• Weakly Labeled Data (WLD Dataset): We
also construct a large-scale data-set of weakly
labeled Tweets (WLD dataset) for task-
specific pre-training (see Section 4). Specifi-
cally, we use the rule-based system to obtain a
random sample of 250 million weakly labeled
Tweets that is disjoint from the HCOMP
dataset both in terms of time-span and Tweets.

• Chatter Data (CHT Dataset): To ensure
that our model does not incorrectly assign
topics to what is termed “Twitter chatter” –
Tweets that are largely about daily status up-
dates, greetings and clearly non-topical con-
tent, we closely follow Yang et al. (2014)
and construct a dataset of weakly labeled non-
topical Tweets by sampling Tweets that trig-
ger none of the topical rules in the rule-based
system. We verify that a random sample
(N = 150) (denoted by CHT-test) are indeed
non-topical through independent human an-
notators which we set-aside for model evalua-
tion. The remaining portion also user-disjoint
(N = 100000) is used as training data.

4 Models and Methods

Problem Formulation. We formulate our prob-
lem as one of standard multi-label classification.

2See the Appendix for a brief description of this rule-based
system for yielding weak labels.

3We do this because as we will see later, we use author
level features in our model.
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Figure 1: Overview of our CTM model for large-scale
topic classification of Tweets. Our model consists of 3 com-
ponents: (a) a Tweet feature encoder encoding Tweet features
(b) an Author feature encoder encoding author features thus
capturing author-topic affinity and (c) a constraint model that
encourages the topic scores to respect prior constraints.

Formally, let S denote the given set of topics.
Given X , a set of Tweet features and a set of topics
L ∈ 2S , we seek to model Pr(L|X). We encode
the topic labels L as a binary vector Y of length
|S| using multi-hot encoding. We consider a simple
approach to multi-label classification4 – a neural ar-
chitecture parameterized by Θ that outputs a vector
Ŷ of length |S| where Ŷi ∈ [0, 1] is the probability
of the Tweet belonging to topic i.

Model Overview. CTM has three components:
• Tweet Feature Encoder: This component

encodes features of the Tweet holistically.
Specifically, it encodes the Tweet text, hyper-
link features, named entity mention features,
as well as features of associated media. This
encoder outputs a vector of topic logits (one
for each topic) based on these input features
which we denote by Ŷ t.

• Author Feature Encoder: This component
encodes author features like the author name
and biography which may be indicative of
the author’s affinity to certain topics. This
encoder outputs a vector of topic logits (one
for each topic) based on these input features
which we denote by Ŷ a. Ŷ a is combined with
Ŷ t via a element-wise addition to yield the
combined topic logits – Ŷ c which can be con-
verted to probability scores using a sigmoid
transformation.

4We largely consider a flat classification setting given the
absence of well-defined, comprehensive and highly agreed-
upon topic taxonomy for Twitter topics, and also because
this formulation is better aligned with model deployment con-
straints.

• Topic Constraint Model: The topic con-
straint model encourages the predictions to
reflect known constraints among the topic la-
bels. For example, Tweets about “Soccer” are
almost certainly also about “Sports” but very
unlikely to also be about “Basketball”. We en-
code such pre-specified label constraints in the
output space via a factor-graph. Performing
inference on the factor-graph re-calibrates the
raw probabilities given by Ŷ c to better reflect
the output label constraints yielding the final
predicted probabilities for each topic Ŷ f .

4.1 Tweet Feature Encoder
The Tweet feature encoder is a standard BERT en-
coder with a linear classification head where all
layers are trainable. Each individual Tweet feature
is modeled as follows:

• Tweet Text: We simply pass the Tweet text
as an input string to BERT after standard pre-
processing (case-folding, stripping hyperlinks
and user mentions).

• Hyperlink Features: For each hyperlink in
the Tweet text, we obtain the raw HTML con-
tent of the web-page being referenced, and ex-
tract the web-page title and the first 100 char-
acters of the web-page description. These fea-
tures are simply concatenated with the Tweet
text using a pre-defined separator token.

• Media: To incorporate topical cues from any
attached media (images, gifs, and videos), we
obtain media annotations for the given media.
These media annotations are broad categories
that summarize the content of the media. We
then simply concatenate all of these media
annotations to the current input string using
a pre-defined token as a delimiter. The me-
dia annotations themselves are predicted by
a media-annotations classifier that learns to
assign each media to zero or more categories
from a set of pre-defined categories. 5

• Entity Features: Noting that mentions of
named entities provide strong topical cues,
we extract such mentions in the Tweet text
using an off-the-shelf Twitter NER model
(Mishra et al., 2021) and link each extracted
named entity to their entry in WIKIDATA

where available. We use the WIKIDATA

descriptions of each linked entity as addi-
5See the Appendix for details on the media categories

classifier.

249



tional inputs to the Tweet feature encoder. As
an example, this enables CTM to infer that
Tweets which mention “Steve Waugh” are
likely about “Cricket”.

Pretraining the Tweet Feature Encoder. Not-
ing that the weights of the standard BERT encoder
are not reflective of the domain of Tweets and may
represent a poor initialization point during subse-
quent finetuning, we pretrain the BERT encoder on
the task of predicting topics using the WLD dataset
only using the raw Tweet text as the input feature.
As we will show empirically, this large-scale pre-
training improves generalization performance by
better adapting the model to Twitter data.

4.2 Author Feature Encoder
The author feature encoder is also identical to a

standard BERT encoder with a linear classification
head, with all layers being trainable. We use the
following features of the author (all of which are
simply concatenated together as input to BERT):
(a) Author Biography: We use the self-reported
publicly available author-profile description of the
author posting the Tweet. (b) Author Name: We
also use the author’s display name. We hypoth-
esize that all of these features may be indicative
of the topics that the author likely tweets about.
For example, an author name containing the string
“FashionNews” strongly suggests that Tweets made
by that author will likely be about Fashion.

4.3 Topic Constraint Model
The topic constraint model encodes output label
constraints in the topic prediction and captures cor-
relations among topics. We encode such depen-
dencies via a factor graph. Given a vector of topic
predictions (probabilities) Ŷ c, for each topic Ti, we
associate a discrete binary random variable with
that topic vi, and a corresponding unary factor with
potential function fi such that fi(0) = 1.0 − Ŷi

c

and fi(1) = Ŷi
c
. For every constraint between a

pair of topics (i, j), we construct a binary factor
with potential function ϕi,j(vi, vj). This potential
function encodes the compatibility between predic-
tion scores for topic i and topic j. Domain experts
can craft their own potential functions to reflect pos-
itive or negative compatibility between topic pairs
or alternatively even learn these from correlation
data. CTM considers two types of constraints:

• Broader Topic Inclusion: If a Tweet is about
a specific topic c, then it is very likely that the

Tweet is also about topic p where p subsumes
topic c. Other cases are a “don’t-care”. For
example, if a Tweet is about “Basketball”, it
is almost certainly about “Sports”. We use the
following potential matrix6 for encoding this
type of constraint:

p
c

0 1

0 0.5 0.0
1 0.5 10.0

• Topic Pair Exclusion: At-most one among
topic a and b can be active at any time. For
example, it is very unlikely to have a Tweet
which is about both Cricket and Basketball.
We use the following potential matrix for en-
coding this type of constraint:

a
b

0 1

0 0.5 0.5
1 0.5 0

After constructing a factor graph encoding the
specified output constraints, we perform belief
propagation7 on the factor graph to obtain the fi-
nal marginal probabilities Ŷ f which reflect the
encoded output constraints. In our experiments,
we impose the above constraint types on specific
topics falling under (and including) the broad top-
ics of Sports, Music, Animation, Science, Animals,
Anime & Manga.

5 Experiments

5.1 Quantitative Evaluation
Baselines and Evaluation Setup. We consider
two baselines: (a) A bag-of-words logistic regres-
sion (LR) model – our best-effort attempt to repro-
duce the decade old setup of Yang et al. (2014) and
(b) a standard BERT model using only the Tweet
text thus replacing logistic regression in (a) with
a current state of the art deep-learning model. We
train all models on the training data set using class
weighted binary cross entropy loss, and evaluate
them on the two held-out test sets:

• HCOMP Test Set: We evaluate model per-
formance on the held out test split from the
HCOMP dataset. We report the median av-
erage precision score over all topics. We con-
sider the average precision score, since un-
like the F1 score, it summarizes model perfor-
mance over all operating thresholds.

6The potential matrices are not necessarily unique and
other equivalent matrices may exist.

7See the Appendix for more details on this procedure.
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• CHT Test Set: In order to measure the abil-
ity of our models to effectively reject assign-
ing topics to “non-topical” Tweets (chatter),
we evaluate our models on the held-out chat-
ter test set. Here, we report the number of
predictions made by the model over a given
probability threshold (lower scores are better).

We perform a systematic feature ablation study of
our proposed CTM model to quantify the effect of
feature sets considered. Table 1 shows the results
of our evaluation where model suffixes represent
different ablation settings. Note that our full model
significantly outperforms the logistic regression
and BERT baselines (Median APS: 67.0 vs 54.8)
and yields a relative improvement of 20% thus
underscoring the effectiveness of our approach. We
also make the following additional observations:

• Including non-topical tweets in training
improves performance of rejecting chatter
Note that including non-topical tweets in the
training data improved the performance of the
BERT baseline on the CHT dataset (from 254
to 135 where lower is better).

• Media features have a focused impact.
Adding media annotations overall does not
affect the median average precision score sig-
nificantly (compare row CTM-A: 54.4 to row
above: 54.8). However, we observe that many
tweets in the evaluation may not contain me-
dia annotations. When we restricted our evalu-
ation to only the tweets containing media, we
observed a significant improvement where the
corresponding average precision scores are
71.0 vs 58.4 respectively. By further com-
puting per-topic performance improvement
due to media annotations, we note that media
features significantly boost the performance
of Automotive, US national news, Anime, and
Movies which indeed tend to be media rich,
suggesting their focused impact.

• Large-scale pretraining of feature encoders
boosts overall performance. We observe that
pre-training the encoders on domain (and task)
specific data is very effective (row CTM-B
vs CTM-A:Median APS – 56.7 vs 54.4).

• Hyperlink features have a focused impact.
Similar to media features, we observe that hy-
perlink features have a negligible overall im-
pact (see row CTM-C:Median APS – 57.2
vs 56.7). However as with media features,
when we restricted our evaluation to only

those instances with hyperlinks we indeed ob-
serve a significant performance gain where the
corresponding scores are 92.67 vs 83.4. Sim-
ilar to our analysis of media features, a per-
topic improvement analysis reveals that hyper-
link features most improve the performance
on Travel, Movies, Gaming, and US national
news which tend to be hyperlink heavy.

• Author features significantly boost overall
performance. Author features yield the most
benefit overall (see row CTM-D:Median
APS – 63.3 vs 57.2) thus reaffirming the im-
portance of user-level modeling in NLP tasks.

• Entity features also significantly boost over-
all performance. Similar to author fea-
tures, the entity features also significantly im-
prove overall performance (see row CTM-
E:Median APS – 66.5 vs 63.3). Drilling
down, we noted that entity linking features
most improve the performance on Rap, Ameri-
can football, K-pop, Entertainment News, and
Cricket – all topics whose Tweets are likely to
mention sport players, movie stars, and musi-
cians that are suggestive of the topic.

• The constraint model significantly boosts
the performance of the relevant topics. In-
cluding the constraint model very slightly im-
proves the median average precision score
(CTM-F:Median APS 67.0 vs 66.5). This
is expected because the constraint model only
affects topics for which constraints were in-
cluded. Looking at the performance on this
subset of topics, we note a significant increase
in the average precision score (by as much as
20 points) due to reduction in constraint vio-
lations – especially violations of the broader
topic inclusion constraint (see Table 2).8

5.2 Qualitative Evaluation
In addition to evaluating our CTM quantitatively,
we also inspected the model predictions qualita-
tively to identify instances which (a) reveal the ben-
efits of holistic tweet modeling and (b) highlight
challenging cases. Table 3 shows a few instances
that illustrate the benefit of holistically modeling
Tweet content. Note that in “Power hitter joins
#yellowstorm”, only the attached media (which dis-
plays a cricket apparel) is indicative of the topic.
Similarly, our model correctly predicts that “Re-

8This slight degradation on CHT is due to error propaga-
tion of high confidence false positives which occurs to respect
the constraints.
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Setting Median APS ↑ CHT ↓
LR(baseline) (Yang et al., 2014) Tweet text (trained on only HCOMP) 33.0 108
BERT(baseline) Tweet text (trained on only HCOMP) 54.5 254
BERT (baseline) Tweet text (trained on HCOMP + CHT) 54.8 135
CTM-A Tweet text + media annotation (trained on HCOMP + CHT) 54.4 121
CTM-B CTM-A + pretraining 56.7 107
CTM-C CTM-B + Hyperlink features 57.2 101
CTM-D CTM-C + Author features 63.3 75
CTM-E CTM-D + Entity Linking features 66.5 80
CTM-F (Full model) CTM-E + Constraint model 67.0 90

Table 1: Performance of CTM on the test sets. The median APS is the median average precision on the HCOMP
test set (higher is better, N = 10000) where as CHT column shows the number of model predictions exceeding
a probability score of 0.9 (noting robustness to other thresholds) on the CHT test set (lower is better). CTM
significantly outperforms baselines and demonstrates the effectiveness of modeling content beyond the immediate
Tweet text.

Topic APS (w/o constraint model) APS (with constraint model)
Animation 0.64 0.71
Animals 0.88 0.91
Anime & manga 0.66 0.84
Music 0.41 0.70
Sports 0.69 0.89
Science 0.44 0.63

Table 2: Performance improvements due to the constraint model. The constraint model yields significant
improvements on broader topics (as large as 20 points). Performance on narrower topics do not change significantly.

Tweet Content Predicted Label Helpful feature
In times of trouble, regression models come to me, speaking words of wisdom Data Science Tweet text
Power hitter joins #yellowstorm att:Attached media of cricket
bat and gloves

Cricket Media Annotations

Cameras in USC vs UT stopped working, so it is a podcast now American Football Author Bio
Revealed: Australia’s stars set to be pulled from IPL URL to fox.sports
domain

Cricket Hyperlink

cody ko and noel miller are just ... Digital creators Entity features

Table 3: A few examples of correct model predictions that illustrate the benefit of different feature sets. Tweets are
paraphrased to protect user privacy.

Tweet Content Predicted Label Error Reason
In life, you have not seen your best days, you have not run your best race ... Running Metaphor
Cheerleading the mob is not going to save ... Cheerleading Metaphor
I am going to have very large drink tonight not sure if whisky or cyanide Food Sarcasm or Irony
I need my **** ate Food NSFW sense
This is a thread 1/5... No topic Conversation thread

Table 4: A few challenging cases for our model. Tweets are paraphrased to protect user privacy.

vealed: Australia’s stars set to be pulled from IPL”
is about “Cricket” by leveraging topical cues ex-
tracted from the linked website’s content. Finally,
CTM correctly infers that the Tweet referencing
“Cody Ko and Noel Miller” is about “Digital Cre-
ators” by leveraging named entity cues. Finally, we
also noted a few systematic failure modes (see Ta-
ble 4). In particular, our model does not pick up on
(a) metaphorical usage of topical words like “run-
ning” or “cheer-leading” (b) sarcasm and irony (c)
NSFW senses of certain topical phrases (d) topical

content in conversational threads since this requires
modeling conversational context.

5.3 Online Evaluation
Finally, we also evaluated CTM online by perform-
ing an A/B test comprising of 25 million users in
each bucket. To summarize the results of the A/B
test briefly, we observed that CTM relatively in-
creased: (a) the size of the topic Tweet inventory
online by about 4%. This translates to about 600K
additional topical Tweets daily that could be sur-
faced to users based on their topical interests to
improve their user experience. (b) precision by 5%
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and (c) user engagement by 5.5%. In a nut-shell,
our online experiments suggested that CTM signif-
icantly improves the user experience of the Topics
product surface in Twitter and has consequently
been deployed in production.

6 Conclusion

We revisited the problem of large scale Tweet topic
classification posed by Yang et al. (2014) and pro-
posed a model for classifying Tweets into a large
set of 300 topics with improved performance. In
contrast to prior work we take a holistic approach to
modeling Tweets and model not only the immediate
Tweet text, but also associated media, hyperlinks,
author context, entity mentions, and incorporate do-
main knowledge expressed as topic constraints in a
principled manner. Our model showed significantly
increased engagement and improved customer ex-
perience in several online A/B experiments, and it
has been deployed into production at Twitter with
millions of active users. Finally, while our model
and approach has been restricted to Tweet classi-
fication, our proposed methods and observations
may benefit other social media platforms seeking
to classify content into a large number of topics
effectively.

Ethical Considerations

This paper and the data used within was reviewed
as part of Twitter’s standard privacy and legal re-
view processes. No data has been publicly released
in relation to this paper. While there is a possibility
that the model could be misused, we do not antici-
pate any new or increased risks over those already
present in established prior work and prior models
on topic classification.
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A Appendix

A.1 Details Regarding Off the Shelf
Components Used in CTM

A.1.1 Media Annotations Classifier
The media annotations classifier takes as input an
image and classifies the image into one or more
of 45 media categories listed in Table 5. The clas-
sifier is essentially a standard MOBILENET V2
model (Sandler et al., 2018) further fine-tuned on
a human-labeled curated dataset of 100K images
from Twitter. The operating threshold of the media
classifier is set to achieve a precision of about 90%
on each topic.9

A.1.2 Twitter Named Entity Recognizer
The Twitter NER model is a standard bi-directional
LSTM with a CRF layer and detects mentions of
persons, places, organizations, and products in a
Tweet. The model has been trained on 100K hu-
man annotated labeled tweets (Mishra et al., 2020)
and has a precision of 85% with a recall of 70% on
a held-out test set. We link the extracted mention
to a potential WikiData candidate as follows: (a)
we first construct a set of potential WikiData en-
tity candidates - the set of all entities whose label
or alias has a match with the extracted mention
(b) link the mention to the top entity candidate ob-
tained by sorting the candidate set in descending
order of page view count as the primary key break-
ing ties using page rank as the secondary key. We
use this approach as an expedient choice noting
that more sophisticated entity linking approaches
can be used.

A.1.3 Rule Based System for Generating
Weakly Labeled Examples.

We employ a rule-based system consisting of tens
of thousands of rules based on key-words to gener-
ate weakly labeled examples. All rules are manu-
ally curated and added by domain experts and data
specialists.

A.2 Hyper-parameter Tuning
As is standard practice, we use the validation set
(N = 10000) to perform hyper-parameter tuning.
We explored several hyper-parameter settings for
the baseline models namely Logistic Regression
and BERT to make baseline comparisons strong

9For videos, and GIF’s each frame is analyzed by the
model with the prediction scores being aggregated using the
max operator.

and compare CTM against only the best perform-
ing baseline settings. In particular, we explored
training for different epochs (1−10) for the BERT
baseline. For the logistic regression baseline, we
also tried various settings for the maximum num-
ber of iterations of the optimizer (100− 1000) as
well as various values for the strength of the L2
regularizer (C = [0, 1, 10, 100]).

For our proposed model CTM, we did not do any
specific hyper-parameter tuning and just trained all
models for 5 epochs using 1 A100 GPU.

A.3 Details on the Human Labeled
Annotation Task

In this section, we briefly describe the human
annotation task used for obtaining topic label con-
firmation used in the construction of the HCOMP
dataset. Each annotator is shown a Tweet,
topic pair and asked to judge whether the topic
is relevant to the Tweet or not. The instructions are:

Task: In this task, you will be shown a tweet and a topic and
asked whether the tweet is ’relevant’ for a topic.

Topics:You will be asked to determine if a tweet is relevant for
a given topic. A “Topic” is a potential subject of conversation
that can be identified with a commonly held definition, where
mass interest in the subject is not likely to be temporary, e.g.
‘Comedy’ or ’Knitting’ is a topic as it is non-subjective and has a
commonly held definition. Purely social tweets like “are you
doing okay?” or personal remarks like “I’m having a bad day”
are not topical. A Tweet can be popular without being topical.

Question: The primary question you will be asked is “Is this
tweet about a topic?”, the possible responses are: Yes - This
tweet is primarily about this topic. Somewhat - This tweet is
related to this topic, but it is not a primary topic of this tweet. No
- This tweet is unrelated to this topic. Unsure - I don’t understand
this tweet.

Guidelines: You will first want to make sure you understand the
presented topic. If you are unfamiliar with the topic presented in
this question, please click on the topic which will take you to a
Google search result page. Feel free to click on a few links (news
articles or a Wikipedia page) to familiarize yourself with the topic.
When elements of the tweet can I use to make a judgment? It
can sometimes be challenging to tell what a tweet is about from
tweet text alone. In order to determine what the tweet is about
you may need to do the following: Look at replies of a tweet,
which might provide additional context by clicking on the tweet.
(NOTE: If you can understand the tweet by relying just on the
body or author of the tweet, it is fine to not designate replies as
being used to make a judgment.) Google phrases in the tweet
text if you are unfamiliar with a mentioned entity or phrase that
will help you understand the tweet. Look at the image, video,
or click on any link (including a hashtag) associated with the
Tweet, since it may be commenting on this media. If the media
is primarily about the topic, the tweet is as well. Look at the
tweet author’s name, profile, public timeline, or linked website
if it helps disambiguate tweet content. (NOTE: Please don’t use
the author alone in making determination, without some other
element of the tweet.)
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Each HIT was judged by 3 independent highly
reliable annotators. Finally, we noted that two-way
(majority) agreement rate was 86%, unanimous
agreement was 66% and the topic precision overall
was 70% (with “somewhat” ratings being counted
towards a precision error).

A.4 Data Statement
Here, we outline other aspects of our data as per
recommendations outlined in (Bender and Fried-
man, 2018).

SUMMARY – We collect a set of Tweet, topic
pairs focusing on only English Tweets which we
use for predictive modeling and evaluation.

CURATION RATIONALE – The rationale for the
setup used in data collection was primarily driven
by our task (large scale topic classification) and the
need for data to a build a predictive model. The
size of the data collected was thus influenced by
task, available budget, and time available.

LANGUAGE VARIETY - The tweets were re-
stricted to English only and are from the time range
between September 2020 and May 2021. More
fine-grained information is not available.

SPEAKER DEMOGRAPHIC – We do not have any
demographic information of the users in this data.
One would expect the demographic information
to be similar to the demographics of Twitter users
around the time of data collection.

ANNOTATOR DEMOGRAPHIC – Human Anno-
tators are primarily native English speakers. No
other information is available.

TEXT CHARACTERISTICS – Tweets are short,
informal and have at-most 280 characters. Tweets
are generally meant to be engaged with by other
Twitter users.

A.5 Details on Belief Propagation
In this section, we provide more details on the
procedure of belief propagation used in the topic
constraint model component. In belief propaga-
tion, messages are alternately passed between vari-
able nodes and factor nodes (until convergence is
achieved or a finite number of iterations is com-
pleted). A message is simply a vector µ where the
individual components denote the probability of the
random variable taking a specific value x ∈ {0, 1}.
The message from a variable v to neighboring fac-
tor f on taking a specific value x is given by the

following equation:

µv−→f (x) ∝
∏

g∈N (v)\f
µg−→v(x) (1)

, where g belongs to the set of factor nodes con-
nected to v excluding f . Similarly, the message
from a factor node f to the variable v on the vari-
able taking a specific value x is given by the fol-
lowing:

µf−→v(x) ∝
∑

x:xv=x

ϕ(x)
∏

u∈N (f)\v
µu−→f (xu)

(2)
, where u belongs to the set of variable nodes con-
nected to f excluding v.

Finally, after convergence (or a finite number
of iterations), the updated marginal probability of
variable v taking on a value x is given by Pr(v =
x) ∝∏g∈N (v) µg−→v(x).
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App Screenshots Entertainment Events Pets
Arts and Crafts Food Piercing
Auto Racing American Football Running
Automotive Gambling Single Person
Baseball Gaming Skateboarding
Basketball Golf Skiing
Beauty, Style and Fashion Hockey Smoking
Boxing Home and Garden Pharmaceuticals and Healthcare
Captioned Images Infographics, Text and Logos Snowboarding
Comics, Animation and Anime Martial Arts Soccer
Cricket Multiple People Swimming
Crowds and Protests Nature and Wildlife Tennis
Currency Weapons Travel
Cycling Other TV Broadcasts
Drinks Performance Arts Weather and Natural Disasters

Table 5: List of 45 media categories that make up the label space of the media classifier.
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2D animation Country music Horses Rock climbing
3D animation Cricket Hotels Rodeo
Accounting Cruise travel Houston Roleplaying games
Action and adventure films Cult classics Independent films Romance books
Adventure travel Curling Indie rock Rowing
Advertising Cybersecurity Information security Rugby
Agriculture Cycling Interior design Running
Air travel Dance Internet of things Sailing
Alternative rock Darts Investing Saxophone
American football Data science J-pop Sci-fi and fantasy
Animals Databases Jazz Sci-fi and fantasy films
Animated films Dating Jewelry Science
Animation Digital creators Job searching and networking Science news
Animation software Documentary films Judo Screenwriting
Anime Dogs K-hip hop Sculpting
Anime & manga Drama films K-pop Sharks
Antiques Drawing and illustration Kaiju Shoes
Archaeology Drums Knitting Shopping
Architecture EDM Lacrosse Skateboarding
Art Economics Language learning Skiing
Artificial intelligence Education Latin pop Skin care
Arts& culture Electronic music MMA Small business
Arts & culture news Entertainment Makeup Sneakers
Arts and crafts Entertainment news Marine life Snooker
Astrology Environmentalism Marketing Soap operas
Astronauts Esports Martial arts Soccer
Athletic apparel Europe travel Mathematics Soccer stats
Augmented reality Everyday style Men’s boxing Soccer transfers
Australian rules football Experimental music Men’s golf Soft rock
Auto racing Famous quotes Men’s style Softball
Automotive Fantasy baseball Motorcycle racing Space
Aviation Fantasy basketball Motorcycles Sporting goods
Backpacking Fantasy football Movie news Sports
Badminton Fantasy sports Movies Sports news
Ballet Fashion Movies & TV Sports stats
Baseball Fashion and beauty Museums Startups
Basketball Fashion business Music Storyboarding
Beauty Fashion magazines Music festivals Street art
Biographies and memoirs Fashion models Music industry Streetwear
Biology Fast food Music news Supernatural
Biotech and biomedical Fiction Music production Surfing
Birdwatching Fighting games Musicals Swimming
Black Lives Matter Figure skating Mystery and crime books Table tennis
Blues music Financial services National parks Tabletop gaming
Board games Fintech Nature Tabletop role-playing games
Bollywood dance Fishing Nature photography Tattoos
Bollywood films Fitness Netball Tech news
Bollywood music Folk music Nonprofits Technology
Bollywood news Food Olympics Television
Books Food inspiration Online education Tennis
Bowling Futurology Open source Theater
Boxing Game development Opera Theme parks
Brazilian funk Gaming Organic Thriller films
Business & finance Gaming news Organic foods Track & field
Business media Gardening Outdoor apparel Trading card games
Business news Genealogy Outdoors Traditional games
Business personalities Geography Painting Travel
C-pop Geology Parenting Travel guides
Careers Golf Pets Travel news
Cartoons Graduate school Philosophy Triathlon
Cats Grammy Awards Photography US national news
Cheerleading Graphic design Physics Veganism
Chemistry Guitar Podcasts & radio Vegetarianism
Chess Gymnastics Poker Venture capital
Classic rock Hair care Pop Video games
Classical music Halloween films Pop Punk Visual arts
Cloud computing Handbags Pop rock Volleyball
Cloud platforms Hard rock Progressive rock Watches
College life Health news Psychology Weather
Combat sports Heavy metal Punjabi music Web development
Comedy Historical fiction Punk Weddings
Comedy films History R&B and soul Weight training
Comics Hockey Rap Women’s boxing
Computer programming Home & family Reality TV Women’s golf
Concept Art Home improvement Reggae Women’s gymnastics
Construction Horoscope Reggaeton World news
Cooking Horror films Road trips Wrestling
Cosplay Horse racing and equestrian Rock Yoga

Table 6: List of topics making up our topic space.
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Abstract

For agents at a contact centre receiving calls,
the most important piece of information is the
reason for a given call. An agent cannot pro-
vide support on a call if they do not know why
a customer is calling. In this paper we describe
our implementation of a commercial system
to detect Purpose of Call statements in En-
glish business call transcripts in real time. We
present a detailed analysis of types of Purpose
of Call statements and language patterns re-
lated to them, discuss an approach to collect
rich training data by bootstrapping from a set of
rules to a neural model, and describe a hybrid
model which consists of a transformer-based
classifier and a set of rules by leveraging in-
sights from the analysis of call transcripts. The
model achieved 88.6 F1 on average in various
types of business calls when tested on real life
data and has low inference time. We reflect
on the challenges and design decisions when
developing and deploying the system.

1 Introduction

The Purpose of Call as we define it is similar to
a thesis statement in an argument: it introduces
the speaker’s intent, the broad theme or topic of a
conversation, any key entities, and relevant relation-
ships between them. The Purpose of Call statement
might also include a linguistic signpost – an indica-
tion to the listener that the utterance is intended to
convey the purpose of the speaker’s call.

For instance:
I’m calling because [signpost] I’m trying to open

one of the programs [entity] on my computer [en-
tity] and it’s not opening [relation] so I’m hoping I
can get some assistance [intent] with that. 1

Purpose of Call statements in a contact centre set-
ting are usually uttered by the customer in inbound

1In contrast, statements such as I’m calling to ask a ques-
tion are not considered Purpose of Call expressions even
though they contain relevant signposting language because
there are no entities an agent or a customer can relate to.

calls, and by the agent in outbound calls. The Pur-
pose of Call is typically stated near the beginning
of the call, is often stated in a single utterance, and
does not contain extra information. Atypically, we
may sometimes see the Purpose of Call occurring
in the middle of a conversation, occurring across
several utterances, being implicit, or being uttered
by a call recipient rather than a call initiator.

The models described below have been imple-
mented in the Dialpad Contact Center product and
are running in production. The Purpose of Call
is extracted from an automatic speech recognition
(ASR) generated transcript in near-realtime and
displayed in a dashboard used by call center super-
visors to monitor calls taking place. The dashboard
shows information about the caller and the agent,
the duration of the call, the Purpose of Call, and
customer sentiment. A separate analytics compo-
nent clusters the Purpose of Call from all calls in a
call center during a time period to provide insights
about trends and anomalies, customer pain points,
and common problems and knowledge gaps among
agents. Additional use-cases include showing the
Purpose of Call in a summary of prior calls with
a customer, and including the Purpose of Call in
summaries of the conversation. The utterance seg-
ment containing the Purpose of Call is highlighted
in the call transcript and the call recording to be
easily accessible to agents and call center supervi-
sors. These use-cases are summarized in Figure
1. The Purpose of Call feature is used to help call
center managers to navigate to relevant sections of
conversations to identify areas to coach sales and
support agents and sample relevant calls. Through
customer education, we emphasize that the feature
should not be used for automated evaluation of
agent performance.

There are a few challenges that arise when build-
ing an automatic system to detect Purpose of Call.

Diversity of Purpose of Call statements. This
type of detection system should be an open-class
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Figure 1: An illustration of the applications of Purpose
of Call

system, since call purposes vary across different
domains, industries, and types of calls.

Robustness to noise. There are challenges re-
lated to the fact that Purpose of Call extraction re-
lies on the output of an ASR system. There are two
sources of noise in the ASR transcripts: language
production issues such as false starts, dysfluencies,
filled pauses, inconsistency in conversational turn-
taking (Cailliau and Cavet, 2013; Dutrey et al.,
2014; Żelasko et al., 2019; Clavel et al., 2013) as
well as their representation in the ASR system and
recognition errors due to acoustic noise.

Limitations in training data. Existing intent
detection datasets do not reflect real world settings
(e.g. they do not distinguish the Purpose of Call
from other intent-like statements, and are limited
to a subset of domains). Manually annotating data
(e.g. using crowd-sourced annotators) raises pri-
vacy concerns since annotators must have access
to a full conversation transcript in order to find
the best Purpose of Call. Annotation is a complex
task that requires highly trained annotators, and is

expensive and time-consuming because annotators
must consider the larger context of the conversation
to make a judgment.

Computational efficiency. The need for the sys-
tem to extract the Purpose of Call statement in real
time imposes constraints on memory consumption,
latency, and inference speed.

This paper describes an end-to-end system to ex-
tract a Purpose of Call statement from the transcript
of a business telephone call. Our contributions are
three-fold:

1. Data analysis: we present a detailed analysis
of language patterns and other features involved in
call purpose detection;

2. Data: we describe a process to overcome a
lack of training data by bootstrapping a deep learn-
ing model from a knowledge-engineered model and
discuss the heuristics for developing such a model;

3. System: we describe optimizations that were
done in an online commercial system to identify
Purpose of Call statements in near-realtime (within
three seconds of an utterance being transcribed).
To evaluate the effectiveness of our approach, we
examine the actual output of our production sys-
tem.

2 Related work

The concept of a Purpose of Call statement has
its roots in the Conversation Analysis frame-
work (Schegloff and Sacks, 1973; Sacks et al.,
1974). Within this framework, which combines
perspectives from Linguistics and Sociology, a con-
versation is understood to be composed of turn-
taking utterances, with each “turn” being indicated
via linguistic and paralinguistic cues. Conversa-
tional turns often form adjacency pairs such as
question-answer pairs or offer-acceptance/refusal
pairs. There are other key aspects of a conversa-
tion as well. For instance, a conversation is likely
to end after a linguistic cue known as a "closing"
is given; likewise, there is usually a linguistic in-
dicator that a conversation is being initiated: an
opening (Schegloff and Sacks, 1973; Sacks et al.,
1974; Pomerantz and Fehr, 2011). Most work ana-
lyzing telephone conversation openings within the
framework of Conversation Analysis has been con-
ducted on English, but similar patterns have been
observed in other languages, including German and
Farsi (Taleghani-Nikazm, 2002).

Within a contact center environment, the Pur-
pose of Call is, like openings and closings, an inte-
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gral aspect of the conversation (i.e. call) between
customer and support agent. We propose that a
Purpose of Call is a particular conversational fea-
ture that is necessary in contact center calls, and is
distinct from the call opening, the body of the call,
and the call closing.

The first 120 seconds of a customer support call
are predictive of that call’s outcome (Takeuchi
et al., 2007; Hall et al., 2014). The Purpose of Call
statement typically occurs within this timeframe,
so highlighting a Purpose of Call in real time could
provide agents with additional support in meeting
customer needs.

3 Methodology

We formulate the Purpose of Call detection task as a
binary classification problem. Each call, after being
transcribed by the ASR system, is represented as a
sequence of utterances, which may consist of one
or more sentences. The division into utterances is
based on acoustic features such as silent pauses and
the length of a speech fragment.

For a given utterance, we determine the proba-
bility that the utterance is the Purpose of Call state-
ment for that particular call. We impose the fol-
lowing constraints on this task: (i) For a given call,
there is only one most probable Purpose of Call. (ii)
Only calls with two call sides (agent and customer)
are considered, which excludes multiparty business
conversations. (iii) The model should make a pre-
diction as the call is ongoing and therefore will not
have access to the full conversation.

Due to the lack of available annotated data repre-
senting the concept of Purpose of Call, we followed
an iterative approach to develop the model, consist-
ing of three steps: (1) Computational Linguists
on-staff conducted extensive linguistic analysis of
transcripts to identify the characteristics of Purpose
of Call statements. (2) We then implemented a
knowledge-engineered approach to identify these
Purpose of Call statements. (3) We bootstrapped
from the knowledge-engineered solution, using it
to label training data for a transformer-based ap-
proach. We select a transformer-based model as it
is the current state-of-the-art in sequence classifi-
cation and is known to have better generalization
power than rule-based models.

We evaluate the performance using F1, Preci-
sion, and Hit rate, i.e. the number of calls in which
a Purpose of Call was detected out of all available
calls. We measure Hit rate in calls at least 30 sec-

onds long, based on the observation that shorter
calls may not include any content (e.g. because
the caller hung up before starting the conversation).
The model is tested on an automatically obtained
validation set that represents 10% (18K utterances)
of the training data, a manually annotated gold test
set of 13215 utterances from 909 calls, and unla-
beled samples from 600 real-life calls.

3.1 System Overview

The production system to detect a Purpose of Call
utterance is a hybrid model consisting of three parts
(see Figure 2).

The Selection model, or outer model, inputs an
utterance, the previous context of the conversation,
and the probabilities of previously detected Purpose
of Call events. It consists of two sets of rules: (1)
empirically derived filters that determine whether
an incoming utterance is a candidate for a Purpose
of Call and should be processed by the inner model,
a successful candidate is within 180 seconds and
30 utterances in the call, and is between 4 and 150
tokens long; (2) rules that combine and compare
scores from the inner model and set various thresh-
olds for different linguistic types of call purpose
statements (i.e. the utterances containing signpost-
ing language typically receive higher scores than
other types and need a higher bar). Every time a
new utterance qualifies to be a Purpose of Call, it
is dynamically updated in the user interface. (See
Appendix B for an example of a Selection rule.)

The Scoring model, or inner model, is imple-
mented as a multiclass classification model which
performs inference on a single utterance. We fine-
tuned a transformer-based model for classification
on proprietary labeled data. The model assigns
to an utterance probabilities of it being a call pur-
pose, question, or negative (not a call purpose or
a question). The question class represents ques-
tion_response pattern (see Table 1) and is used to
boost probabilities of utterances that would other-
wise be of the negative class.

The Simplification model. The utterance with
the highest score is stripped of information that is
irrelevant to the purpose of the call (e.g. greetings,
pleasantries, introductions, technical problems).
It consists of a small set of common expressions
(many of which are reused from the knowledge-
engineered model) to exclude from utterances and
reduces the length of Purpose of Call utterances
by 7.8% on average. 49% of utterances undergo
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Figure 2: Purpose of Call Detection System Architecture

simplification with precision of 96%.

3.2 Model Development

The model development process consists of three
main stages: data analysis and feature selection, de-
signing a knowledge-engineered model informed
by the insights from the data, and bootstrapping a
transformer based model from the rule-based sys-
tem. In this section, we discuss these stages.

3.2.1 Data Research and Feature Selection
We manually analyzed a sample of 2000 call tran-
scripts across several dimensions, which are out-
lined below.

1. Inbound vs. outbound calls:
In outbound call center calls (40.8%), the call
initiator and the side that utters the Purpose
of Call is usually an agent; in inbound calls
(59.2%), it is a customer, with some excep-
tions. 55.3% of all Purpose of Call statements
are uttered by the customer.

2. Place: the Purpose of Call is uttered within the
first 40 seconds in a majority of calls (73.8%),
in the middle in a minority of calls (10.7%),
and towards the end in a handful of (mainly
short) calls. The mean time of occurrence is
29.9 seconds, std=19.1, median=25.5 seconds.
The maximum time is 180 seconds.

3. Speaker role:
The call initiator utters the Purpose of Call
in the vast majority of cases in the form of
a statement; in returned or scheduled calls,
the Purpose of Call can be uttered by a call
recipient in the form of a guess, assumption
or inquiry.

4. Domain: There are three main types of call
center calls:

Sales calls: commonly characterized by the
Purpose of Call not being stated explicitly in
one utterance, but gradually being revealed
during the course of the call. Agents often
spend a longer time building rapport, so ut-
ter the purpose later in the call compared to
support calls. 74% of Purpose of Call state-
ments still occur within the first 40 seconds.
Outbound calls are prevalent. 48% of Purpose
of Call statements are uttered by customers.
Support calls: inbound calls are prevalent,
the Purpose of Call is introduced early in the
conversation. In fact, 56% of Purpose of Call
statements are in the very first utterance, ac-
companied by a greeting, and 63% of the state-
ments occur within the first 50 seconds. 62%
of Purpose of Call statements are uttered by
customers.
General business calls: may include support
and sales calls as well as other communica-
tions, both formal and informal. The Purpose
of Call is often implied (e.g. a conversation
between colleagues, transfers from a chat to a
call, with the purpose of the conversation be-
ing known by both parties). 84% occur within
the first 45 seconds, and 59% are uttered by
customers.

5. Length distribution: Purpose of Call utter-
ances range in length from 4 to 224 tokens,
with the mean=45.5, std=29.9, median=37,
and 75% being under 59 tokens.

6. Language patterns: We identified several
language markers associated with Purpose of
Call statements in Table 1.

Approximately 7% of calls in this sample do
not contain an explicit Purpose of Call statement.
Instead, the participants in the call appear to already
have the context necessary to understand the call
purpose.
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Pattern % Description Example
call_purpose_phrases 32.7 explicit declarations of the Purpose

of Call typically signposted with lex-
ical cues containing purpose and call
and their synonyms

The reason for my call is I
moved to a new address, so I
need to change it on my profile.

desire_phrases 31.7 expressions of volition, desire or
need

Hi, I need a refund for my order.

question_response 15.8 responses to an agent’s prompt - How can I help you? / - I re-
ceived a message that my order
has been delayed.

greetings 9.1 long statements of at least 30 word
tokens that follow a greeting and oc-
cur within the first 6 utterances in the
conversation

Hey, this is Christine. There is a
police report, it was next to you
guys why you heard it <...>

problem_phrases 4.4 express problems and concerns I’m having an issue with the de-
livery.

update 5.8 updates and announcements I have an update on your pass-
port status.

continuation 0.4 questions preceded by a signpost in
the same utterance or a subsequent
one from the same speaker

Hi, I’m calling because I have a
question. / Do you accept new
patients?

Table 1: Language patterns in Purpose of Call statements

3.2.2 Knowledge-Engineered Model

As outlined in Section 1, collecting labeled data for
Purpose of Call extraction is a challenging task.
Therefore, to obtain a representative sample of
training data, we first implemented a knowledge-
based model that takes into account the following
parameters: utterance length in tokens, the order of
an utterance in the conversation, the history includ-
ing several preceding utterances, and the presence
or absence of language patterns summarized in Ta-
ble 1 and implemented using regular expressions
syntax (see Appendix A for an example). In to-
tal, stemming from the analysis in Section 3.2.1, 8
rules (56 regex patterns) to detect call purpose can-
didates and 6 rules (55 regex patterns) to filter out
negative statements were developed. The model
reached a precision of 90.8% and hit rate of 77%
on average across three domains (see Table 4).

Further, we conducted error analysis by manu-
ally labelling the output of the production system
on a random sample of 1000 calls. After human
review, we determined that 3% of calls did not con-
tain an identifiable Purpose of Call and could be
considered true negatives, while 20% were false
negatives. 40% of these false negatives can be at-
tributed to ASR errors. 27.6% of false negatives
include cases with the Purpose of Call being known

prior to the conversation (e.g. from shared knowl-
edge, logged information, or in return calls) and
therefore not considered by the model, 9.1% cor-
respond to specific industries (e.g. transportation)
underrepresented in the data used in the analysis,
and 44.7% were caused by the limitations of the
rules (note that these groups of false negatives in-
tersect, hence the percentages do not add up to
100%). False positives were mainly related to the
lack of morphological flexibility in the rules and
speech dysfluencies. In 6.2% of calls, several utter-
ances were legitimate Purpose of Call statements
and the one selected by the model was not the
best one. These findings motivated the need for a
transformer-based model that was more forgiving
of ASR noise, had better generalization power, and
was more responsive to changes in the data.

3.2.3 Transformer-Based Model

Training Data Collection. Since the knowledge-
engineered model achieved high precision, we
could rely on its output to train a deep learning
model. The dataset consists of English language
utterances obtained from business calls in a va-
riety of industries, with accompanying metadata
such as timestamps for each token, call side, and
call id. See Appendix C and 3.2.1 for detailed
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statistics. We randomly sampled one million ut-
terances between February 6, 2020 and February
22, 2021, allowing only those that meet the require-
ments for a Purpose of Call candidate in 3.1. The
utterances were divided into two sets: (1) those
from the calls with a Purpose of Call hit (likely to
be a true positive), (2) utterances from calls with
no hit (may contain false negatives). With a se-
ries of patterns, we filtered out utterances that are
likely to be false positives based on error analysis
in 3.2.2. Further, we sampled several datasets of
180K utterances with varying label and language
pattern distributions in order to experimentally find
the best configuration (see Appendix C). A train,
development, and validation split of 80/10/10% of
data was used in each experiment. In addition, we
created a golden dataset of 909 manually labeled
calls, with the utterances organized chronologically
within the call and limited to up to 30 utterances
per call. This sample comprises 13215 utterances.

Training Details. We employ the Distil-
BERT (Sanh et al., 2019) model, trained for clas-
sification with multimodal features. We com-
bine text features with numerical and binary fea-
tures, utterance start time and call side respectively,
which have proven to be useful in the knowledge-
engineered model, and pass on a gated summation
of the transformer output with these features to the
classification layer, following the approach in (Gu
and Budhkar, 2021). This configuration outper-
formed other base models 2 3, combinations of
multimodal features, and combining mechanisms
outlined in (Gu and Budhkar, 2021). The model
architecture is shown in Figure 3. We implement
a data-driven iterative fine-tuning process with ex-
tensive error analysis and data resampling. See
Appendix D for details.

3.3 Model Deployment
Since the model was to operate in a near-realtime
environment as a call is ongoing, optimising for in-
ference time was a dominant consideration during
model design. The model would perform inference
on one CPU core. The model would need to accom-
modate the time taken to transcribe voice to text
and properly format and punctuate the transcrip-
tion, many of these tasks being accomplished by
other deep learning models.

Optimizations include: (i) Having the Selection
2https://huggingface.co/microsoft/DialoGPT-small
3https://huggingface.co/DeepPavlov/bert-base-cased-

conversational

Figure 3: Multimodal Transformer based scoring model

model that uses input features to filter utterances,
thereby reducing the number of utterances that
were attended to by the transformer model. These
features include utterance count number and utter-
ance start time, both of which should be below a
threshold determined by experimenting with differ-
ent parameter values in the knowledge-engineered
model. (ii) Incorporating numerical and binary fea-
tures into the deep learning model - adding signals
beyond lexical features allowed us to use a lower
capacity BERT variant with faster inference time.
(iii) Capping input length to an empirically derived
ceiling further reduced memory consumption and
inference time.

The system was deployed in containers4 with
1 CPU and maximum 1GB memory per instance.
The average inference time at the 95th percentile is
0.51 seconds, which meets the requirements of our
production system for near-realtime deployments
to complete inference in under 3 seconds.

4 Evaluation

Table 2 shows full results of the comparative evalu-
ation of the knowledge-engineered and the hybrid
models on business calls in three domains.

Qualitative analysis was conducted on the gold
set: real life user data of 600 samples, and 200 calls
with missed hits. False positives mainly correspond
to signposting language without mention of the ac-
tual Purpose of Call, and indicate the model’s over-
reliance on lexical features. The model was found
to be accurate in assigning utterances to classes,
but not always sensitive to the difference between a

4https://cloud.google.com/kubernetes-engine
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Domain Model Precision Hit Rate F1
Support rules 93.5 80.0 86.2

hybrid 91.0 90.4 90.7
General rules 90.0 74.2 81.3

hybrid 89.0 85.6 87.3
Sales rules 88.5 78.7 83.5

hybrid 87.0 88.9 87.9
Avg rules 90.6 77.6 83.6

hybrid 89.6 88.3 88.6

Table 2: Comparative evaluation of knowledge-
engineered (here rules) and hybrid models for Purpose
of Call detection.

valid and the best Purpose of Call. This can be ad-
dressed by introducing more contrastive examples
in training data. Missed hits include cases initially
excluded from the sample such as Purpose of Call
stated across several utterances, and multiple Pur-
pose of Call statements of equal importance. A
synthesis of several utterances instead of selecting
only one of them might be useful in such cases.

5 Conclusion

This paper discusses the development and deploy-
ment of a hybrid system to detect a Purpose of Call
statement in business call transcripts for the English
language in near-realtime settings. We introduce
the concept of the Purpose of Call, provide in-depth
analysis of real life data, and discuss overcoming
the absence of available training data by bootstrap-
ping from a knowledge-engineered model to a deep
learning one. Both the knowledge-engineered and
hybrid models demonstrate high precision and hit
rate, with the hybrid model showing better perfor-
mance while maintaining computational efficiency.

6 Ethics Statement

Data. The conversational data is presented in the
form of individual utterances with sensitive data
such as personal identifiable information removed.
No crowdsourced annotation has been conducted,
and access to the data was available only to a small
number of in-house Scientists.

Use. The Purpose of Call feature is used by call
center managers to identify areas to coach sales and
support agents. It is recommended to not use this
feature for automated evaluation of agent perfor-
mance. Incorrect Purpose of Call prediction may
provide unsatisfactory user experience for the man-
agers as they sample calls but does not present any

risk of negative impact for the agents.
Licensing. We follow the licensing require-

ments accordingly while using external tools such
as HuggingFace 5 and Multimodal-Toolkit (Gu and
Budhkar, 2021) libraries.
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A Appendix: Example Rule in a
Knowledge-Engineered Model

An utterance is a Purpose of Call if:

• It contains signposting phrases expressing a
problem such as I’m having a problem, There
is an issue, I’m having a hard time, I’m trying
... and it’s not working,

• It occurs within the first 10 utterances

• It is at least 12 tokens long

Example: I got a really big problem here. When
I log in, it asks for some pin, and I really, I can’t
use it. So there’s obviously an issue here and can
you help me with it?.

B Appendix: Example Selection model
heuristics

Combine the positive score for an utterance with
the maximum question score of the two preceding
utterances in another call side. If it passes a thresh-
old and is the biggest score so far, this utterance is
a Purpose of Call.

C Appendix: Data Statistics

Total number of calls: 86310
Total number of utterances: 180 000
Industry distribution: see Table 3.

Label distribution: A key factor in training
the model was determining the right distribution
of labels and language patterns. The classes in
our problem are naturally imbalanced: since only
one utterance per call is a valid Purpose of Call,
the vast majority of utterances are of the negative
class. In a random sample, only 4.7% utterances

Industry %
Technology 25.1
IT, Consulting 15.5
Professional, Business Support Services 14.1
Travel 11.4
Health and Wellness 5.6
Real Estate 5.1

Table 3: Industry distribution in training data: top 6
types

are positive hits, and only 1.9% are questions. If
the data is sampled randomly, the model is likely
to overfit to the negative class. Sampling uniformly
may reduce the number of complex instances in
favor of the ones easier for the model to learn. A
set of experiments were conducted to determine the
distribution of classes with the goal of optimizing
accuracy of the Purpose of Call class predictions.
We determined the optimal distribution of classes
as follows: 42.5% positive, 42.5% negative, 15%
question utterances (corresponds to the share of this
pattern in real data). All utterances came from calls
with a positive hit, which minimized the chance of
false negatives in the training data.

Language patterns distribution: From the er-
ror analysis and experiments, we determined the
optimal distribution of language patterns within the
positive class:

• 30% call_purpose_phrases

• 30% desire_phrases

• 20% problem_phrases

• 20% other patterns

Other aspects of the data are the same as de-
scribed in 3.2.1.

D Appendix: Training details

Parameters: The pretrained distilbert-base-cased
model we use has 6 layers, 768 hidden units, 12
attention heads and 65M parameters and is avail-
able through Multimodal-Toolkit (Gu and Budhkar,
2021). We run all fine-tuning experiments on a
Google Cloud VM n1-standard-8 instance with
496GB disk size and 1 NVIDIA Tesla K80 GPU.
The maximum time for a single experiment was 8
GPU hours. We truncate text input to a maximum
150 tokens since most relevant statements fall into
this category. We set the train and eval batch size to
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32 and 64 respectively, and use AdamW optimizer
with default parameters. We fine-tune the model
for 4 epochs with a learning rate of 5e-05, weight
decay of 0.01 and 500 warm up steps. The hyper-
parameters were obtained from experiments using
an in-house tuning tool implementing grid search
algorithm. For fine-tuning on small subsets (4K) of
data collected through error analysis, we repeat the
training process for 12 epochs and a learning rate
of 9e-05.

Relevant features: Besides the text features,
we experimented with two extra features that have
proven to be useful in the knowledge-engineered
model: the start time of the utterance and the call
side. We also experimented with several mech-
anisms to combine the numerical and categori-
cal features with textual data using Multimodal-
Toolkit (Gu and Budhkar, 2021). The results are
presented in Table 4.

Feature P HR F1 PP
text only 0.891 0.891 0.891 0.894
text + start time 0.948 0.948 0.948 0.944
text + call side 0.948 0.948 0.948 0.946
all 0.949 0.949 0.949 0.957

Table 4: Comparing model performance using tabular
features start time and call side. P-Precision, HR-Hit
rate, PP - precision in positive class. The results are
reported for a single run using concatenation to combine
features.
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Abstract

Text-based adversarial attacks are becoming
more commonplace and accessible to general
internet users. As these attacks proliferate, the
need to address the gap in model robustness
becomes imminent. While retraining on ad-
versarial data may increase performance, there
remains an additional class of character-level
attacks on which these models falter. Addi-
tionally, the process to retrain a model is time
and resource intensive, creating a need for a
lightweight, reusable defense. In this work,
we propose the Adversarial Text Normalizer,
a novel method that restores baseline perfor-
mance on attacked content with low computa-
tional overhead. We evaluate the efficacy of the
normalizer on two problem areas prone to ad-
versarial attacks, i.e. Hate Speech and Natural
Language Inference. We find that text normal-
ization provides a task-agnostic defense against
character-level attacks that can be implemented
supplementary to adversarial retraining solu-
tions, which are more suited for semantic alter-
ations.

1 Introduction

Natural language processing (NLP) models help
preserve the integrity of discourse in online social
networks by detecting hate speech, misinformation,
and other content that violates community poli-
cies (Halevy, 2020). In these application scenarios,
classifiers operate under significantly more adver-
sarial conditions than in the standard paradigm of
model development. Users often post content that
is heavily altered in order to induce worst-case
errors, dramatically reducing model performance
relative to a standard test set. Recent research in
machine learning has made strides towards build-
ing robust models to defend against sophisticated
adversaries. Nevertheless, our experience and ex-
periments show that models remain vulnerable to
many simple and intuitive attacks.

One such class of highly-effective attacks are

Figure 1: This figure showcases that text normalization
is able to restore baseline scores on the Learning From
The Worst (LFTW) test set for several augmentation
types. The model scores in this graph are the averaged
scores across all five LFTW models. To see the raw
evaluation results, view Table 4 in the Appendix.

syntactic attacks, which include adding punctua-
tion and spacing, replacing fonts, and inserting
zero-width characters. Attackers commonly em-
ploy these methods with little or no expert knowl-
edge of machine learning algorithms, and consti-
tute a large proportion of practical threats to natural
language processing models deployed in industry.
In our experiments on state-of-the-art robust NLP
models, such attacks can decrease a model’s perfor-
mance by more than half. Thus, these text-based
attacks remain a serious and unaddressed problem
for the at-scale deployment of language models in
integrity areas.

The literature has proposed methods to improve
adversarial robustness by retraining models on
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“hard” and adversarial examples (Nie et al., 2020;
Vidgen et al., 2021) but we observe several open
challenges with applying these approaches. First,
as our experiments demonstrate, even state-of-the-
art models trained on multiple iterations of ad-
versarial data continue to lack robustness to eas-
ily accessible syntactic attacks. For example, in
Figure 2, inserting zero-width characters reduces
a hate speech classification model’s accuracy to
less than 15%. Second, these approaches are not
amenable to quick iteration. Whenever a new ad-
versarial attack becomes more prevalent, a model
developer would need to collect new data or cre-
ate synthetic examples of such attacks, retrain the
model, and redeploy it. This costs time, compu-
tational resources and has an environmental im-
pact (Wu et al., 2021).

To address these outstanding issues, we propose
a novel lightweight and easily extensible method
for recovering model performance in the face of
adversaries who perform syntactic attacks. Our
key insight is that many adversarial modifications
can be undone before they even reach the model
with little computational overhead. From a ma-
chine learning perspective, this can be thought of
as restoring the distribution of inference-time in-
puts to the original distribution on which the model
was trained. From a computer security perspective,
this method is analogous to sanitizing the inputs to
programs so as to make the input safe for further
processing. In this work, we present the design and
implementation of a system called the Adversar-
ial Text Normalizer (ATN), that achieves this goal.
This iterative approach produces a defense mecha-
nism that can be applied at scale in a lightweight
fashion to ensure robust model performance.

An important principle in computer security
is that defense mechanisms should be evaluated
against adaptive adversaries (Petitcolas, 2011),
i.e. those that can adjust their techniques to ac-
tions by the defender. Therefore, we also partner
with red teaming experts skilled at creating novel
adversarial inputs to classical computer systems to
conduct an adaptive evaluation of the ATN. Our
text normalizer can provide sufficient robustness
gains even in the face of such adaptive adversaries.

Our contributions are as follows:

• We design and implement a system for undo-
ing syntactic attacks on textual models called
the Adversarial Text Normalizer.

• We conduct an adaptive attacker red teaming

exercise to evaluate the ATN’s performance
against skilled human adversaries.

• Through extensive experiments on three differ-
ent benchmarks, we evaluate the performance
of the ATN and conclude that it successfully
recovers the original performance of a model
when faced with syntactic attacks.

2 Related Work

Several papers have introduced benchmarks for ad-
versarial attacks on NLP systems. Attacks focused
on preserving semantic content and grammar (Jin
et al., 2020; Alzantot et al., 2018; Iyyer et al., 2018)
have been shown to be effective against state-of-
the-art models at the cost of requiring a greater
understanding of the sentence structure and task
context. In contrast, Eger and Benz (2020) propose
a benchmark of character level, orthographic per-
turbations as more realistic attacks in general appli-
cations, attributing the success of their high perfor-
mance attacks to large out-of-vocabulary rates and
disruption to tokenization. Other work (Eger et al.,
2019; Boucher et al., 2021) investigates the replace-
ment of characters with visually similar embedding
spaces and the insertion of zero-width characters,
noting the effectiveness of those methods against
NLP models but marginal effect on human legi-
bility – especially when perturbing key offensive
words. For such targeted attacks, (Rodriguez and
Rojas-Galeano, 2018) use a simple string match-
ing algorithm to filter obfuscated and negated key
words (Rojas-Galeano, 2017), focusing on a lim-
ited list of target vocables on each pass.

Our work focuses on the implementation of text
normalization as a computationally inexpensive
and reusable solution to mitigate a range of highly
accessible but effective adversarial text attacks such
as character insertions, replacements, and censor-
ship. Concurrent work in the NLI domain has ad-
dressed the bias in model performance on classic
test sets and adversarial user attacks through it-
erative human-and-model-in-the-loop (Nie et al.,
2020) data generation and model training. Simi-
larly, Vidgen et al. (2021) proposed a complemen-
tary approach with the amalgamation of targeted
annotator samples including challenging perturba-
tions to generate adversarial data for hate speech
classification. Both works explored leveraging
domain-experienced annotator resources to pro-
gressively train more robust models with each suc-
cessive iteration. Other works on small text pertur-
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bations such as adversarial typos, have proposed
the use of robust token-level encodings (Jones
et al., 2020) and preceding word recognition mod-
els (Pruthi et al., 2019) as reusable systems that
are trained once and then reused across models and
tasks. In this work we explore a more lightweight,
systematic correction layer that does not require
training to create model and task-agnostic defenses.

3 Methodology

3.1 Models and Datasets

We identify two natural language tasks with sig-
nificant importance to industrial applications and
adversarial pressure. First, hate speech classifica-
tion is the problem of detecting statements that are
likely to cause harm and inject toxicity in online
discourse. It has now become standard practice for
providers of services where people can post com-
ments and discuss content to employ hate speech
classification models. These models are set up as
binary classification models that output a score for
the “hatefulness” of a given input statement. Sec-
ond, Natural Language Inference (NLI) has been
adapted for the detection of misinformation (Nie
et al., 2020). In this setting, NLI models aim to flag
statements that do not receive support from rep-
utable sources or directly contradict information in
them. Thus, a model is given access to a set of sup-
port statements and a “hypothesis” and it outputs a
3-way classification from among “supported,” “not
supported,” and “not enough information.” In the
cases of “supported” or “not supported,” the model
also outputs the statement that supports or refutes
the hypothesis.

Since both tasks are the subject of adversar-
ial pressure, there have been several proposed ap-
proaches to robustifying models trained on them.
Most notably, the Dynalab (Vidgen et al., 2021)
approach proactively samples “hard” examples by
asking human raters to conceive inputs that chal-
lenge the model. Researchers then retrain the mod-
els and repeat the process for several rounds. This
paradigm helps achieve a large increase in robust-
ness through the rounds, so we evaluate our ap-
proaches on those models as the benchmark for
state-of-the-art robust performance.

For Hate Speech, we utilize the Hate-
Check (Röttger et al., 2021) dataset (2,563
examples) and the Learning from the Worst
(LFTW) (Vidgen et al., 2021) test set (4,120 exam-
ples). The performance of state-of-the-art models

Problem Area Model # Parameters
Hate Speech LFTW 125,000,000
Adversarial NLI DeBERTa 140,000,000
Adversarial NLI RoBERTa 125,000,000
Adversarial NLI T5 220,000,000
Adversarial NLI BERT 109,000,000
Adversarial NLI ALBERT 17,000,000

Table 1: The models, associated problem areas, and
number of parameters used in our evaluations. All
LFTW models, from rounds 1-4 and more, have an iden-
tical number of parameters since they are all RoBERTa
models.

trained on adversarial data from Learning from the
Worst (LFTW) were compared with and without
the addition of the text normalizer on both baseline
and augmented versions of the dataset. Addition-
ally, we chose to evaluate NLI models on the test
sets from all three rounds of Adversarial NLI (Nie
et al., 2020) (1,000, 1,000, and 1,200 examples re-
spectively). We assessed the performance of these
baseline, augmented, and normalized datasets on
five model architectures trained on SNLI (Bow-
man et al., 2015), MNLI (Williams et al., 2018),
FEVER (Thorne et al., 2018) and all three rounds of
Adversarial NLI. To see which models we evaluate
on, please review Table 1. We specifically choose
models already trained on adversarial datasets to
assess opportunities for improvement beyond re-
training.

3.2 Attacks

To attack the aforementioned datasets, we use
the open-source augmentation library AugLy (Pa-
pakipos and Bitton, 2022) to simulate various text-
based adversarial attacks commonly used on social
media platforms. We focus on using character-level
attacks as opposed to attacks that can potentially
add, remove, or change full words in the text, to
avoid perturbations in the semantic meaning. The
specific augmentations selected for the analysis are
listed in Table 2.

In addition to the synthetically generated attacks,
we collected 98 samples of hate speech text which
were adversarially created and modified by indi-
viduals in a cybersecurity Red Team. In the first
half of the session, participants were tasked with
creating their own attacks based off of their prior
knowledge of text-based attacks seen online. In the
second half of the session, they were given direct
access to the code implementation for the text nor-
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Augmentation Output Text Normalized Text
None This is augmented text This is augmented text
insert_punctuation_chars Th.i.s ,is ...a.ug;m!en’t?ed, ,te!x.t This ,is ...augmented, ,text
insert_whitespace_chars T h i s is a u g m e n t e d text This is augmented text
insert_zero_width_chars This is augmented text This is augmented text
merge_words Thisis augmented text Thisis augmented text

replace_fun_fonts This is augmented text
replace_similar_chars Th!s is @ugmented tex7 Th!s is @ugmented tex7
replace_similar_unicode_chars This is augmented text
simulate_typos This is augmentde texht This is augmentde texht
split_words Th is is augment ed text Th is is augment ed text

Table 2: Examples of augmentations generated using the open-source library AugLy (Papakipos and Bitton, 2022),
leveraged in the analysis for adversarial attacks on the text datasets, and their normalized counterparts. Note that
while the output of insert_zero_width_chars appears visually identical to the original sentence, there are
actually zero-width unicode characters embedded throughout the entire string. We include augmentations that are
not covered by the normalizer (such as merge_words) in our evaluations to showcase that our method does not
further corrupt unknown attack types.

malizer and were tasked to bypass it using targeted
attacks.

Many of the attacks created were similar to
the attacks of insert_punctuation_chars,
replace_fun_fonts, simulate_typos,
replace_similar_unicode_chars, and
replace_similar_chars. The adversaries
also created letter repetition attacks, i.e. “hel-
lllooooo", censored violating text, and replaced
words with emojis.

3.3 Adversarial Text Normalizer
The text normalizer is an isolated correction unit
that can be placed in front of models to target
character-level attacks for various NLP tasks. The
normalizer is designed to be used as a preprocess-
ing step prior to text tokenization. For optimal
computational efficiency, the operator is written
in torchscript, and can process approximately 77
examples per second on a server with an Intel(R)
Xeon(R) CPU E5-2680 v4 @ 2.40GHz processor.
This operator was incorporated into the PyTorch
model as a customizable data transform. The algo-
rithm relies on sophisticated string manipulation
as a targeted defense against known adversarial at-
tacks, and is easily scaled up to support additional
attacks as the adversarial environment progresses.

Currently, the text normalizer supports removing
three overarching categories of text attacks:

1. Character insertion: addition of characters
such as punctuation marks, whitespaces,
Unicode characters, emojis, and more to

separate characters in a word with the
intent to disrupt proper tokenization. This
category includes augmentation methods
such as insert_punctuation_chars,
insert_whitespace_chars, and
insert_zero_width_chars.

2. Character replacement: substitution of
standard Latin characters with visually similar
characters from other languages or Unicode
characters with the intent of obfuscation.
This category includes augmentation meth-
ods such as replace_fun_fonts,
replace_similar_chars, and
replace_similar_unicode_chars.

3. Censorship of violating words: replacement
of letters in violating words with punctuation
characters to avoid explicit content. For in-
stance “kill" could be censored as “k***",
“k!ll", “k#*!" and more.

To undo the effects of a character insertion at-
tack such as insert_punctuation_chars,
the text is first split by whitespaces to identify
‘words’. For each word, we then determine how
many extraneous punctuation characters have been
inserted, ignoring punctuation marks at the begin-
ning and end, as such additions do not segment
the word to disrupt tokenization. If the amount of
punctuation characters is below a set threshold or
the word resembles a URL, we do not modify the
word and add it to our normalized string. Other-
wise, we replace the superfluous punctuation with
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spaces, strip the string of excessive whitespace, and
concatenate consecutive single character entities
together.

For character replacement attacks, we predefined
multiple mappings between Unicode characters and
their keyboard character pairs, and performed a
string search method to reverse the replacement.

As for censorship attacks, a list of common user-
censored toxic terms were identified prior based on
flagged user content. For each toxic term, a regex
for the censorship pattern was defined such that the
first and last letters of the word remain constant
but any of the letters in between can be replaced
by punctuation characters - maintaining the same
length as the original, uncensored word. For every
match found, we replace the censored string with
its uncensored pair accordingly.

4 Evaluation

In this section, we examine the performance of
Hate Speech and Natural Language Inference (NLI)
models with respect to the original, the augmented,
and normalized datasets to evaluate the efficacy of
the text normalizer. All evaluations were conducted
using Dynabench (Ma et al., 2021), in which AWS
ECR models are deployed as endpoints and Batch
Transform jobs are run on AWS Sagemaker to get
dataset predictions. We roughly spent 38.36 CPU
hours on model inference (no GPUs were used).

4.1 Hate Speech

To assess performance on adversarial hate speech
data, we evaluated on five models from the Learn-
ing from the Worst (LFTW) (Vidgen et al., 2021)
paper that were previously retrained on varying
amounts of "rounds" of adversarial hate speech
data collection.

4.1.1 Learning from the Worst
We first evaluate on the test set from Learning
from the Worst. Figure 1 showcases these re-
sults. Overall, the text normalizer maintains or
improves initial performance on all augmented
datasets and the baseline. Across all models, nor-
malizing the insert_zero_width_chars,
replace_similar_unicode_chars, and
replace_fun_fonts augmentations resulted
in the most significant performance gains, with a
maximum of a 32.18% increase. In between, nor-
malizing insert_punctuation_chars and
insert_whitespace_chars had increases

Figure 2: This figure showcases the results of evaluating
Hate Speech models against the baseline, augmented,
and normalized HateCheck datasets. The model scores
in this graph are the averaged scores across all five
LFTW models. To see the raw evaluation results, view
Table 5 in the Appendix.

of at most 11.95%. For the LFTW R3 model, nor-
malizing the whitespace text resulted in a 1.27%
loss in performance. This may be due to the fact
that not every whitespace character in the AugLy
augmentation is removed by the normalizer. As
expected, other augmentations that aren’t covered
by the normalizer did not see any substantial gains
or losses in performance. To view the raw model
scores, see Table 4 in the Appendix.

4.1.2 HateCheck

In addition to evaluating on the LFTW test
set, we also evaluated on an out-of-distribution
dataset, HateCheck. Figure 2 displays these
results. The trends observed in the LFTW test
set overall have agreement with the HateCheck
results. However, in this case, there were no
losses in performance for normalized augmen-
tations covered by our method. The largest
performance gain was 48.89% by normalizing
insert_zero_width_unicode_chars,
and the smallest performance gain was 6.1% by
normalizing insert_punctuation_chars.
To see the raw evaluation results, please review
Table 5 in the Appendix.
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Figure 3: This figure contains the results of evaluating
ANLI models against the baseline, augmented, and nor-
malized rounds 1-3 test sets. The model scores in this
graph are the averaged scores across all five models. To
see the raw evaluation results, view Tables 6, 7, and 8
in the Appendix.

4.1.3 Red Team Attacks

Lastly, we evaluated the LFTW models on the
Red Team dataset tasked to bypass the text nor-
malizer. The baseline scores across all models
averaged at 39.52% and the normalized scores
averaged at 41.32%. In comparison to the
synthetically-augmented text, applying the normal-
izer resulted in a less drastic increase in perfor-
mance. This difference can be attributed to the
fact that a significant amount of the data was at-
tacked similarly to replace_similar_chars
and simulate_typos, two augmentations not
covered by our defenses. To view the raw model
scores, see Table 3 in the Appendix.

4.2 Natural Language Inference

To validate our results in another problem space,
we evaluated on five Natural Language Inference
(NLI) models previously trained on a collection
of adversarial and benign NLI datasets. We eval-
uated the models on the baseline, augmented, and
normalized ANLI test sets from rounds 1-3.

Overall, the results from the ANLI experiments
align with the previous insights discussed in the
Hate Speech task. The replace_fun_fonts,
insert_zero_width_chars, and

replace_similar_unicode_chars
attacks were the most performant, fol-
lowed by insert_punctuation_chars,
insert_whitespace_chars, and fi-
nally the non-covered attack types. The
largest gain, 29.1%, was made by normalizing
insert_zero_width_unicode_chars in
the ANLI R1 test set. To view the raw model
scores, see Tables 6, 7, and 8 in the Appendix.

5 Discussions

Retraining models on adversarial data has been
proposed as a mitigation method for adversarial
attacks (Vidgen et al., 2021; Nie et al., 2020). Its
benefits are that it’s relatively simple to implement,
shown to be effective (Goodfellow et al., 2015),
and doesn’t affect model throughput once deployed.
However, if a new adversarial attack were to be
discovered on a system, the turnaround time for
deploying a robust model can be quite long. A
developer would need to (1) gather and annotate or
systematically generate the attacked data (2) retrain
the model (3) redeploy the model. Steps (1) and (2)
could be highly nontrivial depending on the attack
type and model size. In addition, there can also be
a significant monetary and environmental cost in
retraining a large model (Wu et al., 2021).

On the other hand, text normalization allows a
developer to move fast. Instead of collecting data,
an engineer would simply need to write one addi-
tional function to reverse said attack and test it. In
addition, it’s lightweight and there is no need to
retrain, as this is a text preprocessing step. How-
ever, text normalization cannot handle every attack
type. Text normalization is best suited to mitigate
character-level attacks that do not change the se-
mantic meaning of the text, i.e. syntactic attacks.

Another important consideration is that text nor-
malization does affect real-time performance. A
balance must be found between intelligently mit-
igating attacks and compute. In our use case, we
limited the normalizer to sophisticated string ma-
nipulation, as anything more would result in too
much compute. Hence, it becomes less feasible
to build defenses that require knowledge or under-
standing of words, etc.

Thus, we recommend the best way to mitigate
adversarial attacks is to use a combination of text
normalization and retraining. Specifically, retrain-
ing should be used for semantic adversarial attacks,
and adversarial text normalization for syntactic ad-
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versarial attacks. Despite all the models evaluated
on being retrained on adversarial data, they were
still vulnerable to character-level text attacks. How-
ever, together with the text normalizer, we were
able to increase performance and even return to
baseline performance at times. This study is meant
to show that text normalization in general is a vi-
able approach to mitigating syntactic text-based
attacks. This is certainly not the final method, and
we hope researchers extend this work to support
multilingual text.

6 Conclusion

We proposed a new method to mitigate text-based
adversarial attacks, called the Adversarial Text Nor-
malizer. We evaluated the performance of models
retrained on adversarial data with and without the
ATN. Our experiments show that text normaliza-
tion and retraining should be used together in order
to maintain baseline performance against a broad
range of adversaries.
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Impact Statement

Risks from the Work

Our work is meant to reduce risk to online dis-
course by enabling NLP models to function ro-
bustly in an adversarial setting. We acknowledge
that releasing this work might enable stronger at-
tacks against some systems, but we believe it is im-
portant to discuss these defenses publicly for two
reasons. First, other practitioners and researchers
can benefit from our findings in building stronger
defenses. Second, the history of security and cryp-
tographic research clearly demonstrates that robust

systems are built only when they go through ongo-
ing attack/defend iteration cycles. To that end, we
hope that our work informs the next steps in build-
ing robust NLP systems. As with any NLP system
and computer technology, we acknowledge robust-
ness may be at odds with safety when the models
defended with our mechanism are themselves used
for nefarious purposes.

Use of Scientific Artifacts
In this work, we made heavy use of the Dynabench
platform (Kiela et al., 2021; Ma et al., 2021) and
the models trained on data collected with it. We
worked closely with the creators of the platform
and the models, and they were always fully aware
of our intentions. The Dynabench platform has
been released under the MIT license: https:
//github.com/facebookresearch/
dynabench/blob/main/LICENSE. We
also used the Adversarial NLI, HateCheck, and
Learning from the Worst datasets. Each of those
do not contain identifying information and only
associate a pseudonymous annotator ID with each
example. We verified this manually by looking at
samples from the datasets. The HateCheck and
Learning from the Worst datasets contain offensive
language as part of the nature of the task they
were set up for. All datasets are in English and
were created by English-speaking authors and
annotators in the United States.

Humans Involved in the Research
We did not employ annotators or perform human
subject experiments. We engaged with a partner
team in a collegial capacity to expand our insights
into the adversarial text normalizer and we discuss
those findings here for the benefit of the broader
research community.
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Model Red Team Normalized
LFTW R1 32.41 35.95
LFTW R2 40.61 41.32
LFTW R3 39.88 41.32
LFTW R4 42.01 43.68
All LFTW 42.69 44.32

Table 3: Hate Speech Case Study Results by Model:
Red Team Dataset

Appendix

A AugLy Augmentation Generation

To augment the hate speech and natural lan-
guage inference datasets, we chose random pa-
rameters for each augmentation for every piece
of text. The ranges we used for every parame-
ter are listed below. Since multiple AugLy aug-
mentations accept as input the same parameters,
we do not break this down by augmentation type
(the same value was used across all augmenta-
tions). The following ranges were inputted into
random.uniform() and lists of options were
inputted random.choice():

• aug_p: (0.3, 1.0)

• aug_word_p: (0.3, 1.0)

• aug_char_p: (0.1, 0.4)

• granularity: ["char", "word", "all"]

• vary_fonts: [True, False]

B Raw Data: Hate Speech and Natural
Language Inference Analyses

Here, we provide the full evaluation results with
exact numbers broken down by attack type and
model.
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Augmentation LFTW R1 LFTW R2 LFTW R3 LFTW R4 All LFTW
baseline 57.79 70.03 81.20 81.09 80.27
normalized 58.04 70.08 81.24 81.21 80.27
insert_punctuation_chars 43.34 50.48 48.53 49.23 50.74
normalized 50.83 58.48 60.48 63.40 56.43
insert_whitespace_chars 43.05 51.97 53.65 46.89 45.84
normalized 48.83 52.97 52.38 52.50 52.05
insert_zero_width_chars 35.04 50.73 51.04 48.96 46.87
normalized 58.37 70.23 81.29 81.14 80.38
merge_words 56.47 68.74 77.67 78.27 77.30
normalized 56.67 68.83 77.73 78.30 77.10
replace_fun_fonts 42.23 50.08 55.75 51.10 50.43
normalized 58.11 70.67 80.42 80.01 78.91
replace_similar_chars 52.43 56.21 52.39 52.36 56.17
normalized 52.48 56.76 53.00 52.76 56.19
replace_similar_unicode_chars 47.65 56.16 56.26 58.06 59.34
normalized 58.20 70.15 80.25 80.04 79.08
simulate_typos 53.95 60.48 61.61 59.93 61.81
normalized 53.99 60.55 61.34 60.31 61.74
split_words 52.45 55.74 59.27 58.36 60.22
normalized 52.38 56.38 59.32 58.77 60.82

Table 4: Hate Speech Case Study Results: LFTW

Augmentation LFTW R1 LFTW R2 LFTW R3 LFTW R4 All LFTW
baseline 36.48 47.78 49.23 49.35 49.45
normalized 36.45 47.73 49.29 49.37 49.47
insert_punctuation_chars 13.18 35.05 32.52 30.09 18.09
normalized 28.19 41.15 40.78 44.67 38.95
insert_whitespace_chars 11.19 15.72 29.63 15.41 14.96
normalized 20.60 34.48 45.57 33.01 32.57
insert_zero_width_chars 0.00 21.28 30.50 8.37 0.58
normalized 36.45 47.73 49.29 49.37 49.47
merge_words 37.03 47.99 48.72 49.16 49.15
normalized 37.32 47.92 48.75 49.17 49.08
replace_fun_fonts 16.38 27.04 32.68 27.43 21.95
normalized 36.12 46.32 48.83 49.29 49.38
replace_similar_chars 33.86 47.63 47.57 47.77 47.09
normalized 34.10 47.47 47.46 47.80 47.05
replace_similar_unicode_chars 22.61 39.35 41.07 42.68 40.06
normalized 36.42 47.26 49.12 49.29 49.45
simulate_typos 32.46 44.16 42.84 46.49 45.88
normalized 32.57 43.81 42.79 46.44 45.75
split_words 33.76 47.19 44.11 47.21 46.49
normalized 33.20 46.44 43.58 47.00 46.04

Table 5: Hate Speech Case Study Results: HateCheck
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Augmentation RoBERTa T5 BERT ALBERT DeBERTa
baseline 62.10 58.90 53.80 63.00 65.00
normalized 61.80 58.90 54.00 62.90 65.00
insert_punctuation_chars 32.40 32.70 32.60 34.40 34.60
normalized 40.40 38.80 41.20 39.90 46.40
insert_whitespace_chars 36.40 38.50 40.20 33.60 33.20
normalized 38.00 39.80 39.50 34.60 35.10
insert_zero_width_chars 35.50 34.30 53.80 31.90 36.20
normalized 61.80 58.70 54.00 62.80 65.30
merge_words 60.10 57.20 48.00 58.30 59.90
normalized 60.00 57.30 48.10 58.50 59.70
replace_fun_fonts 40.00 50.10 36.40 62.30 39.10
normalized 60.50 58.50 51.80 63.10 64.00
replace_similar_chars 45.30 44.20 39.60 44.00 44.70
normalized 43.80 43.80 40.50 43.80 44.60
replace_similar_unicode_chars 44.30 42.10 38.20 53.40 44.90
normalized 61.00 58.00 52.40 62.00 63.60
simulate_typos 46.70 44.20 42.90 45.00 48.10
normalized 46.80 44.20 42.90 44.90 47.70
split_words 45.50 42.90 41.40 44.30 46.60
normalized 45.80 42.80 41.60 43.70 47.10

Table 6: Natural Language Inference Case Study Results: ANLI R1

Augmentation RoBERTa T5 BERT ALBERT DeBERTa
baseline 46.50 46.80 44.80 46.50 44.50
normalized 46.20 46.80 44.90 46.60 44.40
insert_punctuation_chars 35.40 34.10 31.80 34.20 34.10
normalized 35.60 36.10 37.90 38.50 38.00
insert_whitespace_chars 35.30 36.70 35.50 33.90 34.40
normalized 33.60 36.50 35.80 34.80 35.30
insert_zero_width_chars 35.10 34.20 44.80 33.40 34.10
normalized 46.30 46.70 44.90 46.60 44.30
merge_words 45.60 46.60 46.70 44.30 42.80
normalized 45.50 46.60 46.60 44.50 42.50
replace_fun_fonts 36.70 42.20 35.90 46.40 36.80
normalized 44.80 45.90 44.80 46.30 44.00
replace_similar_chars 38.00 37.90 37.50 39.60 38.80
normalized 38.20 37.60 36.20 39.40 38.60
replace_similar_unicode_chars 39.40 38.30 36.90 42.00 37.60
normalized 46.00 46.20 44.30 46.20 44.40
simulate_typos 38.40 39.10 39.00 37.70 39.40
normalized 38.30 38.90 39.30 37.70 39.70
split_words 38.00 38.30 36.80 37.40 39.50
normalized 38.30 38.20 36.10 38.40 39.80

Table 7: Natural Language Inference Case Study Results: ANLI R2
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Augmentation RoBERTa T5 BERT ALBERT DeBERTa
baseline 45.58 44.83 44.00 44.17 45.83
normalized 45.08 44.83 43.67 43.58 45.33
insert_punctuation_chars 35.17 33.50 34.58 33.67 35.17
normalized 35.75 36.58 33.92 33.92 36.00
insert_whitespace_chars 33.67 35.17 36.33 34.33 34.92
normalized 34.75 36.25 37.33 35.00 35.00
insert_zero_width_chars 34.42 32.25 44.00 32.08 35.00
normalized 45.08 44.83 43.83 43.75 45.33
merge_words 43.42 44.58 41.42 40.33 44.92
normalized 42.83 44.58 41.42 40.00 44.42
replace_fun_fonts 38.08 40.92 37.08 44.25 37.50
normalized 45.33 44.92 43.58 43.58 44.83
replace_similar_chars 40.00 37.08 36.92 36.83 37.00
normalized 38.83 37.42 36.42 36.75 37.17
replace_similar_unicode_chars 38.67 38.00 36.17 41.17 37.67
normalized 44.58 45.00 43.08 43.58 44.67
simulate_typos 35.92 36.83 36.83 37.75 38.00
normalized 35.50 36.67 36.00 37.00 37.50
split_words 38.50 38.50 37.08 37.75 35.67
normalized 37.50 38.17 36.42 37.33 35.75

Table 8: Natural Language Inference Case Study Results: ANLI R3
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Abstract

The objective of a Question-Answering sys-
tem over Knowledge Graph (KGQA) is to re-
spond to natural language queries presented
over the KG. A complex question answering
system typically addresses one of the two cat-
egories of complexity: questions with con-
straints and questions involving multiple hops
of relations. Most of the previous works have
addressed these complexities separately. Multi-
hop KGQA necessitates reasoning across nu-
merous edges of the KG in order to arrive at
the correct answer. Because KGs are frequently
sparse, multi-hop KGQA presents extra compli-
cations. Recent works have developed KG em-
bedding approaches to reduce KG sparsity by
performing missing link prediction. In this pa-
per, we tried to address multi-hop constrained-
based queries using KG embeddings to gen-
erate more flexible query graphs. Empirical
results indicate that the proposed methodol-
ogy produces state-of-the-art outcomes on three
KGQA datasets.

1 Introduction

Multi-relational graph, also known as Knowledge
Graph (KG) comprises of a large number (of-
ten, millions) of entities and relations represented
in the form of triplets (entity -> relation -> en-
tity). Some of the most widely used KGs in-
clude DBPedia (Lehmann et al., 2015), Freebase
1, YAGO (Suchanek et al., 2007), KENSHO2 and
NELL (Mitchell et al., 2018). In the recent years,
Knowledge Graph question answering (KGQA)
has emerged as a significant research field (Sun
et al., 2018; Zhang et al., 2018; Bordes et al., 2014).
Given a natural language question, a KGQA system
derives the right answer by analyzing the question
and mapping it to the underlying KG.

1https://developers.google.com/
freebase

2https://www.kaggle.com/
kenshoresearch/kensho-derived-wikimedia-data

Early works of KGQA mainly focused on simple
questions containing single relations (Yang et al.,
2014; Hao et al., 2017; Dong et al., 2015). How-
ever, in the real world, questions are often complex
and recent work focuses on addressing these com-
plexities. The complexities in KGQA can broadly
be divided into two types: (1) Constraint based:
Single-relation questions with constraints. For ex-
ample, in this query “when did the 7th harry potter
book come out?” there is only one relation, “pub-
lished in” between the answer entity and the entity,

“harry potter book” but there is also a constraint
“7th” which needs to be addressed. To handle these
kind of questions, query graph generation methods
have been proposed (Yih et al., 2015; Bao et al.,
2016; Luo et al., 2018). These methods first iden-
tify the 1-hop paths and then apply constraints on
them. (2) Multi-hop based: Questions with multi-
hop answers. For example, consider this query

“What language is spoken where the capital city
is Brussels?” the answer is associated with entity

“Brussels” through two hops of relations, namely,
“capital of” and “language spoken”. For address-
ing such multi-hop questions, it is important to
consider longer paths. One of the main challenges
is increasing search space. It is important to restrict
the multi-hop relations to be considered, otherwise
the search space can grow exponentially with the
length of the relation paths. For example, Chen
et al. (2019) and Lan et al. (2019) proposed to con-
sider only the best matching relations instead of
all relations when extending a relation path. How-
ever, there exists little work to address both types
of complexities together.

In this paper, we address both types of complex
question answering - with constraints as well as
multi-hop relations - together. We propose an em-
bedding based graph query generation method by
allowing longer relation paths. Instead of adding
constraints after complete generation of all prob-
able paths, we apply constraints on partial paths
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Figure 1: Overall representation of the proposed method for constraint based Multi-hop KGQA. It has five
components: (1) KG Embedding Module which learns embeddings of all the entities and relations present in the
KG, (2) Question Embedding Module which learns embedding for the given question, (3) Constraint Module for
identifying constraints in the question (4) Graph Query Generation Module which generates the relevant query
graphs based on the question, and (5) The fifth module selects top-k graphs and generates the final answer. Graph
embeddings help our proposed method to effectively handle KG sparsity.

and explore the next path segments. This helps to
lessen the query search space effectively. For the
ComplexWebQuestions dataset, which has more
number of complex questions; our method outper-
forms SOTA in terms of Prec@1 and F1. On other
benchmark datasets as well our proposed approach
achieves SOTA results. The overall representation
of our proposed model is presented in Figure 1. We
make the following contributions in this paper:

1. Our proposed method combines embeddings
with query graphs to address constraint based
multi-hop complex questions. To the best of
our knowledge, this is the first attempt of com-
bining embeddings with query graph to ad-
dress all types of complex questions.

2. The proposed method leverages the require-
ment of answer selection from a pre-specified
local neighborhood - an auxiliary constraint.

2 Related Work

2.1 Knowledge Graph Question Answering
Previous works (Li et al., 2018) used TransE (Bor-
des et al., 2013) graph embedding method to an-
swer factoid based questions. However, it is a
simple question answering method which works
with 1-hop questions and furthermore, it requires

ground-truth labeling for each question. Yih et al.
(2015) and Bao et al. (2016) in their works used
query graph based approaches to answer the ques-
tions. Yang et al. (2015) uses embedding based
approach to co-related natural language questions
to its corresponding logic forms. Different method-
ologies proposed in (Hao et al., 2017; Lukovnikov
et al., 2017; Yin et al., 2016; Dai et al., 2016; Dong
et al., 2015) use neural networks based approach.
These neural networks are trained to learn a scoring
function and rank the candidate answers based on
these scores. There are other works (Mohammed
et al., 2018; Ture and Jojic, 2017) which have for-
mulated the QA task as a classification problem by
using relations as a label. These approaches are not
easily extendable to multi-hop settings.

2.2 Knowledge Graph Embedding

Real world KGs have the following limitations: (1)
Most of them are often incomplete (Wang et al.,
2017); (2) Real-world data is frequently dynamic
and constantly changing(Cai et al., 2018). There-
fore, KG completion is often formulated as the
link-prediction problem(Arora, 2020). In the recent
years, a lot of research has gone into link predic-
tions in Knowledge Graphs using KG embeddings.

TransE (Bordes et al., 2013) generates high di-
mensional embeddings for entities in real space
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Figure 2: Constraint(s), topic entity and relations are detected for the given question. Assuming we start from the
topic entity "Pastime with Good Company", the core relation path is the path linking topic entity to the variable X.
Here, only one constraint ("first") is present, represented by shaded ellipse.

and TransE (Bordes et al., 2013) embeds entities in
high-dimensional real space and translates between
the head and tail entities. DistMult (Yang et al.,
2015) and RESCAL (Nickel et al., 2011) construct
KG embeddings by learning a score function that
contains a bi-linear product of the vectors of the
head and tail entities, as well as a relation matrix.
These models, however, only consider each individ-
ual fact and neglect intrinsic relationships, thus can-
not capture deeper semantics for better embedding.
ComplEx (Trouillon et al., 2016), first presents
complex vector space, which is capable of captur-
ing both symmetric and antisymmetric relations. It
uses tensor factorization to generate embeddings of
relations and entities in complex space. The com-
plex vectors can retain the benefit of dot product,
that is linearity in both space and time complex-
ity. This motivated us to use this embedding in
our present work. RotatE (Sun et al., 2019) creates
entity embeddings by projecting them in complex
space, and relations are represented as complex
plane rotations. InteractE (Vashishth et al., 2020) is
an improvement over ConvE (Dettmers et al., 2018)
method by increasing feature interaction. These
models have high time complexity.

3 Background

3.1 Knowledge Graph

A knowledge graph is a set of triples represented by
(h, r, t), where r ∈ R is the relation and h, t ∈ E
are subject and object respectively. Here,R and E
represents set of relations and entities respectively.

3.2 Link Prediction

Given an incomplete knowledge graph, the task of
the link prediction is to predict the valid unknown
links. This task is achieved by KG embedding

models which assign a score s = ϕ(h, r, t) ∈ R
to the predicted links and validate whether the link
is true. The goal of this model is to predict the
missing links correctly.

3.3 Knowledge Graph Embeddings
Complex Embedding (Trouillon et al., 2016) is a la-
tent factorization method that learns a large variety
of symmetric and anti-symmetric relations in com-
plex space. The complex vectors can retains the
benefit of dot product, that is linearity in both space
and time complexity. This motivated us to use this
embedding in our present work. It is used to gen-
erate entity and relation embeddings in knowledge
graphs. Given h, t ∈ E and r ∈ R the complex
embedding generates eh, er, et ∈ Cd and defines a
scoring function:

ϕ(h, r, t) = Re(

d∑

k=1

e
(k)
h e(k)r ē

(k)
t ) (1)

For all correct triplets ϕ(h, r, t) > 0 and for others
ϕ(h, r, t) < 0. Re stands for the real part of the
complex numbers.

3.4 Graph Query
For a given question Q, the task of the KGQA is to
find an answer a such that a ∈ E .

In Figure 2, we show the query graph (Bao et al.,
2016; Yih et al., 2015; Luo et al., 2018) for the in-
put question Who was the first wife of the composer
of "Pastime with Good Company"? A query graph
broadly have four parts: (i) A grounded entity,
a head/ topic entity (for e.g "Pastime with Good
Company") which is explicitly mentioned in the
question. It is represented by a shaded recatangle in
Fig 2; (ii) A lambda variable (X in Figure 2) is the
actual answer to the input question; (iii) An existen-
tial entity, intermediate node/nodes (y in Figure 2)
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between grounded entity and lambda variable; and
(iv) An aggregation function (argmin/count) is the
constraint imposed on the lambda variable. In Fig
2, first is the constraint on the lambda variable,
it is internally mapped to argmin (described under
Section 4.6). The edges of the graph represent the
relations r ∈ R. The core relation path is the path
connecting the topic entity to the lambda variable
X.

4 Method

4.1 Problem Statement

For a given natural language question q having
relations r (r ∈ R), entities eh (eh ∈ E) and
zero/more constraint(s), the task is to identify the
answer et, where et ∈ E . As an external knowledge
source, Knowledge graph G is used. It is the set
of available facts represented by triples K, where
K ⊆ E ×R× E . Here,R is set of relations and E
is set of entities.

4.2 Overview of the Proposed Method

Our proposed method uses graph embeddings to
answer complex questions. It begins by learning
a KG representation in the embedding space. For
a given question, it then learns the question em-
bedding and also identifies the topic entities. For
relation extraction, we use the training questions
and their answers to learn the linking model. For
learning the temporal constraints and superlative
linking, we simply use regular expressions and a
superlative word list(Luo et al., 2018) . The superla-
tive words are manually mapped to the aggregation
functions: argmin & argmax. Finally it combines
these embedding and constraints to predict the an-
swer.

4.3 KG Embedding Module

For KG embedding we used complex embeddings
(Trouillon et al., 2016) for all h, t ∈ E and all
r ∈ R such that eh, er, et ∈ Cd. The entity em-
beddings are used to learn a triple scoring function
between topic entity, question and answer entity.
The selected triplets are used to generate the query
graphs. The entity and relation embeddings learned
here are kept fixed and used for fine-tuning subse-
quent steps. For our work we have used latest dump
of Freebase3 as our Knowledge graph for all the
datasets.

3https://developers.google.com/
freebase/

4.4 Question Embedding Module

This module is used to map the natural language
questions to a fixed dimension vector eq ∈ Cd. We
have used ROBERTa4 (Liu et al., 2019) model to
generate q into vector of dimension 768. The gener-
ated vector is passed through three fully-connected
linear layers with ReLU activation and a dropout of
0.1 in each layer and finally projected to a complex
space Cd.

For a question q, topic entity h ∈ E and set of
answers A ⊆ E , the question embedding is learned
such that

ϕ(eh, eq, ea) > 0 ∀a ∈ A (2)

ϕ(eh, eq, eā) < 0 ∀ā /∈ A (3)

where, ϕ is defined in equation 1 and eh, ea are
entity embeddings. The model is learned by mini-
mizing the binary cross entropy loss between the
sigmoid of the scores and the target answer labels.
When the entities are large we do label smoothing.

4.5 Relation matching

For relation matching we learn a scoring function
Sr(r, q) similar to PullNet (Sun et al., 2019) and
rank the relations r ∈ R for question q. Let q̄ =
{< s > w1, w2 . . . w|q| < /s >}, word sequence
in question q and hr be the relation embedding,
then the scoring function is defined as follows:

hq = ROBERTa(q̄) (4)

Sr(r, q) = sigmoid(hTq hr) (5)

ROBERTa(.) returns the last hidden layer output
of ROBERTa model. We select those relations
where Sr > 0.5 it is denoted asRa.

4.6 Query Graph Generation

After extracting the entities and relation(s) in the
previous steps, the constraint(s) are detected and
are manually mapped to the aggregation functions
by the method described under Section 4.2. To
generate the query graph g, {extend, aggregate}
actions are applied. An extend action extends the
core path by one or more relation in R. An ag-
gregate action attaches the detected aggregation

4The pre-trained ROBERTa base model could be found
at https://huggingface.co/models?search=
roberta
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Figure 3: Examples of the Query Graph generation by extend and aggregate actions.

function to either a lambda variable or an existen-
tial variable.

In Figure 3, we start with the ground entity "Pas-
time with Good Company" and apply extend ac-
tion to find the temporal entity y (here it is Henry
VIII) connected by the relation "composer". As
there is no constraint attached with the above re-
lation, we again apply extend action and find the
"lambda variable" attached with y with the relation
"wife_of". Here, the constraint "first" is associated
with this relation and is mapped to the aggregation
function argmin. We apply this constraint on the
"lambda variable" (X) and select the final answer
(here the answer is Catherine of Aragon).

We start with extend action, then apply aggre-
gate action, this significantly reduces the search
space. We repeat the steps till we generate the
query graph.

4.7 Answer Selection Module
Sometimes, the previous step may generate a set of
query graphs instead of a single graph. In that case
we select the best answer by this module. LetRg

represent the set of relations for each query graph g.
We also have a set of relationsRa extracted from
equation 5. For g, we calculate a relation score as:

RelScoreg = |Ra ∩Rg| (6)

We combine RelScoreg with Complex score to
find the answer entity:

eans = argmax
a′∈Ng

ϕ(eh, eq, ea′) + γ ∗RelScoreg

Here, γ is a tunable parameter. We select the entity
with highest score (eans) as the answer.

5 Experiments

In this section, we first describe the datasets used
for evaluating our method and the SOTA models.
Finally we describe the results, ablation study and
error analysis.

Question Type CWQ WQSP
1-hop w/o cons. 0.10% 71.30%
1-hop w/ cons. 35.90% 28.20%
2-hop w/o cons. 33.50% 0.0%
2-hop w/ cons. 30.50% 0.50%

Table 1: Statistics for CWQ and WQSP datasets. cons.
stands for constraints.

5.1 Datasets
We evaluate our method on the following datasets:
WebQuestions Semantic Parses (WQSP)(Yih et al.,
2015), ComplexQuestions (CQ) (Bao et al., 2016)
and ComplexWebQuestions (CWQ) (Talmor and
Berant, 2018). In Table 1, we have listed the statis-
tics for each dataset. CQ dataset does not provide
ground truth query graphs so we could not collect
similar statistics. It has been observed that major
questions are 1-hop in CQ dataset.

Method CWQ (Prec@1 / F1) WQSP (F1) CQ (F1)
Yih et al. (2015) NA 69.0 NA
Luo et al. (2018) NA NA 40.9
Bao et al. (2016) NA NA 42.8
Lan et al. (2019) 39.3/36.5 67.9 NA
Bhutani et al. (2019) 40.8/33.9 60.3 NA
Chen et al. (2019) 30.5/29.8 68.5 35.3
Ansari et al. (2019) NA 72.6 NA
Lan and Jiang (2020) 44.1/40.4 74.0 43.3
Proposed Method 46.3/41.9 77.8 45.9

Table 2: Comparison of the results between our pro-
posed method and other state of the art methods.

5.2 Results
We compare the results of our proposed model with
the following existing works. We first compare
with the methods which use staged graph query
but cannot handle multi-hop questions (Yih et al.,
2015; Bao et al., 2016; Luo et al., 2018). Next, we
compare with the method proposed by Lan et al.
(2019), it handles constraints and consider multi-
hop but does not use any strategy to reduce the
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search space. We further compare with (Chen et al.,
2019), which does not handle constraint but uses
beam search with a beam size of 1 to handle multi-
hop questions. Bhutani et al. (2019) uses a strategy
to decompose complex questions into simple ques-
tions and achieved SOTA results on CWQ dataset
in terms of Prec@1. Ansari et al. (2019) proposed
a method which generates query programs from
question token by token. Finally, we compare our
method with Lan and Jiang (2020), their method
handles both multi-hop and constrained based com-
plex question and uses beam search with beam size
3 to reduce the search space.

The overall comparison results with the SOTA
models in shown in Table 2. From the table we can
see that our model outperforms other methods on
CWQ dataset in terms of both Prec@1 and F1. Our
models shows an improvement of 2.2% in terms
of Prec@1 and 1.5% in terms of F1 compared to
the best SOTA model. This validates our claim
that our proposed method can effectively handle
the complex questions with both constraints and
multiple hops. In WQSP dataset, the percentage
of constrained based questions are low specially
for multi hops (0.5% only, shown in Table 1). For
this reason, our model not only outperforms all
other SOTA models but also displays around 74%
F1 score which is highest in comparison to other
two datasets (CWQ and CQ). CQ dataset contains
only single hop constrained based questions. In this
dataset also our model outperforms other models
in terms of F1 by 2.5%. This shows the effec-
tiveness of our model in terms of handling only
constraint based question. Overall the results in
Table 2 shows the robustness and efficiency of our
proposed model.

Method CWQ (Prec@1 / F1)
SOTA 44.1 / 40.4
w GRU 43.3 / 38.6
w/o extend 26.4 / 22.8
w/o connect 36.8 / 32.3
w/o aggregate 43.8 / 39.5
Freebase-50 (avg.) 27.7 / 22.8
TransE 43.8 / 39.8
TransH 44.5 / 40.8

Table 3: Ablation study on CWQ dataset.

5.3 Ablation Study

We performed ablation study to better understand
our model. To show that the performance of our
model is not mainly due to use of ROBERTa (Liu
et al., 2019) we replaced it with simple GRU model
and conducted the experiments. The results in Ta-
ble 3 shows that GRU based version of our method-
ology shows comparable results with SOTA in
terms of both Prec@1 and F1. This verifies that
performance of our method is not mainly because
of the use of ROBERTa. To show the importance
of each actions in the query graph, we have created
three variants of our proposed method by eliminat-
ing one of the actions from each of them. From
the results in Table 3, we can see that aggregate ac-
tion has the least effect among the three and extend
action have the most effect on the performance
of the proposed method. The best answer is ob-
tained when all the three actions are used together.
To show the effectiveness of the KG embedding
module we have randomly removed 50% of the
relations from the KG ( Freebase) and created a
new KG Freebase-50 and then execute our algo-
rithm on this new KG. We reported this step 10
times and reported the average results of our model
in Table 3 in terms of Prec@1 and F1. From the
results we can see that with the reduced KG our
model performs similar to that of the w/o extend
approach. This shows that our model is able to pre-
dict the missing links correctly but failed to apply
constraints effectively due to sparse KG.

Further, to show the effect of embedding model
on our proposed method, we have created two new
variants of our proposed model using TransE (Bor-
des et al., 2013) and TransH(Wang et al., 2014)
KG embeddings. The results are shown in Table 3.
From the Table it can be seen that both the models
produce comparable results with respect to SOTA
models. This shows that the performance of our
proposed method is not mainly dependent on the
type of KG embeddings used.

6 Conclusion

In this paper, we propose an embedding based
query graph generation method to address com-
plex questions (constrained multiple hops queries).
Often KGs are incomplete or sparsely populated,
and this poses additional challenges for complex
KGQA methods. By using KG embedding, the
proposed methodology effectively address this KG
sparsity problem by predicting missing links with-
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out the use of secondary corpus. By strategically
incorporating constraints into the query graphs, we
are able to restrict the search space. Experiments
showed that our proposed method outperforms all
other SOTA methods on all the datasets (CWQ,
WQSP and CQ). In future, we would like include a
module to handle abbreviation errors.
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Abstract

Autoregressive transformer (ART)-based
grapheme-to-phoneme (G2P) models have
been proposed for bi/multilingual text-to-
speech systems. Although they have achieved
great success, they suffer from high inference
latency in real-time industrial applications,
especially processing long sentence. In this
paper, we propose a fast and high-performance
bilingual G2P model. For fast and exact
decoding, we used a non-autoregressive
structured transformer-based architecture and
data augmentation for predicting output length.
Our model achieved better performance than
that of the previous autoregressive model and
about 2700% faster inference speed.

1 Introduction

Speech synthesis has been applied in various real-
world services, such as AI speaker, car navigation
guidance and news article-reading services in each
language. Grapheme-to-phoneme (G2P) module
convert text to phonemes in text-to-speech (TTS)
system. G2P conversion has been studied in vari-
ous ways, including rules, dictionaries, statistical-
based methods (Deri and Knight, 2016) and neural
network-based methods (Yolchuyeva et al., 2021;
Sun et al., 2019a; Kim et al., 2021; Choi et al.,
2021). Currently, monolingual G2P research is the
most conducted, although recently bilingual or mul-
tilingual G2P research is also being actively per-
formed (Clematide and Makarov, 2021; Yu et al.,
2020; Bansal et al., 2020; Gautam et al., 2021).
Most of the proposed models with high perfor-
mance are based on autoregressive transformers
(A.Vaswani et al., 2017) in both monolingual and
multilingual G2P. However, these models suffer
from high inference latency, which is sometimes
unacceptable for real-time TTS applications that
generate long speech synthesis sounds, such as
news sentences. A previous study (Kim et al., 2021)
used a simple model structure with a few features

and batch inference for fast inference speed; how-
ever, there were limitations in specific language
characteristics.
In this paper, we propose a high-performance bilin-
gual G2P model that has an fast inference speed
that enables real-time service. For an efficient ex-
pression for each language, byte-level representa-
tion input and a language index are used as the
main inputs, and for fast decoding, the transformer
model is based on a non-autoregressive structured
decoder. Because the length of the estimated out-
put used in the non-autoregressive structured de-
coder has a great impact on the G2P accuracy, a
sub-network and a data augmentation technique
are used to better infer the output length. In addi-
tion, we experimented with the difference between
training the whole input unit (sentence) and the
tokenized unit.
We conducted experiments for different language
systems, such as European which have a small num-
ber of graphemes and East Asian ones which have
a large number of graphemes. We chose two lan-
guages for bilingual G2P model; English and Ko-
rean. Experimental results showed that, despite
significantly losing speed, our non-autoregressive
transformer-conditional random field (NART-CRF)
based G2P model achieved better performance than
those of previous ART models. When it is applied
to an actual service system, in addition to the speed
and high accuracy applicable to real-world TTS ap-
plications, it is possible to generate the phonemes
of several languages with one model.

2 Related work

2.1 Multilingual G2P

Recent works propose various methods for multi-
lingual natural language processing (NLP) tasks
such as machine translation (Aharoni et al., 2019;
Zhang et al., 2020) and language model (Pires et al.,
2019). A few multilingual G2P studies are also in
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progress. The benchmarks for multilingual g2p
is provides and utilized various G2P models : A
neural transducer system using an imitation learn-
ing paradigm (Ashby et al., 2021), studies building
an ensemble of several different sequence models
(Vesik et al., 2020; Gautam et al., 2021; Clematide
and Makarov, 2021). Meanwhile, there is a neural
multilingual G2P model with byte-level input rep-
resentation (Yu et al., 2020). On this wise, most
of the autoregressive sequence models are used
to learn phonemes of various languages. But, the
autoregressive factorization makes the inference
process hard to be parallelized as the results are
generated token by token sequentially. Therefore,
these models have limitations in applying them to
real-world processing services, especially dealing
with long sentence, because the inference time in-
creases linearly with the length of the generated
phoneme output.

2.2 Fast decoding

For various tasks, the transformer (A.Vaswani et al.,
2017) model achieve good performance. However,
the autoregressive method suffer from high infer-
ence latency. Therefore, there are several studies
to solve this problem. Since decoding takes a high
inference latency, the deep-encoder and shallow-
decoder architecture is proposed and it improve
the inference speed (Kasai et al., 2021). For par-
allelism, the non-autoregressive sequence models
are proposed and applied it to the machine trans-
lation and speech synthesis (Gu et al., 2018; Sun
et al., 2019b). The non-autoregressive sequence
models improve the inference speed; however, they
cannot get results as good as their autoregressive
counterparts that generate each token in the tar-
get sentence independently. To decode token co-
occurrence be guaranteed, a structured inference
module is incorporated in the non-autoregressive
decoder to directly model the multi-modal distri-
bution of phoneme sequences (Sun et al., 2019b).
In this study, we follow the structure (Sun et al.,
2019b) to apply G2P task and achieve great perfor-
mance.

3 The proposed model

This section describes the proposed model for fast
bilingual G2P conversion. The overall structure of
the model is shown in Figure 1.

3.1 Byte-level representation input and
sentence/token-level input

Following the method of Yu et al. (2020), the pro-
posed model uses an input with a byte-level repre-
sentation for the efficient representation of multiple
languages. Each character is expressed at the byte
level based on the UTF-8 encoding. This expres-
sion can reduce the size of the input vocabulary, and
the byte-level vocabulary cardinality is constrained
to be equal to or smaller than 256. In this study,
two experiments were performed: processing of
the entire sentence as the input, and tokenizing of
the sentence and processing of each token as one
batch.
Processing of the entire sentence as the input
: The input sentence encoded at the byte level
and the language index of the input are used as the
inputs to the model. Using the entire sentence as
the input is good for inferring the correct pronunci-
ation sequence according to the meaning because
it learns by considering the context of the entire
sentence together. On the other hand, if the dataset
is divided by language, as in this experiment, it
is necessary to separate and process the language-
mixed sentences for each language when inferring
the pronunciation sequence.
Processing of the input token unit : First, a given
input sentence is divided into tokens using an ap-
propriate tokenizer for the language. In the case
of Korean and English, a tokenizer that separates
the space-delimited orthographic words (tokens)
was used in this study. Here, in the case of Korean,
there is a point to be particularly careful about. The
pronunciation of the first syllable or the last sylla-
ble of a token may change depending on whether
the tokens are read after a break or not. There-
fore additional features were needed to connect the
separated tokens naturally in the final G2P results.
Following the method of Kim et al. (2021), we used
the phonological phrasing information between to-
kens. Moreover, for the first and last syllables of to-
ken to be naturally connected with each front/next
token, information on the ending or beginning of
the part to be connected is required. For example,
for the input as shown in the Figure 2, each token’s
input elements in the input sentence are as follows:
A language index, a input token xt to be converted
to a byte-level representation (part a), two phono-
logical phrasing information on both sides of the
token (part b), a last jaso (orthographic phoneme
segments) in front token xt−1 (part c) and a first
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Figure 1: The overview of proposed model

Figure 2: The example of composition for each token in
a sentence

jaso in next token xt+1 (part d). They are concate-
nated with each token, and the entire token in the
sentence is composed of one batch, so that it learns
and infers at once. In this way, if it is configured
in token units, it is not necessary to separate the
language-mixed sentences for each language and
compose the input, and it is possible to infer faster
with relatively short input and output lengths. On
the other hand, tokenizers for each language are
required, and there is a limit for including context
information rather than the entire sentence unit.

3.2 Transformer-based structured decoding
model for G2P conversion

The model design follows the NART architecture
with CRFs. For more information on the model,
see A.Vaswani et al. (2017); Gu et al. (2018); Sun
et al. (2019b).
NART-based model : Like in the ART model,

the encoder of our model takes the embeddings

of the input tokens and their additional features as
the input and generates a contextual representation.
Following the decoder in NART-CRF, the decoder
independently decodes each pronunciation token
given a sequence length T ′ and a decoder input z. It
also uses the padding symbol "<pad>" followed by
the end-of-sentence symbol "<eos>" as the decoder
input. The transformer model utilizes multi-head
self-attention and multi-head encoder-decoder at-
tention. In contrast to the ART model, multi-head
positional attention in the decoder is also used to
model local word orders within a sentence or a to-
ken. In our model, each decoder layer refers to the
output of each encoder layer with the same depth.
It follows the model architecture of Yu et al. (2020)
and performs better than the existing architecture
in our experiment. The position-wise feedforward
network consists of a two-layer linear transforma-
tion with a ReLU activation function and is applied
after using multi-head attention in both the encoder
and the decoder.

Structured inference module: Like in Sun et al.
(2019b), a linear-chain CRF is incorporated into
the decoder part to model richer structural depen-
dencies. The CRF module can be jointly trained
end to end with neural networks using a negative
log-likelihood loss LCRF . In the context of G2P
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Figure 3: The sub-network for predicting and using
output length

conversion, we use a “phoneme” for the decoder
output and decode its highest scoring sequence.

3.3 Predicting output length for decoder

In the NART-CRF structure, an input of a specific
length is used as the input z of the decoder. The
length of this input has a great influence on infer-
ring the final output of the model. Through several
experiments, we realized that it is not easy to pre-
dict the exact output length using only the encoder
output. Even if it is long or short by a small number
such as 1 or 2, the pronunciation sequence can be
generated incorrectly, which greatly affects the per-
formance. So, while adding a layer or sub-network
to predict the output length T ′, we applied a data
augmentation technique that can supplement the
decoding process despite incorrect prediction val-
ues.
Sub-network for predicting the output length
In the G2P task, the prediction of the input and
output lengths of the decoder has a greater effect
on the overall accuracy than that in the machine
translation task (Sun et al., 2019b). We added a
sub-network to infer the phoneme sequence length
exactly, as shown in Figure 3. The sub-network fol-
lows the model proposed in Yang et al. (2020); how-
ever, it differs in the prediction of an output length
that is continuous in nature using linear regression
rather than softmax at the end of the model.

Data augmentation As mentioned above, the
length of the sentence is very important in the
phoneme sequence of the G2P model. Therefore,
even if the sentence length is incorrectly predicted,
it should still be used to generate a phoneme se-
quence with the correct length. Thus, we trained
model to guess correctly actual output length by
padding by the length that exceeds the actual length
even in a sequence that is a little longer than the
actual output length. To this end, data augmenta-
tion was performed by pairing an output with an
output length of 1 or 2 longer in addition to the
existing dataset and filled with a padding tag with
an existing input.
Joint training with regression loss: Our train-
ing loss L is the sum of the CRF negative log-
likelihood loss LCRF and the mean square error
(MSE) of the sub-network as loss Llength. :

L = LCRF +Llength = − logP (y|x)+(T −T ′)2

(1)

4 Experiments

4.1 Experimental settings

We collected scripts of domains used in real-world
services and constructed a Korean and English G2P
dataset by labeling it from speech. A voice actor
read a Korean or English script naturally, and tag-
gers dictated the phonological phrasing information
and pronunciations exactly as they heard them. We
used 20,000 sentences in each language for training
and 200 samples in each language for testing. Each
sentence consisted of an average of 12.45 tokens
(words in English and Eojoel in Korean) and the
average length of output for each token is 5 and
the maximum is 29. The phonological phrasing
information used in this model is mainly composed
of the intonation phrase (IP), accent phrase (AP),
clitic, and end of sentence (sb). IP refers to reading
with a pause, and AP refers to a delimitation. The
size of input vocabulary of bilingual was 110 and
the number of phonemes was 42 in Korean and 39
in English. We used the default network architec-
ture of the original base transformer (A.Vaswani
et al., 2017), which consists of a four-layer encoder
and a four-layer decoder.

4.2 Inference

In the training process, to generate an accurate
phoneme sequence, we performed data augmenta-
tion so that the pad was filled even when a length
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exceeding the actual length was predicted. In fact,
the model predicted a length that was a few smaller
or longer than the actual output length. So, we bias
the predicted length so that the decoder’s input is
made longer than the actual output length in most
cases. It is intended that the pad will eventually
be filled in to generate a phoneme sequence of the
correct length.
We evaluate the average per-sentence decoding
latency with a single NVIDIA Tesla V100 GPU
for the ART-G2P and our models to measure the
speedup.

4.3 Evaluation
The evaluation metrics used in the experiment were
the phoneme error rate (PER), accuracy (Acc) and
accuracy of length (L-Acc). PER, as used in the
evaluation of the G2P model performance (Yu et al.,
2020) , is the Levenshtein distance between the
predicted phoneme sequences and the reference
phoneme sequences, divided by the number of
phonemes in the reference pronunciation. Acc is
the percentage of sentences in which the predicted
phoneme sequence exactly matches the reference
pronunciation. L-Acc is the percentage of length
in which the predicted phoneme sequence exactly
matches the reference pronunciation sequence’s
length.

4.4 Results : ART vs NART
Table 1 shows the performance of the ART (Yu
et al., 2020) and the proposed G2P model with a
sentence- or token-level input. While ART-G2P
shows high accuracy, the inference time is very
long. When time was measured for each area, the
average encoding and decoding time was 40/66ms,
but since ART continuously decodes as much as the
output length, the time increases linearly as much
as the output length. On the other hand, the pro-
posed NART-CRF based model trained at sentence-
level showed about 22 times faster speed than ART-
G2P; but, it was less accurate than ART-G2P. The
model trained in token unit showed higher accuracy
with about 27 times faster inference speed, confirm-
ing that it is a fast and accurate model structure.
It is analyzed that the proposed model has outper-
forms ART in the Korean dataset, because it refers
to the phonological phrasing information. In the
case of the proposed model, the token-level showed
higher performance in both languages because the
shorter input length is more advantageous in pre-
dicting the output length. When looking at the dis-

Figure 4: Results with predicted output length (biased
or not)

tribution of the difference between the actual length
and the predicted length, in the case of sentence
units, there was a large deviation, which caused a
lot of errors.

4.5 Ablation study about augmentation

The Table 2 is an ablation study showing whether
the method described in Section 3.3 is effective.
The compared models are three models trained at
sentence-level : Model 1 incorporating regression
layer for predicting output length in NART-CRF,
Model 2 trained with data augmentation in the same
structure as Model1, Model 3 incorporating sub-
network for predicting output length and trained
with data augmentation. Figure 4 shows how much
the predicted sentence length differs from the actual
sentence length. Looking at the sentence length pre-
diction result of Model 1, it is inferred a lot with ap-
proximations around the actual sentence length, so
the sentence length accuracy is only 54.5%. Model
2 has a slightly higher value for accurately pre-
dicting the length than Model 1. Through this,
it can be seen that data augmentation is effective
in accurately predicting the length of a sentence
by filling the "<pad>" tag even in sentences that
are longer than the actual length. However, since
data augmentation was performed only in cases of
be longer, there are still cases in which it is not
applied for shorter than actual length. Therefore
we used the predicted sentence length with a bias
of 2, and actually showed a big increase in per-
formance. In the case of Model 3, the accuracy
of length was very low at 27% because the sen-
tence length was often predicted shorter than the
actual length, but when the sentence length was
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Model Language Acc (%) PER (%) Inference time (ms/sent)
ART-G2P Merged 83.25 0.62 3830

English 92.50 0.43
Korean 74.00 0.82

Sentence-level NART-CRF G2P Merged 81.00 0.64 177.15 (×22)
English 84.50 0.72
Korean 77.50 0.56

Token-level NART-CRF G2P Merged 87.75 0.43 140 (×27)
English 93.00 0.38
Korean 82.50 0.49

Table 1: The table shows results of the ART-G2P and proposed NART-CRF G2P models with sentence and token
level training. We evaluate accuracy, PER of model and inference time in each language.

Model Acc (%) PER (%) L-Acc (%)
Model 1 ; NART-CRF 48.75 2.91 54.5
Model 2 ; NART-CRF + augm 63.75 1.48 69.0
Model 2 + biased 81.50 0.80 89.5
Model 3 ; NART-CRF w/subNN + augm 24.50 4.22 27.0
Model 3 + biased 81.00 0.64 87.8

Table 2: The Ablation study about data augmentation and bias

biased during inference, the length prediction accu-
racy increased significantly. In fact, looking at the
generated result, when the actual sentence length
is 14 and the biased inference sentence length is
17, the pronunciation sequence is generated as
y = {y0, y1, ..., y13, pad, pad, pad}. If "<pad>"
tags are deleted in post-processing, the inference
result and the correct answer were matched. The
proposed method of biasing the sentence length
predicted in inference and data augmentation make
predict the correct length through an additional de-
coding process even at the predicted length as an
approximation of the actual sentence length. The
proposed method of biasing the sentence length
predicted in inference and data augmentation make
predict the correct length through an additional de-
coding process even at the predicted length as an
approximation of the actual sentence length.

4.6 In real-time TTS application

We applied it to the industrial TTS system. In
our system, bilingual TTS attempts to generate a
pronunciation sequence based on a specific lan-
guage for an input with mixed languages. To this
end, numbers and symbols are normalized based
on a specific language, and each language goes
through processing such as estimation of phono-
logical phrasing information for each language. In

bilingual G2P, the phoneme sequence is generated
with the grapheme processed for each language for
the input with mixed languages and then connect
the results.
We utilized the Open Neural Network Exchange
(ONNX) 1 to apply to a TTS system running in
a CPU environment2. ONNX is an open-source
machine-independent format and widely used for
exchanging neural network models. First, our
model implemented in tensorflow was exported to
ONNX format, and inference was performed using
Onnxruntime 3. Onnxruntime is a cross-platform
inference and training machine-learning acceler-
ator. It performs hardware acceleration through
graph optimization, graph partition and then dis-
tributed runner.
We applied our model to a real-time processing sys-
tem and inferred at an average speed of 40ms/sent
for 1000 sentences. In addition, we measured the
Real Time Factor (RTF) when only the monolin-
gual G2P module used in the existing system was
changed to our model. As our Unit-selection Text-
to-Speech (UTS) system, it is judged that real-time
processing is possible only when the volume of
processing is less than 0.1RT. When 500 sentences

1https://github.com/onnx/onnx
2Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz (40 cores)
3https://onnxruntime.ai
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were processed for each language, 0.026 to 0.037
RTx for Korean and 0.033 to 0.057 RTx for English
were measured, confirming that real-time process-
ing was possible.

5 Conclusion

In this study, a structure of a NART-CRF was pro-
posed for fast bilingual G2P with real-time pro-
cessing. For bilingual, input of byte representation
was used, and additional sub-network and data aug-
mentation techniques were used for accurate out-
put length inference. The proposed model showed
higher accuracy than the existing ART-G2P and
at the same time showed about 27 times faster in-
ference speed. In addition, when applied to an
industrial TTS system, the speed was improved to
a level capable of real-time processing.
In future work, we will study a model with con-
textual information or representation of language
model to solve some error cases caused by lack
of context. Furthermore, we will experiments
with fast "multilingual" G2P by expanding the lan-
guage types to Chinese, Japanese, and European
languages. As a result of testing two different lan-
guage system (i.e. European and East Asian), It is
expected that expansion of languages, which others
in same language group, will be possible. Addi-
tionally, considering the accents and tones used in
languages such as English and Chinese, and train-
ing on an unbalanced dataset remain issues to be
resolved.
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Abstract
This paper presents an effort within our
company of developing knowledge extraction
pipeline for English, which can be further used
for constructing an entreprise-specific knowl-
edge base. We present a system consisting of
entity detection and linking, coreference res-
olution, and relation extraction based on the
Wikidata schema. We highlight existing chal-
lenges of knowledge extraction by evaluating
the deployed pipeline on real-world data. We
also make available a database, which can serve
as a new resource for sentential relation extrac-
tion, and we underline the importance of having
balanced data for training classification mod-
els1.

1 Introduction

Knowledge extraction aims at discovering semantic
information from texts using a knowledge repre-
sentation schema. This discovered information is
used to build a knowledge base (KB), which is a
useful resource for structured information. KBs
can play an important role in many tasks and sys-
tems: domain question-answering systems, recom-
mender systems, natural language generation sys-
tems, search result enhancement, and many others.

Entreprise knowledge bases have recently gained
a lot of attention (Singhal, 2012; Liu et al., 2019a;
Song et al., 2019; Dong et al., 2020). They allow
to transform heterogeneous data, both public and
private, into knowledge representations, which are
effectively used for specific applications.

In this paper, we report on a preliminary step for
building a company-specific KB, namely how to
extract knowledge from texts in the form of (sub-
ject, relation, object) triples . We develop a system
consisting of several components: entity detection
and linking, coreference resolution, and relation ex-
traction (RE). For the first two components we use

1The relation extraction database is available
here: https://github.com/Shimorina/
relation-extraction-db-wikidata

off-the-shelf tools, whereas for RE we develop our
own module. Our RE module is based on Wikidata
(Vrandečić and Krötzsch, 2014), the existing KB,
which contains many pre-defined relations. With
the goal to cover as many relations from Wikidata
as possible, we create a database, which merges
several datasets for RE and distributes them in a
standardised format. We make use of this database
to create different training scenarios for the RE
task and show how balancing existing RE datasets
impacts the task performance. We finally evaluate
our knowledge extraction system on our company’s
internal data by human evaluation. Our system is
deployed and is intended to be used on real-world
data within the company.

Since we apply state-of-the-art NLP techniques,
it is equally interesting to see the limitations of
current approaches witnessed by our evaluation.

To summarise, the main contributions of this
paper are the following:

• We provide insights based on real-world texts
coming from industry, which allow to bench-
mark state-of-the-art systems on real-world
data.

• We construct a database with cleaned and ho-
mogeneous datasets for sentence-based rela-
tion extraction from English texts.

• We train several models for the relation extrac-
tion task based on different training data and
show how dataset balancing affects the task.

• We discuss some positive and negative results:
what did and did not work in a real-life sce-
nario.

2 Related Work

The literature on Information/Knowledge Extrac-
tion is incredibly vast (Martinez-Rodriguez et al.,
2020). There exist many approaches for informa-
tion extraction from raw texts. Here we describe
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text The abbreviation GDPR stands for “General Data Protection Regulation”. The GDPR
governs the processing of personal data within the territory of the European Union. ...

triples (GDPRQ1172506, instance ofP31, abbreviationQ102786)
(General Data Protection RegulationQ1172506, short nameP1813, GDPRQ1172506)
(GDPRQ1172506, main subjectP921, personal dataQ3702971)
(GDPRQ1172506, applies to jurisdictionP1001, European UnionQ458)

Table 1: The beginning of text from the internal wiki page “GDPR”, and triples which correspond to the text.
Wikidata IDs are given after subjects, objects, and relations. In the example all entities are linked to Wikidata,
however it is not always possible.

different approaches for RE, the main subtask of
information extraction.

We can differentiate between binary and n-ary
relation extraction (Bach and Badaskar, 2007),
which link two or more entities respectively. For
triple extraction, most of research work concen-
trates on binary relation extraction (Sakor et al.,
2020), however there are also approaches based
on n-ary relation extraction, or semantic pars-
ing, where different semantic formalisms are used.
Frame Semantics, PropBank, Discourse Repre-
sentation Structures, Abstract Meaning Represen-
tations were used to extract triples from texts
(Gangemi et al., 2017; Fossati et al., 2018; Mi-
hindukulasooriya et al., 2020).

Another important difference in RE approaches
is the use of an open or closed relation set. A
closed, pre-defined set of relations is targeted in
relation classification systems, where either a cus-
tom pool of relations is used (Gábor et al., 2018)
or the set is defined by an underlying KB, such as
Wikidata, Freebase, DBpedia, etc. The paradigm
opposite to closed RE is Open Information Extrac-
tion (Etzioni et al., 2008, OpenIE). OpenIE aims
at extracting domain-independent relations from
large corpora without using a predefined schema.
OpenIE systems may extract redundant informa-
tion due to lexical variations in texts, so while using
this paradigm for knowledge extraction, a process
called canonicalisation is used to reconciliate their
output with a given KB (Lin et al., 2020).

We adopt the knowledge extraction approach
with binary RE on a closed set of relations from
Wikidata. We hope that this choice will allow us to
facilitate entreprise-specific KB construction in the
future.

3 Data

Our company has an internal wiki in English where
different terms are explained. Those terms can

belong to some general knowledge (e.g., climate
change, Agile software development) or can be spe-
cific to the company. The wiki terms span over
several areas: from human resources, marketing,
legal affairs to computer science and information
technology. Those wiki documents, while having
valuable information for the company, represent un-
structured text with no linguistic annotation; they
sometimes exhibit some information overlap or
they can have related term descriptions span over
several pages not linked between each other. An
example of the beginning of such document de-
scribing a general term is displayed in Table 1. The
length of a document is variable: it can range from
several to a few hundred sentences.

Our motivation to explore internal documents
is as follows: we would like to represent the in-
formation in a structured way, that would allow
reasoning and better understanding of the company
knowledge. Moreover, a potential KB may serve
in different downstream applications developed in
the company: question answering, task-oriented
dialogue, knowledge management.

We chose Wikidata as our initial KB schema
because of its steady growth within last years and
increased community participation. The Wikidata
schema may be eventually refined to better suit our
needs in the future. For instance, we might add
new relations, not yet defined in Wikidata.

4 Approach Overview

We aim to extract RDF (Resource Description
Framework) triples in the form (subject, relation,
object) from text.

We develop a classical pipeline for triple extrac-
tion: sentence splitting, entity detection and link-
ing, coreference resolution, and relation classifica-
tion.

1. Text is preprocessed and is split into sentences
with pySBD (Sadvilkar and Neumann, 2020).
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dataset # instances # R types % neg. human checks license

FewRel (Han et al., 2018) 56,000 80 0% yes MIT
T-REx (Elsahar et al., 2018) 12,081,023 652 0% no CC BY-SA 4.0
DocRED (Yao et al., 2019) 778,914 96 0% no (yes*) MIT
WikiFact (Goodrich et al., 2019) 33,628,338 934 92% no CC BY 4.0
Wiki20m (Han et al., 2020) 738,463 81 60% no MIT
WebRED (Ormandi et al., 2021) 107,819 385 54% yes CC BY 4.0
our database (DB) 47,390,557 1,022 66% yes/no CC BY-SA 4.0

Table 2: Summary of the datasets used in the database. R types is a number of relation types including P0 and NA;
neg. is a percentage of negative examples, i.e. examples with no relation detected or unknown relation; human
checks correspond to whether some human checks were carried out to construct a dataset. *The large part of
DocRED is collected using distant supervision; 2.68% of the dataset instances were verified by humans.

2. Entities are detected and linked to Wikidata
IDs with GENRE (Cao et al., 2021). We chose
GENRE because it identifies common nouns
as well as proper nouns and links them to
Wikidata. Common noun identification was
important for our case, since the texts under
consideration often describe common noun
terms rather than named entities, such as geo-
graphical locations, persons, which frequently
are the target of other popular named entity
recognisers. GENRE is also able to iden-
tify entities without linking them to Wikidata.
That feature was useful for us while handling
texts about company-specific named entities
and abbreviations.

3. Coreference is resolved with neuralcoref from
HuggingFace2.

4. For each pair of entities (e1, e2) present in a
sentence, a Wikidata relation is predicted us-
ing our relation classifier. It predicts whether
a relation exists, and if yes, which one.

The desired output of the pipeline is shown in
Table 1.

While for the steps 1-3, we used off-the-shelf
libraries, for relation extraction we developed an
in-house solution, which is described in Section 5.

5 Relation Extraction

RE is a notoriously difficult task because relations,
as compared to entities, are not often expressed
explicitly, i.e. it is hard to find a precise verbal
expression. Moreover, relations can be expressed
in many different ways in a text. RE usually works

2https://github.com/huggingface/
neuralcoref

well when it covers a limited set of well-defined
relations. We, on the other hand, have no explicit
relations, defined on our data. Our goal is to ex-
plore texts to possibly find some relations coming
from the external closed set (Wikidata).

Relations in Wikidata are numerous. There are
around 9,500 relations as of January 20223. How-
ever, most of them are not exploitable in ordinary
texts, since a lot of them are about some ID num-
bers in different catalogues and libraries, e.g. IMDb
ID (P345), Swiss parliament ID (P1307), etc. We
estimate that about 1,500-2,000 relations can be
usable in everyday texts. To explore relations in
Wikidata, we use available datasets for RE that
are based on Wikidata relations. It means that we
could not use other popular datasets for RE such
as NYT (Riedel et al., 2010) or TACRED (Zhang
et al., 2017), since they use other knowledge bases.

5.1 Database

Within the RE task modelling, our goal was to
have as many relations from Wikidata as possible
to increase the probability to find relations in our
data. The issue with most datasets for RE is that
relation types are few. So we proceeded to create a
database (DB)—a common resource where several
RE datasets are merged.

We preprocessed 6 existing datasets to adapt
them to sentence-based RE (see Table 2): FewRel
(Han et al., 2018), T-REx (Elsahar et al., 2018), Do-
cRED (Yao et al., 2019), WikiFact (Goodrich et al.,
2019), Wiki20m (Han et al., 2020), and WebRED
(Ormandi et al., 2021). Initially these datasets were
developed for different purposes and with differ-
ent methods. Most of them were collected using

3https://www.wikidata.org/w/index.php?
title=Special:ListProperties
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instance relation label

SUBJ{Under Pressure} is a 1981 song by Queen and OBJ{David Bowie}. P676 lyrics by
Official figures showed there were 25 million baptised Anglicans in OBJ{England} and SUBJ{Wales}. P0 no relation

Table 3: Examples of database instances where the subject and object are marked with special symbols in the text.
Labels correspond to Wikidata relation labels.

distant supervision (Mintz et al., 2009), afterwards
some of them were verified by humans. After merg-
ing those datasets, we obtain a dataset with 1,022
unique Wikidata relation types including the rela-
tion ‘P0’ (called negative relation), which means
“the absence of relation” between the designated
subject and object, and ‘NA’, which defines an un-
known relation. The main advantage of the created
DB is to have a homogeneous dataset where an
instance is a sentence with a subject and an object
identified and a relation between them (see exam-
ples in Table 3). Apart from this main information,
the DB stores some additional features that were
available in the original datasets, e.g. Wikidata IDs
for subjects and objects, a source document for the
sentence, etc. If training/validation/test split was
provided for a dataset, we did not include test splits
in the DB to reduce possible overuse of test data
by future users. We also ensure that datasets com-
ing from the same research groups do not have an
overlap by deleting duplicate items.

The DB is easy and fast to query to obtain a
sample of desired data: for example, choosing the
instances that were verified by humans, choosing
the instances expressing a particular relation, etc.
We hope that the DB will serve the community by
providing an easy access to RE datasets standard-
ised for the sentence-based RE task. We will make
it available upon acceptance.

5.2 Training Data

While most RE datasets were collected automat-
ically, WebRED presents a cleaned dataset with
the most relation coverage, so we use it as a main
source for training and testing our RE models. We
also know that around 50% of examples are nega-
tive examples in WebRED, i.e. examples with ‘P0’,
so we paid special attention to that while construct-
ing our training data. We used four collections of
training data to develop different models for the
RE component of our pipeline:

1. WebRED. It is the original dataset, called
WebREDH2+1 in Ormandi et al. (2021). The
training data contains 383 relations (classes)

for relation classification; there are 2 classes
less than shown in Table 2 because they hap-
pened to appear only in the validation part.

2. WebRED-balanced. WebRED, as it is also
often the case with other RE datasets, is
largely imbalanced: 30 most frequent relation
types cover more than 90% instances in the
dataset. So for each relation that has less than
500 examples we tried to add more examples
from other corpora present in the DB to reach
500 examples per relation if possible. This
training data has 385 classes. After adding the
underrepresented relations, 30 most common
relation types account for 43% of instances in
the dataset.

3. DB-500. In this case we aim to explore all
the relation types present in the DB. For each
relation (including P0 but excluding NA), we
choose 500 training examples from different
datasets, preferably choosing in the first place
from the datasets where human annotation
was present. However, a relation can still have
less than 500 examples for training if there are
not enough examples in the DB. This training
data has 1,013 classes. From 1,022 relations
present in the DB (Table 2), we removed NA
and 8 Wikidata relations that existed in Wiki-
data during the time of dataset creation but
that were subsequently removed from Wiki-
data.

4. DB-500+neg. As we test our approach on
WebRED development data where negative
examples constitute more than a half of the
dataset, we add all the P0 examples from We-
bRED to DB-500. This training set equally
has 1,013 classes.

Number of training instances for each training
set is shown in Table 4. In what follows, we do
not compare our results to the numbers reported in
Ormandi et al. (2021), since the published dataset
is different from the one used in their paper due to
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training data # examples # classes F1 P R F1* P* R*

WebRED 97,037 383 80.47 80.48 80.47 72.87 71.79 73.99
WebRED-balanced 215,937 385 85.65 85.90 85.39 80.02 77.86 82.30
DB-500 205,331 1,013 49.60 51.81 47.58 51.17 41.84 65.85
DB-500+neg 249,532 1,013 69.14 69.88 68.42 53.70 65.06 45.71

Table 4: Classification results on WebRED validation data. Classes include the P0 relation. F1: micro F1; P:
precision; R: recall. * negative examples were removed from the evaluation data. When training with 5 random
seeds, the standard deviation in the range of 0.14-0.59 was observed for the scores.

copyright4.

5.3 Experimental Setup
Computational experiments. We treated RE as
a multi-class classification problem where one re-
lation must be predicted given a set of all possi-
ble relations. We fine-tune RoBERTaLARGE (Liu
et al., 2019b) by adding a softmax classification
layer, and we use the training data described in Sec-
tion 5.2. Each training instance has special symbols
around subject and object entities (see examples in
Table 3). We use the simpletransformers library5,
which in its turn is built on the HuggingFace Trans-
formers library (Wolf et al., 2020). The models are
fine-tuned with the AdamW optimiser (Loshchilov
and Hutter, 2019), with a learning rate of 0.00004,
and a batch size of 32 for three epochs. Models
were trained on two GPUs (GeForce GTX 1080
Ti); training time ranged from three to seven hours
depending on the size of training data.

Evaluation was done on WebRED development
data, which has 10,782 instances. We did not use
WebRED test data, since we think of continuing
our model development.

Human evaluation. We assessed the perfor-
mance on our unlabeled data (see Section 3) with
one human annotator. We focused on entity de-
tection and linking, and RE. For entity recogni-
tion, one of the authors of the paper examined
52 first paragraphs of the wiki documents, where
550 entities and 457 linked entities were tagged
by GENRE. For RE, the annotator examined 100
relations predicted by the model trained on DB-
500+neg with the highest probability scores (more
than 0.94). The relations were assessed on a 3-point
scale (1: “bad”, 2: “not sure; ambiguous case”, 3:
“good”).

4See Ormandi et al. (2021) and https://github.
com/google-research-datasets/WebRED

5https://github.com/ThilinaRajapakse/
simpletransformers

6 Results

6.1 Entity Detection and Linking

F1 P R

Entity Detection 0.78 0.83 0.74
Entity Linking 0.71 0.79 0.64

Table 5: Manual evaluation. Micro F1, precision, recall
for entity detection and linking on our data.

Manual evaluation of entity detection and link-
ing based on GENRE without any fine-tuning on
our data showed quite satisfying performance (Ta-
ble 5). Entity detection reaches F1 of 0.78 with
high precision of 0.83. Entity linking performs
a bit worse with F1 of 0.71 and precision of 0.79.
We conjecture that this relatively good performance
may be due to the resemblance of our data (factual
documents) to Wikipedia texts, which were used
for training of the entity recogniser.

6.2 RE on WebRED Validation Data

Table 4 presents the results of the classification
task. Models fine-tuned with WebRED show higher
scores due to the lower number of classes. The
highest micro F1 (85.65) is achieved with the bal-
anced version of WebRED. Overall, all the metrics
are higher for WebRED-balanced, which suggests
that simply adding more examples for underrepre-
sented classes could help notably increase overall
performance. Models learned on DB have more
classes to predict, hence lower scores comparing to
WebRED-based fine-tuning. F1 drastically drops to
49.60 in the case of DB-500. DB-500+neg shows
better results for all metrics as compared to DB-
500; this finding highlights the importance of ac-
counting for the majority negative class present in
the evaluation data.

The performance without the negative examples,
which represent more than 50% of the evaluation
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sentence relation label human ann.

Venture capitalists refers to specialized SUBJ{professional} OBJ{investors} who
generally invest the money of institutional investors in early-stage startups.

P425 field of this occupation bad

The Kaya equation was developed by SUBJ{Yoichi Kaya}, a Japanese energy
economist, in his book OBJ{"Environment, Energy, and Economy: Strategies
for Sustainability."}.

P800 notable work good

Civil liberties refer to all OBJ{individual} and SUBJ{collective} rights and
freedoms guaranteed by the State and regulated and protected by law.

P461 opposite of not sure

Table 6: Human annotation of model predictions for the RE task.

data, is also shown (marked with *). We can see
that in the case of WebRED the performance drops
from 80.47 to 72.87 as measured by F1; the drop
in WebRED-balanced is twice less — 5 points —
due to the more balanced nature of the training
data. Naturally, DB-500, being the dataset with-
out a negative majority class, does not yield any
drop: on the contrary, F1 increases from 49.60 to
51.17. DB-500+neg where a large set of negative
examples were added exhibits the opposite trend:
F1 goes down from 69.14 to 53.70.

Precision was a little bit higher than recall in
the negative example evaluation setting (P vs. R);
however, without the negative examples (P* vs.
R*), recall was higher for WebRED, WebRED-
balanced, and DB-500. In the case of DB-500+neg,
precision is 65.06 while recall is lower (45.71).

6.3 RE on Real-World Data
Despite evaluating the relations with high proba-
bility scores, the human evaluation results are less
confident: 70% of examples were tagged as “bad”,
19% as “good”, and 11% as “not sure; ambiguous
case”. Some examples of model prediction along
with human ratings are shown in Table 6. Most of
the examples annotated as “bad” are connected to
entity detection, which was not pertinent for RE,
as in the case of the first example in Table 6. Anno-
tating an example as “not sure” usually means that
the relation is not explicitly conveyed in a sentence,
and it is hard to say whether it is present or not (see
the third example). Overall, we witness that RE is
a much more difficult task than entity detection and
linking for existing methods when they are applied
to the data that was never seen during training.

6.4 Final Pipeline and Time-Task Distribution
The described pipeline of knowledge extraction
from text is deployed within our company and can
be executed on any corpus of texts. It is hosted
on a virtual machine with 4 CPU and 32 Gb of
RAM, and all the pipeline components are ran on

CPU. The time of response is not immediate, but
in our use case we do not consider it important. To
develop the pipeline, we spent most of the time
working with data rather than developing models.
Here is the approximate time-task distribution:

• 3 weeks: overall design (understanding the
task and the needs, related work review,
pipeline conception, looking at our data)

• 1 week: entity detection/linking and corefer-
ence

• 5 weeks: RE data preparation (search for cor-
pora, collect, clean, prepare)

• 3 weeks: RE model development

• 1 week: entity detection/linking and RE eval-
uation

• 3 weeks: final pipeline deployment (code
cleaning/refactoring, dockerisation, API, doc-
umentation)

7 Conclusion

In this paper we presented the pipeline for knowl-
edge extraction from text based on Wikidata. We
showed its utility on real-world data coming from
our company’s internal wiki. While entity detec-
tion and linking tools perform well on unseen data,
RE still presents significant challenges. We de-
veloped the database for sentence-based RE with
a large coverage of Wikidata relations, which we
hope will be useful for the community. We also
showed that balancing training data is crucial for
good performance in RE.

In future work, we plan to improve the current
pipeline, especially the RE component. We en-
visage several possible ways that can be explored:
integrating syntactic parsing for better entity detec-
tion, using insights from semantic parsing to better
represent sentence structure, and annotating some
part of our data and using it for fine-tuning.
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Abstract
Table Question Answering (Table QA) systems
have been shown to be highly accurate when
trained and tested on open-domain datasets built
on top of Wikipedia tables. However, it is not
clear whether their performance remains the same
when applied to domain-specific scientific and
business documents, encountered in industrial set-
tings, which exhibit some unique characteristics:
(a) they contain tables with a much more complex
layout than Wikipedia tables (including hierar-
chical row and column headers), (b) they contain
domain-specific terms, and (c) they are typically
not accompanied by domain-specific labeled data
that can be used to train Table QA models.

To understand the performance of Table QA
approaches in this setting, we introduce AIT-QA;
a domain-specific Table QA test dataset. While
focusing on the airline industry, AIT-QA reflects
the challenges that domain-specific documents
pose to Table QA, outlined above. In this work,
we describe the creation of the dataset and report
zero-shot experimental results of three SOTA
Table QA methods. The results clearly expose
the limitations of current methods with a best ac-
curacy of just 51.8%. We also present pragmatic
table pre-processing steps to pivot and project
complex tables into a layout suitable for the SOTA
Table QA models. Finally, we provide data-driven
insights on how different aspects of this setting
(including hierarchical headers, domain-specific
terminology, and paraphrasing) affect Table QA
methods, in order to help the community develop
improved methods for domain-specific Table QA.

1 Introduction

The tabular data format is commonly used in digital
documents such as PDFs and HTMLs to store semi-
structured information (Canim et al., 2019; Zhang and

∗ Work done while author was working at IBM.

Balog, 2018; Pasupat and Liang, 2015). Due to the
rich content found in tables, many works have looked
into extracting information out of tables (Burdick
et al., 2020) and leveraging it for various NLP tasks,
such as answering questions over tables (Cafarella
et al., 2009; Sun et al., 2019; Shraga et al., 2020a,b).
The quality of answers depends on first, high quality
extraction of tables out of documents (aka Table
Extraction); second, retrieval of relevant tables for
a given natural language question or keyword query
(aka Table Retrieval); and finally, identification of
the relevant cells over the retrieved tables (aka Table
QA). Most recently, transformer-based pre-trained
architectures such as TABERT (Yin et al., 2020),
TAPAS (Herzig et al., 2020), and RCI (Glass et al.,
2021) have been proposed to tackle the Table
QA task by identifying table cells containing the
answer to a given question. These models have
been shown to exhibit very high accuracy in Table
QA. However, the results are based on training and
testing the proposed techniques on open in-domain
datasets, built on top of Wikipedia tables, such as the
WikiTableQuestions (Pasupat and Liang, 2015) and
WikiSQL (Zhong et al., 2017) datasets.

Based on our experience in designing and imple-
menting industrial table processing approaches (Bur-
dick et al., 2020), open-domain web tables typically
exhibit much simpler structures than the complex ta-
ble structures found in domain-specific scientific or
business documents. For instance, consider the sample
question-table pair from our proposed airline dataset
shown in Figure 1. The table contains both column
headers and row headers (i.e., descriptors of columns
and rows, respectively) and both of them are hierarchi-
cal in nature. Moreover, answering a question often re-
quires reasoning on such complex column/row header
hierarchies. For instance, finding the requested main-
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Figure 1: Question-table pair in AIT-QA, showing the complex structure of tables in the dataset. The cell containing
the answer is shown in blue and its hierarchical column/row headers are shown in orange and green, respectively

line Revenue Passenger Miles (RPMs) (which are
contained in the blue cell) requires understanding that
the cell has two hierarchical row headers "Mainline"
and "Revenue passenger miles" (shown in green). Ig-
noring row headers or not reasoning on the row header
hierarchy may lead to wrong results. For instance, if
we simply searched for cells with a flat row header
containing "Revenue Passenger Miles", we may mis-
takenly return value 226,346 appearing further down
the table (which corresponds to the RPMs of total op-
erations, instead of the requested mainline operations).
In contrast, web tables in open-domain Table QA
datasets, such as WikiTableQuestions or WikiSQL,
exhibit significantly simpler structures. Such tables do
not contain row headers and only have a single column
header, closely resembling relational database tables.

Moreover, while open-domain datasets capture
common entities, such as locations, person names,
etc, which often appear in Wikipedia articles, they
typically lack domain-specific vocabulary that one
encounters in scientific or business documents (such
as the “Revenue Passenger Miles" above).

Finally, from a deployment point of view, when
clients bring their own domain-specific documents,
they typically do not provide domain-specific
labeled data to train Table QA models. This comes
in contrast to existing Table QA evaluations on open-
domain data, where tested models are first trained
using large amounts of open-domain training data.

Based on the above, domain-specific Table QA
exhibits major differences from open-domain settings:
Domain-specific documents include more complex
table structures and specialized vocabulary, and are

not accompanied by domain-specific labeled data.
To understand whether existing Table QA ap-

proaches support these settings, we create AIT-QA;
a domain-specific Table QA dataset, where tables
are extracted from financial documents in the airline
industry. The majority of the tables exhibit a complex
structure, including hierarchical row and column head-
ers, as well as airline-specific terminology. Finally,
we build the dataset as a test set to reflect the lack of
domain-specific labeled data and encourage works on
zero/few-shot learning. To the best of our knowledge,
this is the first Table QA dataset that includes and
explicitly encodes such complex table layouts and
domain-specific table contents. Our experiments with
three state-of-the-art Table QA models show that exist-
ing models struggle to support this setting, yielding an
accuracy of at most 51.8%. We hope that this dataset
and associated insights will help the community better
support domain-specific Table QA in the future.

This work makes the following contributions:
A complex and domain-specific Table QA

dataset called AIT-QA (Airline Industry Table QA),
created by human annotators based on 10-K financial
reports of major airline companies. The questions are
created based on the content of tables appearing in
the 10-K reports, as well as KPIs (Key Performance
Indicators); i.e., important metrics tracked by analysts
in the airline industry. The dataset has been made
publicly available under a CDLA-Sharing-1.0 license
at https://github.com/IBM/AITQA.

Experimental evaluation of state-of-the-art
Table QA models on AIT-QA, demonstrating that
high performance on open-domain datasets does not
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Dataset Year Table only Wikipedia Hierarchical Hierarchical
Column Headers Row Headers

WikiTableQuestions 2015 3 3 7 7
(Pasupat and Liang, 2015)

TabMCQ (Jauhar et al., 2016) 2016 3 7 (Science Exam) 7 7
WikiSQL (Zhong et al., 2017) 2017 3 3 7 7
FeTaQA (Nan et al., 2022) 2021 3 3 7 7

HybridQA (Chen et al., 2020) 2020 7 3 7 7
OTT-QA (Chen et al., 2021) 2021 7 3 7 7
TAT-QA (Zhu et al., 2021) 2021 7 7 (Finance) 7 7

AIT-QA (this work) 2021 3 7 (Airlines) 3 3

Table 1: Comparison of AIT-QA to other Table QA datasets

guarantee similar performance on domain-specific
datasets containing complex tables, further motivating
the need for a domain-specific Table QA dataset.

A novel data pre-processing technique for
existing Table QA models, which improves their
performance on datasets with complex table struc-
tures. This is achieved by translating complex table
structures (incl. hierarchical row and column headers)
to simpler structures resembling the structure of the
tables on which such approaches have been trained.

2 Related Work

Prior work on leveraging tables to answer questions
studied two tasks: (a) Table retrieval; i.e., given a
corpus of tables, identify the table containing the
answer to a question, and (b) Table QA; i.e., given
a single table containing the answer, find this answer.
We next discuss datasets for Table QA, which is the
focus of this work.

The most commonly used Table QA datasets in-
clude WikiTableQuestions (Pasupat and Liang, 2015),
WikiSQL (Zhong et al., 2017), and TabMCQ (Jauhar
et al., 2016). Out of them, the first two are based
on Wikipedia. The third, contains manually-curated
general knowledge tables created from the Regents
4th-grade exam. While it is domain-specific, the
included tables have a very peculiar structure (with ta-
ble rows containing entire natural language sentences
that have been split into columns), which in our
experience is not representative of tables appearing in
most domains. Recently, Nan et al. (2022) proposed
FeTaQA; another Wikipedia-based dataset but with
answers that are long free-form sentences (instead of
short answers found in prior datasets).

Finally, the last couple of years saw the intro-
duction of three multi-hop QA datasets: HybridQA
(Chen et al., 2020), OTT-QA (Chen et al., 2021),
and TAT-QA (Zhu et al., 2021). In these datasets

finding an answer requires reasoning not only on
tables but across both tables and associated text. Out
of them, HybridQA and OTT-QA are both based on
Wikipedia. On the other hand, TAT-QA, is based on
data extracted from financial reports, making it the
most similar to our proposed AIT-QA dataset.

However, while the TAT-QA paper mentions com-
plex table structures (including row headers), the re-
sulting dataset does not include explicit annotations of
row and column headers (not to mention hierarchies
thereof). Without explicit annotations of such head-
ers, not only is it hard to understand the complexity
of the included tables (e.g., the Appendix of (Zhu
et al., 2021) points to the absence of column header
hierarchies in TAT-QA), but it also makes it harder to
understand the effect of table complexity on the perfor-
mance of Table QA algorithms. Instead, our proposed
AIT-QA treats hierarchical column and row headers
as first-class citizens and is to the best of our knowl-
edge the first domain-specific Table QA dataset that
contains explicit annotations of complex table struc-
tures, including hierarchical row and column headers.
Table 1 summarizes the discussed Table QA datasets.

3 Dataset

We next outline the process followed to generate
AIT-QA, from data acquisition and preparation to
question annotation and table header identification.

Data Acquisition. AIT-QA is based on 10-K
forms; comprehensive annual reports that publicly
traded companies file with the U.S. Securities and
Exchange Commission (SEC). For this dataset, we
focused on the airline industry and retrieved recent
10-K forms of all 5 airlines included in the Standard &
Poor’s 500 (S&P 500) stock market index1. Covered
airlines include: Alaska Air Group (ALK), American

1https://en.wikipedia.org/wiki/List_of_
S%26P_500_companies
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Airlines Group (AAL), Delta Air Lines Inc. (DAL),
Southwest Airlines (LUV), and United Airlines
Holdings (UAL). The 10-K forms were downloaded
through the publicly accessible SEC EDGAR online
system2 in HTML form.

Data Preparation and Cleaning. While the
downloaded 10-K forms encode tables using standard
HTML tags, the tables are formatted with human con-
sumption in mind. As such, table rows/columns/cells
are used for the table to be neatly rendered on the
screen and/or paper and they do not always correspond
to the table’s logical structure. In particular, we found
that tables often contain extraneous rows/columns
(introduced to allow for more space between table ele-
ments). Moreover, the contents of a single logical cell
are often split into multiple physical cells, to allow for
better vertical alignment of the information within a
table. For instance, cells containing a currency symbol
and negative monetary amounts such as $(1,234), are
often split into three physical cells $ (1,234 )
so that the currency symbols and numbers align with
other similar contents across rows. To separate these
formatting decisions from the logical structure of
the table, we post-processed the downloaded HTML
files to remove extraneous rows/columns and merge
back components of logical cells originally split
into multiple cells. Processing was done through a
combination of scripts and manual error correction.

Question Annotation. The cleaned 10-K forms
were given to 8 co-authors of this paper to generate
question-answer pairs over tables appearing on the
forms. To capture questions of particular interest
to domain experts in the domain, while ensuring a
diversity of question topics, we asked annotators to
provide two types of questions:

KPI-driven questions: These are questions that
inquiry about Key Performance Indicators (KPIs),
which are metrics of particular interest to analysts
in the airline industry. Annotators were provided
with a list of KPIs along with common synonyms to
ensure that the questions capture not only the topic of
interest but also use the correct vocabulary. Then they
were instructed to search the document for mentions
of KPIs within tables and create corresponding
questions. Thirteen KPIs were used in total, each
with three variants, depending on whether it referred
to the airlines’ mainline, regional, or total operations.

Table-driven questions: While KPI-driven ques-
tions capture common metrics tracked by analysts,
they can be limiting for two reasons: First, there is a

2https://www.sec.gov/edgar.shtml

small number of KPIs and second, given their domain
importance, they often appear within a small set of
tables. Hence, limiting ourselves to such questions
would lead to a non-diverse dataset. To avoid this
issue, annotators were asked to also provide questions
that inquired about other concepts appearing within
the input tables. To create such questions, annotators
browsed through the tables in the documents and
wrote questions that could be answered by them.

After an initial set of question-answer pairs was
collected, annotators were also asked to generate
paraphrases. While creating paraphrased questions,
annotators were given access to the set of question-
answer pairs collected in earlier stages and asked to
pick a subset of questions to paraphrase. This leads
to the second major dimension along which questions
in AIT-QA can be classified: Original questions
(Questions collected during the initial annotation)
and Paraphrased questions (Questions generated as
paraphrases of original questions).

Finally, in all stages of the annotation process,
annotators were asked to keep track of additional
metadata indicating whether a question relied on the
hierarchy of row headers to be answered. A question
relies on the hierarchy of row headers when in order
to be unambiguously answered, one has to consult
not only the row header that appears on the same
row as the answer, but also row headers appearing
on higher levels of the hierarchy. For instance, the
question in Figure 1 depends on the row header
hierarchy, as ignoring the hierarchy may lead to an
incorrect answer, as explained in the introduction.
Based on these metadata, questions in the dataset
can be differentiated across a third dimension into:
Row header hierarchy questions (Questions whose
answer relies on the row header hierarchy) and No
row header hierarchy questions (Questions whose
answer does not rely on the row header hierarchy).

For each question-answer pair, annotators provided
the question, the table cell where the answer appears,
as well as metadata indicating the classification
of the question along the three aforementioned
dimensions. For the first version of the dataset, we
focus on lookup questions - i.e., questions where the
answer appears within table cells and does not require
aggregate operations (such as min/max/sum/count) to
be returned (Glass et al., 2021), leaving the expansion
of the dataset with aggregate questions as future work.
Annotation was carried out using a custom-built
Table QA annotation tool (see Appendix A for more
details). Finally, the collected question-answer pairs
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Question Type Count (%)

KPI-driven questions 145 (28%)
Table-driven questions 370 (72%)

Original questions 439 (85%)
Paraphrased questions 76 (15%)

Row header hierarchy questions 146 (28%)
No row header hierarchy questions 369 (72%)

Table 2: Breakdown of questions across 3 dimensions

and associated metadata were subsequently reviewed
by other annotators to verify their validity and correct
minor issues, such as typos or associated metadata.

Hierarchical Column/Row Header Identifi-
cation. To identify column and row headers of
tables, we leveraged Table Understanding technology
incorporated in IBM Watson Discovery3. Table
Understanding allows among others identifying for
each body (i.e., non-header) cell, the set of column
headers and row headers that describe the cell4. Table
Understanding also supports column and row header
hierarchies, as described above. The identified header
hierarchies are included as part of the dataset so that
they can be leveraged by Table QA models.

Dataset Statistics. The resulting test dataset
consists of 515 questions generated out of 116 tables.
These tables were chosen from 13 10-K forms of the
5 considered airlines filed for years between 2017
and 2019. Table 2 shows the breakdown of questions
along the three aforementioned dimensions.

4 Experimental Evaluation

To analyze the effect of AIT-QA’s domain-specific
complex tables to existing Table QA approaches,
we next provide a comprehensive evaluation of
state-of-the-art Table QA models on it.

4.1 Experimental Setting

We evaluate three Table QA systems - RCI (Glass
et al., 2021), TaBERT (Yin et al., 2020), and
TaPaS (Herzig et al., 2020) - selected as representing
SOTA Table QA approaches of different architectures.

TaBERT employs an encoder-decoder approach,
utilizing a BERT (Devlin et al., 2019) encoder and
LSTM decoder, which generates intermediate logical

3https://www.ibm.com/cloud/
watson-discovery

4https://cloud.ibm.com/
docs/discovery-data?topic=
discovery-data-understanding_tables

forms which - when executed over tables - yield the
answer (Liang et al., 2017). In contrast, TaPaS (Herzig
et al., 2020) and RCI (Glass et al., 2021) both treat
Table QA as a classification problem. However, TaPas
considers tables as a whole, while RCI splits them into
rows and columns and carries out inference on them
separately. In all three systems, tables and questions
are encoded using transformers (Vaswani et al., 2017).

To test whether high Table QA performance
reported on open-domain tables translates to the
domain-specific AIT-QA dataset, all three Table
QA models are pre-trained on the larger WikiSQL
(Zhong et al., 2017) train split and tested on AIT-QA
without any hyper-parameter tuning. To set up the
baselines, we use the source code and instructions of
the respective authors (see Appendix B).

4.2 Transforming Table Structures

Existing table QA models are based on open-domain
web tables. They assume that the input tables contain
flat column headers (i.e., a single row of column
headers) and no row headers. Therefore, none of the
existing baselines are built for handling complex col-
umn or row header hierarchies seen in AIT-QA. Thus,
we experiment with table transformation operations to
maximize these baselines’ performance on AIT-QA.

Base transformations are first performed on AIT-
QA tables to render the tables compatible to the mod-
els: (1) Row headers are added as the first column of
the table as regular body cells. We use the dummy
text ‘header’ as the column header of the new column.
(2) Header hierarchies are flattened by concatenating
parent header text with children text. Note that these
transformations are designed to help the baseline mod-
els perform better than if we ran them on the raw
table. For instance, when converting the table of Fig-
ure 1, the cell on the left of the blue cell will contain
the concatenated row header hierarchy (i.e., ‘Main-
line passenger revenue miles (millions)’). This should
help the models (which are not built to recognize row
header hierarchies) perform better on AIT-QA.

Transposing tables. However, after running the
models, we observed that there was further room for
improvement. In particular, we observed that in many
tables in AIT-QA, row headers contain more infor-
mation than column headers. For example, in Fig-
ure 1, row headers contain the metric names, which
are arguably more descriptive than the column headers
containing the year information. Based on this intu-
ition, we experimented with transposing the headers,
so that row headers become column headers (which
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Version TaBERT TaPaS RCI

Base 33.20 49.32 40.58
All T 33.39 43.88 48.54
Partial T 33.98 46.80 51.84

(a) Accuracy of Table QA on different transfor-
mations of the tables in AIT-QA (Base = No
transpose, All T = All transpose, Partial T =
Partial Transpose).

Data subset TaBERT TaPaS RCI

Overall accuracy 33.98 49.32 51.84

KPI-driven 41.37 48.26 60.00
Table-driven 31.08 50.0 48.64

Row header hierarchy 21.92 47.26 45.89
No row header hierarchy 38.75 50.39 54.20

(b) Accuracy of Table QA models on slices of AIT-QA

Table 3: Accuracy of Table QA models on AIT-QA

the models are trained to pay more attention to) and
vice versa. During this process body cells are appro-
priately transposed as well. This led to three versions
of AIT-QA data: (1) Base: without transposing tables,
(2) All transpose: With all tables transposed, and (3)
Partial transpose: Transposing tables that have more
characters in row headers than column headers. Table
3a depicts the accuracy of baseline models on each
dataset version. Interestingly, RCI and TaBERT bene-
fit from transposing, while the performance of TaPas
declines. For our analysis below, we pick for each
model the version of the data that yields the highest
performance.

4.3 Analyzing Baseline
Performance on AIT-QA’s Dimensions

The first row of Table 3b shows the overall accuracy
of the baselines on AIT-QA. Performance is relatively
low ranging from 34% (for TaBERT) to 49% /
52% (for TaPaS / RCI, respectively). For reference,
the accuracy of the models on the dev split of the
WikiSQL dataset is significantly higher, ranging from
70.5% (for TaBERT) to 89.2% / 89.8% (for TaPaS
/ RCI, respectively). This verifies our intuition that
open-domain datasets do not reflect the intricacies
of domain-specific use cases, which was the main
motivation for the creation of AIT-QA.

To gain further insights on how domain vocabulary,
table structure, and question phrasing affect the
performance of Table QA models, we next evaluate
the models on the three dimensions of our dataset:

KPI-driven vs Table-driven. Table 3b shows
the performance of the baselines on KPI-driven vs
Table-driven questions. As shown, accuracy is always
higher for the former than the latter. While identifying
the reason behind this is beyond the scope of this
paper (being related to the promising area of explain-
ability of AI models), there are two factors that may
be potentially contributing: First, KPIs are limited
in number and often easily differentiable from other

Paraphrase TaBERT TaPaS RCI

All correct 25.00 38.88 33.33
Any correct 29.17 30.55 34.72
All wrong 45.83 30.55 31.94

Table 4: Percentage of paraphrased question sets that are
(a) all correctly answered, (b) at least one correctly and
another one incorrectly answered, and (c) all incorrectly
answered by each baseline

terms in the tables, which may help baselines identify
the right answer. Second, KPI-driven questions were
formed by having a KPI in mind and searching for
the corresponding term in the document. In contrast,
table-driven questions were formed by looking at a
table and trying to form a question. As a result, it is
much more common to find distorted utterances of
row/column headers in table-driven questions, making
it harder for the baseline to identify the correct answer.

Row Header Hierarchy vs No Row Header
Hierarchy. One of the key challenges associated with
AIT-QA are row/column header hierarchies. While
we tried to help the baselines (which have not built
with complex header structures in mind) deal with
hierarchies (see table transformations in Section 4.2),
this implicit treatment of headers has two important
limitations: (1) the explicit hierarchical information
is lost and (2) in some cases, transformations may
add noise into a row/column. Therefore, it is not
surprising that questions that depend on row header
hierarchies negatively affect the performance of
all baselines and cause an average drop of ~10
percentage points (see Table 3b). This indicates that
additional work is needed to make Table QA models
better leverage row header hierarchies.

Paraphrasing. Paraphrasing is an important aspect
of Table QA systems. AIT-QA contains 76 para-
phrased questions, which can be grouped into 72 para-
phrased question sets (i.e., sets that include the original
questions and all its paraphrases). To study the effect
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of paraphrasing, we computed for each approach the
percentage of question sets for which (1) all questions
were answered correctly (referred to as All Correct),
(2) at least one question was answered correctly and
another incorrectly (Any Correct), and (3) all questions
in the set were answered incorrectly (All Wrong).

Table 4 shows the resulting percentages for all
baselines. For instance, for RCI the percentages for
(1) / (2) / (3) are ~33% / 35% / 32%, respectively.
Out of the three categories, especially interesting is
the 2nd category, as it represents questions that are
supported when phrased in one way but not supported
when phrased in a different way. With almost 30-35%
of question sets in this category, Table QA systems
seem to be very sensitive to question phrasing;
another area that would benefit from additional work.

5 Conclusion

Table QA systems have shown high performance
on existing Wikipedia-based datasets with simple
tables. To understand whether they perform as well
on domain-specific datasets commonly encountered
in the industry, we created AIT-QA; the first Table
QA dataset that explicitly captures domain-specific
tables with complex structure, including column
and row header hierarchies. Our experiments show
the deficiency of SOTA Table QA approaches in
this setting. We hope that this work and dataset
encourage the community to consider new Table
QA approaches that can support such complexity, so
that Table QA methods can more effectively support
domain-specific scientific and business use cases.
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A Annotation Tool

To generate the question-answer pairs, annotators
employed a custom-built Table QA annotation tool,
a screenshot of which is shown in Figure 2. Using the
tool, annotators can create question-answer pairs by
(a) entering the question and its classification along
the three dimensions of the dataset on the top of the
screen and (b) selecting the table cell that contains
the answer. As an annotator specifies questions,
these are displayed in blue boxes above the tables
containing the corresponding answers to allow for
easier inspection. Finally, a counter of annotations
is provided on the left side of the screen to allow
annotators to keep track of their progress.

B Implementation
Details for Baseline Table QA Models

To aid in reproducability, we next provide details on
the codebases and processes used to create the state-of-
the-art Table QA models employed in the experiments
described in Section 4. As part of the experiments, we
evaluate three Table QA systems: RCI (Glass et al.,
2021), TaBERT (Yin et al., 2020), and TaPaS (Herzig
et al., 2020), all pre-trained on the larger WikiSQL5

(Zhong et al., 2017) train split. In all cases we use the
original source code released by the respective authors,
pretrained weights along with details in their papers,
for setting up all baseline models. In particular:

• For TaBERT (Yin et al., 2020), we use the pre-
trained BERT released on the official GitHub
repository6 with semantic parser MAPO7.
TaBERT is trained for 10 epochs on 4 Nvidia
Tesla v100s with a batchsize of 10, number of
explore samples as 10 and all other hyperparam-
eters kept exactly the same as (Yin et al., 2020).

• For RCI (Glass et al., 2021), we use the
code released with the paper8 to train the
model for 2 epochs on 2 Tesla v100s, with
learning rate 2.5e-5 and batch size 128. All the
hyperparameters are kept the same as described
in Section A.2 of (Glass et al., 2021).

• For TaPaS (Herzig et al., 2020), we use the

5https://github.com/salesforce/WikiSQL
6https://github.com/facebookresearch/

TaBERT
7Source code available at https://github.com/

pcyin/pytorch_neural_symbolic_machines
8https://github.com/IBM/

row-column-intersection/

model9 trained on the WikiSQL dataset from
the official GitHub repository10.

C Ethical Considerations

The main goal of this work is to (a) inform the
research community of the challenges that state-of-
the-art Table QA approaches face when applied to
domain-specific settings, and (b) provide resources
(including the dataset and the insights in Section 4) to
help address these challenges. As a result, we believe
that this work has the potential to bring Table QA
research closer to the real needs of users interested
in getting answers to questions over tables found in
domain-specific business and scientific documents,
as commonly encountered in industrial settings.

While using the AIT-QA dataset for the above
purpose, it is important to understand that the dataset
represents a single domain/use case and may not
be entirely representative of other domains/use
cases. Based on our experience, the complex tabular
structures encoded in AIT-QA (incl. column and row
hierachies) are representative of structures found in
many other scientific and business documents (e.g.,
medical papers with tables containing the results
of clinical trials, licensing agreements with tables
describing details of the agreement, etc.). However,
other domains may have their own peculiarities (e.g.,
different vocabulary or specific table templates). As
a result, even though AIT-QA can be used to get a
first indication of the performance of a Table QA
system in a domain-specific setting, we encourage
the research community to also look at additional
domains/use cases, as each one may have its own
unique characteristics and associated challenges.

Including several domain-specific datasets in
the evaluation of Table QA systems can also help
ensure that when we design such systems, we take
into account the needs of diverse sets of potential
users and avoid introducing unwanted bias. As a
concrete example, we believe that more work should
be done in multi-lingual settings, as most Table QA
datasets (including AIT-QA) focus on documents and
questions written in English.

9https://storage.googleapis.com/tapas_
models/2020_08_05/tapas_wikisql_sqa_
masklm_large_reset.zip

10https://github.com/google-research/
tapas
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Figure 2: Screenshot of annotation tool used to create AIT-QA
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Abstract

Catastrophic forgetting is a challenge for model
deployment in industrial real-time systems,
which requires the model to quickly master a
new task without forgetting the old one. Con-
tinual learning aims to solve this problem; how-
ever, it usually updates all the model parame-
ters, resulting in extensive training times and
the inability to deploy quickly. To address this
challenge, we propose a parameter-efficient
continual learning framework, in which effi-
cient parameters are selected through an offline
parameter selection strategy and then trained
using an online regularization method. In our
framework, only a few parameters need to be
updated, which not only alleviates catastrophic
forgetting, but also allows the model to be
saved with the changed parameters instead of
all parameters. Extensive experiments are con-
ducted to examine the effectiveness of our pro-
posal. We believe this paper will provide useful
insights and experiences on developing deep
learning-based online real-time systems.

1 Introduction

In industry, many text-related applications have
enjoyed a superior performance boost from the
emerging of pre-trained language models, such as
word2vec (Mikolov et al., 2013a,b; Zhao et al.,
2017) , ELMo (Peters et al., 2018), GPT (Radford
et al., 2018, 2019), and BERT (Devlin et al., 2019;
Liu et al., 2019; Sun et al., 2019). However, when
a fine-tuned model needs to be updated to master
a new task swiftly, it usually loses the ability to
handle previous tasks. This phenomenon is known
as catastrophic forgetting (French, 1999), and it
poses a significant issue in industrial settings.

Continual learning aims to incrementally ex-
pand acquired knowledge for future learning (Chen
and Liu, 2018), and mitigate the impact of catas-
trophic forgetting in the meantime. Existing con-
tinual learning methods usually use data replay

∗∗Corresponding author.

(Rebuffi et al., 2017b), parameter isolation (Rusu
et al., 2016; Fernando et al., 2017), and regular-
ization (Kirkpatrick et al., 2017; Li and Hoiem,
2017) to make models adapt to new tasks without
catastrophic forgetting. However, these approaches
lack research on implementing continual learning
in industrial scenarios, where endowing models
with continual learning capabilities meets numer-
ous practical constraints. For time constraints,
when new data or tasks arrive, the model should
be launched in minutes or even seconds, which is
common in time-sensitive scenarios, e.g., blocking
certain rumors content. For space constraints, the
strong demand for tracing tasks makes it necessary
to save every model once it is changed. So for the
current large-scale pre-trained models, storage be-
comes an industrial challenge with the increase of
new tasks.

To solve these industrial challenges, we propose
a parameter-efficient continual learning framework
based on an offline parameter selection strategy.
The framework consists of two parts, i.e., offline
calculation and online training. In the offline cal-
culation part, all the parameters that are important
to the old task are selected to be fixed, while the
remaining parameters are employed to learn the
new task. Since in a real industrial scenario, the
arrival of a new task will have an interval of hours
or even days, we can make full use of this inter-
val to advance the selection of parameters. During
the online training phase, the model is parameter-
efficiently trained on a new task within a small
set of parameters and further combines multiple
regularization-based methods (Kirkpatrick et al.,
2017; Li and Hoiem, 2017) to overcome catas-
trophic forgetting. To alleviate storage costs, we
only save the modified parameters for each snap-
shot. Extensive experiments demonstrate that our
framework can maintain the old task performance
while learning a new task quickly. Our implementa-

315



tion is based on UER-py pre-training toolkit1 (Zhao
et al., 2019).

The main contributions of this paper can be sum-
marized as follows:

• We are the first to explore continual learning
with only a few model parameters, and show
that updating 0.1% parameters of BERT can
achieve competitive performance.

• We propose a parameter-efficient continual
learning framework that solves issues in
real-world industrial settings by utilizing
parameter-efficient-based offline parameter se-
lection strategies and regularization-based on-
line training methods.

• Extensive experiments on a real-world domain
incremental text classification task verify the
effectiveness of our proposed framework.

2 Related Work

2.1 Continual Learning
The major challenge of continual learning is catas-
trophic forgetting (McCloskey and Cohen, 1989;
French, 1999), which occurs when optimizing for a
new task causes performance degradation on a task
learned previously. Methods designed to mitigate
catastrophic forgetting mainly fall into three cate-
gories: replay methods, parameter isolation meth-
ods, and regularization-based methods (Delange
et al., 2021).

Replay methods explicitly retrain on a subset of
stored old task samples while training on new tasks.
Instead of selecting samples at random, Rebuffi
et al. (2017b) incorporated the Herding technique
(Welling, 2009) to choose samples that best ap-
proximate the mean feature vector of a class, and
it is widely used in Castro et al. (2018), Wu et al.
(2019), Hou et al. (2019), Zhao et al. (2020), Mi
et al. (2020a,b). Ramalho and Garnelo (2019) pro-
posed to store samples that the model is least con-
fident. However, replay methods exploit samples
from old tasks, which will slow down the online
training. To meet the time constraint, they are not
used in our framework.

Parameter isolation methods dedicate different
model parameters to each task, which are divided
in two directions. One is growing a new branch
network for a new task, while freezing previous
task parameters (Rusu et al., 2016; Xu and Zhu,

1https://github.com/dbiir/UER-py/

2018). The other one is masking out parameters
of previous task during new task training, which is
imposed either at parameters level (Fernando et al.,
2017; Mallya and Lazebnik, 2018), or unit level
(Serra et al., 2018). Parameter isolation is unsuit-
able for usage in industrial scenario. It is difficult
to keep track of the model’s scale if the number of
used parameters is continually accumulated as the
number of tasks increases.

Regularization-based methods add an addi-
tional regularization term in the loss function,
which will consolidate previous knowledge when
learning on new data (Delange et al., 2021).
Elastic weight consolidation (EWC) (Kirkpatrick
et al., 2017) is a well-known regularization-based
method, which introduces network parameter un-
certainty in the Bayesian framework. LwF (Li and
Hoiem, 2017) is another regularization method, us-
ing the previous model to infer current data and
taking the outputs as soft labels to mitigate forget-
ting and transfer knowledge.

2.2 Parameter-efficient Training
Training a model with a few parameters is useful
in many applications. Not only does the model
have the potential to achieve better performance,
but also disk space can be saved by only saving
the updated parameters for each task. Recent work
has shown that it is possible to update only a small
subset of the model’s parameters during training.
This kind of work could heavily alleviate storage
and deployment communication requirements . For
example, Adapters (Houlsby et al., 2019; Rebuffi
et al., 2017a; Bapna et al., 2019) introduce addi-
tional trainable parameters into a pre-trained model
in the form of small task-specific modules while
the rest of the model’s parameters are kept fixed.
Many works like Diff Pruning (Guo et al., 2020)
and BitFit (Ben Zaken et al., 2021) have shown
that it is possible to update only a small subset
of the model’s parameters during training, which
can alleviate storage and communication require-
ments. Xu et al. (2021) and Sung et al. (2021)
even show a acceptable performance on random
selection of parameters. Therefore, we choose to
perform parameter-efficient training on continual
learning to quickly master a new task while avoid
catastrophic forgetting.

3 Methodology

We introduce a parameter-efficient continual learn-
ing framework, as shown in figure 1. Our frame-
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Figure 1: The overall architecture of the parameter-efficient continual learning framework.

work is divided into two components. The first
is offline computation, which makes use of the
interval between tasks to evaluate the data and se-
lect the parameters that are crucial to old tasks.
These parameters are kept fixed in the new task.
The other part is online training. In this stage,
we utilize parameter-efficient training to perform
new task training on the parameters that are not
fixed. In addition, we introduce some well-known
regularization-based methods in our framework for
further improvement.

3.1 Offline calculation

The goal of offline calculation is to select the subset
of parameters that are (in some sense) the most im-
portant to all of the old tasks, and fix them. There-
fore, we make full use of the interval between tasks
to review the previous training data, and calculate
the parameters that are important to the previous
tasks in the latest model (snapshot). These parame-
ters will be fixed in the new task, and the remaining
parameters will participate in the training.

As for the method of measuring the impor-
tance of parameters, we consider the indicator of
how much changing the parameter will impact the
model’s output. The Fisher information is particu-
larly well suited to identifying the highly relevant
subset of parameters for previous tasks. It serves
as an useful tool for estimating how much informa-
tion a random variable contains about a parameter
of the distribution (Tu et al., 2016). The Fisher
information assumes that the more important the
parameter towards the target task, the higher value
it conveys. Formally, the Fisher information for the
parameter 𝜃𝑖 is as follows:

𝐹 (𝜃𝑖) = 1
|𝐷 |

|𝐷 |∑︁
𝑗=1

(
𝑎𝜕 log 𝑝

(
𝑦 𝑗 |𝑥 𝑗 ; 𝜃

)
𝜕𝜃𝑖

)2

(1)

Traditional training Parameter-efficient training

Figure 2: Illustration of parameter-efficient training.

where 𝐷 denotes the task-specific training data, 𝑥
and 𝑦 denote the input and the output respectively.

3.2 Parameter-efficient Online training

Given the important parameters selected in offline
stage, we use the remaining parameters for online
training. Updating subset of the parameters can
avoid catastrophic forgetting to some extent and
largely decrease the storage space required by the
snapshot. In addition, we combine the parameter-
efficient training with two typical regularization-
based continual learning methods. The combi-
nation of multiple orthogonal techniques can fur-
ther improve the performance of our system. The
overview optimization objective is as follows:

𝐿 (𝜃∗) = 𝐿𝐶𝐸 (𝜃∗) + 𝐿𝑟𝑒𝑔𝑢𝑙−𝑏𝑎𝑠𝑒𝑑 (𝜃∗), 𝜃∗ ∈ 𝑆𝜃

(2)
where 𝑆𝜃 are parameters selected from the of-
fline calculation stage, which have small Fisher
values. 𝐿𝐶𝐸 denotes the cross-entropy loss, and
𝐿𝑟𝑒𝑔𝑢𝑙−𝑏𝑎𝑠𝑒𝑑 denotes regularization-based method
loss.

3.2.1 Parameter-efficient learning
As shown in figure 2, in traditional training setting
(left), all of the model’s parameters are updated.
But in our online training (right), we only train a
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few parameters, and most of the parameters are
fixed according to the result of offline calculation
to avoid forgetting old tasks. In general, the model
will be easy to forget old tasks while learning new
tasks, if more parameters are updated. Therefore,
in our framework, we choose to perform parameter-
efficient training on parameters that are not impor-
tant to previous tasks, which are not fixed. Refer
to previous experience (Ben Zaken et al., 2021; Xu
et al., 2021), we chose a layer-wise strategy to se-
lect important parameters. We fixed the parameters
from large to small (Fisher information) in a certain
proportion at each layer.

On the other hand, updating a small number
of parameters is beneficial for storage purpose
and rapid deployment. Sometimes we need to de-
ploy our model on thousands of servers. So the
model size needs to be as small as possible (around
1.2 GB for BERT-Large 400 MB for BERT-Base).
Our framework only needs to store the values and
indices denoting the position of the updated pa-
rameters. Our experimental results demonstrate
that only 0.1% trainable parameters of the original
model can achieve competitive performance.

3.2.2 Regularization-based method
EWC and LwF are two representative approaches
for preventing catastrophic forgetting in neural net-
works. They respectively add restrictions on model
parameters and output activation. The two methods
are orthogonal and we combine them as follows:

𝐿𝑟𝑒𝑔𝑢𝑙−𝑏𝑎𝑠𝑒𝑑 (𝜃) = 𝜆1𝐿𝐸𝑊𝐶 (𝜃) + 𝜆2𝐿𝐿𝑤𝐹 (𝜃)
(3)

Elastic Weight Consolidation (EWC) (Kirk-
patrick et al., 2017) introduces network parameter
uncertainty in the Bayesian framework. Intuitively,
this approach consists of a 𝐿2 penalty on the dif-
ference between the parameters for the old 𝜃∗𝑖 (𝑖
denotes the indexes of the parameters) and the new
𝜃𝑖. It uses the diagonal of the Fisher information
matrix 𝐹𝑖 (2) to weight different parameters. The
EWC loss (4) slows down the learning process of
task-relevant parameters, which contains knowl-
edge learned previously.

𝐿𝐸𝑊𝐶 (𝜃) =
∑︁
𝑖

𝐹𝑖 (𝜃𝑖 − 𝜃∗𝑖 )2
(4)

From formula (4), we can see that if most of the
parameters are fixed, it is equivalent to reducing

the EWC loss, which is beneficial to preventing
catastrophic forgetting.

Learning without forgetting (LwF) (Li and
Hoiem, 2017) is another method for continual learn-
ing. Before training the new task, network outputs
for the new task data are recorded, which is denoted
by 𝑦′𝑜. It will be subsequently used during training
to distill prior task knowledge. LwF employs a vari-
ant of knowledge distillation. In our framework,
we use 𝐿2 (5) loss to regulate the outputs:

𝐿𝐿𝑤𝐹 (𝜃) =
∑︁
𝑘

(𝑦𝑜 − 𝑦′𝑜)2
(5)

4 Experiment

In this section, we empirically verify the effective-
ness and efficiency of our framework under the
setting of incremental text classification tasks in
the industrial scenarios.

4.1 Dataset & Implementation Details

In the experiments, we utilize the Amazon Reviews
dataset (He and McAuley, 2016) to examine our
method, which is widely used in text classification
tasks. The original dataset contains 142.8 million
product reviews collecting from 29 different do-
mains. To be consistent with our industrial sce-
nario, we firstly create a reduced dataset by ran-
domly selecting 10000 pieces of data from 12 do-
mains as the base task, 6000 of which are used as
training set, 2000 as validation set, 2000 as test set.
In the incremental learning session, we construct
17 subsequent tasks with 300 examples for training,
100 for validation and 100 for test from the rest
domains.

We adopt the BERT-Base model (Devlin et al.,
2019) and the BERT default uncased vocabulary.
All runs use the AdamW optimizer2 (Kingma and
Ba, 2014; Devlin et al., 2019) with 5 epochs, 32
batch size and 0.1 dropout rate. For the base task,
we set learning rate as 2e-5. For the incremental
tasks, we set learning rate as 2e-3, 𝜆1 as 0.35 and
𝜆2 as 1. Based on offline calculation results, we
only pick up 0.1% parameters to participate in each
training process. Our experiments are conducted in
Intel(R) Xeon(R) CPU E5-2699 v4 at 2.20GHz, 2
Nvidia Tesla P40 GPU with 24 GB of RAM.

2https://www.fast.ai/2018/07/02/adam-weight-decay/
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Order ↓ ∼ Method → EWC LwF EWC&LwF PE-rand PE-* Lower Bound Upper Bound
I 47.39 47.6 45.76 50.6 50.46 45.14 51.59
II 48.54 47.95 48.3 51.35 51.63 45.81 53.18
III 40.44 45.23 42.11 45.42 49.51 38.29 51.1
IV 43.27 45.16 41.04 42.07 46.8 41.27 54.78

Average Acc 44.91 46.49 43.30 47.36 49.6 42.63 52.66

Table 1: Main result of text classification (above) averaged accuracy score respectively (see Appendix A for the
dataset orderings).

4.2 Models
We compare our proposed models with the a series
of baseline methods in our experiments:

• lower-bound: a standard classification model
is fine-tuned on the individual task without
any continual learning strategy, which can be
considered as the lower-bound method.

• upper-bound: a model is trained on all tasks
simultaneously, which can be considered as
the upper-bound method since it has access to
the whole dataset.

• EWC & LwF: Two classical regularization-
based methods for continual learning.

• PE-rand: Our proposal model is trained
by randomly choosing some parameters and
keeping them unchanged during online train-
ing stage, instead of using the offline calcula-
tion strategy.

• PE-*: Our continual learning framework,
including offline calculation and parameter-
efficient online training.

4.3 Results
The models are trained on the current training set
and evaluated on the union of all the test sets. To
ensure the robustness of the task ordering, we eval-
uate our methods on the four different orderings
(chosen randomly), which are shown in Appendix
A.

Table 1 provides a summary of our main results.
We report the micro-averaged accuracy for the clas-
sification task. The lower bound is trained in the
current task without using any continual learning
strategy to overcome catastrophic forgetting, while
the upper bound is trained on all data after the new
task comes, which can be considered multi-task
method. There is a significant gap between the
lower bound and the upper bound, which illustrates
the need for continual learning. As the classical CL

methods, EWC and LwF outperform the standard
model without any specific continual learning, but
still suffer from catastrophic forgetting in the order
IV. It can be seen that our proposed PE-* achieves a
better performance than EWC, LwF and their com-
bination. This is because most of the parameters
in BERT are fixed, which is equivalent to posing
a strict regularization to the parameters to prevent
catastrophic forgetting while using the remaining
parameters to learn new tasks. Compared to PE-
rand, PE-* has a better average accuracy, which
verifies the importance of parameter selections. Al-
though the random selection method outperforms
PE-* in order I, it is difficult to obtain a suitable
set of parameters in most cases for models to learn
new tasks while maintaining previous knowledge.

Moreover, according to the principles of EWC
and LwF, the former records the initial model pa-
rameters, and the latter records the data features of
new tasks. As the training progresses, their regular
loss terms especially 𝐿𝐸𝑊𝐶 (𝜃) will get bigger and
bigger in model like BERT-Base with 110M pa-
rameters. What’s more, in real industrial scenarios,
each new task may have different suitable hyper
parameters. We do not have time to do grid search
of the best hyper parameters, so 𝜆𝐸𝑊𝐶 and 𝜆𝐿𝑤𝐹

may not be optimal solutions. This results in an un-
balanced ratio of 𝐿 (𝜃) to 𝐿𝐸𝑊𝐶 (𝜃) and 𝐿𝐿𝑤𝐹 (𝜃),
where 𝐿 (𝜃) may much smaller than 𝐿𝐸𝑊𝐶 (𝜃) and
𝐿𝐿𝑤𝐹 (𝜃). Therefore, as the number of tasks in-
creases, the training of new tasks will become
more and more difficult with the same set of hyper-
parameters. However, the previous tasks have not
been fully learned. This problem accumulates grad-
ually in regularization-based method and leads to
results that are not as good as our method (PE-*)
which just handles a very small amount parameters.

Figure 3 shows the accuracy of model on the first
task test set as the model are trained on more tasks.
The figure illustrates how well each model retains
its previously acquired knowledge as it learns new
knowledge. We can see that our framework is con-
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Figure 3: Performance on the first task test examples of
order I during training as training progresses.

Reserved Percent Order1 Order2 Order3 Order4
0.50% 50.46 51.63 49.51 46.8
1.00% 50.04 51.63 49.05 47.34
5.00% 45.11 48.61 46.44 44.43
10.00% 39.08 38.36 34.38 37.61

Table 2: The effect of layer-wise parameter reserved
percentage on accuracy.

sistently better and more stable compared to other
methods.

4.4 Parameter-efficient Strategy
Figure 4 shows the weight map of Fisher informa-
tion. It can be seen that in the BERT model, the
parameters of the embedding-layer have little effect
on our classification task. Most of the important pa-
rameters are concentrated in the transformer block
layer, and the importance of the attention layer
is higher than that of the feed forward layer. In
addition, according to our statistics, we found that
13%(about 14M) of the parameters’ Fisher informa-
tion is 0, and most of them are in embedding-layer.

In our experiments, we found that the param-
eters to be fixed cannot be determined simply in
order of magnitude. According to (Jawahar et al.,
2019), BERT encodes rich linguistic information
in different transformer blocks. Therefore, refer to
previous experience (Ben Zaken et al., 2021; Xu
et al., 2021), we chose a layer-wise strategy to se-
lect important parameters. We fixed the parameters
from large to small in a certain proportion at each
layer of the model. To this end, each layer has
parameters for new tasks to learn.

4.5 Model Size
We set layer-wise parameter reserved for new task
to different values, 0.5%, 1%, 5% and 10%, and
the percent of parameters fixed for old task are
99.5%, 99%, 95% and 90%. The advantage of
our parameter-efficient continual learning becomes
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Figure 4: Calculating the model Fisher information by
review old tasks, where dark colors are weighted more
than light colors. The layers of BERT are ordered from
bottom to top (i.e. the embedding layer is shown at the
top).

Method Acc Saved Parameters Saved model size
EWC 47.49 110B 421MB
LwF 47.95 110B 421MB

EWC&LwF 48.65 110B 421MB
PE-* 51.63 0.1B 1.2MB

Table 3: Comparison of storage costs.

more pronounced at extreme sparsity rates. In Ta-
ble 2, we report the accuracy across different task
orders and reserved rates. We can observe that
the more parameters fixed, the better the effect on
alleviating catastrophic forgetting.

In the above experiments, we only trained 0.1%
of the parameters in the BERT model. We use the
sparse-matrix method to store the model, and only
store the index and value each time, occupying
about 1.2 Mb of space, which is 0.3% of the entire
model, as shown in Table 3. Parameter-efficient
strategy greatly saves network bandwidth and stor-
age requirements.

5 Conclusion

This paper introduces a parameter-efficient contin-
ual learning framework, which is designed for real-
time incremental learning system. In offline stage,
the framework identifies the parameters that are
less important to the old tasks. By updating these
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parameters in online training stage, the model is
able to learn new tasks in short time without for-
getting the old ones. Furthermore, we surprisingly
find that decent results can be achieved by only
training a small subset of parameters (e.g. 0.1%).
This observation enables us to largely decrease the
storage of the snapshot, which is important for the
system requiring frequent update.
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A Task order

We use the following task orders (chosen randomly)
for text classification:

• Kindle_Store → Arts_Crafts_and_Sewing
→ Electronics → Magazine_Subscriptions
→ Pet_Supplies → Sports_and_Outdoors
→ Prime_Pantry → Office_Products
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→ Movies_and_TV → Automotive →
CDs_and_Vinyl → Gift_Cards → Digi-
tal_Music → Clothing_Shoes_and_Jewelry
→ Home_and_Kitchen → Software →
Grocery_and_Gourmet_Food

• Pet_Supplies → Gift_Cards → Electronics
→ Prime_Pantry → Office_Products → Dig-
ital_Music → Magazine_Subscriptions →
Home_and_Kitchen → CDs_and_Vinyl →
Grocery_and_Gourmet_Food

• Digital_Music → Arts_Crafts_and_Sewing
→ Office_Products → Maga-
zine_Subscriptions → Kindle_Store →
Software → Automotive → Prime_Pantry
→ Grocery_and_Gourmet_Food →
Movies_and_TV → Electronics →
Home_and_Kitchen → Pet_Supplies
→ CDs_and_Vinyl → Cloth-
ing_Shoes_and_Jewelry → Gift_Cards

• Magazine_Subscriptions →
Sports_and_Outdoors → Dig-
ital_Music → Electronics →
Prime_Pantry → CDs_and_Vinyl
→ Grocery_and_Gourmet_Food →
Home_and_Kitchen → Software →
Arts_Crafts_and_Sewing → Cloth-
ing_Shoes_and_Jewelry → Pet_Supplies
→ Office_Products → Kindle_Store →
Gift_Cards
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Abstract

Self-learning paradigms in large-scale conver-
sational AI agents tend to leverage user feed-
back in bridging between what they say and
what they mean. However, such learning, par-
ticularly in Markov-based query rewriting sys-
tems have far from addressed the impact of
these models on future training where succes-
sive feedback is inevitably contingent on the
rewrite itself, especially in a continually up-
dating environment. In this paper, we explore
the consequences of this inherent lack of self-
awareness towards impairing the model perfor-
mance, ultimately resulting in both Type I and
II errors over time. To that end, we propose aug-
menting the Markov Graph construction with
a superposition-based adjacency matrix. Here,
our method leverages an induced stochastic-
ity to reactively learn a locally-adaptive deci-
sion boundary based on the performance of
the individual rewrites in a bi-variate beta set-
ting. We also surface a data augmentation strat-
egy that leverages template-based generation
in abridging complex conversation hierarchies
of dialogs so as to simplify the learning pro-
cess. All in all, we demonstrate that our self-
aware model improves the overall PR-AUC by
27.45%, achieves a relative defect reduction
of up to 31.22%, and is able to adapt quicker
to changes in global preferences across a large
number of customers.

1 Introduction

Large-scale conversational AI systems such as
Alexa, Google, Siri etc. serve millions of users
daily all over the planet, who speak diverse lan-
guages and have a myriad of regional preferences.
These models need to be constantly updated with
new data to adapt to changing customer behav-
ior and trends. Data curation processes that rely
solely on human annotations cannot possibly scale
to sustain the rapid update pace of these systems.

∗ Equal contribution

Therefore, quite naturally, these AI agents have
increased their reliance on explicit and implicit
feedback from customer interactions to automate
the learning process while limiting manual annota-
tion efforts selectively only to auditing and quality
control purposes.

In such feedback-based self-learning systems
where new streams of data are being funneled in to
continually update the system, the mere presence
of the ML model itself inevitably impacts future
training data. This is rather evident with query
rewriting models where the reformulated query be-
comes intertwined with the original utterance to
the extent where the successive feedback in the
customer-system interaction paths become contin-
gent on the rewrite. Here, we show that as these
models continue to be updated without account-
ing for this unintended interference, they tend to
learn false equivalencies between the original re-
quests and rewrites, thereby impeding their own
self-learning capabilities.

In this work, we build upon an absorbing Markov
Chain model to make the model self-aware i.e. it
can distinguish between customer requests and sys-
tem rewrites, and adapt its decision boundary based
on the quality of the rewrites. Note that the system
can also be an ensemble of heterogeneous agents
proposing different reformulations for the same
query. The self-learning Markov model does not
require any agent specific information and rather
treats them all as a single entity. Thus, this work
can be integrated into any conversational AI system
to enable self-learning at a system-level without
major changes to the rest of the architecture.

2 Related Work

Query rewriting techniques, particularly in the form
of suggestive disambiguation have been extensively
employed in online search systems (Jansen et al.,
2009; Antonellis et al., 2008; He et al., 2016; Rie-
zler and Liu, 2010), so as to increase recall and im-
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Figure 1: A general walk-through for motivating a meta-state augmented Graph: Beginning with the original
construction of chains in (a) where utterances, U are projected into the hypothesis space, H before being encoded
into the absorbing Markov model in (b) showing how a target rewrite in U ′ is resolved given a source in U .
Thereafter, upon deployment, the effect of continuing to model the Graph as before i.e. by discounting the presence
of rewrites, Gd in (c) and choosing to always unroll the internal rewrites as an externalized state, Gu in (d), both
lead to Type II and I errors respectively. Note that the decision boundaries over discrete spaces here are to illustrate
the nature of mis-classifications. Naturally, in attempt to balance these two categories of error, a superposition of Gd

and Gu is constructed in (e) wherein the rewrites act as meta-states that induce stochasticity within the Graph, G′.

prove click-through rates. Naturally, conversational
AI systems have also adopted similar techniques to
reduce customer defects (Sodhi et al., 2021; Hao
et al., 2020; Su et al., 2019; Rastogi et al., 2019;
Roshan-Ghias et al., 2020; Yuan et al., 2021; Fan
et al., 2021). To the best of our knowledge, none
of them address feedback issues that arise from
model-in-the-loop environments.

Previous work has analyzed biases and noises
in the feedback loop of machine learning models,
particularly in recommendation systems (Chaney
et al., 2018; Mansoury et al., 2020; Sun et al., 2019;
Mehrabi et al., 2021; Lim et al., 2015; Saito et al.,
2020). Khritankov (2021); Sculley et al. (2015);
Amodei et al. (2016) delve into the effects of un-
wanted feedback loops that can lead to AI system
instability. These works do not consider misplaced
attribution of the feedback itself, which is exacer-
bated in query-rewriting systems.

In Ponnusamy et al. (2020), customer interac-
tions are modeled as an absorbing chain Markov
model, and the candidate that is most likely to re-
sult in a successful absorbing state is predicted as
the rewrite. This work does not address the equiva-
lence conflation problem that occurs over time in
such a setup. We update the Markov formulation
to enable self-awareness and resolve the ambiguity
in feedback attribution.

In Shi et al. (2021), the Markov model is lever-
aged as a recall layer that produces candidates
which are re-ranked by a self-learning neural model

that relies on negative user feedback. While there
is not much information on the performance of
the recall layer, their neural ranking mechanism
is richly augmented with common sense and var-
ious user preferences. They do not mention any
degradation of the Markov model over time but
it is possible that the enriched re-ranker could be
compensating for this. In contrast, our work solves
the issue within the self-learning Markov model
itself as opposed to deferring it to a downstream
model. This has the added benefit of accelerating
the rate of self-learning.

3 Dataset

To extract the chains of successive customer inter-
actions for the eventual Graph, we first pre-process
about 90 days of de-identified time-series utterance
data from a representative sample of customers
worldwide to construct our dataset of sessions, D.
Here, conceptually speaking, each such session
represents a time-delimited snapshot of a particular
customer’s conversation history. To illustrate this,
consider the session in Figure 1(a) that encapsulates
a series of consecutive utterances which follows a
customer interjecting with a “stop” and following
up with a rephrase of their original request to play
the song “Enemy”. Note that in practice, to maxi-
mize the consistency of a conversational goal, the
time delay between consecutive turns is heuristi-
cally bounded.

Now, while the vast majority of interactions are
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indeed stateless, there are those which trigger di-
alogs so as to solicit the user to disambiguate. This
inevitably creates conversational hierarchies that
span multiple turns. To ground this, consider the
dialog in Figure 2(a) where the system is unable to
fulfill the initiating request without first clarifying
which playlist to add the song to. To address this
complexity and improve the overall intelligibility
of the corresponding session, such multi-turn di-
alogs are abridged by connecting the initiating turn
with a synthetic one as shown in Figure 2(c). This
is accomplished via template-based DAGs (the con-
struction of which is explored with greater detail
in the Appendix Section 8.1) wherein the resolved
entities towards the end of the corresponding di-
alog are passed through to generate the synthetic
utterance e.g. the DAG in Figure 2(b) is fed with
“SongName:escape”, “ArtistName:enrique igle-
sias”, and “PlaylistName:kacey’s” so as to surface
the eventual synthesized utterance, “add escape by
enrique iglesias to kacey’s playlist”.

4 Self-Aware Markov Model

Much akin to the original formulation of the
Markov model by Ponnusamy et al. (2020), which
we henceforth regard as our baseline, our dataset
of ordered linear sequence of utterances is first
projected into the hypothesis space, H e.g. the
utterance “play one me” is mapped with the aid
of the system’s NLU component to the hypothe-
sis, “Music|PlayMusicIntent|SongName:one me”.
Thereafter, they are each terminated with an absorb-
ing state. The union of these disjoint chains tanta-
mount to our Markov Graph, G = (V,E) where
V = H ∪ S represents the set of all transient and
absorbing states respectively, while E = V × V ,
naturally corresponds to the set of edges. In a more
canonical form, the Graph can be represented via
the transition matrix A:

A =

[
Q S
0 I2

]
(1)

where Q ∈ R|H|×|H| is the sub-matrix of transi-
tion probabilities between transient states such that
its (i, j)-th element corresponds to the probability
of some source transition state, hi transitioning to
some target transition state, hj in a single step or
mathematically speaking, qi,j = P (hj |hi). The
sub-matrix S ∈ R2×|H| refers to the immediate
absorption probabilities of the corresponding tran-
sient states i.e. S = [s+, s−].

Figure 2: Dialog abridging via template-based DAG
with (a) being the original dialog, (b) the extracted tem-
plate graph, and (c) original with the synthesized utter-
ance.

Now, with Q being a square matrix1 whose
norm, ∥Q∥ < 1, the fundamental matrix of the
Markov model, N as formulated in Definition 11.3
by Grinstead and Snell (2012) is therefore given
by N =

∑∞
n=0Q

n =
(
I|H| −Q

)−1 where Qn

refers to the transition probability sub-matrix Q
after exactly n steps. The fundamental matrix, N
is leveraged in resolving the Markov model so as
to surface rewrite candidates. Specifically, for a
given initial transient state, hi, a particular target
transient state, ht would be classified as a poten-
tial candidate should it be both reachable by hi and
conditioned on hi, it leads to a higher chance of suc-
cess. Mathematically speaking, this optimization
objective can be expressed as Φ∞(ht) > Φ∞(hi)
where Φk(hj) refers to the probability of reaching
a successful absorbing state, s+ from hi via another
state hj that is at most k hops away i.e.:

Φk(hj) = P (s+|hj) ·Ni,j (2)

Here, by identifying the initial transient states that
have at least one relatively more successful target
transient state and thereby learning a measure of
equivalency between states in the hypothesis space,
H , the model is effectively able to partition H into
those that require reformulation i.e. the defective
sub-space, H− and those that don’t i.e. the suc-
cessful sub-space, H+. This nature of automatic
partitioning leads the model to predict rewritability
ŷ of a given hi as follows:

ŷ(hi) = 1

{(
argmax

h∈H
Φ∞(h)

)
̸= hi

}
(3)

1As every atomic chain in the Graph is terminated with an
absorbing state, these terminal states are guaranteed to always
be reachable by any given source transient state, thus ensuring
their convergence i.e. lim

n→∞
Qn = 0.
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4.1 Decision Boundary Degeneracy

Upon deployment however, the very presence of
rewrites can significantly destabilize the Graph and
impair the integrity of its learned partitioning. To
ground this, consider, in the absence of any rewrite,
a commonly misrecognized utterance, "play theme"
(u1) is followed up with rephrases of "play team",
"play the song team by lorde", etc. Now, when the
first Markov model G(0)

d is trained initially at T0
(Figure 1b), it learns to rewrite u1 to "play team by
lorde" (r1). Once deployed, as the Markov model
continually learns from customer feedback, u1 be-
comes more and more successful than it actually is,
since r1 is not explicitly modeled. Conceptually,
this deterministic discounting deforms the deci-
sion boundary around u1, resulting in a Type II er-
ror (Figure 1c). Such a misclassification will even-
tually shed the rewrite, forcing the graph to revert
to G(0)

d . This increases the rephrases to u1 as pre-
viously observed at T0 and as it gathers sufficient
defect statistics, the pattern would repeat, resulting
in an unstable oscillatory system that struggles to
maintain a consistent decision boundary.

One way of solving the above problem, is to ac-
count for rewrites by always including them in the
original interaction chain. While this might allevi-
ate the Type II error described above, we show that
this limits the system’s capability to handle defec-
tive rewrites. Imagine a case where a successful
utterance, say "play la da dee" is followed up by
a defective system rewrite "play lady" (Figure 1d).
This may arise due to a number of reasons such as
epistemic or systemic errors, multi-agent interac-
tion, etc. as it is the nature of any statistical model.
This process of deterministic unrolling, which
presumes rewrites to have some degree of latent in-
tent equivalency with the original utterance, would
cause the original hypothesis to become more and
more defective than it actually is, resulting in a
Type I error. To recover the original intent, the
customers would need to rephrase following the
defective rewrite e.g. "play la da dee by cody simp-
son" or some external guardrail mechanism would
need to intervene. Yet again, the Graph will be
slow to adapt the decision boundary in response to
a Type I error or even worse, may completely fail
to recover.

4.2 Meta-State Augmentation

A natural way to balance out these Type I and II er-
rors and thereby maximizing the eventual precision

and recall of the rewrites would to be to learn to
unroll the rewrite should it improve the customer
experience and discount it otherwise. This form of
adaptive preservation and suppression of rewrites
gives rise to a probabilistic decision making pro-
cess where the rewrites act as a kind of meta-states
that induce stochasticity within the Graph. Concep-
tually speaking, this is equivalent to both Gd and
Gu being in a state of superposition as shown in
Figure 1(e) where in the event that a particular tran-
sient state, hi is both rewritten to hk and followed-
up by hj , a meta-state triplet (MST) is formed. In
more robust terms, each of these MSTs within the
Graph are comprised of a viability edge, (hi, hk), a
succeeding edge, (hk, hj), and a discounting edge,
(hi, hj) and are uniquely parameterized by their
own set of probabilistic values, namely in this case,
αik, βkj , and γij respectively so as to allow the
Graph to truly be locally adaptive in its learning. To
that extent, we first construct a superposition-based
transition matrix A′ by updating the probabilities
as below:

A′ = (λ ◦C)⊤D−1

λ = α ◦ J(α) + β ◦ J(β) + γ ◦ J(γ) + J(ϵ)
(4)

where C ∈ Z|V |×|V |
0+ such that Cxy refers to the

co-occurrence count of the directed edge exy =
(hx, hy) in the superposition Graph, G′ and D is
the diagonal matrix whose entries are row-wise
sum of the matrix C i.e. diag(D) = (λ ◦ C) · 1.
The entries J(α)

xy ,J
(β)
xy and J

(γ)
xy on the other hand,

are the ratios of exy occurring as either a viabil-
ity, succeeding or discounting edge respectively.
J
(ϵ)
xy , however, is the complementary ratio of exy

not being a part of any MST. As a matter of com-
pleteness, it’s worth noting here that α,β,γ,J(·) ∈
[0, 1]|V |×|V | such that J(α)

xy +J
(β)
xy +J

(γ)
xy +J

(ϵ)
xy = 1.

Consequently, this modified transition matrix is
then used in resolving the Markov Graph as before,
to generate rewrite candidates.

4.3 Meta-State Triplet Parameters
In order to adaptively preserve or suppress the
rewrites, the weights on the viability edges, α
should reflect the performance of rewriting. As
such, for a given viability edge exy we compare
the interaction quality (IQ), as scored by a neural
dialog model (Gupta et al., 2021) of the popula-
tion where hx was not rewritten, X against that
where hx was rewritten to hy, Y |X = W . Now,
suppose that the probability of success in each
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of these populations follows Beta distributions i.e.
pX ∼ Beta(ax, bx) and pW ∼ Beta(aw, bw). Then,
leveraging the beta bi-variate hypothesis testing
model as formalized by Miller (2015), the proba-
bility that rewriting is comparatively better is given
by:

P (pW > pX) = 1−
∫ 1

0
f(pX , pW ) · dpX

f(pX , pW ) =
pax−1
X (1− pX)bx−1

B(ax, bx)
· IpX (aw, bw)

where, B is the beta function and I , the regularized
incomplete beta function. Thereafter, αxy is com-
puted as a variant of P (pX > pY ) by leveraging
different probability arguments depending on sup-
port sufficiency for both pX and pY as detailed in
the appendix.

Then, while α reflects the rewrite quality via
historical statistics, the weights on the succeeding
edge, β = αρ are designed to maintain the seman-
tic connectivity between the rewrite and the suc-
ceeding states. Here, we rely on Levenshtein ratio
to score on both the grapheme and phoneme levels
so as to compute a relevance measure, ρ ∈ [0, 1].
Intuitively speaking, it allows the α-β flow to be
dampened in the event the rewrite is followed up
with a semantically similar rephrase, indicating that
it may not have quite achieved the customer’s true
intent. In a complementary fashion, the weight of
the discounting edge γ = 1 − α · β acts as a re-
sponse whose magnitude correspond to how much
the corresponding rewrite in its MST needs to be
suppressed. Thus, the locally adaptive Markov
model is self-aware to be able to tailor the deci-
sion boundary so as to surgically maximize the
precision and recall over the space of rewrites.

5 Experiments

We build an evaluation dataset of request-rewrite
pairs annotated by a cascaded labeling pipeline
comprising of an interaction quality model, NLU
scores and manual verification. This fundamentally
enables us to surface, for a given request, u, both
the set of rewrites which significantly improve the
customer experience, r+u and the set that signifi-
cantly worsen, r−u to collectively yield our core
evaluation dataset, De. Then, for any given request,
we further define its rewritability, i.e. a binary la-
bel which indicates whether a particular request, u,
should at all be rewritten, as yu = 1(|r+u | > 0).

We benchmark our self-aware Markov model
variantMs against the baselineMb (Ponnusamy
et al., 2020) 2 and measure the gains introduced
by our template-based generation strategy on both
model variants, denoted by the subscript +g.
Specifically, we measure their performance on the
evaluation set De over three tasks, namely their
ability to partition the requests based on their pre-
dicted rewritability, learn the optimal rewrite for
a given request i.e. equivalence learning, and re-
act to changing customer preferences i.e reactivity
rate.

5.1 Partitioning
The automatic partitioning task is a binary classifi-
cation problem where the ground truth label yu is
compared against the model prediction (Equation
3). We observe that the self-aware models signif-
icantly improve precision and recall compared to
their baseline counterparts as shown in Table 1.
Here, it is worth mentioning that the consistent

Model Mb+g Ms Ms+g

Precision +0.0961 +0.1808 +0.1688
Recall +0.1724 +0.4674 +0.5110
Accuracy +0.0606 +0.1922 +0.2047
F1 +0.2555 +0.5547 +0.5834

Table 1: Partitioning metrics measured as improvement
overMb

significant gain in recall with template-based gen-
eration enabled is in part due to a strong correlating
property between the need for rewriting and the
need for disambiguation, which otherwise would
have been lost due to the local Markov property.

5.2 Equivalence Learning
Once the requests are partitioned, the performance
of the model in selecting rewrites i.e. its ability to
optimally learn equivalencies for those inH− are
evaluated. To this end, we compare the score of the
models (Φ∞ from Equation 2) against the ground
truth annotations in De i.e. whether a given rewrite
candidate makes the customer experience signif-
icantly better (+1) or worse (-1). The precision-
recall curves are then obtained as in Figure 3. The

2To the best of our knowledge, this is a novel space where
widely peer-reviewed work on continual adaptive self-learning
systems are few and far between. As such, this Markov-based
baseline which has already shown to outperform a pointer-
generator LSTM is chosen given its already established pro-
duction impact.
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self-aware models exhibit much better precision
vs. recall trade-offs and have significantly higher
areas under the curve. To highlight, the template
augmented self-aware modelMs+g improves the
PR-AUC by 27.45% relative toMb+g.

Figure 3: Precision-Recall Characteristics of Equiva-
lence Learning.

5.3 Reactivity Rate

A key paradigm in designing large-scale AI solu-
tions is the adaptability of the system to changing
customer preferences. In the query rewriting do-
main, this quality can be expressed via the rate
at which the top rewrite candidate changes over
time i.e. the reactivity rate. Figure 4 shows the
distribution of reactivity rate for common requests
across the graph over a 30 day time period. The

Figure 4: Reactivity Rate Distribution.

self-aware model exhibits higher reactivity as seen
by the right shift in the distribution with respect to
the baseline. To study the impact on performance
over time, we compare the relative change in F1

scores of the models ∆F (t)
1 =

F
(t)
1

F
(0)
1

−1 where, F (t)
1

is the F1 score of the given model at a given times-
tamp t on the equivalence learning task. It can be
seen from Figure 5 that the self-aware model shows
relative increase in the score over time, whereas the

baseline is subject to a degradation in performance.
Thus the higher reactivity rate of self-awareness is
correlated to increased self-learning with the mod-
els adapting to customer feedback.

Figure 5: Relative change in F1 score over time t. Note
that for every timestamp, both models were retrained
with new customer feedback.

5.4 Online Performance

With our approach for template-based generation
being inherently scalable across languages and our
self-aware Markov Graph naturally being language
agnostic, we successfully deployed the model
across 11 locales spanning 6 languages worldwide.
To facilitate the models’ ability to be continually
adaptive, they are refreshed daily with new cus-
tomer feedback. After nearly 6 weeks of in-depth
A/B testing in production, we observed a strongly
significant reduction (i.e. achieving a p-value of
≤ 0.0001) in defects experienced by the customers
compared to the baseline (see Table 2) with a rela-
tive defect reduction of up to 31.22%.

6 Deployment

In similar fashion to the well-established architec-
ture of modern conversational AI systems (Gao
et al., 2018), Alexa follows suit in which the user-
spoken audio is first transcribed into an utterance
text by an automatic speech recognition (ASR) sys-
tem and thereafter has its domain, intent and enti-
ties inferred by the natural language understanding
(NLU) system. However, with the presence of our
reformulation engine as shown in Figure 6 below,
the utterance text is intercepted so as to vend out
a rewrite by means of an online database-backed
lookup system before being funneled through to
NLU. Thereafter, the resulting interpretation in con-
text of the active dialog is leveraged to execute the
corresponding action and respond back to the user.
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Language Defect Reduction Example Request Example Rewrite

English 25.78% play tokyo take out
OLD: play tokyo takedown
NEW: play towkyo takeout by michael giacchino

French 31.22%
mets la chanson le OLD: mets le dimanche à bamako

dimanche à bamako NEW: joue la album dimanche à bamako par amadou

Italian 23.98%
metti campioni del mondo OLD: metti la canzone campioni del mondo

NEW: riproduci canzone italia campione del mondo di gigione

German 22.73%
spiel sun goes down von lenas x. OLD: spiel sun goes down von lil nas you

NEW: spiel sun goes down von lil nas x.

Spanish 28.06%
reproducir feliz cumpleaños OLD: pon las mañanitas con alejandro fernández

de alejandro fernández NEW: reproduce las mañanitas de alejandro fernández

Portuguese 26.21% toca mulher chorona
OLD: toca mulher chorona de corpo e alma
NEW: tocar mulher chorona de trio parada bruta

Table 2: Online Performance ofMs+g with Qualitative Examples.

Figure 6: System Architecture

Within the offline data cycle, the de-identified
logs are enriched with defect predictor labels by
the interaction quality (IQ) model before being
collectively used to train the self-aware Markov
model. The resulting rewrites surfaced by the
Markov model are successively uploaded to the
aforementioned online database. It is worth noting
here that the offline data cycle in entirely is exe-
cuted on a daily cadence so as to ensure the overall
reactivity of the system. In contrast to the baseline
Markov Graph, training the self-aware model in-
curs a rather moderate (∼ 8.33%) computational
overhead due to the additional α computation and
the increased amount of edges.

7 Conclusion

In this work, we address one of the key hurdles to
the achieving self-learning in continuously updated
feedback based systems, namely the deformation
of the partitioning decision boundary due to lack
of self-awareness. To overcome this degradation in
Markov-based query rewriting models, we propose
a superposition-based model that continually and
reactively learns locally-adaptive decision bound-
aries, maximizing its precision and recall over time.
Our proposed strategies show significant improve-

ments in self-learning tasks and overcome long-
term performance degradation. That being said,
its dependence on sufficient statistical evidence for
rewrite quality renders it subject to volatility with
regard to tail or highly personalized rewrites, which
we discuss further in the Appendix.
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8 Appendix

8.1 Template-Based Generation
While most interactions are single-turn, i.e. closed-
form requests that are information complete, there
are nonetheless dialogs that serve to disambiguate
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the user’s intention. Such multi-turn interactions in-
troduce conversational hierarchies, rendering each
subsequent dialog turn contextually and cumula-
tively dependent on all its preceding turns. To
ground this, consider the pair of requests – “set an
alarm for tomorrow" and “set an alarm for seven a.
m.". While the latter is informationally sufficient
for the system to take the requisite action, the for-
mer in contrast remains ambiguous and warrants
multiple turns. Under Markov conditions where
the conditional distributions are entirely uni-variate,
such hierarchies are not simultaneously observed
by the model and fundamentally prevent it from
providing an optimal rewrite.

Figure 7: Plate notation summarizing the relationship
between intents I , languages L, entity sets E, the
corresponding templates G and the consequent utter-
ances and confidences in the single-turn training dataset,
D(s)

t = {(u, z)(1), . . . , (u, z)(k)}.

Figure 8: Template DAG extraction via NER and POS
tagging with (a) showing multiple utterances with their
entities and articles in colored boxes, and (b) represent-
ing the DAG for those utterances.

To address the limitation of the local Markov
property in multi-turn dialogs, we introduce a syn-
thetic utterance generation strategy that abridges
the aforementioned hierarchy into a mere pair of
turns. We define the single-turn training dataset
D(s)

t as described in the plate notation in Figure
7. We form the dataset of utterances u by sam-
pling from a distribution of templates that are con-
ditioned on entity sets, languages, and user intents.
These templates are obtained by leveraging NER
and POS tagging results from NLU, as shown in

Figure 8a. Note, however, that a template g leads
to utterances that are not enforced to follow a
proper grammatical form—potentially reflecting
a low NLU confidence z. Thus, for a specific entity
set e, an intent i, and a language l, we determine
the most plausible template g∗ by maximizing the
expected value of the NLU confidence z:

g∗ = argmax
g∼pg|e,i,l

E[z | g] (5)

where pg|e,i,l denotes the sampling probability for
the template g conditioned on its corresponding
entity type, language, and intent. Once we have
the set of templates for a given language and intent,
we convert each template into a token chain and
unify nodes across chains to form a single graph
(see Figure 8b). Although this graph is constructed
from high-quality templates, it may contain cycles
that prevent a proper synthetic utterance generation.
Therefore, we factorize the graph into multiple di-
rected acyclic graphs (DAGs). We identify and
break cycles using depth-first search to ensure di-
rectedness while preserving the syntactic integrity
of the original linguistic structures. This process
results in multiple DAGs that account for all the
original valid paths.

When generating synthetic utterances, we extract
the entities from a multi-turn dialog and obtain the
template g∗ that maximizes the overlap between its
entity types e and the DAG nodes Ng:

argmax
g∗∈G∗

(i,l)

|e ∩Ng∗ | (6)

where G∗
(i,l) is the set of optimal templates that

defines the DAG and (i, l) denotes a common in-
tent and language across those templates. Once the
path has been determined, we replace the entities
in template g∗(i,l) with their corresponding values
and resolve the entity articles, if applicable. It is
possible, however, that the algorithm may not nec-
essarily find a satisfactory path among the DAGs
defined from G∗

(i,l). In such cases, we abridge the
entire dialog to merely retain the first turn of the
dialog. Additionally, our algorithm is only exe-
cuted when the multi-turn dialog has a successful
conversion (i.e., the user’s request was satisfied).
In the event of an unsuccessful dialog or an abrupt
end (e.g. “no”, “stop”), we terminate the dialog
with an interjectory utterance. Figure 2 describes
the high-level process of compressing a multi-turn
dialog into a single-turn dialog.

332



8.2 Meta-State Augmentation
The weight α is chosen in a hierarchical fashion as
follows. We select the first α from the successive
preference relation, αc ≻ αg ≻ αe whose confi-
dence interval widths given by Wilson’s method
for both the utterance and rewrite are lesser than η.
Here, the Wilson’s score interval is computed with
a significance of 89% CI and η was calibrated via
cross-validation to an optimal value of 0.588. Each
of the αc, αg and αe is defined by the following
probability arguments,

αc = P (pW |c > pX|c)

αg = P (pW > pX)

αe = P (pWe > pXe)

where αc relies on the supporting statistics for a
given customer, c while αg extends that statistic
globally across all customers in the data. Unlike αc

and αg, however, we determine αe by the distribu-
tions of entity changes between the utterance and
the rewrite. Given the entity set e, along with their
corresponding changes between the original and
its rewrite (e.g., ArtistName added, SongName
changed, etc.), we compute αei for every entity
ei ∈ e and retrieve the maximum absolute devia-
tion as αe:

αe = max
ei∈e

|αei − 0.5| (7)

We choose the maximum absolute deviation be-
cause it linearly provides a sense of dispersion
without overly weighting values as in other for-
mulations (e.g., standard deviation). More impor-
tantly, Equation 7 defines αe based on a single
most-dispersed αei value, which can lead to either
suppress (i.e. low dispersion) or encourage (i.e.
high dispersion) the αβ-path.

8.3 Risks and Limitations
In order to be locally adaptive i.e. decisively un-
roll or discount a particular rewrite when warranted
so, the learning of the Graph hinges on its ability
to determine the viability i.e. the α value of the
said rewrite—the performance of which is squarely
correlated with that of the IQ model and thereby
inheriting the model’s limitations in its overall pre-
cision and recall. That being said, the Graph does
internally rely on its collaborative filtering ability
to regularize the model’s decision while external
guard-rail mechanisms are also in place to further
mitigate the impact of this dependency.

Another matter of concern here would be the
requisite for sufficient statistics when computing
α, which becomes a limiting factor for highly tail
or personalized rewrites, where the Graph would
essentially struggle to learn a consistent decision
boundary given a high entropy of plausible rewrite
alternatives, resulting in its equivalency learning to
be entirely contingent on the more prevalent cohort
within each learning cycle. In practice however,
this is far from being a considerable issue as the
over-arching system takes on a multi-stage hier-
archical approach that permits other personalized
agents to act in lieu of the Graph, while maintain-
ing the Graph’s role for its more confident set of
customer cohorts.

Conversely speaking, should there be a signifi-
cantly widespread rewrite that abruptly becomes
defective, the Graph would inevitably require a
substantial or quite possibly, an equally volumi-
nous source of negative feedback to counter the
highly successful prior. This in turn could subject
a vast number of customers to a bad experience
for a considerable amount of time that ultimately
drives down the engagement. As clear of a risk
this is in a deployed application setting, a veritable
solution here would be to adopt a sense of recency-
weighting in constructing the Graph’s adjacency
matrix, which stands as a worthwhile future effort.
In the meantime however, we rely on external gat-
ing mechanisms that refresh far more often than
the Graph to aid in mitigating the overall severity
of such an issue.
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Abstract
Dialogue systems can benefit from being able
to search through a corpus of text to find in-
formation relevant to user requests, especially
when encountering a request for which no man-
ually curated response is available. The state-
of-the-art technology for neural dense retrieval
or re-ranking involves deep learning models
with hundreds of millions of parameters. How-
ever, it is difficult and expensive to get such
models to operate at an industrial scale, espe-
cially for cloud services that often need to sup-
port a big number of individually customized
dialogue systems, each with its own text corpus.
We report our work on enabling advanced neu-
ral dense retrieval systems to operate effectively
at scale on relatively inexpensive hardware. We
compare with leading alternative industrial so-
lutions and show that we can provide a solution
that is effective, fast, and cost-efficient.

1 Introduction

Dialogue systems such as Amazon Lex, IBM Wat-
son Assistant, or Microsoft Azure Bot Service op-
erate mainly through intent detection. A subject
matter expert (SME) creates a dialogue system by
defining a fixed set of intents that a user might
have and provides scripted responses for each of
them. Machine learning models are adopted to
identify the user intent and route to the correspond-
ing dialogue nodes and responses. It usually takes
a considerable amount of human curated data to
train an intent detection model. Adding features or
content to a dialogue system would require adding
new intents and training the model all over again.

To alleviate such limitations, an alternative ap-
proach to enabling the same user experience is to
have a system automatically search through a cor-
pus of text to find relevant responses to each user
request. One motivation behind this approach is to
replace the intent detection, so to make it flexible,
quicker, and easier to set up and maintain a dia-
logue system, because the SME does not need to

enumerate all the intents they expect a user to have.
Applying text retrieval in such a system can also
complement intent detection: intent detection can
handle the anticipated user needs and text search
can handle unanticipated requests. In either case,
the value of the text retrieval depends critically on
how accurate it is. Another big advantage of the
text retrieval approach is that it could provide rea-
sonable accuracy even when there is little or no
labeled training data.

A popular line of text retrieval methods is match-
ing sparse terms and weighing those matches by
how frequent they are in the document being found
and how infrequent they are in the corpus. For
example, BM25 (Robertson et al., 1995) is an ex-
tremely popular algorithm of this sort that provides
an excellent balance between accuracy and compu-
tational cost. However, in the recent years, research
has shown that neural network solutions can pro-
vide superior accuracy to sparse term matching
approaches like BM25. In particular, neural dense
retrieval approaches such as DPR (Karpukhin et al.,
2020) and ColBERT (Khattab and Zaharia, 2020;
Khattab et al., 2021) have achieved outstanding
results in retrieval and re-ranking even at zero-
shot setting, and further boosted accuracy when
in-domain training data is available.

Neural dense retrievers achieve high accuracy
but usually involve models with hundreds of mil-
lions of parameters and require long training time.
However, in real-world scenarios, a cloud service
sometimes supports many different deployed dia-
logue applications at the same time, hence needs
to be able to process requests for all of those ap-
plications at the same time. This can be extremely
expensive if each application has a model that de-
mands an enormous amount of memory and/or pro-
cessing power when handling requests. A practical
system needs to be able to balance the benefits of
a sophisticated model with the costs of running it.
Furthermore, dialogue system administrators want
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to be able to add training data to an existing, de-
ployed system and start getting improved results
quickly.

We explore various approaches to addressing
these requirements, including scaling techniques
such as distilled encoders and dimension reduction,
self-directed iterative learning and asynchronous
learning. We conduct thorough experiments on our
datasets to benchmark these approaches, and show
that we have emerging technology that achieves
accuracy that is competitive with state-of-the-art
research solutions with substantially less expensive
resource requirements.

2 Related Work

In Information Retrieval (IR), popular relevancy
algorithms such as TF-IDF and BM25 (Robertson
et al., 1995) match keywords with an inverted in-
dex and compute relevancy using heuristic func-
tions. Together with pre-processing methods such
as stemming and removal of curated stop words,
sparse-term-based retrieval works fairly well with-
out training, and is widely adopted in real world
applications.

Dense passage retrieval (Karpukhin et al., 2020;
Khattab and Zaharia, 2020; Khattab et al., 2021;
Xiong et al., 2021; Luan et al., 2021; Santhanam
et al., 2021) has gained a lot of attention lately with
applications extending beyond retrieval tasks into
areas including open-domain question answering,
language model pre-training, fact checking, dia-
logue generation (e.g., RAG (Lewis et al., 2020),
REALM (Guu et al., 2020), MultiDPR (Maillard
et al., 2021), KILT (Petroni et al., 2021), Con-
vDR (Yu et al., 2021), RocketQA (Qu et al., 2021)).
In dense passage retrieval, the query q and each pas-
sage p are separately encoded into dense vectors,
and relevance is modeled via similarity functions
such as dot-product. Recent works improve ef-
ficiency and effectiveness of single-vector dense
retrieval systems, including model distillation (Hof-
stätter et al., 2020; Lin et al., 2021), hard negative
sampling (Xiong et al., 2021; Zhan et al., 2021),
etc..

Another line of related work is cross-encoder
document ranking (MacAvaney et al., 2019; Dai
and Callan, 2019; Nogueira and Cho, 2019).
Query–document pairs are concatenated and sent
through Transformer-based encoders, an additional
layer on top of the encoded representation is
adopted to produce a relevance score of the docu-

ment to the query, which is then used for ranking.
Arora et al. (2020) and Qi et al. (2021) bench-

mark intent detection models on intent detection
datasets such as CLINC150 (Larson et al., 2019)
where sufficient training examples exist for each
intent. On the other hand, our use case focuses
on the scenarios where answer text is available but
training examples are insufficient.

3 Task and Baselines

The task we are dealing with is a real-world use
case of answer text retrieval in an FAQ dialogue
system.

Formally, we have a corpus P of answer text
snippets (passages). For each answer text passage
p in P , we have a limited number of associated
example queries Qp. The system is expected to
retrieve the most relevant answer text passage for
each incoming user query q. It needs to deliver
a good latency, and work well when the size of
Qp is small, i.e., when there are not many training
examples available. Most importantly, the resource
consumption must be kept low.

To address the use case, we start with two lead-
ing industrial solutions as baselines:

• One approach is to map each answer text p
as a class cp, and train a classifier on {(cp, qp) for
each p and each qp in Qp} to predict the incom-
ing queries. With the recently ubiquitous large
pre-trained language models such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019),
classifiers equipped with both hand-crafted fea-
tures and neural embedding features are very pow-
erful and deliver decent predictions when there
are enough training examples. However, obtain-
ing large amounts of high-quality training data is
expensive. Often there is little or no training data.

• Sparse-term-based retrieval (e.g., BM25) on
the answer text is another natural approach to ad-
dress the task without the demand for training data.
It has the advantage of having minimal resources
requirement. On the other hand, it could not well
leverage training data when it is available.

The two aforementioned approaches each have
their own strength. The classifier approach lever-
ages query examples and machine learning, while
the sparse-term-based retrieval approach utilizes
answer text but not query examples, and does not
involve training. We seek to get the benefits from
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both approaches. One option is to capture the
cross-attention between query q and each candidate
passage p by feeding ⟨q, p⟩ pair to a Transformer-
based encoder and learn over the encoded out-
put (MacAvaney et al., 2019; Dai and Callan, 2019;
Nogueira and Cho, 2019). However, due to the
need to cross-encode the incoming query together
with each passage, this approach requires more
computation by orders of magnitude and is not
practical for our task setting.

Dense passage retrieval methods (Karpukhin
et al., 2020; Khattab and Zaharia, 2020; Santhanam
et al., 2021; Luan et al., 2021; Humeau et al., 2020;
MacAvaney et al., 2020; Xiong et al., 2021) have
gained a lot of attention lately and achieved state
of the art results on various retrieval and ranking
datasets. Dense retrievers are efficient compared
to other neural methods such as transformer-based
cross-encoder models: passages are encoded and
indexed offline, at inference time only the query
needs to be encoded once; also they leverage ANN
(approximate nearest neighbor) algorithms to effi-
ciently search for relevant dense vectors. Dense re-
trievers are effective compared to traditional sparse-
term-based IR methods such as BM25: They are
not restricted by rigid keyword matching; They use
transformers to encode both the queries and the
passages, and benefit from transfer learning from
large retrieval/re-ranking datasets. Being effective
and efficient, neural dense retrievers make an ideal
solution for our task setting and requirements.

4 Approach

We first briefly overview the work in neural dense
retrieval and talk about the gaps from practical us-
age in Section 4.1. In the remainder of Section 4,
we explain our efforts applying dense passage re-
trieval to the task and further reducing response
time, memory footprint, and training time.

4.1 Neural Dense Retrieval Preliminaries

In dense passage retrieval, q and p are separately
encoded. All the passages can be encoded and
indexed offline. During inference time, only
the query needs to be encoded; ANN (approx-
imate nearest neighbor) search libraries such as
FAISS (Johnson et al., 2017) are used to efficiently
search for the most relevant passage.

In single-vector retrieval models such as
DPR (Karpukhin et al., 2020) and BERT
Siamese/Dual Encoder (Luan et al., 2021), the

query and passages are separately encoded into
single vectors, models are trained with the objec-
tive of mapping the relevant passage vector close
to the query vector, and pushing the irrelevant
passage vectors far away from the query vector.
During inference time, ANN search is used to re-
trieve directly for the passage vectors closest to
the query vector. Several other systems leverage
multi-vector representations and attention-based re-
ranking, including Poly-encoders (Humeau et al.,
2020), PreTTR (MacAvaney et al., 2020), etc..

In late interaction models such as Col-
BERT (Khattab and Zaharia, 2020; Khattab et al.,
2021; Santhanam et al., 2021), the query and pas-
sages are separately encoded to obtain query to-
ken vectors and passage token vectors. These
models adopt token-decomposed scoring, e.g. the
sum of maximum-similarity (SumMaxSim) scores
to query vectors are used to model the relevance
of passages. During training, models are trained
with the objective of maximizing the SumMaxSim
scores of relevant passage and minimizing those
of irrelevant passages. During inference time, the
passage tokens closest to query tokens are fetched,
and then the relevant passages are re-ranked based
on the SumMaxSim scores.

We experimented with two of the most popu-
lar dense retrieval models, DPR and ColBERT. As
effective as they are, they still consume more com-
puting resources and take longer response time than
required in our real-world use case of hosting thou-
sands of customized systems. Also, in our use case,
dialogue system administrators want to reduce the
time to fine-tune neural retrieval models on custom
training data.

4.2 Dense Retrieval Scaled for Practical Usage

For practical usage we implemented improvement
features into ColBERT code: 1) for encoder, add
flexible accommodation for various transformer
types and models in the Huggingface model hub;
2) new improved batcher and training loop logic by
epochs, flexible shuffling and checkpoint saving.

We benchmark DPR and ColBERT on our
datasets, and experiment reducing response time
and memory footprint at retrieval time as follows.

Distilled transformer encoder We pre-train Col-
BERT model on the Natural Questions (NQ)
dataset (Kwiatkowski et al., 2019) from multiple
small-size or distilled transformers models includ-
ing Electra (Clark et al., 2020), TinyBERT (Jiao
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et al., 2020), DistilBERT (Sanh et al., 2019) and
DistilRoBERTa. After comparing the memory foot-
print, the retrieval time, and the retrieval accuracy,
we chose to use TinyBERT (Jiao et al., 2020) with
4 layers and 312 hidden dimensions1.

Dimension reduction (Khattab and Zaharia, 2020;
Santhanam et al., 2021) showed that a ColBERT
model with quantized and reduced-dimension vec-
tors could perform comparably to the standard
model on big retrieval/ranking benchmarks while
greatly reducing the space requirement for saving
the final representations. For our use case on the
small retrieval datasets, we explored using smaller
dimensions for the vector representations in Col-
BERT. In our experiments, however, reduced di-
mension models yield much lower accuracy.

Shorter query length We decrease the maximum
query length in DPR from 256 to 32, reducing the
response time of DPR by 80%. As this length still
fits the majority of the queries in our task setting,
the effect to accuracy is very tiny and could be
neglected.

4.3 Self-directed Iterative Learning

Dense retrieval training data consists of ⟨q, p+, p−⟩
triples, where q is the query, p+ is a positive (rel-
evant) passage, and p− is a negative (irrelevant)
passage. Dense neural retrieval models learn from
such triples to effectively map query token repre-
sentations and relevant answer text token represen-
tations together, and push irrelevant (token) rep-
resentations away. While forming training triples,
one straightforward way is using all the negative
passages to make sure not missing any useful train-
ing data. However, this results in long training
time. Sampling from BM25 top ranked passages is
a widely used approach to select negative passages.
However, this introduces a data bias and limit the
model’s learning ability (Luan et al., 2021). An
alternative approach is to choose negatives pas-
sages from those highly ranked by the model from
the previous training iteration. This allows each
iteration of the training to learn from negative ex-
amples for which the previous model did not do
well (Simo-Serra et al., 2015; Wu et al., 2017).

To be more specific, given a trained ColBERT
model CKPT, we take a query q from training
data, and get CKPT’s top m ranked passages

1https://huggingface.co/huawei-noah/
TinyBERT_General_4L_312D

Figure 1: Iterative learning strategy 4.3 and asyn-
chronous learning strategy 4.4.

(p1, ..., pm) for q, suppose the positive passage is
pi, we take each negative passage ranked higher
than pi to form the new batch of training triples
⟨q, pi, p1⟩, ...⟨q, pi, pi−1⟩. When i = 1, i.e., the
model gave the right prediction, we still include
several randomly sampled triples, so as to avoid
over-fitting on a few difficult queries.

With the self-directed triple curation, we explore
an iterative learning strategy as illustrated in Fig-
ure 1. In each iteration, the Sampler module and
the Trainer module work together as follows. In
each iteration, first, Sampler uses a recently trained
model checkpoint CKPTk−1 to update the represen-
tation of documents in the corpus and refresh the
ANN index, then from the refreshed ANN index
fetch the top ranked negatives P−

k−1 for training
queries Q to produce training triples together with
P+. Then, Trainer uses the triples generated by
Sampler to train a new model checkpoint CKPTk.
In each iteration, only the negative examples that
are “hard” for the current model are used to form
the training triples, thus we achieve effective and
focused training with reduced time. Note that simi-
lar strategy was adopted by Khattab et al. (2021) by
training two more stages after the initial ColBERT
model. We make the further exploration by auto-
matically continuing the iterations until the model
reached certain accuracy on training queries.

4.4 Asynchronous Learning
During the iterative learning in Section 4.3, the
Trainer and Sampler wait for each other’s output
to proceed to next round. This causes overhead
and wasted resources. To alleviate that, we adopt
the asynchronous learning approach as described
in ANCE (Xiong et al., 2021) and let the Trainer
and Sampler work asynchronously without wait-
ing on each other, as depicted in Figure 1. To be
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Dataset HRFAQ MEDFAQ
# docs 186 87
# words / doc 35.4 31.4
# training queries 5433 862
# words / train query 8.8 4.9
# test queries 1174 462
# words / test queries 6.6 4.5

Table 1: Dataset statistics.

specific, while Sampler is curating the new batch,
the Trainer does not wait but continues training
on the old batch of training triples. After gener-
ating a batch of training triples, the Sampler al-
ways fetches the latest model checkpoint and starts
creating a new batch. Note that the implementa-
tion in ANCE (Xiong et al., 2021) is on BERT
Siamese/Dual Encoder (Luan et al., 2021). As far
as we know, our implementation is the first on Col-
BERT model.

4.5 Ensemble

With the scaling efforts in Section 4.2, we achieve
a neural dense retriever with a latency comparable
to neural-embedding-based SVM and BM25. This
makes it practical to ensemble the two systems with
the neural dense retrieval system. We ensemble a
neural-embedding-based SVM classifier and neural
retrieval in scenarios where training data is avail-
able, and ensemble BM25 and neural retrieval in
scenarios where training data is unavailable.

5 Experiments

5.1 Datasets

For our experiments, we obtain datasets from real-
world dialogue systems. We create datasets from
an HR policy FAQ bot (denoted by HRFAQ) and a
medical group portal FAQ bot (denoted by MED-
FAQ), both in English. Each dialogue system
dataset consists of intents, intent examples, dia-
logue node graphs and response texts created by
subject-matter experts. For each dataset, we cre-
ated a test set of queries and ground truth responses
by sampling the real-world chat logs from the de-
ployed dialogue system. The task is measured by
Match@1 score in results tables, which is the per-
centage of test queries for which the top system
result is correct. Table 1 shows the dataset statistics.
Note that the datasets are not big and the queries
are generally short. The challenge in scaling comes
mainly from trying to support many such systems
at once in the same cloud.

5.2 Experimental Settings
For the sparse-term-based retrieval baseline, we use
BM25 (Robertson et al., 1995) as implemented in
ElasticSearch2, with lower-casing, stemming and
stop-word removal.

For the neural-embedding-based classifier, we
train a one vs all SVM classifier with sophisticated
pre-processing, hand-crafted n-gram features, and
neural word/sentence embeddings based on Trans-
formers with 512-dimension vectors3. We also
train a classifier with answer text added as training
queries, denoted by “ NSVM w/ text”, as opposed
to “NSVM” which does not use answer text hence
has no 0-shot numbers.

For DPR experiments, we use the Facebook
research DPR repository4. The DPR full model
before fine-tuning is downloaded from the DPR
repository (March 2021 release). The DPRtiny

model before fine-tuning is pre-trained on the
triples created from Natural Questions (NQ)
dataset (Kwiatkowski et al., 2019), also obtained
from the same repository. “DPR(S)” stands for
shorter query setting.

For ColBERT experiments, our code is built on
top of the v0.2 version of ColBERT code5, which
is in PyTorch and uses Huggingface Transformers6.
We implemented the code for iterative learning and
asynchronous learning in PyTorch. For real-world
usage we also implemented improvement features
into ColBERT code as described in Section 4.2.

The ColBERT full model before fine-tuning
is provided by the authors of ColBERT. The
ColBERTtiny model before fine-tuning is pre-
trained on triples created from Natural Questions
(NQ) dataset (Kwiatkowski et al., 2019) as speci-
fied in ColBERT (Khattab et al., 2021).

For CPU environment inferencing, all models
and data/indices reside locally on a CPU machine
with four Intel® Core™ i7-8650U CPUs. Neu-
ral models are trained on a single NVIDIA V100
GPU in a computing cluster environment unless
otherwise stated.

Hyper-parameters and other detailed settings are
included in Appendix.

2http://www.elastic.co/elasticsearch/
3We refrain from giving more details because this is a

commercial product.
4http://github.com/facebookresearch/

DPR
5http://github.com/

stanford-futuredata/ColBERT
6http://github.com/huggingface/

transformers
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System Size Mem Time
BM25 − − 4.6ms
NSVM 1.1G 2.9G 10ms
DPR 836M 2.5G 267ms
ColBERT 419M 2.4G 59ms
DPR(S) 836M 2.5G 45ms
DPRtiny(S) 110M 0.6G 5ms
ColBERTtiny 55M 1.7G 10ms

Table 2: Inference latency and resources usage of dif-
ferent systems on HRFAQ dataset in CPU environment.
Latency is for single query and includes pre-processing
time. DPR and ColBERT model sizes do not include
optimizer variables.

5.3 Experiments and Results

Resources Consumption Table 2 compares the
resource usage and response times of different sys-
tems during inference (retrieval). Full Neural mod-
els have high memory consumption and consume a
lot of disk space because of millions of parameters
in the neural networks. The smaller dense retrieval
models, as scaled in Section 4.2, are able to reduce
both footprints and inference latency drastically.

Choosing Distilled Base Models We conduct
further benchmarking on ColBERT models
based on different distilled language models7

including DistilBERTbase, DistilRoBERTabase,
Electrasmall,discriminator, TinyBERT4L−312 and
TinyBERT6L−768. We pre-train a ColBERT model
from each of these transformer models, and test
on the 0-shot setting of the HRFAQ dataset. An
alternative approach would be to distill from fully
trained ColBERT models using the corresponding
distillation algorithms, which we leave for future
work. All models are pre-trained on the NQ dataset
at a batch size of 192 for 40k steps, except Elec-
tra and DistilRoBERTa are trained for 80k steps
because of their lower accuracy at 40k steps. The
results suggest that the general pre-training before
ColBERT training does impact generalization per-
formance of the ColBERT models. Specifically,
larger models, e.g., DistilRoBERTabase, do not
always result in better generalization, and start-
ing from TinyBERT4L−312 appears to be a good
choice considering efficiency and accuracy. We use
TinyBERT4L−312 as the distilled base model in the
remainder of the paper and denote it by tiny. The
full models trained from BERTbase are sub-scripted
by full.

7All models downloaded from Huggingface model hub
https://huggingface.co/models.

System Size Mem Time M@1
DistilBERT 254M 2.3G 26ms 35.0
DistilRoBERTa 314M 3.8G 32ms 32.3
TinyBERT6L−768 256M 2.1G 27ms 35.3
TinyBERT4L−312 55M 1.7G 10ms 36.3
Electra 52M 1.7G 18ms 29.5

Table 3: Inference latency, resources usage, and accu-
racy of different ColBERT models on HRFAQ dataset
in a CPU environment.

HRFAQ 0-shot 1 ex/doc 3 ex/doc
1 BM25 29.2 − −
2 NSVM − 23.2(4.4) 43.3(3.6)
3 NSVM w/ text 10.4 27.5(3.7) 46.0(3.5)
4 DPRfull 29.9 42.3(2.6) 53.5(2.2)
5 ColBERTfull 38.9 47.8(1.8) 53.6(2.3)
6 DPRtiny(S) 25.7 37.8(2.9) 46.2(4.1)
7 ColBERTtiny 36.3 42.4(1.7) 50.7(2.0)
8 Ensemble(1,7) 39.0 47.4(1.8) 53.4(2.2)
9 Ensemble(3,7) 30.4 45.0(2.3) 55.4(2.0)

Table 4: Match@1 scores on HRFAQ test set. For k
ex/doc experiments: we take 10 random seeds; for each
random seed, sample k training queries per answer text,
train a model; finally report avg(std) of the 10 models.
Scores in bold are best in efficient setting.

Fine-tuning Accuracy Tables 4 and 5 show re-
sults or HRFAQ and MEDFAQ. ColBERTfull is the
most accurate single system especially in 0-shot
setting, which is consistent with results from re-
search papers. With more training examples, DPR
catches up in accuracy, showing that retrieval meth-
ods based on single vector similarity instead of to-
ken vector late interactions is at disadvantage trans-
ferring to 0-shot use cases, but performs nicely
with some training examples. It is worth noting
that, ColBERTtiny shows only a small degradation
from ColBERTfull on HRFAQ, presenting a nice
trade-off between accuracy and efficiency in real-
world industry use cases. In MEDFAQ, there is
a bigger drop in accuracy from ColBERTfull to
ColBERTtiny. This may be a result of MEDFAQ’s
vocabulary and content being more distant from
the NQ data used for pre-training, since medical
vocabulary tends to be highly specialized. In 1-shot
and 3-shot settings where the models are trained
with 1 or 3 examples per answer, ColBERTtiny is
more competitive for MEDFAQ.

Ensembling We take a linear combination of 0-
shot BM25 predictions and ColBERTtiny predic-
tions with heuristic weight 0.3:1, and a 10:1 combi-
nation of SVM predictions and ColBERTtiny pre-
dictions, since the scores from the SVM classifier
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MEDFAQ 0-shot 1 ex/doc 3 ex/doc
1 BM25 25.1 − −
2 NSVM − 39.7(5.1) 60.0(6.4)
3 NSVM w/ text 22.5 41.4(4.9) 58.6(4.7)
4 DPRfull 37.0 58.5(3.7) 67.2(2.2)
5 ColBERTfull 45.2 57.6(2.5) 67.7(1.7)
6 DPRtiny(S) 25.5 44.7(5.0) 56.9(4.1)
7 ColBERTtiny 26.6 47.1(4.0) 60.4(4.4)
8 Ensemble(1,7) 28.6 47.5(4.2) 60.4(4.1)
9 Ensemble(3,7) 29.9 51.3(7.0) 63.3(5.0)

Table 5: Match@1 scores on MEDFAQ test set. Details
same as Table 4.

HRFAQ 1 ex/doc 3 ex/doc
ColBERTtiny Time M@1 Time M@1
All neg 475s 42.4(1.7) 1374s 50.7(2.0)
BM25 Guided 37s 37.1(1.7) 85s 39.4(2.1)
Iterative 104s 44.0(2.1) 226s 49.4(1.6)
Asynchronous 78s 43.0(2.1) 200s 49.3(1.9)

Table 6: Training time and Match@1 scores of different
training strategies. Scores avg(std) on 10 randomly
sampled training sets.

are in a higher magnitude. As shown in the second
parts of Tables 4 and Table 5, there is a nice boost
from both systems being ensembled, showing en-
sembling to be a feasible and effective approach to
further increase the accuracy.

Self-guided Iterative / Asynchronous Learning
Table 6 compares the retrieval results and training
time efficiency of one-pass training with all neg-
atives, one-pass training with BM25 guided neg-
atives, iterative learning, and asynchronous learn-
ing. We use ColBERTtiny for this comparison. For
BM25 guided and iterative/asynchronous learning,
negative examples are curated as described in Sec-
tion 4.3, from top 20 model-guided predictions.
Models are trained for 10 epochs in the one-pass
experiments, and 5 rounds of 6 epochs each in the
iterative and asynchronous learning experiments.
The results demonstrate that, with iterative self-
guided sampling of negative passages, ColBERT
models can achieve results competitive to the mod-
els trained on complete data within 20% training
time. The M@1 score of All neg is slightly
lower at 1-shot, likely due to the mismatch of ran-
domly sampled training examples and the testset.

Summary Although with resources consumptions
higher than BM25, dense passage retrieval with
scaling techniques could deliver higher accuracy
than BM25 and neural embedding based classifiers
with similar latency, thus makes a great solution

for our use case.

6 Conclusion

We report on our work on enabling advanced neu-
ral dense retrieval systems to operate effectively at
scale on relatively inexpensive hardware. On our
real-world use case and datasets from dialogue sys-
tems, we show that we can provide a solution that
achieves accuracy that is competitive with state-of-
the-art research solutions with substantially less ex-
pensive resource requirements and shorter response
time.
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HRFAQ 0-shot 1 ex/doc 3 ex/doc
1 BM25 41.3 - -
2 NSVM - 35.2(4.9) 58.3(3.1)
3 NSVM w/ text 18.7 42.8(2.5) 61.9(1.9)
4 DPRfull 43.9 58.1(2.7) 67.2(1.6)
5 ColBERTfull 53.7 62.5(1.0) 67.1(1.8)
6 DPRtiny(S) 37.0 52.8(1.7) 61.0(2.3)
7 ColBERTtiny 45.3 56.4(1.8) 65.2(1.1)
8 Ensemble(1,7) 49.6 59.2(1.5) 66.8(1.1)
9 Ensemble(3,7) 45.6 60.0(1.8) 69.1(1.4)

Table 7: Match@3 scores on HRFAQ testset. For k
ex/doc experiments: we take 10 random seeds; for each
random seed, sample k training queries per answer text,
train a model; finally report avg(std) of the 10 models.

A Appendix

A.1 Hyper-parameters

Hyper-parameters for ColBERT:

NQ pre-training batch_size: 192
tuning batch_size: 32
tuning num_epochs: 10
doc_maxlen: 180
mask-punctuation: true
amp: true
learning_rate: 3e-06
weight_decay: 0.0
adam_eps: 1e-8
similarity: l2
dimension: 128
query_maxlen: 32
doc_maxlen: 128

Hyper-parameters for DPR:

NQ pre-training batch_size: 144
Full model tuning batch_size: 27
Tiny model tuning batch_size: 80
NQ pre-train warmup_steps: 1237
tuning warmup_steps: 100
NQ pre-train num_train_epochs: 40
tuning num_train_epochs: 100
learning_rate: 2e-5
weight_decay: 0.0
adam_eps: 1e-8
adam_betas: (0.9, 0.999)
max_grad_norm: 2.0
hard_negatives: 1
other_negatives: 0

A.2 More Results

Match@3 scores could be found in Table 7 and
Table 8.
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MEDFAQ 0-shot 1 ex/doc 3 ex/doc
1 BM25 37.2 - -
2 NSVM - 53.9(7.1) 68.9(6.1)
3 NSVM w/ text 33.5 55.5(4.6) 70.6(6.4)
4 DPRfull 47.4 72.8(2.7) 78.7(1.6)
5 ColBERTfull 61.7 74.1(2.0) 79.8(1.4)
6 DPRtiny(S) 35.3 56.3(4.7) 70.7(3.6)
7 ColBERTtiny 38.5 62.7(3.0) 73.1(3.0)
8 Ensemble(1,7) 41.8 63.6(3.0) 73.8(3.3)
9 Ensemble(3,7) 40.26 63.7(5.8) 74.4(4.8)

Table 8: Match@3 scores on MEDFAQ testset. For k
ex/doc experiments: we take 10 random seeds; for each
random seed, sample k training queries per answer text,
train a model; finally report avg(std) of the 10 models.

A.3 Licenses and Potential Risks
The licenses of ColBERT code and DPR
code can be found at https://github.
com/stanford-futuredata/ColBERT/
blob/master/LICENSE and https:
//github.com/facebookresearch/
DPR/blob/main/LICENSE, respectively.
The license of ElasticSearch can be found
at https://github.com/elastic/
elasticsearch/blob/7.16/licenses/
ELASTIC-LICENSE-2.0.txt. The neural
embedding based SVM classifier is part of
commercial products owned by our organization.

We ran the experiments on our own extracted
datasets for solely research exploration purpose,
and we did not distribute or use the code or data to
make any profit. The datasets are small to check
/ anonymize. We use them solely for benchmark-
ing purpose, and strictly protected access to the
datasets to only a couple of co-authors.

Our work is exploring the efficient and effective
approaches of text retrieval on answer text corpus
curated by chat-bot administrators. The use case
is how to present the most matching answer text to
users, where the answer text itself is created and
closely administered by chat-bot administrators.
The scope of this paper does not cover research on
how to filter offensive content. On the other hand,
our work does not generate any new text, hence
does not create risks to users.
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Abstract

An Entity Linking system aligns the textual
mentions of entities in a text to their corre-
sponding entries in a knowledge base. How-
ever, deploying a neural entity linking system
for efficient real-time inference in production
environments is a challenging task. In this
work, we present a neural entity linking sys-
tem that connects the product and organization
type entities in business conversations to their
corresponding Wikipedia and Wikidata entries.
The proposed system leverages Elasticsearch to
ensure inference efficiency when deployed in
a resource limited cloud machine, and obtains
significant improvements in terms of inference
speed and memory consumption while retain-
ing high accuracy.

1 Introduction

Companies that offer VoIP telephony products with
built-in speech and natural language processing
features aim to assist the customer support agents
with information relevant to the content of their
conversations with the customers. To be useful,
such assistance should be provided in near real-
time of the triggering utterance. In this paper, we
demonstrate how we build a near real-time entity
linking system at Dialpad1 to link the entities in
business phone transcripts to a knowledge base to
provide more semantically-informed assistance.

The entity linking task is usually comprised of
three steps: (i) detect the mentions in the given text,
(ii) generate a list of candidate entities relevant to
each mention, and finally (iii) link each mention
to its most relevant entry in the knowledge base
(Ravi et al., 2021). Note that entity linking systems
used in production should provide the optimum
performance in terms of both inference speed and
memory consumption while being used within a
limited computational budget. Since there are mil-
lions of entities stored in a knowledge base, the

1https://www.dialpad.com/

scaling issue is a major concern while developing
a real-time entity linking system.

The goal of this research is to develop a neu-
ral entity linking system to efficiently link product
and organization type entities in business phone
conversations to their respective entries in a knowl-
edge base for information extraction. For that pur-
pose, we present an extended version of the state-
of-the-art neural entity linker, the BLINK model
(Wu et al., 2020). Though BLINK was originally
proposed for entity linking on Wikipedia, we ex-
tend it for entity linking on Wikidata2 since unlike
Wikipedia, the Wikidata knowledge base contains
information related to the entities in a structured
way. Thus, it allows effective extraction of rele-
vant information for each entity. More importantly,
for production deployment, we also introduce sev-
eral new techniques that significantly reduce the
memory requirements, computational resource us-
age, and the inference speed of BLINK. More con-
cretely, our major contributions are stated below:

• We tackle the computational complexities
in BLINK by saving all pre-trained entity
embeddings in Elasticsearch3 and propose a
word matching technique to retrieve the can-
didate entities faster. We also present an ap-
proach to pre-compute the linking between the
Wikipedia page of each entity to its respective
Wikidata page to reduce the runtime latency.

• Extensive experiments show that our entity
linking system significantly reduces the infer-
ence time and memory requirements while
retaining high accuracy in a computation-
ally inexpensive machine. We also success-
fully deploy our entity linking system in a
10GB RAM machine (without GPU) whereas
the original model requires a machine in our
server having 60 GB RAM for inference.

2https://www.wikidata.org/
3https://www.elastic.co/elasticsearch/
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Figure 1: The Proposed Entity Linking System. First, our Internal NER model detects the mention in the given
text. Then we retrieve a list of candidate entities with their embeddings from Elasticsearch. At the same time, we
generate the contextualized representation of the input text using the pre-trained BLINK embeddings. Afterward,
we utilize the pre-trained BLINK Bi-Encoder to determine the entity that is the most relevant among the candidates
and finally we extract information related to that entity from our knowledge base in Elasticsearch.

2 Related Work

Prior work on entity linking mostly focused on link-
ing named entities to unstructured knowledge bases
like Wikipedia, whereas the amount of work that
used a structured knowledge base like Wikidata is
very limited (Shen et al., 2014; Sakor et al., 2020).
Though other knowledge bases like DBpedia (Auer
et al., 2007) or YAGO (Fabian et al., 2007) have
also been studied, the utilization of Wikidata as the
knowledge base to extract relevant information has
gained lots of attention recently (Lin et al., 2021;
Möller et al., 2021).

Detecting mentions (i.e., entities) in the given
text (Huang et al., 2015; Akbik et al., 2018) is an
important step for entity linking. In recent years,
utilizing the neural network architecture for men-
tion detection has been extensively studied (Wu
et al., 2020; Onoe and Durrett, 2020a). More re-
cently, the impressive success of the transformer
architecture (Vaswani et al., 2017; Devlin et al.,
2019; Yamada et al., 2020) in a wide range of natu-
ral language processing tasks has also inspired re-
searchers to apply transformer models for the entity
recognition (Lin et al., 2021) step in entity linking
(Ravi et al., 2021), which results in obtaining supe-
rior performance over the previously used recurrent
neural network-based models (Peters et al., 2018).

For the candidate generation step in entity link-
ing, early work mostly utilized various non-neural
network approaches such as TF-IDF or alias ta-
bles (Wu et al., 2020), whereas more recent work
utilized dense embeddings learnt via pre-trained
transformers to retrieve the relevant candidates (Wu
et al., 2020; Onoe and Durrett, 2020b). However,
there is an important limitation while generating
the candidates via pre-trained embeddings. For
instance, the state-of-the-art neural entity linking
model BLINK (Wu et al., 2020) loads the pre-

trained embeddings of all entities in Wikipedia
into memory. Thus, it becomes inapplicable for
deployment in production scenarios where the re-
quirement is to ensure lower memory consumption.
In this paper, we address this issue via storing the
pre-trained embeddings in Elasticsearch. Moreover,
we introduce new techniques that pre-compute the
linking between Wikipedia and Wikidata to ensure
efficient information retrieval, while also optimize
the pre-trained models to meet the goal of deploy-
ing the proposed system in a limited computational
resource setting.

3 System Overview

To develop the entity linking system, we adopt
BLINK, a neural entity linker that uses the
transformer-based BERT model (Vaswani et al.,
2017; Devlin et al., 2019) and trains it on Wikipedia.
BLINK connects each mention in a given text with
its respective Wikipedia page based on the overall
context. Since Wikipedia contains textual data in
an unstructured format, it is difficult to extract in-
formation from it. Thus, we connect BLINK with
a structured knowledge base, Wikidata, to extract
information about product and organization type
entities. Note that we store our knowledge base
as well as the embedding representation of each
entity in Elasticsearch. Moreover, we replace the
Flair Named Entity Recognition (NER) model (Ak-
bik et al., 2019) originally used by BLINK with
an NER model (we denote it as Internal NER)
trained on transcripts of business phone conversa-
tions using DistilBERT (Sanh et al., 2019).

We show our entity linking system in Figure 1.
At first, the input text is processed by the NER
model to detect the mention. Then, we generate
the representation for the input text using the pre-
trained BLINK embeddings, while we retrieve the
relevant candidates with their embeddings from
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Figure 2: Precomputing Wikipedia to Wikidata Linking.

Elasticsearch using the Multi Match Query4 feature
of Elasticsearch. Finally, the embedding represen-
tations of the input text and the candidates are sent
to the pre-trained BLINK Bi-Encoder to select the
most relevant candidate. Below, we first demon-
strate our proposed entity linking system: BLINK
with Elasticsearch, followed by describing how
we deploy our proposed system in production.

3.1 BLINK with Elasticsearch

The original BLINK model requires about 25GB
RAM to load all pretrained embeddings into mem-
ory. In our proposed system, we instead store these
embeddings in an external database. To do so,
we store all entity embeddings as dense vectors5

in our knowledge base in a remote Elasticsearch
server along with saving textual information, such
as Wikipedia title, description, URL, and etc. of
each entity. This allows the model to only load
the top K candidate embeddings into the memory
that are most relevant to the mention in a given
utterance. As mentioned earlier, the BLINK model
was trained over Wikipedia, while our goal is to
utilize Wikidata for information extraction. Thus,
we need to map the Wikipedia URL of each entity
to its Wikidata URL such that we can utilize Wiki-
data to extract relevant information. Below, we
first describe how we add Wikidata URL of each
entity to our knowledge base. Then, we demon-
strate how we retrieve the relevant candidates from
our knowledge base.

4https://www.elastic.co/guide/en/
elasticsearch/reference/current/
query-dsl-multi-match-query.html

5https://www.elastic.co/guide/en/
elasticsearch/reference/current/
dense-vector.html

Figure 3: Our Multi Match Query in Elasticsearch.

3.1.1 Pre-computing Wikipedia to Wikidata
Linking

We pre-compute the mapping between Wikipedia
and Wikidata using the Wikimapper6 API and add
the Wikidata URL of each entity to our knowledge
base in Elasticsearch (see Figure 2). This allows
our entity linking system to reduce the runtime
latency. Note that during the pre-computation step,
other information from Wikidata for each entity
can also be added to the knowledge base (for our
case, we add the instance of property as the entity
type).

3.1.2 Multi Match Query for Candidate
Retrieval

We find that the whole word or subword(s) in the
product or organization type entity names usually
appear in the Wikipedia title and description fields.
Thus, to retrieve the most relevant candidates, we
utilize the multi match query feature of Elastic-
search for each entity mention in the input text and
apply it to the title and description fields in our
knowledge base (see Figure 3). For multi match
query, we give more weight to the title field to make
it two times more important than the description
field. In this way, we retrieve the top k = 250 can-
didates from Elasticsearch and send to the BLINK
Bi-Encoder to select the most relevant entity.

3.2 Model Deployment

We deploy our entity linking system in containers7

in a Kubernetes8 cluster with 2 CPUs and 10GB
RAM. The deployed system architecture is shown
in Figure 4. For production deployment, we also
apply some optimization techniques to reduce the
size of the pre-trained Bi-Encoder, as well as our
knowledge base. We describe these below.

6https://github.com/jcklie/wikimapper
7https://cloud.google.com/

kubernetes-engine
8https://kubernetes.io/
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Figure 4: Deployed System Architecture.

3.2.1 Pre-trained Bi-Encoder Optimization

We noticed that the binary file of the pre-trained
BLINK Bi-Encoder had two type of tensors: one
for context encoding (for the input representation),
and the other for the candidate encoding. However,
the candidate encoding is only required during the
training phase and it is not required during the in-
ference stage since all the candidate embeddings
are already stored in our knowledge base in Elastic-
search. Thus, we remove the unnecessary candidate
encoding tensors from the binary file which results
in reducing the file size from 2.5GB to 1.2GB (50%
reduced space) to improve memory efficiency.

3.2.2 Knowledge Base Optimization

The original version of the pre-trained BLINK
model (Wu et al., 2020) learns the embedding rep-
resentations of 59,03,527 Wikipedia entities. In
total, the size of these pre-computed embeddings
is about 23GB. As our goal is to detect the Product
and Organization type entities in business conver-
sational data, we apply some filtering techniques
to optimize the knowledge base such that it mostly
contains the entities that are relevant to our NER
system. In order to do that, we utilize the Instance
Of property in Wikidata of each entity and remove
entities that are of Person, Disambiguation, Loca-
tion, etc. In this way, the size of the Knowledge
base is reduced from 23GB to 12GB (about 50%
reduced space), while the total number of entities
has been reduced from 59,03,527 to 27,84,042.

4 Experimental Details

In this section, we demonstrate the datasets used in
our experiments and the implementation details.

4.1 Datasets

To demonstrate the effectiveness of our proposed
approach, we conduct a series of experiments on
seven academic datasets as well as on a sample of
287 utterances collected from business conversa-
tion data. Below, we describe these datasets.

4.1.1 Business Conversation Dataset
As our goal is to develop an entity linking system
that can link entities in conversational data from
business domains, we sample some real world busi-
ness phone conversation transcripts. After data col-
lection, we use domain experts (in-house scientists)
to annotate the utterances to label the mentions
(i.e., product and organization type entities). Our
annotated business conversation data consists of
287 utterances that we use in our experiment for
evaluation.

4.1.2 Academic Datasets
Since our goal is to develop an entity linking sys-
tem to extract information for product and orga-
nization type entities, at first we pre-process the
academic datasets such that our model only links
product and organization type entities during ex-
periments. Similar to the original BLINK model
(Wu et al., 2020), we also did not leverage the
training data and only used the test data of each
dataset for zero-shot entity linking. In our experi-
ment, we use the AIDA-YAGO2-CONLL dataset
(testa and testb) from Hoffart et al. (2011) that con-
tains newswire articles from the Reuters Corpus;
the ACE 2004, AQUAINT, and MSNBC datasets
from (Guo and Barbosa, 2018) that were con-
structed from news articles; and the WNED-CWEB
(Guo and Barbosa, 2018) and the WNED-WIKI
(Gabrilovich et al., 2013) datasets that were con-
structed from CWEB and Wikipedia respectively.
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4.2 Implementation

Recall that instead of using the Flair NER model
(Akbik et al., 2019) used by the original BLINK
model, we train an NER model on phone transcripts
as our goal is to build the entity linking model for
real world business conversation data. For this pur-
pose, we adopt the pre-trained DistilBERT model
(Sanh et al., 2019) and fine-tune it on a business
conversational dataset collected from some phone
transcripts in Dialpad that contains 516124 train-
ing samples (16124 instances were annotated by
humans while 500k instances were pseudo labels
generated by the pre-trained LUKE NER model
(Yamada et al., 2020)). There were also 2292 hu-
man annotated samples in the validation set while
4497 human annotated samples in the test set. We
use the HuggingFace9 library (Wolf et al., 2020) to
implement the distilbert-base-cased10 model and
utilize it for the sequence labeling task with the
following hyperparameters: learning rate = 2e-5,
total number of epoch = 15, and batch size = 32.
To implement the BLINK model for inference, we
use its original source code11.

5 Results and Discussions

We denote our entity linking model that utilizes
Multi Match Query (MMQ) on Elasticsearch (ES)
as BLINK + ESMMQ. Here, we first discuss its per-
formance on our business conversation data. Then
we conduct experiments on some academic datasets
to demonstrate its generalized effectiveness.

5.1 Performance on Business Conversation
Data

Below, we present some baselines that we use to
compare the performance of our proposed model.
BLINK + PWB: This model adopts the original
BLINK model for entity linking on Wikipedia and
utilizes Pywikibot12(PWB) for linking between
Wikipedia and Wikidata.
BLINKFAISS + PWB: This model is similar to the
above but utilizes the approximate nearest neigh-
bour search using FAISS (Johnson et al., 2021).

9https://github.com/huggingface
10https://huggingface.co/

distilbert-base-cased/blob/main/config.
json

11https://github.com/facebookresearch/
BLINK

12https://www.mediawiki.org/wiki/Manual:
Pywikibot

BLINK + ESCS: This model is similar to our pro-
posed model but uses the Cosine Similarity (CS)
feature of Elasticsearch instead of MMQ to retrieve
the candidate entities.

For this experiment, we use the following evalu-
ation metrics, (i) average inference time: it refers
to how much time it takes on average per utter-
ance for entity linking, (ii) accuracy: it computes
the correctness of linking the named entities to the
Wikidata knowledge base, (iii) memory: it refers to
the RAM configuration of the Machine that had to
be used to run the model in Google Cloud Platform
(GCP)13 .

Since the utilization of GPUs significantly in-
creases the computational cost, we did not lever-
age any GPU in our experiments to mimic the
production environment. We show our experi-
mental results in Table 1 and find that our pro-
posed model significantly reduces the inference
time while achieving high accuracy. Moreover, we
were able to run our proposed model in GCP on an
n1-standard-4 machine having 15GB RAM with 4
CPUs whereas BLINK models with Pywikibot had
to be run on an n1-standard-16 machine having
60GB RAM with 16 CPUs (we failed to run the
model for inference due to memory leaks in other
n1-standard machines in GCP that had less RAM).

From Table 1, we also observe that the perfor-
mance of BLINK + ESCS model is the poorest
among all models. One possible explanation be-
hind this could be because the BLINK model did
not leverage cosine similarity during its training
phase and so zero-shot cosine similarity between
the embedding of the candidate entity and the in-
put embedding for candidate entity retrieval led to
poorer accuracy. Moreover, we observe that the
cosine similarity between embeddings is also very
slow in comparison to MMQ. Furthermore, we find
that our Internal NER is more effective than the
Flair NER (about 46%) and combining it with the
MMQ leads to the highest accuracy score of 93.03.

5.2 Performance on Academic Datasets

In this section, we further analyze the performance
of our proposed BLINK + ESMMQ model via con-
ducting experiments on seven academic datasets.
We particularly conduct this experiment to investi-
gate the generalized effectiveness of multi match
query. For this analysis, we use the BLINK +
ESCS model as the baseline where cosine similar-

13https://cloud.google.com/
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Model NER Avg. Inf. Time Accuracy Memory
BLINK + PWB Flair 2.45 62.72 60 GB

BLINKFAISS + PWB Flair 2.34 60.28 60 GB
BLINK + PWB Internal 2.79 91.64 60 GB

BLINKFAISS + PWB Internal 2.71 88.50 60 GB
BLINK + ESCS Internal 13.93 75.96 15 GB

BLINK + ESMMQ Internal 1.76 93.03 15 GB

Table 1: Experimental Results on a sample of 287 utterances. Here, “Avg. Inf. Time” refers to “Average Inference
Time in seconds per utterance”, “Memory” refers to the RAM configuration of the Machine that was used. Moreover,
we refer the DistilBERT model fine-tuned on phone conversational transcripts as the “Internal” NER model.

Datasets BLINK + ESCS BLINK + ESMMQ Total Instances
AIDA-YAGO2-CONLL (testa) 67.83 62.84 3407
AIDA-YAGO2-CONLL (testb) 63.74 65.64 3425

ACE 2004 75.12 82.95 217
AQUAINT 76.96 76.46 599
MSNBC 71.50 79.02 386

WNED-CWEB 54.98 61.15 8834
WNED-WIKI 70.07 74.10 5617

Table 2: Experimental Results on academic datasets based on Cosine Similarity (CS) vs Multi Match Query (MMQ).
Here, we use Accuracy as the evaluation metric.

ity has been used instead of multi match query. As
our goal is to deploy our model in a limited com-
putational resource setting to ensure less memory
consumption, we only use the models in this ex-
periment that can be run in a machine that do not
require more than 16GB RAM. For this reason, we
use the models that leverage Elasticsearch instead
of Pywikibot (we have already demonstrated in
our previous experiment on business conversation
data how our proposed method is more effective
in terms of both accuracy and efficiency than other
baseline models that utilized Pywikbot).

We show the results of our experiments in Ta-
ble 2 to find that in 5 out of 7 datasets, our pro-
posed method that uses multi match query instead
of cosine similarity outperforms its counterparts.
The only two datasets where our model could not
outperform the baseline are the AIDA-YAGO2-
CONLL dataset (testa) and the AQUAINT dataset
where cosine similarity outperforms multi match
query by 7.94% and 0.65% respectively. In other
datasets, our proposed BLINK + ESMMQ model
outperforms the BLINK + ESCS model by 2.98%,
10.42%, 10.52%, 11.22%, and 5.75% in AIDA-
YAGO2-CONLL (testb), ACE 2004, MSNBC,
WNED-CWEB, and WNED-WIKI datasets respec-
tively. Furthermore, we find during our experi-
ments that our proposed method outperforms its

Top K Avg. Inf. Time Accuracy
K = 100 1.53 89.55
K = 250 1.76 93.03
K = 500 2.30 94.08

Table 3: Case study results on our business conversation
data by varying the value to retrieve the top K candidates.
Here, “Avg. Inf. Time” refers to “Average Inference
Time in Seconds per utterance”,

counterpart in terms of inference speed in all 7
datasets (on average, 8 times faster). These findings
further validate the effectiveness of our proposed
BLINK + ESMMQ model for real world deploy-
ment in computationally limited resource settings.

So far, we discuss the effectiveness of our en-
tity linking system in terms of both accuracy and
efficiency based on extensive experiments in busi-
ness conversation data, as well as in benchmark
academic datasets. Below, we conduct a case study
to analyze how the top K candidates retrieval from
Elasticsearch impacts the overall performance.

5.3 Case Study
For the case study (see Table 3), we conduct ex-
periments with some additional values of K for
candidate retrieval to investigate its effect on ac-
curacy and inference speed. For that purpose, in
addition to the original value of K = 250 for the
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Model Avg. Inf. Time Accuracy
BLINK + ESMMQ 1.76 93.03
without BLINK 0.55 74.22

Table 4: Ablation test results on our business conversa-
tion data. Here, “Avg. Inf. Time” refers to “Average
Inference Time in Seconds per utterance”,

BLINK + ESMMQ model, we use the following
values: K = 100 and K = 500. We find that even
though reducing the value of K to 100 for can-
didate retrieval leads to a faster inference speed,
the accuracy is decreased by 3.74%. Moreover,
increasing the value of K to 500 provides an oppo-
site impact, as it improves the accuracy by 1.13%
but makes the candidate retrieval speed slower by
taking more than 2 seconds per utterance. This
trade-off implies that the retrieval value for K can
be tuned based on the requirement.

5.4 Ablation Study

To further investigate the effectiveness of our pro-
posed approach of combining BLINK with Elastic-
search via leveraging MMQ for candidate retrieval,
we do an ablation test. In our ablation test, we
remove BLINK and only utilize the MMQ of Elas-
ticsearch to retrieve the most relevant candidate. In
this way, only one top matched candidate entity
is retrieved from Elasticsearch. The result of our
experiment is given in Table 4.

From Table 4, we observe that even though re-
moving BLINK led to a great improvement in terms
of the inference speed, there is a significant drop in
accuracy (by 20.22%). This makes the model with-
out BLINK inapplicable in production scenarios
where the requirement is to ensure high accuracy.

6 Conclusion

In this paper, we introduce an efficient, scalable ver-
sion of the BLINK model and extend it for entity
linking on Wikidata. With extensive experiments,
we show that our proposed system is usable for
production environments within a limited budget
setting since it significantly reduces memory re-
quirements, computing resource usage, as well as
the inference time while retaining high accuracy.
We also effectively deploy our proposed entity link-
ing system in a 10GB RAM machine without using
any GPU for near real-time inference. In the future,
we will investigate how to make our entity linking
system more efficient such that it can give inference

in real-time (e.g., within one second). Moreover,
we will study how different BERT-based (Sanh
et al., 2019; Devlin et al., 2019; Liu et al., 2019;
Lan et al., 2019) sentence similarity models (Garg
et al., 2019; Laskar et al., 2020a,b, 2021) for can-
didate retrieval can impact the performance, while
also exploring different techniques such as dimen-
sionality reduction (Wang et al., 2016) to optimize
the space used in Elasticsearch as well as the com-
puting resource requirements.

7 Ethics Statement

The business phone conversational data used for
entity linking experiments is annotated by the in-
house Scientists for which the annotations were
acquired for individual utterances. Whereas to an-
notate the conversation dataset to train our internal
NER model, Appen was used (https://appen.
com/) for data annotation and the annotators were
provided with adequate compensation (above mini-
mum wages). There is a data retention policy avail-
able for all users so that data will not be collected
if the user is not consent to data collection. To pro-
tect user privacy, sensitive data such as personally
identifiable information (e.g., credit card number,
phone number) were removed while collecting the
data. Since our model is doing classification to
link the named entities to their corresponding en-
tries in a publicly available knowledge base for
information extraction, incorrect predictions will
not cause any harm to the user besides an unsat-
isfactory experience. We also maintain the licens-
ing requirements accordingly while using different
tools, such as Wikidata, WikiMapper, PyWikiBot,
Elasticsearch, HuggingFace, BLINK, etc.
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Abstract

We present a system for document retrieval
that combines direct classification with stan-
dard content-based retrieval approaches to sig-
nificantly improve the relevance of the retrieved
documents. Our system exploits the availabil-
ity of an imperfect but sizable amount of la-
beled data from past queries. For domains such
as technical support, the proposed approach
enhances the system’s ability to retrieve docu-
ments that are otherwise ranked very low based
on content alone. The system is easy to imple-
ment and can make use of existing text ranking
methods, augmenting them through the novel
Q2R orchestration framework. Q2R has been
extensively tested and is in use at IBM.

1 Introduction

A document retrieval system typically solves a text
ranking problem defined as follows: given a query
x, a relevance score s(x, y) is computed for each
document y in the target collection D. Thus, the
text ranking problem can be equivalently cast as a
relevance-based binary classification problem (Lin
et al., 2020), where for each (x, y) pair, the label
is either “relevant” or “not-relevant”. A learned
probabilistic model can be used to provide the score
where s(x, y) ∝ Pr(relevant|x, y).

Typically, computing the relevance score s(x, y)
involves using the content of each document y.
For example, the keyword-based approach BM25
(Robertson and Zaragoza, 2009) employs sparse
bag-of-words representations of the query x and
the content y, fq(x) and fd(y), and then s(x, y) is
given by the inner product 〈fq(x), fd(y)〉.

Modern deep learning approaches learn a para-
metric classifier sθ(x, y) that takes as input the
concatenated content of x and y. Such ap-
proaches may be computationally costly since
sθ(x, y) needs to be evaluated for every y ∈ D.
A two-stage approach is typically employed where
a small D′ ⊂ D is first retrieved through a

fast keyword-based method, then re-ranked with
sθ(x, y). An alternative to this approach is to
learn a dense-representation (e.g. Reimers and
Gurevych (2019)) for both fq and fd and com-
pute s(x, y) = ξ(fq(x), fd(y)) where ξ is easy
to compute (e.g. the dot product) and fd(y) can be
pre-computed for every y ∈ D. For simple ξ, the
top-scoring documents can be easily retrieved via
approximate nearest-neighbors (ANN) techniques.
The latter is appealing for real-world applications
due to its computational advantage.

While content-based methods have proven effec-
tive for general-purpose document ranking and are
in widespread use, there are circumstances where
using the content of the target documents is less
effective. A primary example is when the doc-
ument content is technical and queries are struc-
turally and linguistically different. Consider the
medical domain where documents concern medical
treatments. Queries may describe symptoms expe-
rienced, which need not be included in a database
of treatments. The availability of labeled examples
that map symptoms to treatment plans motivates
mapping queries from the labeled pairs to the best
treatment documents. The same occurs in other do-
mains such as information technology (IT), law, etc.
For these technical domains, where such curated
historical data often exists, we propose an approach
based on direct classification that relies on learn-
ing a classifier from the queries themselves to the
identity of the target document, without the need
for the content of the target documents. The pro-
posed method is complementary to content-based
approaches. Hence, to cover potential new queries
where similar labeled examples do not exist, we
provide an ensemble paradigm, called the Q2R Or-
chestrator – Q2R stands for “Query-to-Resolution”
– to obtain the best of both worlds.

In the proposed approach, each document y ∈ D
is viewed as a class. We thus have a multiclass
classification problem with |D| classes. In prac-
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tice, |D| can be huge and is likely to increase with
time. Therefore, a parametric method for learning
a classifier may not be a good fit. We thus pro-
pose a nonparametric approach based on kernel
K-nearest-neighbors (KNN), which readily han-
dles a growing set of documents, D, and requires
only occasional re-tuning.

The KNN approach takes the similarity between
a new query x and past queries x′ in the training
set, rather than the contents of the documents y. In
addition to bypassing the problem of using long
document content, this approach allows retrieving
documents not reachable through content alone.
This ability is valuable in application domains such
as technical support, where the content may not
be well-represented in pretrained language models.
The effectiveness of the KNN approach is, however,
limited by the availability of labeled training exam-
ples and their coverage in terms of the “reachable”
documents in D. The Q2R Orchestrator thus com-
bines highly accurate results from KNN for queries
where labeled training data is sufficiently similar
with a standard content-based retrieval system, for
non-similar queries, through a learned orchestra-
tor. Empirically we show that the resulting system
benefits from both components.

The three main contributions of Q2R are as fol-
lows: (i) Q2R adds a direct classification compo-
nent to document retrieval based on kernel KNN
that enhances the ability to retrieve relevant docu-
ments. (ii) Q2R makes use of a labeled data set to
train a symmetric query-to-query similarity metric
for the kernel KNN, which enhances considerably
the system performance, and (iii) Q2R blends the
results from the KNN and content-based retrieval
methods through an optimized orchestrator.

2 Related Work

For a survey on text ranking, especially modern
transformer-based approaches, we refer the reader
to Lin et al. (2020). The majority of text-ranking
approaches, driven by publicly available datasets
such as those from TREC (Voorhees, 2004) and
more recently MS MARCO (Nguyen et al., 2016),
are content-based. These approaches range from
keyword-based, such as BM25 (Robertson and
Zaragoza, 2009), to the recent BERT-based (Devlin
et al., 2019) models such as re-ranking (Nogueira
and Cho, 2019; Dai and Callan, 2019; MacA-
vaney et al., 2019; Li et al., 2020) and full-ranking
with dense-representations (Reimers and Gurevych,

2019; Karpukhin et al., 2020; Khattab and Zaharia,
2020; Xiong et al., 2021).

In terms of ensembling multiple document re-
trieval approaches, the recent focus has been on
the computational cost, where faster techniques are
used to pre-filter the large document pool, to be
re-ranked by computationally more expensive but
more accurate techniques. A good example is the
work by Ganhotra et al. (2020), which combines
a series of traditional IR techniques with neural
approaches.

While content-based approaches benefit greatly
from models pre-trained with large corpora, they
are at a disadvantage in specialized domains involv-
ing technical support documents. In such domains,
the “resolution” documents given a query need not
have a high relevance score based on the content
alone. Document expansion techniques can play a
role but often fall short as compared to direct clas-
sification, as we demonstrate in this work. To the
best of our knowledge, there are no existing works
that combine a content-based approach with direct
classification as proposed in this work.

The proposed Q2R Orchestrator learns a separate
classifier to choose results from either the content-
based or the direct classification approaches. Tradi-
tional fusion techniques (Fox and Shaw, 1994; Vogt
and Cottrell, 1999; Aslam and Montague, 2001)
can be used here and in some settings may further
improve the retrieval performance. We leave this
as possible future work.

3 Method

3.1 Kernel KNN

A key component of Q2R is direct clas-
sification through kernel KNN. Let Z =
{(x1, y1), (x2, y2) . . . , (xN , yN )} be the training
set of query-document pairs, where xi is the text
of a query and yi the identifier of the document
that was matched to each query in a curated dataset.
We emphasize that yi here refers to the document
identity only, and not its content. Note that there
may be more than one historical document yi for
any given historical query xi. Furthermore, there
are often many examples xi, xj , xi 6= xj with the
same document label yi = yj ; this motivates the
use of a kernel-weighted voting paradigm. For
now, we assume that a feature function f is given
and f(x) ∈ Φ is defined for each x, where Φ is a
finite-dimensional Euclidean space.

The kernel KNN is a generative model for clas-
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sification where the class conditional distributions
p(X|Y ) are represented by a mixture:

p(X=x|Y =y) =
1

|Zy|
∑

(x′,y′)∈Zy

ψ
(
f(x)− f(x′)

)

where Zy = {(x′, y′) ∈ Z : y′ = y} and ψ :
Φ → R is a kernel function, with the following
properties:

ψ(u) ≥ 0,

∫

Φ
ψ(u)du = 1.

A frequently used, smooth kernel function is the
Gaussian kernel ψ(u) ∝ exp{−‖u‖22 }.

Given a query x, classification is done based on
the posterior, given by:

p(Y = y|X = x)

∝ p(X = x|Y = y)p(Y = y)

=


 1

|Zy|
∑

(x′,y′)∈Zy

ψ
(
f(x)− f(x′)

)


( |Zy|
N

)

∝
∑

(x′,y′)∈Zy

ψ
(
f(x)− f(x′)

)
.

In practice, the computation of the posterior
p(Y |X) is restricted to only the K nearest neigh-
bors of x in the feature space Φ. Let ZK(x) ⊂ Z
be the set ofK nearest neighbors of x in Φ based on
f(x) and ZKy (x) = ZK(x) ∩ Zy, then the kernel
KNN relevance score between x and y is defined
as

sK(x, y) :=
∑

(x′,y′)∈ZK
y (x)

ψ
(
f(x)− f(x′)

)
. (1)

Here, K is a hyperparameter that is optimized
using a separate validation set. The feature function
f plays a critical role and is optimized through
metric learning on Z (Section 3.2). Notice that
the relevance score sK between a query x and a
document y as defined in (1) depends only on the
features of x (the query) and x′ (training queries)
and never on the contents of the document y.

3.2 Metric Learning
Q2R improves the relevance score sK in (1) by
fixing the kernel ψ and optimizing the feature func-
tion f through metric learning. Assume that f is
parameterized by θ ∈ Θ, and denote the particular
instance fθ. In general, Θ can be a space of neu-
ral networks, and fθ can range from linear to very
complex nonlinear mappings.

The objective is to find f such that f(x) is close
to f(x′) if both (x, y) and (x′, y) are in Z . In other
words, queries that have the same answers should
be close to each other in the feature space. We use
the triplet loss (2), a widely used objective function
for metric learning (Weinberger and Saul, 2009;
Schroff et al., 2015).

The idea is to create a set T of “triplets”
(xa, xp, xn) from Z . Each triplet contains an an-
chor example xa, a positive example xp that be-
longs to the same class as xa and a negative exam-
ple xn that belongs to a different class. Given T ,
we find:

θ∗ = arg min
θ∈Θ

∑

(xa,xp,xn)∈T
max{0, 1 +

‖fθ(xa)−fθ(xp)‖−‖fθ(xa)−fθ(xn)‖}.
(2)

For large Z , the number of triplets can be huge.
We propose an iterative sampling approach similar
to that in Xiong et al. (2021) to optimize fθ as
follows:

1. Initialize θ randomly.

2. Set T ← ∅.

3. For each (x, y) ∈ Z ,

(a) Sample (x′, y′) from Zy −{(x, y)} with
weight ψ(fθ(x)− fθ(x′)); let xp ← x′.

(b) Sample (x′′, y′′) from Z − Zy with
weight ψ(fθ(x)− fθ(x′′)); let xn ← x′′.

(c) Let xa ← x, add (xa, xp, xn) to T .

4. Solve (2) for θ∗; let θ ← θ∗.

5. Evalute fθ on validation set. Stop if no im-
provement after sufficiently many iterations.

6. Otherwise, go to step 2.

In Step 3, note that both the positive and the
negative examples are sampled based on their simi-
larities to the anchor example, preferring the more
similar ones. Empirically we find that this ap-
proach performs better than always choosing a
“hard” triplet i.e. picking the most dissimilar posi-
tive examples and the most similar negative exam-
ples. One reason could be that positive examples
form clusters that are far from each other and in-
cluding such distant examples in the triplet may
actually harm the learning process.
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Dataset # URLs # Training # Validation # Test
Twitter 3585 9622 493 472
Telco 1214 31,096 3859 3732
IBM 149,729 433,369 24,082 22,143

Table 1: Specifications of the Data Sets

Step 3 can be repeated for each (x, y) ∈ Z to
produce multiple triplets. In our implementation,
for each anchor, we sample one triplet using the
weighted distribution as described above and an-
other triplet using uniform weights. For large Z ,
one can use a subset of Z in Step 3. For general
neural networks, (2) can be solved using stochas-
tic gradient descent or its variants on minibatches
from T .

3.3 The Q2R Orchestrator

As noted in Section 3.1, the content of a document
y is never used in the direct classification approach
via kernel KNN, only its identity. This relies on
the presence of a sufficient number of labeled ex-
amples (x, y) in Z for each y ∈ D. In practice,
this will be possible for some, but not all, y, es-
pecially when the collection of documents, D, is
large. To provide answers to previously unseen,
or under-represented documents in Z , Q2R makes
use of a standard content-based retrieval approach
in conjunction with the kernel KNN method. This
is done through the Q2R Orchestrator.

Suppose that sC is the relevance score for a
content-based approach while sK is the relevance
score for kernel KNN described above. Suppose
that the objective is to return the top R documents.
For a given query x, let YC = {yC(1) . . . y

C
(R)} ⊂ D

be the top R documents based on sC and respec-
tively YK = {yK(1) . . . y

K
(R)} ⊂ D the top R doc-

uments based on sK . The question of interest is
formulated as a binary decision: decide whether
to select YC or YK as the set of results to pro-
vide to the user. The Q2R Orchestrator thus trains
a binary classifier to make this decision. For ef-
ficiency we use a linear classifier trained using
logistic regression. To construct the training set,
we identify examples in the validation set where
the ground truth is contained in YC or YK , but
not both. The input features for the classifier
include minimally (sC(x, yC(1)), . . . , s

C(x, yC(R)),
sK(x, yK(1)), . . . , s

K(x, yK(R))), and may include
other features such as confidence intervals.

4 Experiments

4.1 Data Sets
We focus on the task of natural-language retrieval
of technical documents. We evaluate the proposed
method along with baseline methods on datasets
in which labeled examples are available.1 In par-
ticular, we use the Twitter and Telco datasets de-
scribed in Ganhotra et al. (2020) along with an
IBM dataset.

The Twitter dataset is publicly available. It con-
tains 10,587 labeled examples. Each example con-
sists of a sequence of dialog messages and a URL
document as the answer label. The set is split
90%/5%/5% for train/validation/test, respectively.
The Telco set contains 38,687 examples, with
an 80%/10%/10% train/validation/test split. The
IBM set is an order of magnitude larger than the
Telco set with a 90%/5%/5% train/validation/test
split. Table 1 summarizes the data sets used in our
experiments.

4.2 Models
Q2R allows for virtually any content-based method
to be used in conjunction with the kernel KNN
component. Furthermore, thanks to the availability
of training examples, the content-based approach
itself can be improved by augmenting the content
of the documents with the labeled examples us-
ing text from the corresponding training examples
(Amitay et al., 2005). We show that this augmenta-
tion improves considerably the performance of the
content-based approaches.

Here, as a baseline content-based method, we
use BM25 (Robertson and Zaragoza, 2009). The
variant wherein each document y ∈ D is aug-
mented with text from {x : (x, y) ∈ ZTrain} is
referred to as BM25-aug. We also include results
obtained using the information retrieval method
proposed by Ganhotra et al. (2020) (IRC, short for
IR-Cascade) as well as ESIM (Chen et al., 2017).
In addition, we examine a number of content-based

1The documents in the IR data sets Robust04 and MS
MARCO are not sufficiently well-covered by the training set
for use with Q2R.
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methods based on Sentence-BERT (Reimers and
Gurevych, 2019). We fine-tuned a pretrained Dis-
tilBERT model (Sanh et al., 2019) on our data sets
using the triplet loss. To deal with long documents,
we use a similar technique as in Dai and Callan
(2019). We evaluate the following variants:

• SBERT-First (SB-F): Only the beginning of
each document is used, up to the maximum
sequence length of the model.

• SBERT-MaxP (SB-M): Each document is seg-
mented into overlapping sliding windows. For
training, each sub-document is assumed rele-
vant. For evaluation, the maximum relevance
score over all sub-documents is used.

• SBERT-aug-MaxP (SB-aug): SBERT-MaxP
with augmented content as described above.

For our proposed KNN-based direct-
classification component, we use kernel KNN with
the following similarity metrics:

• (BOW) A simple TF-IDF weighted bag-of-
words (BOW) representation for f(·) and
ψ(u) ∝ 1 − 1

2‖u‖2. Each feature vector
f(x) is normalized such that ‖f(x)‖ = 1,
in which case it is straightforward to see that
ψ(f(x)− f(x′)) = 〈f(x), f(x′)〉.

• (LinNet) We use (2) to train a linear transfor-
mation (LinNet) that maps the BOW vectors
to a low-dimensional space. The feature di-
mension is a hyperparameter optimized on a
validation set. We use dimension 200 through-
out. For ψ we use the Gaussian kernel.

• (Transformers) For f(x), fine-tune a pre-
trained transformer architecture using (2).
We use DistilBERT (Sanh et al., 2019) (la-
beled KNN-DB) and MPNET (Song et al.,
2020) (labeled KNN-MP), both with final 768-
dimensional feature vectors. For ψ, we again
use the Gaussian kernel.

For the kernel KNN models, we use a valida-
tion set to select the number of neighbors, K ∈
{5, 10, 20, 40, 80, 160, 320, 640}. The nearest-
neighbor search can be done via an index by
approximate-KNN (Malkov and Yashunin, 2020),
and is as such nearly as fast as BM25.

Recall@
MRR 1 3 5
Content-based

BM25 0.079 0.051 0.087 0.114
BM25-aug 0.498 0.403 0.561 0.629

IRC 0.498 0.417 0.547 0.606
ESIM 0.380 0.261 0.460 0.519

SB-F-0 0.030 0.015 0.028 0.042
SB-M-0 0.028 0.013 0.028 0.042

SB-aug-0 0.299 0.220 0.333 0.409
SB-F 0.449 0.375 0.489 0.545

(A) SB-M 0.482 0.384 0.536 0.598
(B) SB-aug 0.546 0.449 0.600 0.663

Kernel KNN (ours)
BOW 0.477 0.409 0.525 0.568

LinNet 0.504 0.441 0.559 0.619
(C) KNN-DB 0.542 0.462 0.612 0.661

Q2R Orchestrator (ours)
(A)+(C) 0.557 0.466 0.621 0.665
(B)+(C) 0.552 0.473 0.608 0.657

Table 2: Results on the Twitter set

4.3 Results

The results for the Twitter set are shown in Table 2,
in terms of both the Mean Reciprocal Rank (MRR)
as well as Recall@R for R ∈ {1, 3, 5}. The results
reported in Ganhotra et al. (2020) were obtained by
restricting the answer set to URLs from the same
company/domain; here we use the full URL set,
making the problem more challenging.

For the content-based approach, document-
expanded BM25-aug and IRC far outperform
vanilla BM25. Also included are results for the
three “SB-x-0” variants, which use the pretrained
DistilBERT model without any fine-tuning on the
Twitter training set. Again, we see that augmenta-
tion makes a huge difference. The best-performing
content-based approach is the fine-tuned SB-aug.
The KNN classification methods based on bag-of-
words perform similarly to the content-based meth-
ods but are outperformed by KNN-DB. Finally, it
is clear that combining both approaches with the
Q2R orchestrator results in the best performance.

Table 3 shows a breakdown of the results based
on training-set coverage of the ground truth URLs.
For each test query, we use the term “training cov-
erage” to refer to the number of training examples
that share the same ground truth URL. In classifier
terms this is equivalent to the size of the training
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Training coverage 0 1-9 10-55 56-338 339+
# Test queries 96 93 100 91 92

Content-based
BM25 0.075 0.131 0.160 0.021 0.001

BM25-aug 0.046 0.373 0.531 0.815 0.749
IRC 0.022 0.354 0.507 0.711 0.917

ESIM 0.063 0.149 0.371 0.559 0.776
SB-F 0.144 0.363 0.453 0.417 0.884

(A) SB-M 0.149 0.351 0.447 0.577 0.904
(B) SB-aug 0.089 0.382 0.612 0.782 0.884

Kernel KNN (ours)
BOW 0.000 0.268 0.420 0.817 0.913

LinNet 0.000 0.311 0.485 0.863 0.891
(C) KNN-DB 0.000 0.269 0.656 0.879 0.923

Q2R Orchestrator (ours)
(A)+(C) 0.090 0.313 0.608 0.859 0.937
(B)+(C) 0.069 0.368 0.602 0.815 0.930

Table 3: MRR by training coverage on Twitter set. Training coverage of 0 means documents not in training set.

Recall@
MRR 1 3 5
Content-based

BM25 0.033 0.012 0.034 0.049
BM25-aug 0.337 0.201 0.408 0.510

(A) IRC 0.444 0.294 0.532 0.633
ESIM 0.458 0.299 0.554 0.658

(B) IRC+E 0.481 0.327 0.596 0.691
SB-F 0.428 0.280 0.519 0.616
SB-M 0.432 0.287 0.524 0.612

SB-aug 0.420 0.284 0.511 0.596
Kernel KNN (ours)

BOW 0.484 0.346 0.569 0.656
(C) LinNet 0.496 0.370 0.599 0.665
KNN-DB 0.454 0.321 0.546 0.627

(D) KNN-MP 0.493 0.360 0.591 0.661
Q2R Orchestrator (ours)

(A)+(C) 0.496 0.371 0.598 0.664
(A)+(D) 0.510 0.372 0.603 0.676
(B)+(D) 0.515 0.381 0.623 0.694

Table 4: Results on the Telco set

set with the same label. Training coverage of 0
means no such document was in the training set.

Naturally, for kernel KNN classification, we ex-
pect higher recall performance for queries with
larger training coverage. This can be observed in
Table 3 for all kernel-KNN models which far out-
perform on queries with coverage more than 10. On

MRR Train Validation Test
SB-F 0.498 0.433 0.428
SB-M 0.506 0.438 0.432

SB-aug 0.841 0.430 0.420

Table 5: Investigating Sentence-BERT performance on
the Telco set.

the other hand, kernel KNN has 0-recall for doc-
uments with 0 coverage since no neighbors could
vote for such documents. The content-based ap-
proaches are able to perform on such queries. Q2R
benefits from both approaches, performing well on
queries with both high and low training coverage.

Table 4 shows the results for the Telco set. The
Telco set breakdown by training coverage is pro-
vided in the Appendix in Table 8. We see that
among content-based approaches, the BERT-based
approaches are no longer superior. Interestingly,
SB-aug performs worse than SB without augmen-
tation. Table 5 reveals that even though the fi-
nal model is picked based on the validation-set
results, there may be overfitting on the training set.
Amongst the KNN models, LinNet performs the
best overall, slightly better than the transformer-
based model. However, the breakdown in Table 8
shows that each excels in different subsets of test
queries. Q2R, combining IRC and KNN-MP re-
sults in better performance than combining IRC
and LinNet.
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Train. coverage 0 1-2 3-4 5-9 10-18 19-36 37-71 72-163 164-467 471+
# Test queries 2457 2649 1576 2255 2243 2170 2191 2194 2204 2204

Content-based
(A) COMBL 0.166 0.118 0.108 0.093 0.088 0.078 0.079 0.080 0.071 0.060

BM25 0.111 0.087 0.089 0.076 0.069 0.068 0.075 0.074 0.067 0.048
(B) BM25-aug 0.077 0.100 0.128 0.164 0.198 0.225 0.294 0.303 0.302 0.262

(C) IRC 0.002 0.070 0.110 0.143 0.187 0.221 0.290 0.340 0.404 0.418
Kernel KNN (ours)

BOW 0.000 0.024 0.058 0.103 0.154 0.200 0.295 0.357 0.465 0.647
(D) LinNet 0.000 0.032 0.069 0.115 0.190 0.246 0.351 0.412 0.519 0.689

Q2R Orchestrator (ours)
(A)+(D) 0.050 0.052 0.081 0.117 0.188 0.241 0.345 0.409 0.513 0.683
(B)+(D) 0.012 0.039 0.073 0.116 0.189 0.245 0.349 0.412 0.517 0.686
(C)+(D) 0.000 0.032 0.070 0.115 0.190 0.246 0.351 0.413 0.519 0.688

(A)+(D) W. 0.139 0.100 0.104 0.116 0.148 0.177 0.247 0.306 0.401 0.578
(B)+(D) W. 0.073 0.097 0.122 0.158 0.199 0.228 0.304 0.341 0.394 0.515

Table 6: MRR by training coverage on the IBM set. Coverage of 0 means documents not in training set.

Recall@
MRR 1 3 5

Content-based
(A) COMBL 0.095 0.060 0.107 0.134

BM25 0.077 0.044 0.086 0.113
(B) BM25-aug 0.204 0.131 0.234 0.287

(C) IRC 0.216 0.153 0.247 0.291
Kernel KNN (ours)

BOW 0.228 0.162 0.256 0.311
(D) LinNet 0.260 0.186 0.298 0.352

Q2R Orchestrator (ours)
(A)+(D) 0.266 0.194 0.306 0.358
(B)+(D) 0.261 0.186 0.299 0.353
(C)+(D) 0.260 0.186 0.298 0.351

(A)+(D) W. 0.231 0.168 0.266 0.315
(B)+(D) W. 0.242 0.162 0.273 0.327

Table 7: Results on the IBM set

Finally, Tables 6 and 7 show the results on the
large IBM dataset. LinNet is the best-performing
model for the kernel KNN. The transformer-
based models are too computationally-costly and
are not considered competitive; in addition, the
transformer-based model results are inferior to
those presented in the table. For content-based ap-
proaches on the IBM set, we include an alternative
to BM25, based on keyword enrichment, labeled
COMBL.

One important observation for this dataset is
that the KNN models significantly outperform the

content-based approaches in terms of overall av-
erage performance. This results in a significantly
unbalanced training set for the orchestrator, where
most examples would favor choosing the KNN re-
sults. The Q2R orchestrator can thus be trained
using a weighted loss such that examples where the
content-based model should be selected are given
more weight. We tag this weighted version with
“W.” in the tables. Observe that the unweighted
hybrid methods perform the best overall, but from
Table 6 we see that the weighted version gives a
more balanced performance across queries with
different levels of training coverage.

5 Conclusion

We presented the Q2R system aimed at providing
relevant documents in response to technical queries
in natural language. The key novelty in this system
is its use of both content-based document retrieval
techniques as well as the proposed kernel KNN ap-
proach, which taps into the available labeled data
from historical queries. Our experimental results
show that content-based document retrieval and
the kernel KNN approach complement each other;
Q2R is able to take advantage of both. The sys-
tem has been deployed at IBM on various applica-
tions that involve natural language queries and has
shown encouraging performance improvement over
existing systems. Potential future enhancements
include more sophisticated sampling procedures
for the metric-learning, as well as new fusion ap-
proaches for the orchestrator.
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A Appendix: Privacy

Since our training data includes past queries, it
is important to remove all sensitive or personal
information from the raw text before using them
for training. We employ both automated masking
and filtering followed by manual human tagging
(for truly sensitive queries) as a preprocessing step
in our data preparation pipeline.

B Appendix: Additional Experiment
Details

All our models are trained using single-GPU
(NVidia V100) 16-core machines with 128GB
RAM. The total training time for each model varies
from a few minutes (Twitter set, BM25) to a few
days (larger BERT-based models).

For bag-of-words models, we trim the vocabu-
lary by removing rare words and stop words, to
2000, 5600 and 54,000 words respectively for Twit-
ter, Telco and IBM data sets.

Our BERT-based models use pretrained Distil-
BERT (’distilbert-base-nli-mean-tokens’) (model
size 253MB) and MPNET (’all-mpnet-base-v2’)
(model size 418MB).

For most results, the variance due to
approximate-NN is small so we omitted them. For
results based on neural-network training, we report
averages based on at least 3 runs.

C Appendix: Additional Results

In Table 8 we present the Telco set breakdown
results by training coverage.

Training 0- 63- 216- 2009- 4165
coverage 59 213 1557 2388

# Test 757 759 887 786 543
queries

Content-based
BM25 0.07 0.05 0.03 0.01 0.00

BM25-aug 0.17 0.31 0.40 0.37 0.47
IRC 0.24 0.44 0.56 0.41 0.58
(A)

ESIM 0.17 0.31 0.54 0.59 0.75
IRC+E 0.17 0.36 0.58 0.61 0.75

(B)
SB-F 0.22 0.30 0.47 0.50 0.72
SB-M 0.23 0.30 0.48 0.56 0.64

SB-aug 0.21 0.31 0.48 0.52 0.63
Kernel KNN (ours)

BOW 0.15 0.28 0.52 0.70 0.87
LinNet 0.15 0.35 0.56 0.63 0.89

(C)
KNN-DB 0.11 0.29 0.52 0.60 0.83
KNN-MP 0.15 0.35 0.61 0.65 0.77

(D)
Q2R Orchestrator (ours)

(A)+(C) 0.17 0.37 0.55 0.60 0.88
(A)+(D) 0.21 0.42 0.62 0.60 0.75
(B)+(D) 0.15 0.37 0.63 0.68 0.80

Table 8: MRR by training coverage on Telco set. Train-
ing coverage of 0 means documents not in training set.
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Abstract

Credit risk management is one central prac-
tice for financial institutions, and such prac-
tice helps them measure and understand the
inherent risk within their portfolios. Histori-
cally, firms relied on the assessment of default
probabilities and used the press as one tool to
gather insights on the latest credit event de-
velopments of an entity. However, due to the
deluge of the current news coverage for com-
panies, analyzing news manually by financial
experts is considered a highly laborious task.
To this end, we propose a novel deep learning-
powered approach to automate news analysis
and credit adverse events detection to score
the credit sentiment associated with a company.
This paper showcases a complete system that
leverages news extraction and data enrichment
with targeted sentiment entity recognition to
detect companies and text classification to iden-
tify credit events. We developed a custom scor-
ing mechanism to provide the company’s credit
sentiment score (CSSTM ) based on these de-
tected events. Additionally, using case studies,
we illustrate how this score helps understand
the company’s credit profile and discriminates
between defaulters and non-defaulters.

1 Introduction

Motivation. Historically, financial institutions per-
formed credit risk management with techniques
based on two different approaches (Chatterjee,
2015). The first approach is structural models,
based on (Black and Scholes, 1973) and (Merton,
1974), which use the company’s assets and liabili-
ties to derive its probability of default. The second
approach is default intensity models, also called
reduced form models, developed by (Jarrow and
Turnbull, 1995) and (Grundke and Riedel, 2004),
which measure the default event as a statistical pro-
cess, a random event following Poisson law, with-
out considering the company’s assets or liabilities.

*These authors contributed equally to this work

Figure 1: A screenshot of our deployed application.

These historic methods focus primarily on as-
sessing the probability of default, which is useful
in credit risk management. However, they are not
designed to gain insights about a company’s credit
overall situation or identify the negative and credit
adverse events the company has experienced or
is likely to experience. This task falls under the
responsibility of financial experts who may rely
on news to identify such events, but this activity
is considered highly tedious and time-consuming.
Moreover, companies are increasingly covered in
the press and journalists nowadays not only report
facts, but go beyond in their analysis by making
predictions, releasing warnings as well as establish-
ing connections between companies.

Challenges. Most of the available news data is
unannotated and un-exploitable at its initial state,
which requires a significant entry effort for ma-
chine learning experiments. Furthermore, machine
learning experiments in credit risk management has
shown to boost accuracy in the default risk mea-
sure (’Oskarsd’ottir and Bravo, 2021) to show the
effect of news sentiment on that same metric (Elena,
2020) or to focus on a single event prediction -
credit downgrade in (Tran-The, 2020). However,
none tackles news analysis automation and uses
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deep learning for credit event detection.
Our Goals. In order to derive explainable knowl-

edge about a company’s credit risk, we propose au-
tomating news analysis and identifying signals of
negative and credit adverse events for companies.
Such a method enables us to score the negative
credit sentiment of companies. Our approach is
a complete deployed application as shown in Fig-
ure 1. The enrichment pipeline starts with news
collection (in English). It outputs a credit sentiment
score (CSS) for companies based on the severity,
recency, and volume of negative and credit adverse
events detected from financial news articles. The
custom Natural Language Processing (NLP) based
pipeline’s hallmarks include automated ingestion
& filtering for finance-domain news articles, target-
specific entity sentiment extraction. This pipeline
allows high-precision content filtering and classi-
fication of the negative and credit adverse events
mentioned in news articles (classified into five risk
categories).

Our Contributions. The key contributions of
this paper are:

• A novel, data-driven approach to detecting
credit adverse events with targeted-entity sen-
timents

• A custom credit scoring methodology for com-
panies from news, traditionally performed by
financial experts.

• Extensive experimentation on real-world data
on which our modeling approach performs
well: including studies for defaulters VS non-
defaulters and analysis of the discriminatory
power of CSS between defaulters and non-
defaulters.

2 Related Work

2.1 Aspect-Level Sentiment Analysis

When scientists prepare fine-grained sentiment
models, they usually tackle the tasks of Aspect-
based sentiment analysis (ABSA) (Do et al., 2019)
and Targeted ABSA (TABSA) (Ma et al., 2018),
where the latter considers the sentiment regarding
a specific entity. Researchers have added context-
dependencies to pretrained self-attention based lan-
guage models called QACG-BERT (Wu and Ong,
2021) to improve the performance better. A mutual
learning framework is used to take advantage of

unlabeled data to assist the aspect-level sentiment-
controllable review generation, consisting of a gen-
erator and a classifier that utilize confidence mech-
anism and reconstruction reward to enhance each
other (Chen et al., 2021).

2.2 Deep Learning in Text Sentiment Analysis

A RNN model with LSTM units is trained based on
Glove Embeddings of 400K words to predict the
polarity (i.e., positive or negative sentiment) of the
news (Souma et al., 2019). Moreover, an ensem-
ble of CNN (Kim, 2014), LSTM (Hochreiter and
Schmidhuber, 1997) and GRU (Chung et al., 2014)
and a classical supervised model based on Sup-
port Vector Regression (SVR) is constructed which
performs impressively on Microblog (Twitter and
StockTwits) and news headlines datasets (Akhtar
et al., 2017). Researchers have found that CNN
is an effective model for predicting the senti-
ment of authors in the StockTwits dataset, among
other models of logistic regression, doc2vec, and
LSTM (Sohangir et al., 2018). A BERT model for
the financial domain (FinBERT) pre-trained on a
financial corpus and fine-tuned for sentiment anal-
ysis has shown promising results (Araci, 2019).

2.3 Machine Learning in Credit Risk

A study has shown that tree-based models are more
stable than the models based on multilayer artificial
neural networks in predicting loan default probabil-
ity with structural features of financial conditions
of a company (Addo et al., 2018). In addition,
researchers have provided further evidence that re-
gardless of the number of features used, boosted
models outperform Linear Models, Decision Trees,
and Neural Networks (Torrent et al., 2020). Further
studies have stated that deep learning lends itself
particularly well to analyzing textual data, but the
improvement on numerical data is limited com-
pared to traditional data mining models (Mai et al.,
2019). Regarding Micro, Small, and Medium En-
terprise (mSME) credit risk modeling, deep learn-
ing models, including the BERT model, appear to
be robust concerning the quality of the text and
therefore suitable for partly automating the mSME
lending process because of their power to predict
default based on textual assessments provided by a
lender (Stevenson et al., 2021). In this study (Tran-
The, 2020) a more NLP-focused approach is taken,
using a combination of topic modeling and senti-
ment lexicons.
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Figure 2: Annotated sentences by Credit Relevance, Target Entity Sentiment and Risk Categorization models.

3 Our Approach

In this section, we discuss different components of
our scalable NLP pipeline that can ingest and infer
English news from a news data source (Moody’s
Analytics NewsEdge 1) that has over 170M articles,
with an average of 150K news articles daily volume.
To efficiently process large volumes of data, we
have designed a data funnel process.

We have a credit relevance model at the head
of the funnel, which helps discard irrelevant docu-
ments, viz. sports/technology-related articles. This
model filters out 70% of the incoming documents.
Next, the Target Entity Sentiment (TES) model ex-
tracts and tags all the entities in a document with
Positive, Negative, and Neutral sentiment polarity,
respectively. Following this step, the Risk Catego-
rization model then classifies each sentence in the
article into appropriate risk categories (discussed
later in this section). In Figure 2 we illustrate dif-
ferent examples of sentences as annotated by each
model.

3.1 News Enrichment Pipeline

In the pipeline, news articles are enriched with the
output of the three following models.

Credit Relevance Model. We define credit-
relevant news as any news story that contains busi-
ness & finance-related topics which mention one or
more corporate entities. We trained a binary rele-
vance classification model using news data to iden-
tify relevant news. We leveraged the Reuters 2 news

1https://newsedge.com/
2https://liaison.reuters.com/tools/

topic-codes

topics classification system, where we mapped
Reuters codes into two classes: (1) in-domain (such
as Merger/Acquisition, Sales, and promotions) and
(2) out-of-domain (such asArt, Sports). In Table 1
we show the label distribution in both the train and
test sets for the model.

After the text pre-processing (removal of Html
links, numbers, and stop words removed), it was
used with TF-IDF weighted features (Aizawa,
2003). Due to the train set size of over 30 Million
articles, we chose a linear Support Vector Machine
(SVM) model, trained with stochastic gradient de-
scent (SGD) in out-of-core learning (Benczúr et al.,
2018) setup.

Label Train set Test set

Relevant 13,323,062 3,291,751
Not Relevant 10,442,654 2,647,689
Total 23,765,716 5,939,440

Table 1: Distribution of annotated dataset for Credit
Relevance model.

Target Entity Sentiment Model. The raw doc-
uments are first split into sentences using syntok 3

and then on each sentence a pre-trained WordPiece
tokenizer (Schuster and Nakajima, 2012) is applied.
Finally, each sentence is represented as {t1, t2, . . .}
and the corresponding case tags {tc1, tc2, . . .}. To-
ken case tags used in the model are described in
Table 2. Then given this sequence {t1, t2, . . .}, we
feed it to pre-trained Electra Base model4 (Clark

3https://github.com/fnl/syntok
4https://huggingface.co/google/

electra-base-discriminator
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Case Label Description

AU All letters in the token are upper-case
AL All letters in the token are lower-case
IU Only the initial letter of the token is upper-case
NU All characters are digits(0-9)
MN Most of the characters are digits
SN Token has a digit

Table 2: Token case tags.

et al., 2020) to obtain contextual embeddings for
each token {e1, e2, . . .}. As shown in Figure 3, the
contextualized embeddings are concantened with
case embeddings {ec1, ec2, . . .} and fed to a linear
layer to obtain the labels {ŷ1, ŷ2, . . .}. To com-
pute the loss, we used masked cross-entropy. And
a dropout layer for regularization was added as
well. The network was optimized using AdamW
(Loshchilov and Hutter, 2019) optimizer.

Figure 3: Architecture of Target Entity Sentiment
Model.

To annotate data, each sentence was shown to 5
analysts, and those with majority consensus were
selected; those with no clear majority were dis-
carded. In Table 3 we show the overall distribution
of labels across our final annotated dataset of 9,859
unique sentences, with an 80:20 split for training
and evaluating the model.

Named Entity Count NEU POS NEG

PER 3585 67.92% 7.62% 24.46%
ORG 9020 63.47% 15.42% 21.11%
LOC 3824 92.89% 3.53% 3.58%
MONEY 2138 100% 0.00% 0.00%
MISC. 3020 92.29% 4.17% 3.54%

Table 3: Distribution of annotated dataset for Target
Entity Sentiment model.

Risk Categorization Model. With similar pre-
processing steps as inputs to the TES model, we

trained a multi-label classification model, with an
pre-trained Electra base model5 (Clark et al., 2020),
followed by convolutional layers (Kim, 2014) and
a linear layer. We also used dropout to reduce over-
fitting and a sigmoid layer to generate the final
prediction output. The final tuned hyperparameters
for the model are listed in Table 7 in Appendix.
We trained the model with different model architec-
tures and hyperparameters over 30 epochs in each
model training iteration and saved the best epoch
on the test set. Our team of 4 annotators (among
the paper’s authors) was engaged in data labeling
and cross-review activities for more than 60 hours
to build the dataset. A tagging guideline was first
discussed and agreed upon with explicit definitions
of the seven labels. The risk categories labels and
examples are listed in Table 4. Around 7000 sen-
tences were collected and labeled according to the
tagging guidelines to form the train and test sets
(using stratified sampling). The distribution of la-
bels in the train and test sets are listed in Table 8 in
Appendix.

Credit Risk Scoring Model. Each company
is scored daily using credit adverse news articles
for the company, as tagged by Risk Categorization
Model.

Step 1: For each date, we calculate the cate-
gory weights wdate

cat over a fixed window of days.
This is done by counting the number of articles in
each category and using an exponential decay so
more recent counts have more weights, as shown
in Formula 1.

wdate
cat =

date∑

i=from

counticat ∗ e(date−i)/k (1)

where:

from = start date of the fixed window used
for the calculations

counticat = count of all articles found for a
given category (cat) on day (i)

k = decay constant

Step 2: For each date, we calculate the cate-
gory scores scoredatecat by transforming the weights
using a sigmoid function, which has the effect of
capping the weight and also ensuring that only one
or two articles mentioned will have limited impact.

5https://huggingface.co/google/
electra-base-discriminator
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Risk Category Definitions Example Sentences Fixed Score

Bankruptcy / Insol-
vency

Proceedings of bankruptcy, in-
solvency or foreclosure, men-
tions of restructuring, adminis-
tration or refinancing due to liq-
uidity issues.

The British firm filed for Chapter 7
bankruptcy protection late Thursday.

100

Default / Missed
Payments

Any mention of unpaid debts by
a entity or the prospect of de-
fault for an entity.

Levitt home-building unit gets loan default
notices.

75

Credit Rating
Downgrade

Downgrades from rating organi-
zations.

Standard Chartered’s Shares Plunge 7% After
Fitch Downgrade.

30

Profit Warning Revenue, sales or EPS fall. Carillion has been fighting for survival after
contract delays and a drop in new business
led to three profit warnings last year.

20

Compliance Issue Any kind of financial crime, in-
vestigations, lawsuits, or viola-
tions.

TransAtlantic Petroleum Announces Notice
of Noncompliance With NYSE MKT Contin-
ued Listing Standards.

2.5

Other Risk Any type of company or credit
relevant risks not covered in one
of the five risk categories above.

On June 28, 2017, Southern Company and
its subsidiary, Mississippi Power, suspended
operations involving the coal gasifier portion
of the Kemper County energy facility.

0

Not Relevant Any text that is not evolved with
credit risk.

Marks & Spencer to issue its first junk bond
after reporting its first loss since joining the
stock market in 1926.

0

Table 4: Risk Categories definitions with examples and weights in entity scoring

We multiply by a fixed score for that category as
described in equation 2.

scoredatecat = fixedcat/(1 + e−m∗(wdate
cat −c)) (2)

where:

m = steepness of sigmoid function
c = number of articles needed to reach

the midpoint of sigmoid function
fixedcat = fixed score for a given risk category

The more severe the credit event is, the higher
the fixed score is, as shown in Table 4.

Step 3: The Credit Sentiment Score at date t is
the maximum category scores:

CSSdate = max(scoredatecat ) (3)

Our scoring function has an exponential decay
which recognizes that news has a lasting value and
impact during a specific period. It is reactive to
the latest news as it weights recent news higher
than older ones. The risk scores in the Credit Risk
Scoring model are calculated via heuristics, as we
do not have enough training data for a supervised
approach. The fixed category score of each risk
category in the Credit Risk Scoring model is shown
in Table 4.

4 Evaluation

This section regroups the models evaluation as
well as examples of case studies conducted on real-
world data.

The Baseline. A simplified set of baseline mod-
els consists of three event relevance (binary clas-
sification) models instead of the multi-label clas-
sification model in the Risk Categorization model:
Bankruptcy, Default, and Adverse News. This base-
line method was actually in the earliest version of
CSSTM product, where we only considered the
two most severe credit risk events: Bankruptcy
and Default, in addition to a general class of less
severe events called Adverse News. Bankruptcy
and Default models handle bankruptcy and default-
related events, respectively, while the Adverse
News model deals with other credit events such
as credit rating downgrade and illiquidity.

(C ∗mt +
n∑

i=1

articleTi )/(C + n) (4)

where:

C = average number of articles per day
in the last 10 days

mt = historical daily score mean in last
10 days

n = number of articles in day t
articleTi = i-th article score on day t
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Each model outputs a score representing the pre-
diction confidence about the underlying event from
0 to 100 for the input paragraph. The Bankruptcy
and Default models are LSTM models (Hochreiter
and Schmidhuber, 1997). And the Adverse News
model is an LSTM model with attention mecha-
nisms (Bahdanau et al., 2015) as these events are
usually not as explicitly mentioned in the articles
as the Bankruptcy and Default events.

These three classes are only present in the base-
line, and we have added new risk categories (as
shown in Table 4) for our latest version of the Risk
Categorization Model. During the inference stage,
each article is split into paragraphs fed to the three
event relevance models. The paragraph score is
the maximum score of the three relevance mod-
els, and the article score is the maximum score of
all the paragraph scores within the article. Since
Bankruptcy events are the most severe events while
Adverse News are the least severe ones, we have
applied weightings to the article scores of the three
events with 100%, 75%, and 50%, respectively.
At the company level, related articles are scored
and are aggregated using a bayesian averaging, as
shown in equation 4, to generate the company’s
daily sentiment score.

Models Evaluation. In Table 5 we show the clas-
sification report for the Credit Relevance Model on
the test set (an overall F1-Score of 87%). As re-

Precision Recall F1 Support

Not Relevant 86% 86% 86% 2647689
Relevant 89% 89% 89% 3291751

Table 5: Credit Relevance results.

ported in Table 6 (detailed report in Table 10 in Ap-
pendix), the overall F1-Score of Target Sentiment
Model on the test set is 77%, which shows best
performance for ORG (Organization), the most rel-
evant entity for our purpose. As reported in Table 6

Precision Recall F1 Support

TES 76% 79% 77% 5391
RiskCat 83% 82% 83% 2146

Table 6: Performance (micro average) results for Tar-
geted Entity Sentiment (TES) and Risk Categorization
(RiskCat) model results.

(detailed report in Table 9 in Appendix), the overall
F1-Score of Risk Categorization Model on the test

set is 83%. We also notice better results for three of
the four major credit events in the Credit Risk Scor-
ing Model (Bankruptcy/ Insolvency, Credit Rating
Downgrade, and Profit Warning).

The weights of risk categories in the Credit Risk
Scoring model indicate the importance of the re-
lated credit events. That analyzes a company’s cred-
itworthiness. It coincides with the fact that we have
better classification results in the Risk Categoriza-
tion Model for the credit events that contribute with
higher weights in the Credit Risk Scoring Model.
As for Default / Missed Payments risk, its perfor-
mance is close to the average performance.

To validate that our scoring model picks up credit
adverse events for more than 6000 companies, we
collect 40,000 negative articles over two years
(2016 -2018) and corresponding default dates of
defaulters. Of these companies, 1192 experienced
a severe credit event (Bankruptcy/Insolvency or De-
fault/Missed Payments), and the remaining became
our control group. We refer to the former as de-
faulters and the latter as non-defaulters. We further
filtered companies based on their newsworthiness
to keep the ones with at least an article per month
on average. In the end, the defaulters’ group con-
tains 1166 companies, whereas the non-defaulters
have 3009 companies.

Figure 4: CSS Comparison between defaulters and non-
defaulters

In Figure 4 we show the daily average CSS of
the companies a year before and after the credit
event (represented as the "0" date on X-axis). For
comparison, we show the average score for the
control group. The event dates for non-defaulters
are chosen randomly during the same period as
defaulters. The average CSS moves away from
the long-term average towards the credit event. At
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around three months before the credit event and
until five months afterward, the score is around two
times compared to the non-defaulters average. The
peak of the defaulters after default events is around
35 after taking the average within the defaulters’
group. However, not around 80 as in an individual
company when a default event happens. Still, in
Figure 4 we clearly distinguish defaulters and non-
defaulters around default events by their average
credit sentiment scores.

Figure 5: CSS and Baseline - INTERSERVE PLC.

Additionally, to validate the discriminatory
power of CSS to identify the default and non-
defaulting companies, we ran the following sta-
tistical tests. With Kolmogorov–Smirnov test
(Massey Jr, 1951), we observed the Credit Senti-
ment Scores of the two groups (defaulters and non-
defaulters) were statistically different, with a confi-
dence level of 95%. Meanwhile, a Mann–Whitney
U test (Nachar, 2008) showed that the probability
of a defaulter’s score is more significant than a non-
defaulter’s score (both selected randomly from the
two groups) is statistically higher than 50%, with a
confidence level of 95%.

Case Studies. To illustrate, we compared our
CSS model to the baseline for defaulters and non-
defaulters. As shown in Figure 5, CSS for Inter-
serve PLC reacted to an early credit adverse signal
(driven by Profit Warning and Default/Missed Pay-
ments) stronger compared to the baseline a year be-
fore the company was set for administration. Later,
the news picked up a strong Bankruptcy / Insol-
vency signal as the company was seeking a rescue
deal before it was set into administration.

In another example, in Figure 6 we show a con-
sistently low CSS (as expected for the company
as it is a non-defaulter company) compared to the
baseline. This result is due to the baseline system

Figure 6: CSS and Baseline - AIR LEASE.

noise, as the articles often mention Air Lease’s part-
ners going into liquidation and insolvency issues.
The result also shows that misclassifications on the
paragraph level are way noisier than at the sentence
level. A paragraph may have multiple sentences
which refer to different companies with different
sentiments in different contexts.

5 Conclusion

In this paper, we have designed, implemented, and
deployed a deep-learning/NLP-powered applica-
tion. This application can assist credit analysts
in processing large amounts of news data and de-
tecting and understanding the negative and credit
averse events for companies. The pipeline utilizes
various machine learning and deep learning mod-
els for data filtering, entity recognition sentiment
analysis, and text classification.

As validated by the case studies and the mod-
eling evaluation, the output sentiment score can
distinguish between defaulted and non-defaulted
companies. Since we only expose the CSS product
instead of the complete models to the public, we
will guarantee the truthiness of our in-house news
source so that the system cannot be misused by
publishing fake news.

We plan to use credit sentiment score as a signal
to predict future credit events in future work. For
example, given a company’s credit sentiment score
of a certain level, the probability that the target
company will have some credit events within a cer-
tain period. We could also explore the sentiment
analysis for positive credit events, aggregate com-
pany level scores into industry or region level, or
focus on entities other than companies.
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6 Appendix

6.1 Risk Categories Model
Risk Categorization model final set of hyperparam-
eters are shown in Table 7.

Hyperparameter Value

Best Epochs 13
Max Length of Input Text 300
Train Batch Size 8
Test Batch Size 16
Initial Learning Rate∗ 1e-05
Dropout 0.7

∗ A learning rate scheduler is implemented to decrease the
learning rate in later epochs to better converge and reduce
overfitting

Table 7: Tuned Hyperparameters in Risk Categorization
Model.

Risk Category Train set Test set

Profit Warning 688 329
Bankruptcy / Insolvency 853 372
Compliance Issue 326 161
Default / Missed Payments 596 309
Credit Rating Downgrade 426 204
Other Risk 1347 544
Not Relevant 596 227
Total 4832 2146

Table 8: Distribution of annotated dataset for Risk Cate-
gories model.

In Table 8 we show the distribution of the
model’s annotated dataset (train and test sets) along

with the detailed classification report on the test set
in Table 9.

Labels Precision Recall F1-Score Support

Profit Warning 86% 89% 87% 329
Bankruptcy / Insolvency 93% 94% 94% 372
Compliance Issue 81% 60% 69% 161
Default / Missed Payment 79% 83% 81% 309
Credit Rating Downgrade 95% 95% 95% 204
Other Risk 75% 76% 75% 544
Not Relevant 79% 68% 73% 227

Micro Avg 83% 82% 83% 2146
Macro Avg 84% 81% 82% 2146

Table 9: Detailed Risk Categories results.

6.2 Target Entity Sentiment Model
The primary entity label that our pipeline relies on
is - Organization (Org) as our focus is on corporate
entities. Accurately discerning the sentiment polar-
ity (Pos, Neg, Neu) of these target Organizations is
an essential requirement of the pipeline, and in the
Table 10 we highlight the F1 score on these three
classes.

Entity Type Precision Recall F1-Score Support

Money 94% 96% 95% 502
Neg Loc 57% 32% 41% 25
Neg Misc 36% 30% 33% 30
Neg Org 66% 70% 68% 514
Neg Per 72% 67% 69% 220
Neu Loc 85% 89% 87% 890
Neu Misc 71% 76% 73% 676
Neu Org 74% 79% 77% 1612
Neu Per 78% 80% 79% 518
Pos Loc 46% 24% 32% 25
Pos Misc 44% 44% 44% 27
Pos Org 66% 69% 67% 298
Pos Per 54% 70% 61% 54

Micro Avg 76% 79% 77% 5391
Macro Avg 65% 64% 64% 5391

Table 10: Detailed Targeted Sentiment results.
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